Merge remote-tracking branches 'asoc/fix/adsp', 'asoc/fix/arizona', 'asoc/fix/atmel...
[linux-drm-fsl-dcu.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124         return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 static int machine_constraints_current(struct regulator_dev *rdev,
927         struct regulation_constraints *constraints)
928 {
929         struct regulator_ops *ops = rdev->desc->ops;
930         int ret;
931
932         if (!constraints->min_uA && !constraints->max_uA)
933                 return 0;
934
935         if (constraints->min_uA > constraints->max_uA) {
936                 rdev_err(rdev, "Invalid current constraints\n");
937                 return -EINVAL;
938         }
939
940         if (!ops->set_current_limit || !ops->get_current_limit) {
941                 rdev_warn(rdev, "Operation of current configuration missing\n");
942                 return 0;
943         }
944
945         /* Set regulator current in constraints range */
946         ret = ops->set_current_limit(rdev, constraints->min_uA,
947                         constraints->max_uA);
948         if (ret < 0) {
949                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950                 return ret;
951         }
952
953         return 0;
954 }
955
956 /**
957  * set_machine_constraints - sets regulator constraints
958  * @rdev: regulator source
959  * @constraints: constraints to apply
960  *
961  * Allows platform initialisation code to define and constrain
962  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
963  * Constraints *must* be set by platform code in order for some
964  * regulator operations to proceed i.e. set_voltage, set_current_limit,
965  * set_mode.
966  */
967 static int set_machine_constraints(struct regulator_dev *rdev,
968         const struct regulation_constraints *constraints)
969 {
970         int ret = 0;
971         struct regulator_ops *ops = rdev->desc->ops;
972
973         if (constraints)
974                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975                                             GFP_KERNEL);
976         else
977                 rdev->constraints = kzalloc(sizeof(*constraints),
978                                             GFP_KERNEL);
979         if (!rdev->constraints)
980                 return -ENOMEM;
981
982         ret = machine_constraints_voltage(rdev, rdev->constraints);
983         if (ret != 0)
984                 goto out;
985
986         ret = machine_constraints_current(rdev, rdev->constraints);
987         if (ret != 0)
988                 goto out;
989
990         /* do we need to setup our suspend state */
991         if (rdev->constraints->initial_state) {
992                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993                 if (ret < 0) {
994                         rdev_err(rdev, "failed to set suspend state\n");
995                         goto out;
996                 }
997         }
998
999         if (rdev->constraints->initial_mode) {
1000                 if (!ops->set_mode) {
1001                         rdev_err(rdev, "no set_mode operation\n");
1002                         ret = -EINVAL;
1003                         goto out;
1004                 }
1005
1006                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007                 if (ret < 0) {
1008                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009                         goto out;
1010                 }
1011         }
1012
1013         /* If the constraints say the regulator should be on at this point
1014          * and we have control then make sure it is enabled.
1015          */
1016         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017             ops->enable) {
1018                 ret = ops->enable(rdev);
1019                 if (ret < 0) {
1020                         rdev_err(rdev, "failed to enable\n");
1021                         goto out;
1022                 }
1023         }
1024
1025         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026                 && ops->set_ramp_delay) {
1027                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028                 if (ret < 0) {
1029                         rdev_err(rdev, "failed to set ramp_delay\n");
1030                         goto out;
1031                 }
1032         }
1033
1034         print_constraints(rdev);
1035         return 0;
1036 out:
1037         kfree(rdev->constraints);
1038         rdev->constraints = NULL;
1039         return ret;
1040 }
1041
1042 /**
1043  * set_supply - set regulator supply regulator
1044  * @rdev: regulator name
1045  * @supply_rdev: supply regulator name
1046  *
1047  * Called by platform initialisation code to set the supply regulator for this
1048  * regulator. This ensures that a regulators supply will also be enabled by the
1049  * core if it's child is enabled.
1050  */
1051 static int set_supply(struct regulator_dev *rdev,
1052                       struct regulator_dev *supply_rdev)
1053 {
1054         int err;
1055
1056         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057
1058         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059         if (rdev->supply == NULL) {
1060                 err = -ENOMEM;
1061                 return err;
1062         }
1063         supply_rdev->open_count++;
1064
1065         return 0;
1066 }
1067
1068 /**
1069  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070  * @rdev:         regulator source
1071  * @consumer_dev_name: dev_name() string for device supply applies to
1072  * @supply:       symbolic name for supply
1073  *
1074  * Allows platform initialisation code to map physical regulator
1075  * sources to symbolic names for supplies for use by devices.  Devices
1076  * should use these symbolic names to request regulators, avoiding the
1077  * need to provide board-specific regulator names as platform data.
1078  */
1079 static int set_consumer_device_supply(struct regulator_dev *rdev,
1080                                       const char *consumer_dev_name,
1081                                       const char *supply)
1082 {
1083         struct regulator_map *node;
1084         int has_dev;
1085
1086         if (supply == NULL)
1087                 return -EINVAL;
1088
1089         if (consumer_dev_name != NULL)
1090                 has_dev = 1;
1091         else
1092                 has_dev = 0;
1093
1094         list_for_each_entry(node, &regulator_map_list, list) {
1095                 if (node->dev_name && consumer_dev_name) {
1096                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097                                 continue;
1098                 } else if (node->dev_name || consumer_dev_name) {
1099                         continue;
1100                 }
1101
1102                 if (strcmp(node->supply, supply) != 0)
1103                         continue;
1104
1105                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106                          consumer_dev_name,
1107                          dev_name(&node->regulator->dev),
1108                          node->regulator->desc->name,
1109                          supply,
1110                          dev_name(&rdev->dev), rdev_get_name(rdev));
1111                 return -EBUSY;
1112         }
1113
1114         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115         if (node == NULL)
1116                 return -ENOMEM;
1117
1118         node->regulator = rdev;
1119         node->supply = supply;
1120
1121         if (has_dev) {
1122                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123                 if (node->dev_name == NULL) {
1124                         kfree(node);
1125                         return -ENOMEM;
1126                 }
1127         }
1128
1129         list_add(&node->list, &regulator_map_list);
1130         return 0;
1131 }
1132
1133 static void unset_regulator_supplies(struct regulator_dev *rdev)
1134 {
1135         struct regulator_map *node, *n;
1136
1137         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138                 if (rdev == node->regulator) {
1139                         list_del(&node->list);
1140                         kfree(node->dev_name);
1141                         kfree(node);
1142                 }
1143         }
1144 }
1145
1146 #define REG_STR_SIZE    64
1147
1148 static struct regulator *create_regulator(struct regulator_dev *rdev,
1149                                           struct device *dev,
1150                                           const char *supply_name)
1151 {
1152         struct regulator *regulator;
1153         char buf[REG_STR_SIZE];
1154         int err, size;
1155
1156         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157         if (regulator == NULL)
1158                 return NULL;
1159
1160         mutex_lock(&rdev->mutex);
1161         regulator->rdev = rdev;
1162         list_add(&regulator->list, &rdev->consumer_list);
1163
1164         if (dev) {
1165                 regulator->dev = dev;
1166
1167                 /* Add a link to the device sysfs entry */
1168                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169                                  dev->kobj.name, supply_name);
1170                 if (size >= REG_STR_SIZE)
1171                         goto overflow_err;
1172
1173                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174                 if (regulator->supply_name == NULL)
1175                         goto overflow_err;
1176
1177                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178                                         buf);
1179                 if (err) {
1180                         rdev_warn(rdev, "could not add device link %s err %d\n",
1181                                   dev->kobj.name, err);
1182                         /* non-fatal */
1183                 }
1184         } else {
1185                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186                 if (regulator->supply_name == NULL)
1187                         goto overflow_err;
1188         }
1189
1190         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191                                                 rdev->debugfs);
1192         if (!regulator->debugfs) {
1193                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1194         } else {
1195                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196                                    &regulator->uA_load);
1197                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198                                    &regulator->min_uV);
1199                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200                                    &regulator->max_uV);
1201         }
1202
1203         /*
1204          * Check now if the regulator is an always on regulator - if
1205          * it is then we don't need to do nearly so much work for
1206          * enable/disable calls.
1207          */
1208         if (!_regulator_can_change_status(rdev) &&
1209             _regulator_is_enabled(rdev))
1210                 regulator->always_on = true;
1211
1212         mutex_unlock(&rdev->mutex);
1213         return regulator;
1214 overflow_err:
1215         list_del(&regulator->list);
1216         kfree(regulator);
1217         mutex_unlock(&rdev->mutex);
1218         return NULL;
1219 }
1220
1221 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222 {
1223         if (rdev->constraints && rdev->constraints->enable_time)
1224                 return rdev->constraints->enable_time;
1225         if (!rdev->desc->ops->enable_time)
1226                 return rdev->desc->enable_time;
1227         return rdev->desc->ops->enable_time(rdev);
1228 }
1229
1230 static struct regulator_supply_alias *regulator_find_supply_alias(
1231                 struct device *dev, const char *supply)
1232 {
1233         struct regulator_supply_alias *map;
1234
1235         list_for_each_entry(map, &regulator_supply_alias_list, list)
1236                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237                         return map;
1238
1239         return NULL;
1240 }
1241
1242 static void regulator_supply_alias(struct device **dev, const char **supply)
1243 {
1244         struct regulator_supply_alias *map;
1245
1246         map = regulator_find_supply_alias(*dev, *supply);
1247         if (map) {
1248                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249                                 *supply, map->alias_supply,
1250                                 dev_name(map->alias_dev));
1251                 *dev = map->alias_dev;
1252                 *supply = map->alias_supply;
1253         }
1254 }
1255
1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257                                                   const char *supply,
1258                                                   int *ret)
1259 {
1260         struct regulator_dev *r;
1261         struct device_node *node;
1262         struct regulator_map *map;
1263         const char *devname = NULL;
1264
1265         regulator_supply_alias(&dev, &supply);
1266
1267         /* first do a dt based lookup */
1268         if (dev && dev->of_node) {
1269                 node = of_get_regulator(dev, supply);
1270                 if (node) {
1271                         list_for_each_entry(r, &regulator_list, list)
1272                                 if (r->dev.parent &&
1273                                         node == r->dev.of_node)
1274                                         return r;
1275                 } else {
1276                         /*
1277                          * If we couldn't even get the node then it's
1278                          * not just that the device didn't register
1279                          * yet, there's no node and we'll never
1280                          * succeed.
1281                          */
1282                         *ret = -ENODEV;
1283                 }
1284         }
1285
1286         /* if not found, try doing it non-dt way */
1287         if (dev)
1288                 devname = dev_name(dev);
1289
1290         list_for_each_entry(r, &regulator_list, list)
1291                 if (strcmp(rdev_get_name(r), supply) == 0)
1292                         return r;
1293
1294         list_for_each_entry(map, &regulator_map_list, list) {
1295                 /* If the mapping has a device set up it must match */
1296                 if (map->dev_name &&
1297                     (!devname || strcmp(map->dev_name, devname)))
1298                         continue;
1299
1300                 if (strcmp(map->supply, supply) == 0)
1301                         return map->regulator;
1302         }
1303
1304
1305         return NULL;
1306 }
1307
1308 /* Internal regulator request function */
1309 static struct regulator *_regulator_get(struct device *dev, const char *id,
1310                                         bool exclusive, bool allow_dummy)
1311 {
1312         struct regulator_dev *rdev;
1313         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1314         const char *devname = NULL;
1315         int ret = -EPROBE_DEFER;
1316
1317         if (id == NULL) {
1318                 pr_err("get() with no identifier\n");
1319                 return ERR_PTR(-EINVAL);
1320         }
1321
1322         if (dev)
1323                 devname = dev_name(dev);
1324
1325         mutex_lock(&regulator_list_mutex);
1326
1327         rdev = regulator_dev_lookup(dev, id, &ret);
1328         if (rdev)
1329                 goto found;
1330
1331         regulator = ERR_PTR(ret);
1332
1333         /*
1334          * If we have return value from dev_lookup fail, we do not expect to
1335          * succeed, so, quit with appropriate error value
1336          */
1337         if (ret && ret != -ENODEV) {
1338                 goto out;
1339         }
1340
1341         if (!devname)
1342                 devname = "deviceless";
1343
1344         /*
1345          * Assume that a regulator is physically present and enabled
1346          * even if it isn't hooked up and just provide a dummy.
1347          */
1348         if (have_full_constraints() && allow_dummy) {
1349                 pr_warn("%s supply %s not found, using dummy regulator\n",
1350                         devname, id);
1351
1352                 rdev = dummy_regulator_rdev;
1353                 goto found;
1354         } else {
1355                 dev_err(dev, "dummy supplies not allowed\n");
1356         }
1357
1358         mutex_unlock(&regulator_list_mutex);
1359         return regulator;
1360
1361 found:
1362         if (rdev->exclusive) {
1363                 regulator = ERR_PTR(-EPERM);
1364                 goto out;
1365         }
1366
1367         if (exclusive && rdev->open_count) {
1368                 regulator = ERR_PTR(-EBUSY);
1369                 goto out;
1370         }
1371
1372         if (!try_module_get(rdev->owner))
1373                 goto out;
1374
1375         regulator = create_regulator(rdev, dev, id);
1376         if (regulator == NULL) {
1377                 regulator = ERR_PTR(-ENOMEM);
1378                 module_put(rdev->owner);
1379                 goto out;
1380         }
1381
1382         rdev->open_count++;
1383         if (exclusive) {
1384                 rdev->exclusive = 1;
1385
1386                 ret = _regulator_is_enabled(rdev);
1387                 if (ret > 0)
1388                         rdev->use_count = 1;
1389                 else
1390                         rdev->use_count = 0;
1391         }
1392
1393 out:
1394         mutex_unlock(&regulator_list_mutex);
1395
1396         return regulator;
1397 }
1398
1399 /**
1400  * regulator_get - lookup and obtain a reference to a regulator.
1401  * @dev: device for regulator "consumer"
1402  * @id: Supply name or regulator ID.
1403  *
1404  * Returns a struct regulator corresponding to the regulator producer,
1405  * or IS_ERR() condition containing errno.
1406  *
1407  * Use of supply names configured via regulator_set_device_supply() is
1408  * strongly encouraged.  It is recommended that the supply name used
1409  * should match the name used for the supply and/or the relevant
1410  * device pins in the datasheet.
1411  */
1412 struct regulator *regulator_get(struct device *dev, const char *id)
1413 {
1414         return _regulator_get(dev, id, false, true);
1415 }
1416 EXPORT_SYMBOL_GPL(regulator_get);
1417
1418 /**
1419  * regulator_get_exclusive - obtain exclusive access to a regulator.
1420  * @dev: device for regulator "consumer"
1421  * @id: Supply name or regulator ID.
1422  *
1423  * Returns a struct regulator corresponding to the regulator producer,
1424  * or IS_ERR() condition containing errno.  Other consumers will be
1425  * unable to obtain this reference is held and the use count for the
1426  * regulator will be initialised to reflect the current state of the
1427  * regulator.
1428  *
1429  * This is intended for use by consumers which cannot tolerate shared
1430  * use of the regulator such as those which need to force the
1431  * regulator off for correct operation of the hardware they are
1432  * controlling.
1433  *
1434  * Use of supply names configured via regulator_set_device_supply() is
1435  * strongly encouraged.  It is recommended that the supply name used
1436  * should match the name used for the supply and/or the relevant
1437  * device pins in the datasheet.
1438  */
1439 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1440 {
1441         return _regulator_get(dev, id, true, false);
1442 }
1443 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1444
1445 /**
1446  * regulator_get_optional - obtain optional access to a regulator.
1447  * @dev: device for regulator "consumer"
1448  * @id: Supply name or regulator ID.
1449  *
1450  * Returns a struct regulator corresponding to the regulator producer,
1451  * or IS_ERR() condition containing errno.  Other consumers will be
1452  * unable to obtain this reference is held and the use count for the
1453  * regulator will be initialised to reflect the current state of the
1454  * regulator.
1455  *
1456  * This is intended for use by consumers for devices which can have
1457  * some supplies unconnected in normal use, such as some MMC devices.
1458  * It can allow the regulator core to provide stub supplies for other
1459  * supplies requested using normal regulator_get() calls without
1460  * disrupting the operation of drivers that can handle absent
1461  * supplies.
1462  *
1463  * Use of supply names configured via regulator_set_device_supply() is
1464  * strongly encouraged.  It is recommended that the supply name used
1465  * should match the name used for the supply and/or the relevant
1466  * device pins in the datasheet.
1467  */
1468 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1469 {
1470         return _regulator_get(dev, id, false, false);
1471 }
1472 EXPORT_SYMBOL_GPL(regulator_get_optional);
1473
1474 /* Locks held by regulator_put() */
1475 static void _regulator_put(struct regulator *regulator)
1476 {
1477         struct regulator_dev *rdev;
1478
1479         if (regulator == NULL || IS_ERR(regulator))
1480                 return;
1481
1482         rdev = regulator->rdev;
1483
1484         debugfs_remove_recursive(regulator->debugfs);
1485
1486         /* remove any sysfs entries */
1487         if (regulator->dev)
1488                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1489         kfree(regulator->supply_name);
1490         list_del(&regulator->list);
1491         kfree(regulator);
1492
1493         rdev->open_count--;
1494         rdev->exclusive = 0;
1495
1496         module_put(rdev->owner);
1497 }
1498
1499 /**
1500  * regulator_put - "free" the regulator source
1501  * @regulator: regulator source
1502  *
1503  * Note: drivers must ensure that all regulator_enable calls made on this
1504  * regulator source are balanced by regulator_disable calls prior to calling
1505  * this function.
1506  */
1507 void regulator_put(struct regulator *regulator)
1508 {
1509         mutex_lock(&regulator_list_mutex);
1510         _regulator_put(regulator);
1511         mutex_unlock(&regulator_list_mutex);
1512 }
1513 EXPORT_SYMBOL_GPL(regulator_put);
1514
1515 /**
1516  * regulator_register_supply_alias - Provide device alias for supply lookup
1517  *
1518  * @dev: device that will be given as the regulator "consumer"
1519  * @id: Supply name or regulator ID
1520  * @alias_dev: device that should be used to lookup the supply
1521  * @alias_id: Supply name or regulator ID that should be used to lookup the
1522  * supply
1523  *
1524  * All lookups for id on dev will instead be conducted for alias_id on
1525  * alias_dev.
1526  */
1527 int regulator_register_supply_alias(struct device *dev, const char *id,
1528                                     struct device *alias_dev,
1529                                     const char *alias_id)
1530 {
1531         struct regulator_supply_alias *map;
1532
1533         map = regulator_find_supply_alias(dev, id);
1534         if (map)
1535                 return -EEXIST;
1536
1537         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1538         if (!map)
1539                 return -ENOMEM;
1540
1541         map->src_dev = dev;
1542         map->src_supply = id;
1543         map->alias_dev = alias_dev;
1544         map->alias_supply = alias_id;
1545
1546         list_add(&map->list, &regulator_supply_alias_list);
1547
1548         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1549                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1550
1551         return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1554
1555 /**
1556  * regulator_unregister_supply_alias - Remove device alias
1557  *
1558  * @dev: device that will be given as the regulator "consumer"
1559  * @id: Supply name or regulator ID
1560  *
1561  * Remove a lookup alias if one exists for id on dev.
1562  */
1563 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1564 {
1565         struct regulator_supply_alias *map;
1566
1567         map = regulator_find_supply_alias(dev, id);
1568         if (map) {
1569                 list_del(&map->list);
1570                 kfree(map);
1571         }
1572 }
1573 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1574
1575 /**
1576  * regulator_bulk_register_supply_alias - register multiple aliases
1577  *
1578  * @dev: device that will be given as the regulator "consumer"
1579  * @id: List of supply names or regulator IDs
1580  * @alias_dev: device that should be used to lookup the supply
1581  * @alias_id: List of supply names or regulator IDs that should be used to
1582  * lookup the supply
1583  * @num_id: Number of aliases to register
1584  *
1585  * @return 0 on success, an errno on failure.
1586  *
1587  * This helper function allows drivers to register several supply
1588  * aliases in one operation.  If any of the aliases cannot be
1589  * registered any aliases that were registered will be removed
1590  * before returning to the caller.
1591  */
1592 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1593                                          struct device *alias_dev,
1594                                          const char **alias_id,
1595                                          int num_id)
1596 {
1597         int i;
1598         int ret;
1599
1600         for (i = 0; i < num_id; ++i) {
1601                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1602                                                       alias_id[i]);
1603                 if (ret < 0)
1604                         goto err;
1605         }
1606
1607         return 0;
1608
1609 err:
1610         dev_err(dev,
1611                 "Failed to create supply alias %s,%s -> %s,%s\n",
1612                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1613
1614         while (--i >= 0)
1615                 regulator_unregister_supply_alias(dev, id[i]);
1616
1617         return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1620
1621 /**
1622  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1623  *
1624  * @dev: device that will be given as the regulator "consumer"
1625  * @id: List of supply names or regulator IDs
1626  * @num_id: Number of aliases to unregister
1627  *
1628  * This helper function allows drivers to unregister several supply
1629  * aliases in one operation.
1630  */
1631 void regulator_bulk_unregister_supply_alias(struct device *dev,
1632                                             const char **id,
1633                                             int num_id)
1634 {
1635         int i;
1636
1637         for (i = 0; i < num_id; ++i)
1638                 regulator_unregister_supply_alias(dev, id[i]);
1639 }
1640 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1641
1642
1643 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1644 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1645                                 const struct regulator_config *config)
1646 {
1647         struct regulator_enable_gpio *pin;
1648         int ret;
1649
1650         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1651                 if (pin->gpio == config->ena_gpio) {
1652                         rdev_dbg(rdev, "GPIO %d is already used\n",
1653                                 config->ena_gpio);
1654                         goto update_ena_gpio_to_rdev;
1655                 }
1656         }
1657
1658         ret = gpio_request_one(config->ena_gpio,
1659                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1660                                 rdev_get_name(rdev));
1661         if (ret)
1662                 return ret;
1663
1664         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1665         if (pin == NULL) {
1666                 gpio_free(config->ena_gpio);
1667                 return -ENOMEM;
1668         }
1669
1670         pin->gpio = config->ena_gpio;
1671         pin->ena_gpio_invert = config->ena_gpio_invert;
1672         list_add(&pin->list, &regulator_ena_gpio_list);
1673
1674 update_ena_gpio_to_rdev:
1675         pin->request_count++;
1676         rdev->ena_pin = pin;
1677         return 0;
1678 }
1679
1680 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1681 {
1682         struct regulator_enable_gpio *pin, *n;
1683
1684         if (!rdev->ena_pin)
1685                 return;
1686
1687         /* Free the GPIO only in case of no use */
1688         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1689                 if (pin->gpio == rdev->ena_pin->gpio) {
1690                         if (pin->request_count <= 1) {
1691                                 pin->request_count = 0;
1692                                 gpio_free(pin->gpio);
1693                                 list_del(&pin->list);
1694                                 kfree(pin);
1695                         } else {
1696                                 pin->request_count--;
1697                         }
1698                 }
1699         }
1700 }
1701
1702 /**
1703  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1704  * @rdev: regulator_dev structure
1705  * @enable: enable GPIO at initial use?
1706  *
1707  * GPIO is enabled in case of initial use. (enable_count is 0)
1708  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1709  */
1710 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1711 {
1712         struct regulator_enable_gpio *pin = rdev->ena_pin;
1713
1714         if (!pin)
1715                 return -EINVAL;
1716
1717         if (enable) {
1718                 /* Enable GPIO at initial use */
1719                 if (pin->enable_count == 0)
1720                         gpio_set_value_cansleep(pin->gpio,
1721                                                 !pin->ena_gpio_invert);
1722
1723                 pin->enable_count++;
1724         } else {
1725                 if (pin->enable_count > 1) {
1726                         pin->enable_count--;
1727                         return 0;
1728                 }
1729
1730                 /* Disable GPIO if not used */
1731                 if (pin->enable_count <= 1) {
1732                         gpio_set_value_cansleep(pin->gpio,
1733                                                 pin->ena_gpio_invert);
1734                         pin->enable_count = 0;
1735                 }
1736         }
1737
1738         return 0;
1739 }
1740
1741 static int _regulator_do_enable(struct regulator_dev *rdev)
1742 {
1743         int ret, delay;
1744
1745         /* Query before enabling in case configuration dependent.  */
1746         ret = _regulator_get_enable_time(rdev);
1747         if (ret >= 0) {
1748                 delay = ret;
1749         } else {
1750                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1751                 delay = 0;
1752         }
1753
1754         trace_regulator_enable(rdev_get_name(rdev));
1755
1756         if (rdev->ena_pin) {
1757                 ret = regulator_ena_gpio_ctrl(rdev, true);
1758                 if (ret < 0)
1759                         return ret;
1760                 rdev->ena_gpio_state = 1;
1761         } else if (rdev->desc->ops->enable) {
1762                 ret = rdev->desc->ops->enable(rdev);
1763                 if (ret < 0)
1764                         return ret;
1765         } else {
1766                 return -EINVAL;
1767         }
1768
1769         /* Allow the regulator to ramp; it would be useful to extend
1770          * this for bulk operations so that the regulators can ramp
1771          * together.  */
1772         trace_regulator_enable_delay(rdev_get_name(rdev));
1773
1774         /*
1775          * Delay for the requested amount of time as per the guidelines in:
1776          *
1777          *     Documentation/timers/timers-howto.txt
1778          *
1779          * The assumption here is that regulators will never be enabled in
1780          * atomic context and therefore sleeping functions can be used.
1781          */
1782         if (delay) {
1783                 unsigned int ms = delay / 1000;
1784                 unsigned int us = delay % 1000;
1785
1786                 if (ms > 0) {
1787                         /*
1788                          * For small enough values, handle super-millisecond
1789                          * delays in the usleep_range() call below.
1790                          */
1791                         if (ms < 20)
1792                                 us += ms * 1000;
1793                         else
1794                                 msleep(ms);
1795                 }
1796
1797                 /*
1798                  * Give the scheduler some room to coalesce with any other
1799                  * wakeup sources. For delays shorter than 10 us, don't even
1800                  * bother setting up high-resolution timers and just busy-
1801                  * loop.
1802                  */
1803                 if (us >= 10)
1804                         usleep_range(us, us + 100);
1805                 else
1806                         udelay(us);
1807         }
1808
1809         trace_regulator_enable_complete(rdev_get_name(rdev));
1810
1811         return 0;
1812 }
1813
1814 /* locks held by regulator_enable() */
1815 static int _regulator_enable(struct regulator_dev *rdev)
1816 {
1817         int ret;
1818
1819         /* check voltage and requested load before enabling */
1820         if (rdev->constraints &&
1821             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1822                 drms_uA_update(rdev);
1823
1824         if (rdev->use_count == 0) {
1825                 /* The regulator may on if it's not switchable or left on */
1826                 ret = _regulator_is_enabled(rdev);
1827                 if (ret == -EINVAL || ret == 0) {
1828                         if (!_regulator_can_change_status(rdev))
1829                                 return -EPERM;
1830
1831                         ret = _regulator_do_enable(rdev);
1832                         if (ret < 0)
1833                                 return ret;
1834
1835                 } else if (ret < 0) {
1836                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1837                         return ret;
1838                 }
1839                 /* Fallthrough on positive return values - already enabled */
1840         }
1841
1842         rdev->use_count++;
1843
1844         return 0;
1845 }
1846
1847 /**
1848  * regulator_enable - enable regulator output
1849  * @regulator: regulator source
1850  *
1851  * Request that the regulator be enabled with the regulator output at
1852  * the predefined voltage or current value.  Calls to regulator_enable()
1853  * must be balanced with calls to regulator_disable().
1854  *
1855  * NOTE: the output value can be set by other drivers, boot loader or may be
1856  * hardwired in the regulator.
1857  */
1858 int regulator_enable(struct regulator *regulator)
1859 {
1860         struct regulator_dev *rdev = regulator->rdev;
1861         int ret = 0;
1862
1863         if (regulator->always_on)
1864                 return 0;
1865
1866         if (rdev->supply) {
1867                 ret = regulator_enable(rdev->supply);
1868                 if (ret != 0)
1869                         return ret;
1870         }
1871
1872         mutex_lock(&rdev->mutex);
1873         ret = _regulator_enable(rdev);
1874         mutex_unlock(&rdev->mutex);
1875
1876         if (ret != 0 && rdev->supply)
1877                 regulator_disable(rdev->supply);
1878
1879         return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(regulator_enable);
1882
1883 static int _regulator_do_disable(struct regulator_dev *rdev)
1884 {
1885         int ret;
1886
1887         trace_regulator_disable(rdev_get_name(rdev));
1888
1889         if (rdev->ena_pin) {
1890                 ret = regulator_ena_gpio_ctrl(rdev, false);
1891                 if (ret < 0)
1892                         return ret;
1893                 rdev->ena_gpio_state = 0;
1894
1895         } else if (rdev->desc->ops->disable) {
1896                 ret = rdev->desc->ops->disable(rdev);
1897                 if (ret != 0)
1898                         return ret;
1899         }
1900
1901         trace_regulator_disable_complete(rdev_get_name(rdev));
1902
1903         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1904                              NULL);
1905         return 0;
1906 }
1907
1908 /* locks held by regulator_disable() */
1909 static int _regulator_disable(struct regulator_dev *rdev)
1910 {
1911         int ret = 0;
1912
1913         if (WARN(rdev->use_count <= 0,
1914                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1915                 return -EIO;
1916
1917         /* are we the last user and permitted to disable ? */
1918         if (rdev->use_count == 1 &&
1919             (rdev->constraints && !rdev->constraints->always_on)) {
1920
1921                 /* we are last user */
1922                 if (_regulator_can_change_status(rdev)) {
1923                         ret = _regulator_do_disable(rdev);
1924                         if (ret < 0) {
1925                                 rdev_err(rdev, "failed to disable\n");
1926                                 return ret;
1927                         }
1928                 }
1929
1930                 rdev->use_count = 0;
1931         } else if (rdev->use_count > 1) {
1932
1933                 if (rdev->constraints &&
1934                         (rdev->constraints->valid_ops_mask &
1935                         REGULATOR_CHANGE_DRMS))
1936                         drms_uA_update(rdev);
1937
1938                 rdev->use_count--;
1939         }
1940
1941         return ret;
1942 }
1943
1944 /**
1945  * regulator_disable - disable regulator output
1946  * @regulator: regulator source
1947  *
1948  * Disable the regulator output voltage or current.  Calls to
1949  * regulator_enable() must be balanced with calls to
1950  * regulator_disable().
1951  *
1952  * NOTE: this will only disable the regulator output if no other consumer
1953  * devices have it enabled, the regulator device supports disabling and
1954  * machine constraints permit this operation.
1955  */
1956 int regulator_disable(struct regulator *regulator)
1957 {
1958         struct regulator_dev *rdev = regulator->rdev;
1959         int ret = 0;
1960
1961         if (regulator->always_on)
1962                 return 0;
1963
1964         mutex_lock(&rdev->mutex);
1965         ret = _regulator_disable(rdev);
1966         mutex_unlock(&rdev->mutex);
1967
1968         if (ret == 0 && rdev->supply)
1969                 regulator_disable(rdev->supply);
1970
1971         return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_disable);
1974
1975 /* locks held by regulator_force_disable() */
1976 static int _regulator_force_disable(struct regulator_dev *rdev)
1977 {
1978         int ret = 0;
1979
1980         /* force disable */
1981         if (rdev->desc->ops->disable) {
1982                 /* ah well, who wants to live forever... */
1983                 ret = rdev->desc->ops->disable(rdev);
1984                 if (ret < 0) {
1985                         rdev_err(rdev, "failed to force disable\n");
1986                         return ret;
1987                 }
1988                 /* notify other consumers that power has been forced off */
1989                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1990                         REGULATOR_EVENT_DISABLE, NULL);
1991         }
1992
1993         return ret;
1994 }
1995
1996 /**
1997  * regulator_force_disable - force disable regulator output
1998  * @regulator: regulator source
1999  *
2000  * Forcibly disable the regulator output voltage or current.
2001  * NOTE: this *will* disable the regulator output even if other consumer
2002  * devices have it enabled. This should be used for situations when device
2003  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2004  */
2005 int regulator_force_disable(struct regulator *regulator)
2006 {
2007         struct regulator_dev *rdev = regulator->rdev;
2008         int ret;
2009
2010         mutex_lock(&rdev->mutex);
2011         regulator->uA_load = 0;
2012         ret = _regulator_force_disable(regulator->rdev);
2013         mutex_unlock(&rdev->mutex);
2014
2015         if (rdev->supply)
2016                 while (rdev->open_count--)
2017                         regulator_disable(rdev->supply);
2018
2019         return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_force_disable);
2022
2023 static void regulator_disable_work(struct work_struct *work)
2024 {
2025         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2026                                                   disable_work.work);
2027         int count, i, ret;
2028
2029         mutex_lock(&rdev->mutex);
2030
2031         BUG_ON(!rdev->deferred_disables);
2032
2033         count = rdev->deferred_disables;
2034         rdev->deferred_disables = 0;
2035
2036         for (i = 0; i < count; i++) {
2037                 ret = _regulator_disable(rdev);
2038                 if (ret != 0)
2039                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2040         }
2041
2042         mutex_unlock(&rdev->mutex);
2043
2044         if (rdev->supply) {
2045                 for (i = 0; i < count; i++) {
2046                         ret = regulator_disable(rdev->supply);
2047                         if (ret != 0) {
2048                                 rdev_err(rdev,
2049                                          "Supply disable failed: %d\n", ret);
2050                         }
2051                 }
2052         }
2053 }
2054
2055 /**
2056  * regulator_disable_deferred - disable regulator output with delay
2057  * @regulator: regulator source
2058  * @ms: miliseconds until the regulator is disabled
2059  *
2060  * Execute regulator_disable() on the regulator after a delay.  This
2061  * is intended for use with devices that require some time to quiesce.
2062  *
2063  * NOTE: this will only disable the regulator output if no other consumer
2064  * devices have it enabled, the regulator device supports disabling and
2065  * machine constraints permit this operation.
2066  */
2067 int regulator_disable_deferred(struct regulator *regulator, int ms)
2068 {
2069         struct regulator_dev *rdev = regulator->rdev;
2070         int ret;
2071
2072         if (regulator->always_on)
2073                 return 0;
2074
2075         if (!ms)
2076                 return regulator_disable(regulator);
2077
2078         mutex_lock(&rdev->mutex);
2079         rdev->deferred_disables++;
2080         mutex_unlock(&rdev->mutex);
2081
2082         ret = queue_delayed_work(system_power_efficient_wq,
2083                                  &rdev->disable_work,
2084                                  msecs_to_jiffies(ms));
2085         if (ret < 0)
2086                 return ret;
2087         else
2088                 return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2091
2092 static int _regulator_is_enabled(struct regulator_dev *rdev)
2093 {
2094         /* A GPIO control always takes precedence */
2095         if (rdev->ena_pin)
2096                 return rdev->ena_gpio_state;
2097
2098         /* If we don't know then assume that the regulator is always on */
2099         if (!rdev->desc->ops->is_enabled)
2100                 return 1;
2101
2102         return rdev->desc->ops->is_enabled(rdev);
2103 }
2104
2105 /**
2106  * regulator_is_enabled - is the regulator output enabled
2107  * @regulator: regulator source
2108  *
2109  * Returns positive if the regulator driver backing the source/client
2110  * has requested that the device be enabled, zero if it hasn't, else a
2111  * negative errno code.
2112  *
2113  * Note that the device backing this regulator handle can have multiple
2114  * users, so it might be enabled even if regulator_enable() was never
2115  * called for this particular source.
2116  */
2117 int regulator_is_enabled(struct regulator *regulator)
2118 {
2119         int ret;
2120
2121         if (regulator->always_on)
2122                 return 1;
2123
2124         mutex_lock(&regulator->rdev->mutex);
2125         ret = _regulator_is_enabled(regulator->rdev);
2126         mutex_unlock(&regulator->rdev->mutex);
2127
2128         return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2131
2132 /**
2133  * regulator_can_change_voltage - check if regulator can change voltage
2134  * @regulator: regulator source
2135  *
2136  * Returns positive if the regulator driver backing the source/client
2137  * can change its voltage, false otherwise. Usefull for detecting fixed
2138  * or dummy regulators and disabling voltage change logic in the client
2139  * driver.
2140  */
2141 int regulator_can_change_voltage(struct regulator *regulator)
2142 {
2143         struct regulator_dev    *rdev = regulator->rdev;
2144
2145         if (rdev->constraints &&
2146             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2147                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2148                         return 1;
2149
2150                 if (rdev->desc->continuous_voltage_range &&
2151                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2152                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2153                         return 1;
2154         }
2155
2156         return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2159
2160 /**
2161  * regulator_count_voltages - count regulator_list_voltage() selectors
2162  * @regulator: regulator source
2163  *
2164  * Returns number of selectors, or negative errno.  Selectors are
2165  * numbered starting at zero, and typically correspond to bitfields
2166  * in hardware registers.
2167  */
2168 int regulator_count_voltages(struct regulator *regulator)
2169 {
2170         struct regulator_dev    *rdev = regulator->rdev;
2171
2172         return rdev->desc->n_voltages ? : -EINVAL;
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2175
2176 /**
2177  * regulator_list_voltage - enumerate supported voltages
2178  * @regulator: regulator source
2179  * @selector: identify voltage to list
2180  * Context: can sleep
2181  *
2182  * Returns a voltage that can be passed to @regulator_set_voltage(),
2183  * zero if this selector code can't be used on this system, or a
2184  * negative errno.
2185  */
2186 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2187 {
2188         struct regulator_dev    *rdev = regulator->rdev;
2189         struct regulator_ops    *ops = rdev->desc->ops;
2190         int                     ret;
2191
2192         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2193                 return rdev->desc->fixed_uV;
2194
2195         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2196                 return -EINVAL;
2197
2198         mutex_lock(&rdev->mutex);
2199         ret = ops->list_voltage(rdev, selector);
2200         mutex_unlock(&rdev->mutex);
2201
2202         if (ret > 0) {
2203                 if (ret < rdev->constraints->min_uV)
2204                         ret = 0;
2205                 else if (ret > rdev->constraints->max_uV)
2206                         ret = 0;
2207         }
2208
2209         return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2212
2213 /**
2214  * regulator_get_linear_step - return the voltage step size between VSEL values
2215  * @regulator: regulator source
2216  *
2217  * Returns the voltage step size between VSEL values for linear
2218  * regulators, or return 0 if the regulator isn't a linear regulator.
2219  */
2220 unsigned int regulator_get_linear_step(struct regulator *regulator)
2221 {
2222         struct regulator_dev *rdev = regulator->rdev;
2223
2224         return rdev->desc->uV_step;
2225 }
2226 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2227
2228 /**
2229  * regulator_is_supported_voltage - check if a voltage range can be supported
2230  *
2231  * @regulator: Regulator to check.
2232  * @min_uV: Minimum required voltage in uV.
2233  * @max_uV: Maximum required voltage in uV.
2234  *
2235  * Returns a boolean or a negative error code.
2236  */
2237 int regulator_is_supported_voltage(struct regulator *regulator,
2238                                    int min_uV, int max_uV)
2239 {
2240         struct regulator_dev *rdev = regulator->rdev;
2241         int i, voltages, ret;
2242
2243         /* If we can't change voltage check the current voltage */
2244         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2245                 ret = regulator_get_voltage(regulator);
2246                 if (ret >= 0)
2247                         return (min_uV <= ret && ret <= max_uV);
2248                 else
2249                         return ret;
2250         }
2251
2252         /* Any voltage within constrains range is fine? */
2253         if (rdev->desc->continuous_voltage_range)
2254                 return min_uV >= rdev->constraints->min_uV &&
2255                                 max_uV <= rdev->constraints->max_uV;
2256
2257         ret = regulator_count_voltages(regulator);
2258         if (ret < 0)
2259                 return ret;
2260         voltages = ret;
2261
2262         for (i = 0; i < voltages; i++) {
2263                 ret = regulator_list_voltage(regulator, i);
2264
2265                 if (ret >= min_uV && ret <= max_uV)
2266                         return 1;
2267         }
2268
2269         return 0;
2270 }
2271 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2272
2273 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2274                                      int min_uV, int max_uV)
2275 {
2276         int ret;
2277         int delay = 0;
2278         int best_val = 0;
2279         unsigned int selector;
2280         int old_selector = -1;
2281
2282         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2283
2284         min_uV += rdev->constraints->uV_offset;
2285         max_uV += rdev->constraints->uV_offset;
2286
2287         /*
2288          * If we can't obtain the old selector there is not enough
2289          * info to call set_voltage_time_sel().
2290          */
2291         if (_regulator_is_enabled(rdev) &&
2292             rdev->desc->ops->set_voltage_time_sel &&
2293             rdev->desc->ops->get_voltage_sel) {
2294                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2295                 if (old_selector < 0)
2296                         return old_selector;
2297         }
2298
2299         if (rdev->desc->ops->set_voltage) {
2300                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2301                                                    &selector);
2302
2303                 if (ret >= 0) {
2304                         if (rdev->desc->ops->list_voltage)
2305                                 best_val = rdev->desc->ops->list_voltage(rdev,
2306                                                                          selector);
2307                         else
2308                                 best_val = _regulator_get_voltage(rdev);
2309                 }
2310
2311         } else if (rdev->desc->ops->set_voltage_sel) {
2312                 if (rdev->desc->ops->map_voltage) {
2313                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2314                                                            max_uV);
2315                 } else {
2316                         if (rdev->desc->ops->list_voltage ==
2317                             regulator_list_voltage_linear)
2318                                 ret = regulator_map_voltage_linear(rdev,
2319                                                                 min_uV, max_uV);
2320                         else
2321                                 ret = regulator_map_voltage_iterate(rdev,
2322                                                                 min_uV, max_uV);
2323                 }
2324
2325                 if (ret >= 0) {
2326                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2327                         if (min_uV <= best_val && max_uV >= best_val) {
2328                                 selector = ret;
2329                                 if (old_selector == selector)
2330                                         ret = 0;
2331                                 else
2332                                         ret = rdev->desc->ops->set_voltage_sel(
2333                                                                 rdev, ret);
2334                         } else {
2335                                 ret = -EINVAL;
2336                         }
2337                 }
2338         } else {
2339                 ret = -EINVAL;
2340         }
2341
2342         /* Call set_voltage_time_sel if successfully obtained old_selector */
2343         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2344                 && old_selector != selector) {
2345
2346                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2347                                                 old_selector, selector);
2348                 if (delay < 0) {
2349                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2350                                   delay);
2351                         delay = 0;
2352                 }
2353
2354                 /* Insert any necessary delays */
2355                 if (delay >= 1000) {
2356                         mdelay(delay / 1000);
2357                         udelay(delay % 1000);
2358                 } else if (delay) {
2359                         udelay(delay);
2360                 }
2361         }
2362
2363         if (ret == 0 && best_val >= 0) {
2364                 unsigned long data = best_val;
2365
2366                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2367                                      (void *)data);
2368         }
2369
2370         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2371
2372         return ret;
2373 }
2374
2375 /**
2376  * regulator_set_voltage - set regulator output voltage
2377  * @regulator: regulator source
2378  * @min_uV: Minimum required voltage in uV
2379  * @max_uV: Maximum acceptable voltage in uV
2380  *
2381  * Sets a voltage regulator to the desired output voltage. This can be set
2382  * during any regulator state. IOW, regulator can be disabled or enabled.
2383  *
2384  * If the regulator is enabled then the voltage will change to the new value
2385  * immediately otherwise if the regulator is disabled the regulator will
2386  * output at the new voltage when enabled.
2387  *
2388  * NOTE: If the regulator is shared between several devices then the lowest
2389  * request voltage that meets the system constraints will be used.
2390  * Regulator system constraints must be set for this regulator before
2391  * calling this function otherwise this call will fail.
2392  */
2393 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2394 {
2395         struct regulator_dev *rdev = regulator->rdev;
2396         int ret = 0;
2397         int old_min_uV, old_max_uV;
2398
2399         mutex_lock(&rdev->mutex);
2400
2401         /* If we're setting the same range as last time the change
2402          * should be a noop (some cpufreq implementations use the same
2403          * voltage for multiple frequencies, for example).
2404          */
2405         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2406                 goto out;
2407
2408         /* sanity check */
2409         if (!rdev->desc->ops->set_voltage &&
2410             !rdev->desc->ops->set_voltage_sel) {
2411                 ret = -EINVAL;
2412                 goto out;
2413         }
2414
2415         /* constraints check */
2416         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2417         if (ret < 0)
2418                 goto out;
2419         
2420         /* restore original values in case of error */
2421         old_min_uV = regulator->min_uV;
2422         old_max_uV = regulator->max_uV;
2423         regulator->min_uV = min_uV;
2424         regulator->max_uV = max_uV;
2425
2426         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2427         if (ret < 0)
2428                 goto out2;
2429
2430         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2431         if (ret < 0)
2432                 goto out2;
2433         
2434 out:
2435         mutex_unlock(&rdev->mutex);
2436         return ret;
2437 out2:
2438         regulator->min_uV = old_min_uV;
2439         regulator->max_uV = old_max_uV;
2440         mutex_unlock(&rdev->mutex);
2441         return ret;
2442 }
2443 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2444
2445 /**
2446  * regulator_set_voltage_time - get raise/fall time
2447  * @regulator: regulator source
2448  * @old_uV: starting voltage in microvolts
2449  * @new_uV: target voltage in microvolts
2450  *
2451  * Provided with the starting and ending voltage, this function attempts to
2452  * calculate the time in microseconds required to rise or fall to this new
2453  * voltage.
2454  */
2455 int regulator_set_voltage_time(struct regulator *regulator,
2456                                int old_uV, int new_uV)
2457 {
2458         struct regulator_dev    *rdev = regulator->rdev;
2459         struct regulator_ops    *ops = rdev->desc->ops;
2460         int old_sel = -1;
2461         int new_sel = -1;
2462         int voltage;
2463         int i;
2464
2465         /* Currently requires operations to do this */
2466         if (!ops->list_voltage || !ops->set_voltage_time_sel
2467             || !rdev->desc->n_voltages)
2468                 return -EINVAL;
2469
2470         for (i = 0; i < rdev->desc->n_voltages; i++) {
2471                 /* We only look for exact voltage matches here */
2472                 voltage = regulator_list_voltage(regulator, i);
2473                 if (voltage < 0)
2474                         return -EINVAL;
2475                 if (voltage == 0)
2476                         continue;
2477                 if (voltage == old_uV)
2478                         old_sel = i;
2479                 if (voltage == new_uV)
2480                         new_sel = i;
2481         }
2482
2483         if (old_sel < 0 || new_sel < 0)
2484                 return -EINVAL;
2485
2486         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2487 }
2488 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2489
2490 /**
2491  * regulator_set_voltage_time_sel - get raise/fall time
2492  * @rdev: regulator source device
2493  * @old_selector: selector for starting voltage
2494  * @new_selector: selector for target voltage
2495  *
2496  * Provided with the starting and target voltage selectors, this function
2497  * returns time in microseconds required to rise or fall to this new voltage
2498  *
2499  * Drivers providing ramp_delay in regulation_constraints can use this as their
2500  * set_voltage_time_sel() operation.
2501  */
2502 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2503                                    unsigned int old_selector,
2504                                    unsigned int new_selector)
2505 {
2506         unsigned int ramp_delay = 0;
2507         int old_volt, new_volt;
2508
2509         if (rdev->constraints->ramp_delay)
2510                 ramp_delay = rdev->constraints->ramp_delay;
2511         else if (rdev->desc->ramp_delay)
2512                 ramp_delay = rdev->desc->ramp_delay;
2513
2514         if (ramp_delay == 0) {
2515                 rdev_warn(rdev, "ramp_delay not set\n");
2516                 return 0;
2517         }
2518
2519         /* sanity check */
2520         if (!rdev->desc->ops->list_voltage)
2521                 return -EINVAL;
2522
2523         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2524         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2525
2526         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2529
2530 /**
2531  * regulator_sync_voltage - re-apply last regulator output voltage
2532  * @regulator: regulator source
2533  *
2534  * Re-apply the last configured voltage.  This is intended to be used
2535  * where some external control source the consumer is cooperating with
2536  * has caused the configured voltage to change.
2537  */
2538 int regulator_sync_voltage(struct regulator *regulator)
2539 {
2540         struct regulator_dev *rdev = regulator->rdev;
2541         int ret, min_uV, max_uV;
2542
2543         mutex_lock(&rdev->mutex);
2544
2545         if (!rdev->desc->ops->set_voltage &&
2546             !rdev->desc->ops->set_voltage_sel) {
2547                 ret = -EINVAL;
2548                 goto out;
2549         }
2550
2551         /* This is only going to work if we've had a voltage configured. */
2552         if (!regulator->min_uV && !regulator->max_uV) {
2553                 ret = -EINVAL;
2554                 goto out;
2555         }
2556
2557         min_uV = regulator->min_uV;
2558         max_uV = regulator->max_uV;
2559
2560         /* This should be a paranoia check... */
2561         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2562         if (ret < 0)
2563                 goto out;
2564
2565         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2566         if (ret < 0)
2567                 goto out;
2568
2569         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2570
2571 out:
2572         mutex_unlock(&rdev->mutex);
2573         return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2576
2577 static int _regulator_get_voltage(struct regulator_dev *rdev)
2578 {
2579         int sel, ret;
2580
2581         if (rdev->desc->ops->get_voltage_sel) {
2582                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2583                 if (sel < 0)
2584                         return sel;
2585                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2586         } else if (rdev->desc->ops->get_voltage) {
2587                 ret = rdev->desc->ops->get_voltage(rdev);
2588         } else if (rdev->desc->ops->list_voltage) {
2589                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2590         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2591                 ret = rdev->desc->fixed_uV;
2592         } else {
2593                 return -EINVAL;
2594         }
2595
2596         if (ret < 0)
2597                 return ret;
2598         return ret - rdev->constraints->uV_offset;
2599 }
2600
2601 /**
2602  * regulator_get_voltage - get regulator output voltage
2603  * @regulator: regulator source
2604  *
2605  * This returns the current regulator voltage in uV.
2606  *
2607  * NOTE: If the regulator is disabled it will return the voltage value. This
2608  * function should not be used to determine regulator state.
2609  */
2610 int regulator_get_voltage(struct regulator *regulator)
2611 {
2612         int ret;
2613
2614         mutex_lock(&regulator->rdev->mutex);
2615
2616         ret = _regulator_get_voltage(regulator->rdev);
2617
2618         mutex_unlock(&regulator->rdev->mutex);
2619
2620         return ret;
2621 }
2622 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2623
2624 /**
2625  * regulator_set_current_limit - set regulator output current limit
2626  * @regulator: regulator source
2627  * @min_uA: Minimum supported current in uA
2628  * @max_uA: Maximum supported current in uA
2629  *
2630  * Sets current sink to the desired output current. This can be set during
2631  * any regulator state. IOW, regulator can be disabled or enabled.
2632  *
2633  * If the regulator is enabled then the current will change to the new value
2634  * immediately otherwise if the regulator is disabled the regulator will
2635  * output at the new current when enabled.
2636  *
2637  * NOTE: Regulator system constraints must be set for this regulator before
2638  * calling this function otherwise this call will fail.
2639  */
2640 int regulator_set_current_limit(struct regulator *regulator,
2641                                int min_uA, int max_uA)
2642 {
2643         struct regulator_dev *rdev = regulator->rdev;
2644         int ret;
2645
2646         mutex_lock(&rdev->mutex);
2647
2648         /* sanity check */
2649         if (!rdev->desc->ops->set_current_limit) {
2650                 ret = -EINVAL;
2651                 goto out;
2652         }
2653
2654         /* constraints check */
2655         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2656         if (ret < 0)
2657                 goto out;
2658
2659         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2660 out:
2661         mutex_unlock(&rdev->mutex);
2662         return ret;
2663 }
2664 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2665
2666 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2667 {
2668         int ret;
2669
2670         mutex_lock(&rdev->mutex);
2671
2672         /* sanity check */
2673         if (!rdev->desc->ops->get_current_limit) {
2674                 ret = -EINVAL;
2675                 goto out;
2676         }
2677
2678         ret = rdev->desc->ops->get_current_limit(rdev);
2679 out:
2680         mutex_unlock(&rdev->mutex);
2681         return ret;
2682 }
2683
2684 /**
2685  * regulator_get_current_limit - get regulator output current
2686  * @regulator: regulator source
2687  *
2688  * This returns the current supplied by the specified current sink in uA.
2689  *
2690  * NOTE: If the regulator is disabled it will return the current value. This
2691  * function should not be used to determine regulator state.
2692  */
2693 int regulator_get_current_limit(struct regulator *regulator)
2694 {
2695         return _regulator_get_current_limit(regulator->rdev);
2696 }
2697 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2698
2699 /**
2700  * regulator_set_mode - set regulator operating mode
2701  * @regulator: regulator source
2702  * @mode: operating mode - one of the REGULATOR_MODE constants
2703  *
2704  * Set regulator operating mode to increase regulator efficiency or improve
2705  * regulation performance.
2706  *
2707  * NOTE: Regulator system constraints must be set for this regulator before
2708  * calling this function otherwise this call will fail.
2709  */
2710 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2711 {
2712         struct regulator_dev *rdev = regulator->rdev;
2713         int ret;
2714         int regulator_curr_mode;
2715
2716         mutex_lock(&rdev->mutex);
2717
2718         /* sanity check */
2719         if (!rdev->desc->ops->set_mode) {
2720                 ret = -EINVAL;
2721                 goto out;
2722         }
2723
2724         /* return if the same mode is requested */
2725         if (rdev->desc->ops->get_mode) {
2726                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2727                 if (regulator_curr_mode == mode) {
2728                         ret = 0;
2729                         goto out;
2730                 }
2731         }
2732
2733         /* constraints check */
2734         ret = regulator_mode_constrain(rdev, &mode);
2735         if (ret < 0)
2736                 goto out;
2737
2738         ret = rdev->desc->ops->set_mode(rdev, mode);
2739 out:
2740         mutex_unlock(&rdev->mutex);
2741         return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(regulator_set_mode);
2744
2745 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2746 {
2747         int ret;
2748
2749         mutex_lock(&rdev->mutex);
2750
2751         /* sanity check */
2752         if (!rdev->desc->ops->get_mode) {
2753                 ret = -EINVAL;
2754                 goto out;
2755         }
2756
2757         ret = rdev->desc->ops->get_mode(rdev);
2758 out:
2759         mutex_unlock(&rdev->mutex);
2760         return ret;
2761 }
2762
2763 /**
2764  * regulator_get_mode - get regulator operating mode
2765  * @regulator: regulator source
2766  *
2767  * Get the current regulator operating mode.
2768  */
2769 unsigned int regulator_get_mode(struct regulator *regulator)
2770 {
2771         return _regulator_get_mode(regulator->rdev);
2772 }
2773 EXPORT_SYMBOL_GPL(regulator_get_mode);
2774
2775 /**
2776  * regulator_set_optimum_mode - set regulator optimum operating mode
2777  * @regulator: regulator source
2778  * @uA_load: load current
2779  *
2780  * Notifies the regulator core of a new device load. This is then used by
2781  * DRMS (if enabled by constraints) to set the most efficient regulator
2782  * operating mode for the new regulator loading.
2783  *
2784  * Consumer devices notify their supply regulator of the maximum power
2785  * they will require (can be taken from device datasheet in the power
2786  * consumption tables) when they change operational status and hence power
2787  * state. Examples of operational state changes that can affect power
2788  * consumption are :-
2789  *
2790  *    o Device is opened / closed.
2791  *    o Device I/O is about to begin or has just finished.
2792  *    o Device is idling in between work.
2793  *
2794  * This information is also exported via sysfs to userspace.
2795  *
2796  * DRMS will sum the total requested load on the regulator and change
2797  * to the most efficient operating mode if platform constraints allow.
2798  *
2799  * Returns the new regulator mode or error.
2800  */
2801 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2802 {
2803         struct regulator_dev *rdev = regulator->rdev;
2804         struct regulator *consumer;
2805         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2806         unsigned int mode;
2807
2808         if (rdev->supply)
2809                 input_uV = regulator_get_voltage(rdev->supply);
2810
2811         mutex_lock(&rdev->mutex);
2812
2813         /*
2814          * first check to see if we can set modes at all, otherwise just
2815          * tell the consumer everything is OK.
2816          */
2817         regulator->uA_load = uA_load;
2818         ret = regulator_check_drms(rdev);
2819         if (ret < 0) {
2820                 ret = 0;
2821                 goto out;
2822         }
2823
2824         if (!rdev->desc->ops->get_optimum_mode)
2825                 goto out;
2826
2827         /*
2828          * we can actually do this so any errors are indicators of
2829          * potential real failure.
2830          */
2831         ret = -EINVAL;
2832
2833         if (!rdev->desc->ops->set_mode)
2834                 goto out;
2835
2836         /* get output voltage */
2837         output_uV = _regulator_get_voltage(rdev);
2838         if (output_uV <= 0) {
2839                 rdev_err(rdev, "invalid output voltage found\n");
2840                 goto out;
2841         }
2842
2843         /* No supply? Use constraint voltage */
2844         if (input_uV <= 0)
2845                 input_uV = rdev->constraints->input_uV;
2846         if (input_uV <= 0) {
2847                 rdev_err(rdev, "invalid input voltage found\n");
2848                 goto out;
2849         }
2850
2851         /* calc total requested load for this regulator */
2852         list_for_each_entry(consumer, &rdev->consumer_list, list)
2853                 total_uA_load += consumer->uA_load;
2854
2855         mode = rdev->desc->ops->get_optimum_mode(rdev,
2856                                                  input_uV, output_uV,
2857                                                  total_uA_load);
2858         ret = regulator_mode_constrain(rdev, &mode);
2859         if (ret < 0) {
2860                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2861                          total_uA_load, input_uV, output_uV);
2862                 goto out;
2863         }
2864
2865         ret = rdev->desc->ops->set_mode(rdev, mode);
2866         if (ret < 0) {
2867                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2868                 goto out;
2869         }
2870         ret = mode;
2871 out:
2872         mutex_unlock(&rdev->mutex);
2873         return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2876
2877 /**
2878  * regulator_allow_bypass - allow the regulator to go into bypass mode
2879  *
2880  * @regulator: Regulator to configure
2881  * @enable: enable or disable bypass mode
2882  *
2883  * Allow the regulator to go into bypass mode if all other consumers
2884  * for the regulator also enable bypass mode and the machine
2885  * constraints allow this.  Bypass mode means that the regulator is
2886  * simply passing the input directly to the output with no regulation.
2887  */
2888 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2889 {
2890         struct regulator_dev *rdev = regulator->rdev;
2891         int ret = 0;
2892
2893         if (!rdev->desc->ops->set_bypass)
2894                 return 0;
2895
2896         if (rdev->constraints &&
2897             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2898                 return 0;
2899
2900         mutex_lock(&rdev->mutex);
2901
2902         if (enable && !regulator->bypass) {
2903                 rdev->bypass_count++;
2904
2905                 if (rdev->bypass_count == rdev->open_count) {
2906                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2907                         if (ret != 0)
2908                                 rdev->bypass_count--;
2909                 }
2910
2911         } else if (!enable && regulator->bypass) {
2912                 rdev->bypass_count--;
2913
2914                 if (rdev->bypass_count != rdev->open_count) {
2915                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2916                         if (ret != 0)
2917                                 rdev->bypass_count++;
2918                 }
2919         }
2920
2921         if (ret == 0)
2922                 regulator->bypass = enable;
2923
2924         mutex_unlock(&rdev->mutex);
2925
2926         return ret;
2927 }
2928 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2929
2930 /**
2931  * regulator_register_notifier - register regulator event notifier
2932  * @regulator: regulator source
2933  * @nb: notifier block
2934  *
2935  * Register notifier block to receive regulator events.
2936  */
2937 int regulator_register_notifier(struct regulator *regulator,
2938                               struct notifier_block *nb)
2939 {
2940         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2941                                                 nb);
2942 }
2943 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2944
2945 /**
2946  * regulator_unregister_notifier - unregister regulator event notifier
2947  * @regulator: regulator source
2948  * @nb: notifier block
2949  *
2950  * Unregister regulator event notifier block.
2951  */
2952 int regulator_unregister_notifier(struct regulator *regulator,
2953                                 struct notifier_block *nb)
2954 {
2955         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2956                                                   nb);
2957 }
2958 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2959
2960 /* notify regulator consumers and downstream regulator consumers.
2961  * Note mutex must be held by caller.
2962  */
2963 static void _notifier_call_chain(struct regulator_dev *rdev,
2964                                   unsigned long event, void *data)
2965 {
2966         /* call rdev chain first */
2967         blocking_notifier_call_chain(&rdev->notifier, event, data);
2968 }
2969
2970 /**
2971  * regulator_bulk_get - get multiple regulator consumers
2972  *
2973  * @dev:           Device to supply
2974  * @num_consumers: Number of consumers to register
2975  * @consumers:     Configuration of consumers; clients are stored here.
2976  *
2977  * @return 0 on success, an errno on failure.
2978  *
2979  * This helper function allows drivers to get several regulator
2980  * consumers in one operation.  If any of the regulators cannot be
2981  * acquired then any regulators that were allocated will be freed
2982  * before returning to the caller.
2983  */
2984 int regulator_bulk_get(struct device *dev, int num_consumers,
2985                        struct regulator_bulk_data *consumers)
2986 {
2987         int i;
2988         int ret;
2989
2990         for (i = 0; i < num_consumers; i++)
2991                 consumers[i].consumer = NULL;
2992
2993         for (i = 0; i < num_consumers; i++) {
2994                 consumers[i].consumer = regulator_get(dev,
2995                                                       consumers[i].supply);
2996                 if (IS_ERR(consumers[i].consumer)) {
2997                         ret = PTR_ERR(consumers[i].consumer);
2998                         dev_err(dev, "Failed to get supply '%s': %d\n",
2999                                 consumers[i].supply, ret);
3000                         consumers[i].consumer = NULL;
3001                         goto err;
3002                 }
3003         }
3004
3005         return 0;
3006
3007 err:
3008         while (--i >= 0)
3009                 regulator_put(consumers[i].consumer);
3010
3011         return ret;
3012 }
3013 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3014
3015 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3016 {
3017         struct regulator_bulk_data *bulk = data;
3018
3019         bulk->ret = regulator_enable(bulk->consumer);
3020 }
3021
3022 /**
3023  * regulator_bulk_enable - enable multiple regulator consumers
3024  *
3025  * @num_consumers: Number of consumers
3026  * @consumers:     Consumer data; clients are stored here.
3027  * @return         0 on success, an errno on failure
3028  *
3029  * This convenience API allows consumers to enable multiple regulator
3030  * clients in a single API call.  If any consumers cannot be enabled
3031  * then any others that were enabled will be disabled again prior to
3032  * return.
3033  */
3034 int regulator_bulk_enable(int num_consumers,
3035                           struct regulator_bulk_data *consumers)
3036 {
3037         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3038         int i;
3039         int ret = 0;
3040
3041         for (i = 0; i < num_consumers; i++) {
3042                 if (consumers[i].consumer->always_on)
3043                         consumers[i].ret = 0;
3044                 else
3045                         async_schedule_domain(regulator_bulk_enable_async,
3046                                               &consumers[i], &async_domain);
3047         }
3048
3049         async_synchronize_full_domain(&async_domain);
3050
3051         /* If any consumer failed we need to unwind any that succeeded */
3052         for (i = 0; i < num_consumers; i++) {
3053                 if (consumers[i].ret != 0) {
3054                         ret = consumers[i].ret;
3055                         goto err;
3056                 }
3057         }
3058
3059         return 0;
3060
3061 err:
3062         for (i = 0; i < num_consumers; i++) {
3063                 if (consumers[i].ret < 0)
3064                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3065                                consumers[i].ret);
3066                 else
3067                         regulator_disable(consumers[i].consumer);
3068         }
3069
3070         return ret;
3071 }
3072 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3073
3074 /**
3075  * regulator_bulk_disable - disable multiple regulator consumers
3076  *
3077  * @num_consumers: Number of consumers
3078  * @consumers:     Consumer data; clients are stored here.
3079  * @return         0 on success, an errno on failure
3080  *
3081  * This convenience API allows consumers to disable multiple regulator
3082  * clients in a single API call.  If any consumers cannot be disabled
3083  * then any others that were disabled will be enabled again prior to
3084  * return.
3085  */
3086 int regulator_bulk_disable(int num_consumers,
3087                            struct regulator_bulk_data *consumers)
3088 {
3089         int i;
3090         int ret, r;
3091
3092         for (i = num_consumers - 1; i >= 0; --i) {
3093                 ret = regulator_disable(consumers[i].consumer);
3094                 if (ret != 0)
3095                         goto err;
3096         }
3097
3098         return 0;
3099
3100 err:
3101         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3102         for (++i; i < num_consumers; ++i) {
3103                 r = regulator_enable(consumers[i].consumer);
3104                 if (r != 0)
3105                         pr_err("Failed to reename %s: %d\n",
3106                                consumers[i].supply, r);
3107         }
3108
3109         return ret;
3110 }
3111 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3112
3113 /**
3114  * regulator_bulk_force_disable - force disable multiple regulator consumers
3115  *
3116  * @num_consumers: Number of consumers
3117  * @consumers:     Consumer data; clients are stored here.
3118  * @return         0 on success, an errno on failure
3119  *
3120  * This convenience API allows consumers to forcibly disable multiple regulator
3121  * clients in a single API call.
3122  * NOTE: This should be used for situations when device damage will
3123  * likely occur if the regulators are not disabled (e.g. over temp).
3124  * Although regulator_force_disable function call for some consumers can
3125  * return error numbers, the function is called for all consumers.
3126  */
3127 int regulator_bulk_force_disable(int num_consumers,
3128                            struct regulator_bulk_data *consumers)
3129 {
3130         int i;
3131         int ret;
3132
3133         for (i = 0; i < num_consumers; i++)
3134                 consumers[i].ret =
3135                             regulator_force_disable(consumers[i].consumer);
3136
3137         for (i = 0; i < num_consumers; i++) {
3138                 if (consumers[i].ret != 0) {
3139                         ret = consumers[i].ret;
3140                         goto out;
3141                 }
3142         }
3143
3144         return 0;
3145 out:
3146         return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3149
3150 /**
3151  * regulator_bulk_free - free multiple regulator consumers
3152  *
3153  * @num_consumers: Number of consumers
3154  * @consumers:     Consumer data; clients are stored here.
3155  *
3156  * This convenience API allows consumers to free multiple regulator
3157  * clients in a single API call.
3158  */
3159 void regulator_bulk_free(int num_consumers,
3160                          struct regulator_bulk_data *consumers)
3161 {
3162         int i;
3163
3164         for (i = 0; i < num_consumers; i++) {
3165                 regulator_put(consumers[i].consumer);
3166                 consumers[i].consumer = NULL;
3167         }
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3170
3171 /**
3172  * regulator_notifier_call_chain - call regulator event notifier
3173  * @rdev: regulator source
3174  * @event: notifier block
3175  * @data: callback-specific data.
3176  *
3177  * Called by regulator drivers to notify clients a regulator event has
3178  * occurred. We also notify regulator clients downstream.
3179  * Note lock must be held by caller.
3180  */
3181 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3182                                   unsigned long event, void *data)
3183 {
3184         _notifier_call_chain(rdev, event, data);
3185         return NOTIFY_DONE;
3186
3187 }
3188 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3189
3190 /**
3191  * regulator_mode_to_status - convert a regulator mode into a status
3192  *
3193  * @mode: Mode to convert
3194  *
3195  * Convert a regulator mode into a status.
3196  */
3197 int regulator_mode_to_status(unsigned int mode)
3198 {
3199         switch (mode) {
3200         case REGULATOR_MODE_FAST:
3201                 return REGULATOR_STATUS_FAST;
3202         case REGULATOR_MODE_NORMAL:
3203                 return REGULATOR_STATUS_NORMAL;
3204         case REGULATOR_MODE_IDLE:
3205                 return REGULATOR_STATUS_IDLE;
3206         case REGULATOR_MODE_STANDBY:
3207                 return REGULATOR_STATUS_STANDBY;
3208         default:
3209                 return REGULATOR_STATUS_UNDEFINED;
3210         }
3211 }
3212 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3213
3214 /*
3215  * To avoid cluttering sysfs (and memory) with useless state, only
3216  * create attributes that can be meaningfully displayed.
3217  */
3218 static int add_regulator_attributes(struct regulator_dev *rdev)
3219 {
3220         struct device           *dev = &rdev->dev;
3221         struct regulator_ops    *ops = rdev->desc->ops;
3222         int                     status = 0;
3223
3224         /* some attributes need specific methods to be displayed */
3225         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3226             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3227             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3228                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3229                 status = device_create_file(dev, &dev_attr_microvolts);
3230                 if (status < 0)
3231                         return status;
3232         }
3233         if (ops->get_current_limit) {
3234                 status = device_create_file(dev, &dev_attr_microamps);
3235                 if (status < 0)
3236                         return status;
3237         }
3238         if (ops->get_mode) {
3239                 status = device_create_file(dev, &dev_attr_opmode);
3240                 if (status < 0)
3241                         return status;
3242         }
3243         if (rdev->ena_pin || ops->is_enabled) {
3244                 status = device_create_file(dev, &dev_attr_state);
3245                 if (status < 0)
3246                         return status;
3247         }
3248         if (ops->get_status) {
3249                 status = device_create_file(dev, &dev_attr_status);
3250                 if (status < 0)
3251                         return status;
3252         }
3253         if (ops->get_bypass) {
3254                 status = device_create_file(dev, &dev_attr_bypass);
3255                 if (status < 0)
3256                         return status;
3257         }
3258
3259         /* some attributes are type-specific */
3260         if (rdev->desc->type == REGULATOR_CURRENT) {
3261                 status = device_create_file(dev, &dev_attr_requested_microamps);
3262                 if (status < 0)
3263                         return status;
3264         }
3265
3266         /* all the other attributes exist to support constraints;
3267          * don't show them if there are no constraints, or if the
3268          * relevant supporting methods are missing.
3269          */
3270         if (!rdev->constraints)
3271                 return status;
3272
3273         /* constraints need specific supporting methods */
3274         if (ops->set_voltage || ops->set_voltage_sel) {
3275                 status = device_create_file(dev, &dev_attr_min_microvolts);
3276                 if (status < 0)
3277                         return status;
3278                 status = device_create_file(dev, &dev_attr_max_microvolts);
3279                 if (status < 0)
3280                         return status;
3281         }
3282         if (ops->set_current_limit) {
3283                 status = device_create_file(dev, &dev_attr_min_microamps);
3284                 if (status < 0)
3285                         return status;
3286                 status = device_create_file(dev, &dev_attr_max_microamps);
3287                 if (status < 0)
3288                         return status;
3289         }
3290
3291         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3292         if (status < 0)
3293                 return status;
3294         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3295         if (status < 0)
3296                 return status;
3297         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3298         if (status < 0)
3299                 return status;
3300
3301         if (ops->set_suspend_voltage) {
3302                 status = device_create_file(dev,
3303                                 &dev_attr_suspend_standby_microvolts);
3304                 if (status < 0)
3305                         return status;
3306                 status = device_create_file(dev,
3307                                 &dev_attr_suspend_mem_microvolts);
3308                 if (status < 0)
3309                         return status;
3310                 status = device_create_file(dev,
3311                                 &dev_attr_suspend_disk_microvolts);
3312                 if (status < 0)
3313                         return status;
3314         }
3315
3316         if (ops->set_suspend_mode) {
3317                 status = device_create_file(dev,
3318                                 &dev_attr_suspend_standby_mode);
3319                 if (status < 0)
3320                         return status;
3321                 status = device_create_file(dev,
3322                                 &dev_attr_suspend_mem_mode);
3323                 if (status < 0)
3324                         return status;
3325                 status = device_create_file(dev,
3326                                 &dev_attr_suspend_disk_mode);
3327                 if (status < 0)
3328                         return status;
3329         }
3330
3331         return status;
3332 }
3333
3334 static void rdev_init_debugfs(struct regulator_dev *rdev)
3335 {
3336         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3337         if (!rdev->debugfs) {
3338                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3339                 return;
3340         }
3341
3342         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3343                            &rdev->use_count);
3344         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3345                            &rdev->open_count);
3346         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3347                            &rdev->bypass_count);
3348 }
3349
3350 /**
3351  * regulator_register - register regulator
3352  * @regulator_desc: regulator to register
3353  * @config: runtime configuration for regulator
3354  *
3355  * Called by regulator drivers to register a regulator.
3356  * Returns a valid pointer to struct regulator_dev on success
3357  * or an ERR_PTR() on error.
3358  */
3359 struct regulator_dev *
3360 regulator_register(const struct regulator_desc *regulator_desc,
3361                    const struct regulator_config *config)
3362 {
3363         const struct regulation_constraints *constraints = NULL;
3364         const struct regulator_init_data *init_data;
3365         static atomic_t regulator_no = ATOMIC_INIT(0);
3366         struct regulator_dev *rdev;
3367         struct device *dev;
3368         int ret, i;
3369         const char *supply = NULL;
3370
3371         if (regulator_desc == NULL || config == NULL)
3372                 return ERR_PTR(-EINVAL);
3373
3374         dev = config->dev;
3375         WARN_ON(!dev);
3376
3377         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3378                 return ERR_PTR(-EINVAL);
3379
3380         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3381             regulator_desc->type != REGULATOR_CURRENT)
3382                 return ERR_PTR(-EINVAL);
3383
3384         /* Only one of each should be implemented */
3385         WARN_ON(regulator_desc->ops->get_voltage &&
3386                 regulator_desc->ops->get_voltage_sel);
3387         WARN_ON(regulator_desc->ops->set_voltage &&
3388                 regulator_desc->ops->set_voltage_sel);
3389
3390         /* If we're using selectors we must implement list_voltage. */
3391         if (regulator_desc->ops->get_voltage_sel &&
3392             !regulator_desc->ops->list_voltage) {
3393                 return ERR_PTR(-EINVAL);
3394         }
3395         if (regulator_desc->ops->set_voltage_sel &&
3396             !regulator_desc->ops->list_voltage) {
3397                 return ERR_PTR(-EINVAL);
3398         }
3399
3400         init_data = config->init_data;
3401
3402         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3403         if (rdev == NULL)
3404                 return ERR_PTR(-ENOMEM);
3405
3406         mutex_lock(&regulator_list_mutex);
3407
3408         mutex_init(&rdev->mutex);
3409         rdev->reg_data = config->driver_data;
3410         rdev->owner = regulator_desc->owner;
3411         rdev->desc = regulator_desc;
3412         if (config->regmap)
3413                 rdev->regmap = config->regmap;
3414         else if (dev_get_regmap(dev, NULL))
3415                 rdev->regmap = dev_get_regmap(dev, NULL);
3416         else if (dev->parent)
3417                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3418         INIT_LIST_HEAD(&rdev->consumer_list);
3419         INIT_LIST_HEAD(&rdev->list);
3420         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3421         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3422
3423         /* preform any regulator specific init */
3424         if (init_data && init_data->regulator_init) {
3425                 ret = init_data->regulator_init(rdev->reg_data);
3426                 if (ret < 0)
3427                         goto clean;
3428         }
3429
3430         /* register with sysfs */
3431         rdev->dev.class = &regulator_class;
3432         rdev->dev.of_node = config->of_node;
3433         rdev->dev.parent = dev;
3434         dev_set_name(&rdev->dev, "regulator.%d",
3435                      atomic_inc_return(&regulator_no) - 1);
3436         ret = device_register(&rdev->dev);
3437         if (ret != 0) {
3438                 put_device(&rdev->dev);
3439                 goto clean;
3440         }
3441
3442         dev_set_drvdata(&rdev->dev, rdev);
3443
3444         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3445                 ret = regulator_ena_gpio_request(rdev, config);
3446                 if (ret != 0) {
3447                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3448                                  config->ena_gpio, ret);
3449                         goto wash;
3450                 }
3451
3452                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3453                         rdev->ena_gpio_state = 1;
3454
3455                 if (config->ena_gpio_invert)
3456                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3457         }
3458
3459         /* set regulator constraints */
3460         if (init_data)
3461                 constraints = &init_data->constraints;
3462
3463         ret = set_machine_constraints(rdev, constraints);
3464         if (ret < 0)
3465                 goto scrub;
3466
3467         /* add attributes supported by this regulator */
3468         ret = add_regulator_attributes(rdev);
3469         if (ret < 0)
3470                 goto scrub;
3471
3472         if (init_data && init_data->supply_regulator)
3473                 supply = init_data->supply_regulator;
3474         else if (regulator_desc->supply_name)
3475                 supply = regulator_desc->supply_name;
3476
3477         if (supply) {
3478                 struct regulator_dev *r;
3479
3480                 r = regulator_dev_lookup(dev, supply, &ret);
3481
3482                 if (ret == -ENODEV) {
3483                         /*
3484                          * No supply was specified for this regulator and
3485                          * there will never be one.
3486                          */
3487                         ret = 0;
3488                         goto add_dev;
3489                 } else if (!r) {
3490                         dev_err(dev, "Failed to find supply %s\n", supply);
3491                         ret = -EPROBE_DEFER;
3492                         goto scrub;
3493                 }
3494
3495                 ret = set_supply(rdev, r);
3496                 if (ret < 0)
3497                         goto scrub;
3498
3499                 /* Enable supply if rail is enabled */
3500                 if (_regulator_is_enabled(rdev)) {
3501                         ret = regulator_enable(rdev->supply);
3502                         if (ret < 0)
3503                                 goto scrub;
3504                 }
3505         }
3506
3507 add_dev:
3508         /* add consumers devices */
3509         if (init_data) {
3510                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3511                         ret = set_consumer_device_supply(rdev,
3512                                 init_data->consumer_supplies[i].dev_name,
3513                                 init_data->consumer_supplies[i].supply);
3514                         if (ret < 0) {
3515                                 dev_err(dev, "Failed to set supply %s\n",
3516                                         init_data->consumer_supplies[i].supply);
3517                                 goto unset_supplies;
3518                         }
3519                 }
3520         }
3521
3522         list_add(&rdev->list, &regulator_list);
3523
3524         rdev_init_debugfs(rdev);
3525 out:
3526         mutex_unlock(&regulator_list_mutex);
3527         return rdev;
3528
3529 unset_supplies:
3530         unset_regulator_supplies(rdev);
3531
3532 scrub:
3533         if (rdev->supply)
3534                 _regulator_put(rdev->supply);
3535         regulator_ena_gpio_free(rdev);
3536         kfree(rdev->constraints);
3537 wash:
3538         device_unregister(&rdev->dev);
3539         /* device core frees rdev */
3540         rdev = ERR_PTR(ret);
3541         goto out;
3542
3543 clean:
3544         kfree(rdev);
3545         rdev = ERR_PTR(ret);
3546         goto out;
3547 }
3548 EXPORT_SYMBOL_GPL(regulator_register);
3549
3550 /**
3551  * regulator_unregister - unregister regulator
3552  * @rdev: regulator to unregister
3553  *
3554  * Called by regulator drivers to unregister a regulator.
3555  */
3556 void regulator_unregister(struct regulator_dev *rdev)
3557 {
3558         if (rdev == NULL)
3559                 return;
3560
3561         if (rdev->supply) {
3562                 while (rdev->use_count--)
3563                         regulator_disable(rdev->supply);
3564                 regulator_put(rdev->supply);
3565         }
3566         mutex_lock(&regulator_list_mutex);
3567         debugfs_remove_recursive(rdev->debugfs);
3568         flush_work(&rdev->disable_work.work);
3569         WARN_ON(rdev->open_count);
3570         unset_regulator_supplies(rdev);
3571         list_del(&rdev->list);
3572         kfree(rdev->constraints);
3573         regulator_ena_gpio_free(rdev);
3574         device_unregister(&rdev->dev);
3575         mutex_unlock(&regulator_list_mutex);
3576 }
3577 EXPORT_SYMBOL_GPL(regulator_unregister);
3578
3579 /**
3580  * regulator_suspend_prepare - prepare regulators for system wide suspend
3581  * @state: system suspend state
3582  *
3583  * Configure each regulator with it's suspend operating parameters for state.
3584  * This will usually be called by machine suspend code prior to supending.
3585  */
3586 int regulator_suspend_prepare(suspend_state_t state)
3587 {
3588         struct regulator_dev *rdev;
3589         int ret = 0;
3590
3591         /* ON is handled by regulator active state */
3592         if (state == PM_SUSPEND_ON)
3593                 return -EINVAL;
3594
3595         mutex_lock(&regulator_list_mutex);
3596         list_for_each_entry(rdev, &regulator_list, list) {
3597
3598                 mutex_lock(&rdev->mutex);
3599                 ret = suspend_prepare(rdev, state);
3600                 mutex_unlock(&rdev->mutex);
3601
3602                 if (ret < 0) {
3603                         rdev_err(rdev, "failed to prepare\n");
3604                         goto out;
3605                 }
3606         }
3607 out:
3608         mutex_unlock(&regulator_list_mutex);
3609         return ret;
3610 }
3611 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3612
3613 /**
3614  * regulator_suspend_finish - resume regulators from system wide suspend
3615  *
3616  * Turn on regulators that might be turned off by regulator_suspend_prepare
3617  * and that should be turned on according to the regulators properties.
3618  */
3619 int regulator_suspend_finish(void)
3620 {
3621         struct regulator_dev *rdev;
3622         int ret = 0, error;
3623
3624         mutex_lock(&regulator_list_mutex);
3625         list_for_each_entry(rdev, &regulator_list, list) {
3626                 struct regulator_ops *ops = rdev->desc->ops;
3627
3628                 mutex_lock(&rdev->mutex);
3629                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3630                                 ops->enable) {
3631                         error = ops->enable(rdev);
3632                         if (error)
3633                                 ret = error;
3634                 } else {
3635                         if (!have_full_constraints())
3636                                 goto unlock;
3637                         if (!ops->disable)
3638                                 goto unlock;
3639                         if (!_regulator_is_enabled(rdev))
3640                                 goto unlock;
3641
3642                         error = ops->disable(rdev);
3643                         if (error)
3644                                 ret = error;
3645                 }
3646 unlock:
3647                 mutex_unlock(&rdev->mutex);
3648         }
3649         mutex_unlock(&regulator_list_mutex);
3650         return ret;
3651 }
3652 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3653
3654 /**
3655  * regulator_has_full_constraints - the system has fully specified constraints
3656  *
3657  * Calling this function will cause the regulator API to disable all
3658  * regulators which have a zero use count and don't have an always_on
3659  * constraint in a late_initcall.
3660  *
3661  * The intention is that this will become the default behaviour in a
3662  * future kernel release so users are encouraged to use this facility
3663  * now.
3664  */
3665 void regulator_has_full_constraints(void)
3666 {
3667         has_full_constraints = 1;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3670
3671 /**
3672  * rdev_get_drvdata - get rdev regulator driver data
3673  * @rdev: regulator
3674  *
3675  * Get rdev regulator driver private data. This call can be used in the
3676  * regulator driver context.
3677  */
3678 void *rdev_get_drvdata(struct regulator_dev *rdev)
3679 {
3680         return rdev->reg_data;
3681 }
3682 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3683
3684 /**
3685  * regulator_get_drvdata - get regulator driver data
3686  * @regulator: regulator
3687  *
3688  * Get regulator driver private data. This call can be used in the consumer
3689  * driver context when non API regulator specific functions need to be called.
3690  */
3691 void *regulator_get_drvdata(struct regulator *regulator)
3692 {
3693         return regulator->rdev->reg_data;
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3696
3697 /**
3698  * regulator_set_drvdata - set regulator driver data
3699  * @regulator: regulator
3700  * @data: data
3701  */
3702 void regulator_set_drvdata(struct regulator *regulator, void *data)
3703 {
3704         regulator->rdev->reg_data = data;
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3707
3708 /**
3709  * regulator_get_id - get regulator ID
3710  * @rdev: regulator
3711  */
3712 int rdev_get_id(struct regulator_dev *rdev)
3713 {
3714         return rdev->desc->id;
3715 }
3716 EXPORT_SYMBOL_GPL(rdev_get_id);
3717
3718 struct device *rdev_get_dev(struct regulator_dev *rdev)
3719 {
3720         return &rdev->dev;
3721 }
3722 EXPORT_SYMBOL_GPL(rdev_get_dev);
3723
3724 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3725 {
3726         return reg_init_data->driver_data;
3727 }
3728 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3729
3730 #ifdef CONFIG_DEBUG_FS
3731 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3732                                     size_t count, loff_t *ppos)
3733 {
3734         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3735         ssize_t len, ret = 0;
3736         struct regulator_map *map;
3737
3738         if (!buf)
3739                 return -ENOMEM;
3740
3741         list_for_each_entry(map, &regulator_map_list, list) {
3742                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3743                                "%s -> %s.%s\n",
3744                                rdev_get_name(map->regulator), map->dev_name,
3745                                map->supply);
3746                 if (len >= 0)
3747                         ret += len;
3748                 if (ret > PAGE_SIZE) {
3749                         ret = PAGE_SIZE;
3750                         break;
3751                 }
3752         }
3753
3754         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3755
3756         kfree(buf);
3757
3758         return ret;
3759 }
3760 #endif
3761
3762 static const struct file_operations supply_map_fops = {
3763 #ifdef CONFIG_DEBUG_FS
3764         .read = supply_map_read_file,
3765         .llseek = default_llseek,
3766 #endif
3767 };
3768
3769 static int __init regulator_init(void)
3770 {
3771         int ret;
3772
3773         ret = class_register(&regulator_class);
3774
3775         debugfs_root = debugfs_create_dir("regulator", NULL);
3776         if (!debugfs_root)
3777                 pr_warn("regulator: Failed to create debugfs directory\n");
3778
3779         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3780                             &supply_map_fops);
3781
3782         regulator_dummy_init();
3783
3784         return ret;
3785 }
3786
3787 /* init early to allow our consumers to complete system booting */
3788 core_initcall(regulator_init);
3789
3790 static int __init regulator_init_complete(void)
3791 {
3792         struct regulator_dev *rdev;
3793         struct regulator_ops *ops;
3794         struct regulation_constraints *c;
3795         int enabled, ret;
3796
3797         /*
3798          * Since DT doesn't provide an idiomatic mechanism for
3799          * enabling full constraints and since it's much more natural
3800          * with DT to provide them just assume that a DT enabled
3801          * system has full constraints.
3802          */
3803         if (of_have_populated_dt())
3804                 has_full_constraints = true;
3805
3806         mutex_lock(&regulator_list_mutex);
3807
3808         /* If we have a full configuration then disable any regulators
3809          * which are not in use or always_on.  This will become the
3810          * default behaviour in the future.
3811          */
3812         list_for_each_entry(rdev, &regulator_list, list) {
3813                 ops = rdev->desc->ops;
3814                 c = rdev->constraints;
3815
3816                 if (!ops->disable || (c && c->always_on))
3817                         continue;
3818
3819                 mutex_lock(&rdev->mutex);
3820
3821                 if (rdev->use_count)
3822                         goto unlock;
3823
3824                 /* If we can't read the status assume it's on. */
3825                 if (ops->is_enabled)
3826                         enabled = ops->is_enabled(rdev);
3827                 else
3828                         enabled = 1;
3829
3830                 if (!enabled)
3831                         goto unlock;
3832
3833                 if (have_full_constraints()) {
3834                         /* We log since this may kill the system if it
3835                          * goes wrong. */
3836                         rdev_info(rdev, "disabling\n");
3837                         ret = ops->disable(rdev);
3838                         if (ret != 0) {
3839                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3840                         }
3841                 } else {
3842                         /* The intention is that in future we will
3843                          * assume that full constraints are provided
3844                          * so warn even if we aren't going to do
3845                          * anything here.
3846                          */
3847                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3848                 }
3849
3850 unlock:
3851                 mutex_unlock(&rdev->mutex);
3852         }
3853
3854         mutex_unlock(&regulator_list_mutex);
3855
3856         return 0;
3857 }
3858 late_initcall(regulator_init_complete);