Linux 4.5-rc1
[linux-drm-fsl-dcu.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137         if (rdev && rdev->supply)
138                 return rdev->supply->rdev;
139
140         return NULL;
141 }
142
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149         int i;
150
151         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152                 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         lockdep_assert_held_once(&rdev->mutex);
812
813         if (!rdev->constraints)
814                 return -EINVAL;
815
816         switch (state) {
817         case PM_SUSPEND_STANDBY:
818                 return suspend_set_state(rdev,
819                         &rdev->constraints->state_standby);
820         case PM_SUSPEND_MEM:
821                 return suspend_set_state(rdev,
822                         &rdev->constraints->state_mem);
823         case PM_SUSPEND_MAX:
824                 return suspend_set_state(rdev,
825                         &rdev->constraints->state_disk);
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833         struct regulation_constraints *constraints = rdev->constraints;
834         char buf[160] = "";
835         size_t len = sizeof(buf) - 1;
836         int count = 0;
837         int ret;
838
839         if (constraints->min_uV && constraints->max_uV) {
840                 if (constraints->min_uV == constraints->max_uV)
841                         count += scnprintf(buf + count, len - count, "%d mV ",
842                                            constraints->min_uV / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mV ",
846                                            constraints->min_uV / 1000,
847                                            constraints->max_uV / 1000);
848         }
849
850         if (!constraints->min_uV ||
851             constraints->min_uV != constraints->max_uV) {
852                 ret = _regulator_get_voltage(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mV ", ret / 1000);
856         }
857
858         if (constraints->uV_offset)
859                 count += scnprintf(buf + count, len - count, "%dmV offset ",
860                                    constraints->uV_offset / 1000);
861
862         if (constraints->min_uA && constraints->max_uA) {
863                 if (constraints->min_uA == constraints->max_uA)
864                         count += scnprintf(buf + count, len - count, "%d mA ",
865                                            constraints->min_uA / 1000);
866                 else
867                         count += scnprintf(buf + count, len - count,
868                                            "%d <--> %d mA ",
869                                            constraints->min_uA / 1000,
870                                            constraints->max_uA / 1000);
871         }
872
873         if (!constraints->min_uA ||
874             constraints->min_uA != constraints->max_uA) {
875                 ret = _regulator_get_current_limit(rdev);
876                 if (ret > 0)
877                         count += scnprintf(buf + count, len - count,
878                                            "at %d mA ", ret / 1000);
879         }
880
881         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882                 count += scnprintf(buf + count, len - count, "fast ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884                 count += scnprintf(buf + count, len - count, "normal ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886                 count += scnprintf(buf + count, len - count, "idle ");
887         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888                 count += scnprintf(buf + count, len - count, "standby");
889
890         if (!count)
891                 scnprintf(buf, len, "no parameters");
892
893         rdev_dbg(rdev, "%s\n", buf);
894
895         if ((constraints->min_uV != constraints->max_uV) &&
896             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897                 rdev_warn(rdev,
898                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902         struct regulation_constraints *constraints)
903 {
904         const struct regulator_ops *ops = rdev->desc->ops;
905         int ret;
906
907         /* do we need to apply the constraint voltage */
908         if (rdev->constraints->apply_uV &&
909             rdev->constraints->min_uV == rdev->constraints->max_uV) {
910                 int current_uV = _regulator_get_voltage(rdev);
911                 if (current_uV < 0) {
912                         rdev_err(rdev,
913                                  "failed to get the current voltage(%d)\n",
914                                  current_uV);
915                         return current_uV;
916                 }
917                 if (current_uV < rdev->constraints->min_uV ||
918                     current_uV > rdev->constraints->max_uV) {
919                         ret = _regulator_do_set_voltage(
920                                 rdev, rdev->constraints->min_uV,
921                                 rdev->constraints->max_uV);
922                         if (ret < 0) {
923                                 rdev_err(rdev,
924                                         "failed to apply %duV constraint(%d)\n",
925                                         rdev->constraints->min_uV, ret);
926                                 return ret;
927                         }
928                 }
929         }
930
931         /* constrain machine-level voltage specs to fit
932          * the actual range supported by this regulator.
933          */
934         if (ops->list_voltage && rdev->desc->n_voltages) {
935                 int     count = rdev->desc->n_voltages;
936                 int     i;
937                 int     min_uV = INT_MAX;
938                 int     max_uV = INT_MIN;
939                 int     cmin = constraints->min_uV;
940                 int     cmax = constraints->max_uV;
941
942                 /* it's safe to autoconfigure fixed-voltage supplies
943                    and the constraints are used by list_voltage. */
944                 if (count == 1 && !cmin) {
945                         cmin = 1;
946                         cmax = INT_MAX;
947                         constraints->min_uV = cmin;
948                         constraints->max_uV = cmax;
949                 }
950
951                 /* voltage constraints are optional */
952                 if ((cmin == 0) && (cmax == 0))
953                         return 0;
954
955                 /* else require explicit machine-level constraints */
956                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957                         rdev_err(rdev, "invalid voltage constraints\n");
958                         return -EINVAL;
959                 }
960
961                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962                 for (i = 0; i < count; i++) {
963                         int     value;
964
965                         value = ops->list_voltage(rdev, i);
966                         if (value <= 0)
967                                 continue;
968
969                         /* maybe adjust [min_uV..max_uV] */
970                         if (value >= cmin && value < min_uV)
971                                 min_uV = value;
972                         if (value <= cmax && value > max_uV)
973                                 max_uV = value;
974                 }
975
976                 /* final: [min_uV..max_uV] valid iff constraints valid */
977                 if (max_uV < min_uV) {
978                         rdev_err(rdev,
979                                  "unsupportable voltage constraints %u-%uuV\n",
980                                  min_uV, max_uV);
981                         return -EINVAL;
982                 }
983
984                 /* use regulator's subset of machine constraints */
985                 if (constraints->min_uV < min_uV) {
986                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987                                  constraints->min_uV, min_uV);
988                         constraints->min_uV = min_uV;
989                 }
990                 if (constraints->max_uV > max_uV) {
991                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992                                  constraints->max_uV, max_uV);
993                         constraints->max_uV = max_uV;
994                 }
995         }
996
997         return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001         struct regulation_constraints *constraints)
1002 {
1003         const struct regulator_ops *ops = rdev->desc->ops;
1004         int ret;
1005
1006         if (!constraints->min_uA && !constraints->max_uA)
1007                 return 0;
1008
1009         if (constraints->min_uA > constraints->max_uA) {
1010                 rdev_err(rdev, "Invalid current constraints\n");
1011                 return -EINVAL;
1012         }
1013
1014         if (!ops->set_current_limit || !ops->get_current_limit) {
1015                 rdev_warn(rdev, "Operation of current configuration missing\n");
1016                 return 0;
1017         }
1018
1019         /* Set regulator current in constraints range */
1020         ret = ops->set_current_limit(rdev, constraints->min_uA,
1021                         constraints->max_uA);
1022         if (ret < 0) {
1023                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024                 return ret;
1025         }
1026
1027         return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044         const struct regulation_constraints *constraints)
1045 {
1046         int ret = 0;
1047         const struct regulator_ops *ops = rdev->desc->ops;
1048
1049         if (constraints)
1050                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051                                             GFP_KERNEL);
1052         else
1053                 rdev->constraints = kzalloc(sizeof(*constraints),
1054                                             GFP_KERNEL);
1055         if (!rdev->constraints)
1056                 return -ENOMEM;
1057
1058         ret = machine_constraints_voltage(rdev, rdev->constraints);
1059         if (ret != 0)
1060                 goto out;
1061
1062         ret = machine_constraints_current(rdev, rdev->constraints);
1063         if (ret != 0)
1064                 goto out;
1065
1066         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067                 ret = ops->set_input_current_limit(rdev,
1068                                                    rdev->constraints->ilim_uA);
1069                 if (ret < 0) {
1070                         rdev_err(rdev, "failed to set input limit\n");
1071                         goto out;
1072                 }
1073         }
1074
1075         /* do we need to setup our suspend state */
1076         if (rdev->constraints->initial_state) {
1077                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set suspend state\n");
1080                         goto out;
1081                 }
1082         }
1083
1084         if (rdev->constraints->initial_mode) {
1085                 if (!ops->set_mode) {
1086                         rdev_err(rdev, "no set_mode operation\n");
1087                         ret = -EINVAL;
1088                         goto out;
1089                 }
1090
1091                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1092                 if (ret < 0) {
1093                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1094                         goto out;
1095                 }
1096         }
1097
1098         /* If the constraints say the regulator should be on at this point
1099          * and we have control then make sure it is enabled.
1100          */
1101         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1102                 ret = _regulator_do_enable(rdev);
1103                 if (ret < 0 && ret != -EINVAL) {
1104                         rdev_err(rdev, "failed to enable\n");
1105                         goto out;
1106                 }
1107         }
1108
1109         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1110                 && ops->set_ramp_delay) {
1111                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1112                 if (ret < 0) {
1113                         rdev_err(rdev, "failed to set ramp_delay\n");
1114                         goto out;
1115                 }
1116         }
1117
1118         if (rdev->constraints->pull_down && ops->set_pull_down) {
1119                 ret = ops->set_pull_down(rdev);
1120                 if (ret < 0) {
1121                         rdev_err(rdev, "failed to set pull down\n");
1122                         goto out;
1123                 }
1124         }
1125
1126         if (rdev->constraints->soft_start && ops->set_soft_start) {
1127                 ret = ops->set_soft_start(rdev);
1128                 if (ret < 0) {
1129                         rdev_err(rdev, "failed to set soft start\n");
1130                         goto out;
1131                 }
1132         }
1133
1134         if (rdev->constraints->over_current_protection
1135                 && ops->set_over_current_protection) {
1136                 ret = ops->set_over_current_protection(rdev);
1137                 if (ret < 0) {
1138                         rdev_err(rdev, "failed to set over current protection\n");
1139                         goto out;
1140                 }
1141         }
1142
1143         print_constraints(rdev);
1144         return 0;
1145 out:
1146         kfree(rdev->constraints);
1147         rdev->constraints = NULL;
1148         return ret;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #define REG_STR_SIZE    64
1259
1260 static struct regulator *create_regulator(struct regulator_dev *rdev,
1261                                           struct device *dev,
1262                                           const char *supply_name)
1263 {
1264         struct regulator *regulator;
1265         char buf[REG_STR_SIZE];
1266         int err, size;
1267
1268         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1269         if (regulator == NULL)
1270                 return NULL;
1271
1272         mutex_lock(&rdev->mutex);
1273         regulator->rdev = rdev;
1274         list_add(&regulator->list, &rdev->consumer_list);
1275
1276         if (dev) {
1277                 regulator->dev = dev;
1278
1279                 /* Add a link to the device sysfs entry */
1280                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1281                                  dev->kobj.name, supply_name);
1282                 if (size >= REG_STR_SIZE)
1283                         goto overflow_err;
1284
1285                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1286                 if (regulator->supply_name == NULL)
1287                         goto overflow_err;
1288
1289                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1290                                         buf);
1291                 if (err) {
1292                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1293                                   dev->kobj.name, err);
1294                         /* non-fatal */
1295                 }
1296         } else {
1297                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1298                 if (regulator->supply_name == NULL)
1299                         goto overflow_err;
1300         }
1301
1302         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1303                                                 rdev->debugfs);
1304         if (!regulator->debugfs) {
1305                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1306         } else {
1307                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1308                                    &regulator->uA_load);
1309                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1310                                    &regulator->min_uV);
1311                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1312                                    &regulator->max_uV);
1313         }
1314
1315         /*
1316          * Check now if the regulator is an always on regulator - if
1317          * it is then we don't need to do nearly so much work for
1318          * enable/disable calls.
1319          */
1320         if (!_regulator_can_change_status(rdev) &&
1321             _regulator_is_enabled(rdev))
1322                 regulator->always_on = true;
1323
1324         mutex_unlock(&rdev->mutex);
1325         return regulator;
1326 overflow_err:
1327         list_del(&regulator->list);
1328         kfree(regulator);
1329         mutex_unlock(&rdev->mutex);
1330         return NULL;
1331 }
1332
1333 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1334 {
1335         if (rdev->constraints && rdev->constraints->enable_time)
1336                 return rdev->constraints->enable_time;
1337         if (!rdev->desc->ops->enable_time)
1338                 return rdev->desc->enable_time;
1339         return rdev->desc->ops->enable_time(rdev);
1340 }
1341
1342 static struct regulator_supply_alias *regulator_find_supply_alias(
1343                 struct device *dev, const char *supply)
1344 {
1345         struct regulator_supply_alias *map;
1346
1347         list_for_each_entry(map, &regulator_supply_alias_list, list)
1348                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1349                         return map;
1350
1351         return NULL;
1352 }
1353
1354 static void regulator_supply_alias(struct device **dev, const char **supply)
1355 {
1356         struct regulator_supply_alias *map;
1357
1358         map = regulator_find_supply_alias(*dev, *supply);
1359         if (map) {
1360                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1361                                 *supply, map->alias_supply,
1362                                 dev_name(map->alias_dev));
1363                 *dev = map->alias_dev;
1364                 *supply = map->alias_supply;
1365         }
1366 }
1367
1368 static int of_node_match(struct device *dev, const void *data)
1369 {
1370         return dev->of_node == data;
1371 }
1372
1373 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1374 {
1375         struct device *dev;
1376
1377         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1378
1379         return dev ? dev_to_rdev(dev) : NULL;
1380 }
1381
1382 static int regulator_match(struct device *dev, const void *data)
1383 {
1384         struct regulator_dev *r = dev_to_rdev(dev);
1385
1386         return strcmp(rdev_get_name(r), data) == 0;
1387 }
1388
1389 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1390 {
1391         struct device *dev;
1392
1393         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1394
1395         return dev ? dev_to_rdev(dev) : NULL;
1396 }
1397
1398 /**
1399  * regulator_dev_lookup - lookup a regulator device.
1400  * @dev: device for regulator "consumer".
1401  * @supply: Supply name or regulator ID.
1402  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1403  * lookup could succeed in the future.
1404  *
1405  * If successful, returns a struct regulator_dev that corresponds to the name
1406  * @supply and with the embedded struct device refcount incremented by one,
1407  * or NULL on failure. The refcount must be dropped by calling put_device().
1408  */
1409 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1410                                                   const char *supply,
1411                                                   int *ret)
1412 {
1413         struct regulator_dev *r;
1414         struct device_node *node;
1415         struct regulator_map *map;
1416         const char *devname = NULL;
1417
1418         regulator_supply_alias(&dev, &supply);
1419
1420         /* first do a dt based lookup */
1421         if (dev && dev->of_node) {
1422                 node = of_get_regulator(dev, supply);
1423                 if (node) {
1424                         r = of_find_regulator_by_node(node);
1425                         if (r)
1426                                 return r;
1427                         *ret = -EPROBE_DEFER;
1428                         return NULL;
1429                 } else {
1430                         /*
1431                          * If we couldn't even get the node then it's
1432                          * not just that the device didn't register
1433                          * yet, there's no node and we'll never
1434                          * succeed.
1435                          */
1436                         *ret = -ENODEV;
1437                 }
1438         }
1439
1440         /* if not found, try doing it non-dt way */
1441         if (dev)
1442                 devname = dev_name(dev);
1443
1444         r = regulator_lookup_by_name(supply);
1445         if (r)
1446                 return r;
1447
1448         mutex_lock(&regulator_list_mutex);
1449         list_for_each_entry(map, &regulator_map_list, list) {
1450                 /* If the mapping has a device set up it must match */
1451                 if (map->dev_name &&
1452                     (!devname || strcmp(map->dev_name, devname)))
1453                         continue;
1454
1455                 if (strcmp(map->supply, supply) == 0 &&
1456                     get_device(&map->regulator->dev)) {
1457                         mutex_unlock(&regulator_list_mutex);
1458                         return map->regulator;
1459                 }
1460         }
1461         mutex_unlock(&regulator_list_mutex);
1462
1463         return NULL;
1464 }
1465
1466 static int regulator_resolve_supply(struct regulator_dev *rdev)
1467 {
1468         struct regulator_dev *r;
1469         struct device *dev = rdev->dev.parent;
1470         int ret;
1471
1472         /* No supply to resovle? */
1473         if (!rdev->supply_name)
1474                 return 0;
1475
1476         /* Supply already resolved? */
1477         if (rdev->supply)
1478                 return 0;
1479
1480         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1481         if (!r) {
1482                 if (ret == -ENODEV) {
1483                         /*
1484                          * No supply was specified for this regulator and
1485                          * there will never be one.
1486                          */
1487                         return 0;
1488                 }
1489
1490                 /* Did the lookup explicitly defer for us? */
1491                 if (ret == -EPROBE_DEFER)
1492                         return ret;
1493
1494                 if (have_full_constraints()) {
1495                         r = dummy_regulator_rdev;
1496                         get_device(&r->dev);
1497                 } else {
1498                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1499                                 rdev->supply_name, rdev->desc->name);
1500                         return -EPROBE_DEFER;
1501                 }
1502         }
1503
1504         /* Recursively resolve the supply of the supply */
1505         ret = regulator_resolve_supply(r);
1506         if (ret < 0) {
1507                 put_device(&r->dev);
1508                 return ret;
1509         }
1510
1511         ret = set_supply(rdev, r);
1512         if (ret < 0) {
1513                 put_device(&r->dev);
1514                 return ret;
1515         }
1516
1517         /* Cascade always-on state to supply */
1518         if (_regulator_is_enabled(rdev) && rdev->supply) {
1519                 ret = regulator_enable(rdev->supply);
1520                 if (ret < 0) {
1521                         _regulator_put(rdev->supply);
1522                         return ret;
1523                 }
1524         }
1525
1526         return 0;
1527 }
1528
1529 /* Internal regulator request function */
1530 static struct regulator *_regulator_get(struct device *dev, const char *id,
1531                                         bool exclusive, bool allow_dummy)
1532 {
1533         struct regulator_dev *rdev;
1534         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1535         const char *devname = NULL;
1536         int ret;
1537
1538         if (id == NULL) {
1539                 pr_err("get() with no identifier\n");
1540                 return ERR_PTR(-EINVAL);
1541         }
1542
1543         if (dev)
1544                 devname = dev_name(dev);
1545
1546         if (have_full_constraints())
1547                 ret = -ENODEV;
1548         else
1549                 ret = -EPROBE_DEFER;
1550
1551         rdev = regulator_dev_lookup(dev, id, &ret);
1552         if (rdev)
1553                 goto found;
1554
1555         regulator = ERR_PTR(ret);
1556
1557         /*
1558          * If we have return value from dev_lookup fail, we do not expect to
1559          * succeed, so, quit with appropriate error value
1560          */
1561         if (ret && ret != -ENODEV)
1562                 return regulator;
1563
1564         if (!devname)
1565                 devname = "deviceless";
1566
1567         /*
1568          * Assume that a regulator is physically present and enabled
1569          * even if it isn't hooked up and just provide a dummy.
1570          */
1571         if (have_full_constraints() && allow_dummy) {
1572                 pr_warn("%s supply %s not found, using dummy regulator\n",
1573                         devname, id);
1574
1575                 rdev = dummy_regulator_rdev;
1576                 get_device(&rdev->dev);
1577                 goto found;
1578         /* Don't log an error when called from regulator_get_optional() */
1579         } else if (!have_full_constraints() || exclusive) {
1580                 dev_warn(dev, "dummy supplies not allowed\n");
1581         }
1582
1583         return regulator;
1584
1585 found:
1586         if (rdev->exclusive) {
1587                 regulator = ERR_PTR(-EPERM);
1588                 put_device(&rdev->dev);
1589                 return regulator;
1590         }
1591
1592         if (exclusive && rdev->open_count) {
1593                 regulator = ERR_PTR(-EBUSY);
1594                 put_device(&rdev->dev);
1595                 return regulator;
1596         }
1597
1598         ret = regulator_resolve_supply(rdev);
1599         if (ret < 0) {
1600                 regulator = ERR_PTR(ret);
1601                 put_device(&rdev->dev);
1602                 return regulator;
1603         }
1604
1605         if (!try_module_get(rdev->owner)) {
1606                 put_device(&rdev->dev);
1607                 return regulator;
1608         }
1609
1610         regulator = create_regulator(rdev, dev, id);
1611         if (regulator == NULL) {
1612                 regulator = ERR_PTR(-ENOMEM);
1613                 put_device(&rdev->dev);
1614                 module_put(rdev->owner);
1615                 return regulator;
1616         }
1617
1618         rdev->open_count++;
1619         if (exclusive) {
1620                 rdev->exclusive = 1;
1621
1622                 ret = _regulator_is_enabled(rdev);
1623                 if (ret > 0)
1624                         rdev->use_count = 1;
1625                 else
1626                         rdev->use_count = 0;
1627         }
1628
1629         return regulator;
1630 }
1631
1632 /**
1633  * regulator_get - lookup and obtain a reference to a regulator.
1634  * @dev: device for regulator "consumer"
1635  * @id: Supply name or regulator ID.
1636  *
1637  * Returns a struct regulator corresponding to the regulator producer,
1638  * or IS_ERR() condition containing errno.
1639  *
1640  * Use of supply names configured via regulator_set_device_supply() is
1641  * strongly encouraged.  It is recommended that the supply name used
1642  * should match the name used for the supply and/or the relevant
1643  * device pins in the datasheet.
1644  */
1645 struct regulator *regulator_get(struct device *dev, const char *id)
1646 {
1647         return _regulator_get(dev, id, false, true);
1648 }
1649 EXPORT_SYMBOL_GPL(regulator_get);
1650
1651 /**
1652  * regulator_get_exclusive - obtain exclusive access to a regulator.
1653  * @dev: device for regulator "consumer"
1654  * @id: Supply name or regulator ID.
1655  *
1656  * Returns a struct regulator corresponding to the regulator producer,
1657  * or IS_ERR() condition containing errno.  Other consumers will be
1658  * unable to obtain this regulator while this reference is held and the
1659  * use count for the regulator will be initialised to reflect the current
1660  * state of the regulator.
1661  *
1662  * This is intended for use by consumers which cannot tolerate shared
1663  * use of the regulator such as those which need to force the
1664  * regulator off for correct operation of the hardware they are
1665  * controlling.
1666  *
1667  * Use of supply names configured via regulator_set_device_supply() is
1668  * strongly encouraged.  It is recommended that the supply name used
1669  * should match the name used for the supply and/or the relevant
1670  * device pins in the datasheet.
1671  */
1672 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1673 {
1674         return _regulator_get(dev, id, true, false);
1675 }
1676 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1677
1678 /**
1679  * regulator_get_optional - obtain optional access to a regulator.
1680  * @dev: device for regulator "consumer"
1681  * @id: Supply name or regulator ID.
1682  *
1683  * Returns a struct regulator corresponding to the regulator producer,
1684  * or IS_ERR() condition containing errno.
1685  *
1686  * This is intended for use by consumers for devices which can have
1687  * some supplies unconnected in normal use, such as some MMC devices.
1688  * It can allow the regulator core to provide stub supplies for other
1689  * supplies requested using normal regulator_get() calls without
1690  * disrupting the operation of drivers that can handle absent
1691  * supplies.
1692  *
1693  * Use of supply names configured via regulator_set_device_supply() is
1694  * strongly encouraged.  It is recommended that the supply name used
1695  * should match the name used for the supply and/or the relevant
1696  * device pins in the datasheet.
1697  */
1698 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1699 {
1700         return _regulator_get(dev, id, false, false);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get_optional);
1703
1704 /* regulator_list_mutex lock held by regulator_put() */
1705 static void _regulator_put(struct regulator *regulator)
1706 {
1707         struct regulator_dev *rdev;
1708
1709         if (IS_ERR_OR_NULL(regulator))
1710                 return;
1711
1712         lockdep_assert_held_once(&regulator_list_mutex);
1713
1714         rdev = regulator->rdev;
1715
1716         debugfs_remove_recursive(regulator->debugfs);
1717
1718         /* remove any sysfs entries */
1719         if (regulator->dev)
1720                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1721         mutex_lock(&rdev->mutex);
1722         list_del(&regulator->list);
1723
1724         rdev->open_count--;
1725         rdev->exclusive = 0;
1726         put_device(&rdev->dev);
1727         mutex_unlock(&rdev->mutex);
1728
1729         kfree(regulator->supply_name);
1730         kfree(regulator);
1731
1732         module_put(rdev->owner);
1733 }
1734
1735 /**
1736  * regulator_put - "free" the regulator source
1737  * @regulator: regulator source
1738  *
1739  * Note: drivers must ensure that all regulator_enable calls made on this
1740  * regulator source are balanced by regulator_disable calls prior to calling
1741  * this function.
1742  */
1743 void regulator_put(struct regulator *regulator)
1744 {
1745         mutex_lock(&regulator_list_mutex);
1746         _regulator_put(regulator);
1747         mutex_unlock(&regulator_list_mutex);
1748 }
1749 EXPORT_SYMBOL_GPL(regulator_put);
1750
1751 /**
1752  * regulator_register_supply_alias - Provide device alias for supply lookup
1753  *
1754  * @dev: device that will be given as the regulator "consumer"
1755  * @id: Supply name or regulator ID
1756  * @alias_dev: device that should be used to lookup the supply
1757  * @alias_id: Supply name or regulator ID that should be used to lookup the
1758  * supply
1759  *
1760  * All lookups for id on dev will instead be conducted for alias_id on
1761  * alias_dev.
1762  */
1763 int regulator_register_supply_alias(struct device *dev, const char *id,
1764                                     struct device *alias_dev,
1765                                     const char *alias_id)
1766 {
1767         struct regulator_supply_alias *map;
1768
1769         map = regulator_find_supply_alias(dev, id);
1770         if (map)
1771                 return -EEXIST;
1772
1773         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1774         if (!map)
1775                 return -ENOMEM;
1776
1777         map->src_dev = dev;
1778         map->src_supply = id;
1779         map->alias_dev = alias_dev;
1780         map->alias_supply = alias_id;
1781
1782         list_add(&map->list, &regulator_supply_alias_list);
1783
1784         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1785                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1786
1787         return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1790
1791 /**
1792  * regulator_unregister_supply_alias - Remove device alias
1793  *
1794  * @dev: device that will be given as the regulator "consumer"
1795  * @id: Supply name or regulator ID
1796  *
1797  * Remove a lookup alias if one exists for id on dev.
1798  */
1799 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1800 {
1801         struct regulator_supply_alias *map;
1802
1803         map = regulator_find_supply_alias(dev, id);
1804         if (map) {
1805                 list_del(&map->list);
1806                 kfree(map);
1807         }
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1810
1811 /**
1812  * regulator_bulk_register_supply_alias - register multiple aliases
1813  *
1814  * @dev: device that will be given as the regulator "consumer"
1815  * @id: List of supply names or regulator IDs
1816  * @alias_dev: device that should be used to lookup the supply
1817  * @alias_id: List of supply names or regulator IDs that should be used to
1818  * lookup the supply
1819  * @num_id: Number of aliases to register
1820  *
1821  * @return 0 on success, an errno on failure.
1822  *
1823  * This helper function allows drivers to register several supply
1824  * aliases in one operation.  If any of the aliases cannot be
1825  * registered any aliases that were registered will be removed
1826  * before returning to the caller.
1827  */
1828 int regulator_bulk_register_supply_alias(struct device *dev,
1829                                          const char *const *id,
1830                                          struct device *alias_dev,
1831                                          const char *const *alias_id,
1832                                          int num_id)
1833 {
1834         int i;
1835         int ret;
1836
1837         for (i = 0; i < num_id; ++i) {
1838                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1839                                                       alias_id[i]);
1840                 if (ret < 0)
1841                         goto err;
1842         }
1843
1844         return 0;
1845
1846 err:
1847         dev_err(dev,
1848                 "Failed to create supply alias %s,%s -> %s,%s\n",
1849                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1850
1851         while (--i >= 0)
1852                 regulator_unregister_supply_alias(dev, id[i]);
1853
1854         return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1857
1858 /**
1859  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1860  *
1861  * @dev: device that will be given as the regulator "consumer"
1862  * @id: List of supply names or regulator IDs
1863  * @num_id: Number of aliases to unregister
1864  *
1865  * This helper function allows drivers to unregister several supply
1866  * aliases in one operation.
1867  */
1868 void regulator_bulk_unregister_supply_alias(struct device *dev,
1869                                             const char *const *id,
1870                                             int num_id)
1871 {
1872         int i;
1873
1874         for (i = 0; i < num_id; ++i)
1875                 regulator_unregister_supply_alias(dev, id[i]);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1878
1879
1880 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1881 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1882                                 const struct regulator_config *config)
1883 {
1884         struct regulator_enable_gpio *pin;
1885         struct gpio_desc *gpiod;
1886         int ret;
1887
1888         gpiod = gpio_to_desc(config->ena_gpio);
1889
1890         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1891                 if (pin->gpiod == gpiod) {
1892                         rdev_dbg(rdev, "GPIO %d is already used\n",
1893                                 config->ena_gpio);
1894                         goto update_ena_gpio_to_rdev;
1895                 }
1896         }
1897
1898         ret = gpio_request_one(config->ena_gpio,
1899                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1900                                 rdev_get_name(rdev));
1901         if (ret)
1902                 return ret;
1903
1904         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1905         if (pin == NULL) {
1906                 gpio_free(config->ena_gpio);
1907                 return -ENOMEM;
1908         }
1909
1910         pin->gpiod = gpiod;
1911         pin->ena_gpio_invert = config->ena_gpio_invert;
1912         list_add(&pin->list, &regulator_ena_gpio_list);
1913
1914 update_ena_gpio_to_rdev:
1915         pin->request_count++;
1916         rdev->ena_pin = pin;
1917         return 0;
1918 }
1919
1920 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1921 {
1922         struct regulator_enable_gpio *pin, *n;
1923
1924         if (!rdev->ena_pin)
1925                 return;
1926
1927         /* Free the GPIO only in case of no use */
1928         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1929                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1930                         if (pin->request_count <= 1) {
1931                                 pin->request_count = 0;
1932                                 gpiod_put(pin->gpiod);
1933                                 list_del(&pin->list);
1934                                 kfree(pin);
1935                                 rdev->ena_pin = NULL;
1936                                 return;
1937                         } else {
1938                                 pin->request_count--;
1939                         }
1940                 }
1941         }
1942 }
1943
1944 /**
1945  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1946  * @rdev: regulator_dev structure
1947  * @enable: enable GPIO at initial use?
1948  *
1949  * GPIO is enabled in case of initial use. (enable_count is 0)
1950  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1951  */
1952 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1953 {
1954         struct regulator_enable_gpio *pin = rdev->ena_pin;
1955
1956         if (!pin)
1957                 return -EINVAL;
1958
1959         if (enable) {
1960                 /* Enable GPIO at initial use */
1961                 if (pin->enable_count == 0)
1962                         gpiod_set_value_cansleep(pin->gpiod,
1963                                                  !pin->ena_gpio_invert);
1964
1965                 pin->enable_count++;
1966         } else {
1967                 if (pin->enable_count > 1) {
1968                         pin->enable_count--;
1969                         return 0;
1970                 }
1971
1972                 /* Disable GPIO if not used */
1973                 if (pin->enable_count <= 1) {
1974                         gpiod_set_value_cansleep(pin->gpiod,
1975                                                  pin->ena_gpio_invert);
1976                         pin->enable_count = 0;
1977                 }
1978         }
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * _regulator_enable_delay - a delay helper function
1985  * @delay: time to delay in microseconds
1986  *
1987  * Delay for the requested amount of time as per the guidelines in:
1988  *
1989  *     Documentation/timers/timers-howto.txt
1990  *
1991  * The assumption here is that regulators will never be enabled in
1992  * atomic context and therefore sleeping functions can be used.
1993  */
1994 static void _regulator_enable_delay(unsigned int delay)
1995 {
1996         unsigned int ms = delay / 1000;
1997         unsigned int us = delay % 1000;
1998
1999         if (ms > 0) {
2000                 /*
2001                  * For small enough values, handle super-millisecond
2002                  * delays in the usleep_range() call below.
2003                  */
2004                 if (ms < 20)
2005                         us += ms * 1000;
2006                 else
2007                         msleep(ms);
2008         }
2009
2010         /*
2011          * Give the scheduler some room to coalesce with any other
2012          * wakeup sources. For delays shorter than 10 us, don't even
2013          * bother setting up high-resolution timers and just busy-
2014          * loop.
2015          */
2016         if (us >= 10)
2017                 usleep_range(us, us + 100);
2018         else
2019                 udelay(us);
2020 }
2021
2022 static int _regulator_do_enable(struct regulator_dev *rdev)
2023 {
2024         int ret, delay;
2025
2026         /* Query before enabling in case configuration dependent.  */
2027         ret = _regulator_get_enable_time(rdev);
2028         if (ret >= 0) {
2029                 delay = ret;
2030         } else {
2031                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2032                 delay = 0;
2033         }
2034
2035         trace_regulator_enable(rdev_get_name(rdev));
2036
2037         if (rdev->desc->off_on_delay) {
2038                 /* if needed, keep a distance of off_on_delay from last time
2039                  * this regulator was disabled.
2040                  */
2041                 unsigned long start_jiffy = jiffies;
2042                 unsigned long intended, max_delay, remaining;
2043
2044                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2045                 intended = rdev->last_off_jiffy + max_delay;
2046
2047                 if (time_before(start_jiffy, intended)) {
2048                         /* calc remaining jiffies to deal with one-time
2049                          * timer wrapping.
2050                          * in case of multiple timer wrapping, either it can be
2051                          * detected by out-of-range remaining, or it cannot be
2052                          * detected and we gets a panelty of
2053                          * _regulator_enable_delay().
2054                          */
2055                         remaining = intended - start_jiffy;
2056                         if (remaining <= max_delay)
2057                                 _regulator_enable_delay(
2058                                                 jiffies_to_usecs(remaining));
2059                 }
2060         }
2061
2062         if (rdev->ena_pin) {
2063                 if (!rdev->ena_gpio_state) {
2064                         ret = regulator_ena_gpio_ctrl(rdev, true);
2065                         if (ret < 0)
2066                                 return ret;
2067                         rdev->ena_gpio_state = 1;
2068                 }
2069         } else if (rdev->desc->ops->enable) {
2070                 ret = rdev->desc->ops->enable(rdev);
2071                 if (ret < 0)
2072                         return ret;
2073         } else {
2074                 return -EINVAL;
2075         }
2076
2077         /* Allow the regulator to ramp; it would be useful to extend
2078          * this for bulk operations so that the regulators can ramp
2079          * together.  */
2080         trace_regulator_enable_delay(rdev_get_name(rdev));
2081
2082         _regulator_enable_delay(delay);
2083
2084         trace_regulator_enable_complete(rdev_get_name(rdev));
2085
2086         return 0;
2087 }
2088
2089 /* locks held by regulator_enable() */
2090 static int _regulator_enable(struct regulator_dev *rdev)
2091 {
2092         int ret;
2093
2094         lockdep_assert_held_once(&rdev->mutex);
2095
2096         /* check voltage and requested load before enabling */
2097         if (rdev->constraints &&
2098             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2099                 drms_uA_update(rdev);
2100
2101         if (rdev->use_count == 0) {
2102                 /* The regulator may on if it's not switchable or left on */
2103                 ret = _regulator_is_enabled(rdev);
2104                 if (ret == -EINVAL || ret == 0) {
2105                         if (!_regulator_can_change_status(rdev))
2106                                 return -EPERM;
2107
2108                         ret = _regulator_do_enable(rdev);
2109                         if (ret < 0)
2110                                 return ret;
2111
2112                 } else if (ret < 0) {
2113                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2114                         return ret;
2115                 }
2116                 /* Fallthrough on positive return values - already enabled */
2117         }
2118
2119         rdev->use_count++;
2120
2121         return 0;
2122 }
2123
2124 /**
2125  * regulator_enable - enable regulator output
2126  * @regulator: regulator source
2127  *
2128  * Request that the regulator be enabled with the regulator output at
2129  * the predefined voltage or current value.  Calls to regulator_enable()
2130  * must be balanced with calls to regulator_disable().
2131  *
2132  * NOTE: the output value can be set by other drivers, boot loader or may be
2133  * hardwired in the regulator.
2134  */
2135 int regulator_enable(struct regulator *regulator)
2136 {
2137         struct regulator_dev *rdev = regulator->rdev;
2138         int ret = 0;
2139
2140         if (regulator->always_on)
2141                 return 0;
2142
2143         if (rdev->supply) {
2144                 ret = regulator_enable(rdev->supply);
2145                 if (ret != 0)
2146                         return ret;
2147         }
2148
2149         mutex_lock(&rdev->mutex);
2150         ret = _regulator_enable(rdev);
2151         mutex_unlock(&rdev->mutex);
2152
2153         if (ret != 0 && rdev->supply)
2154                 regulator_disable(rdev->supply);
2155
2156         return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(regulator_enable);
2159
2160 static int _regulator_do_disable(struct regulator_dev *rdev)
2161 {
2162         int ret;
2163
2164         trace_regulator_disable(rdev_get_name(rdev));
2165
2166         if (rdev->ena_pin) {
2167                 if (rdev->ena_gpio_state) {
2168                         ret = regulator_ena_gpio_ctrl(rdev, false);
2169                         if (ret < 0)
2170                                 return ret;
2171                         rdev->ena_gpio_state = 0;
2172                 }
2173
2174         } else if (rdev->desc->ops->disable) {
2175                 ret = rdev->desc->ops->disable(rdev);
2176                 if (ret != 0)
2177                         return ret;
2178         }
2179
2180         /* cares about last_off_jiffy only if off_on_delay is required by
2181          * device.
2182          */
2183         if (rdev->desc->off_on_delay)
2184                 rdev->last_off_jiffy = jiffies;
2185
2186         trace_regulator_disable_complete(rdev_get_name(rdev));
2187
2188         return 0;
2189 }
2190
2191 /* locks held by regulator_disable() */
2192 static int _regulator_disable(struct regulator_dev *rdev)
2193 {
2194         int ret = 0;
2195
2196         lockdep_assert_held_once(&rdev->mutex);
2197
2198         if (WARN(rdev->use_count <= 0,
2199                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2200                 return -EIO;
2201
2202         /* are we the last user and permitted to disable ? */
2203         if (rdev->use_count == 1 &&
2204             (rdev->constraints && !rdev->constraints->always_on)) {
2205
2206                 /* we are last user */
2207                 if (_regulator_can_change_status(rdev)) {
2208                         ret = _notifier_call_chain(rdev,
2209                                                    REGULATOR_EVENT_PRE_DISABLE,
2210                                                    NULL);
2211                         if (ret & NOTIFY_STOP_MASK)
2212                                 return -EINVAL;
2213
2214                         ret = _regulator_do_disable(rdev);
2215                         if (ret < 0) {
2216                                 rdev_err(rdev, "failed to disable\n");
2217                                 _notifier_call_chain(rdev,
2218                                                 REGULATOR_EVENT_ABORT_DISABLE,
2219                                                 NULL);
2220                                 return ret;
2221                         }
2222                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2223                                         NULL);
2224                 }
2225
2226                 rdev->use_count = 0;
2227         } else if (rdev->use_count > 1) {
2228
2229                 if (rdev->constraints &&
2230                         (rdev->constraints->valid_ops_mask &
2231                         REGULATOR_CHANGE_DRMS))
2232                         drms_uA_update(rdev);
2233
2234                 rdev->use_count--;
2235         }
2236
2237         return ret;
2238 }
2239
2240 /**
2241  * regulator_disable - disable regulator output
2242  * @regulator: regulator source
2243  *
2244  * Disable the regulator output voltage or current.  Calls to
2245  * regulator_enable() must be balanced with calls to
2246  * regulator_disable().
2247  *
2248  * NOTE: this will only disable the regulator output if no other consumer
2249  * devices have it enabled, the regulator device supports disabling and
2250  * machine constraints permit this operation.
2251  */
2252 int regulator_disable(struct regulator *regulator)
2253 {
2254         struct regulator_dev *rdev = regulator->rdev;
2255         int ret = 0;
2256
2257         if (regulator->always_on)
2258                 return 0;
2259
2260         mutex_lock(&rdev->mutex);
2261         ret = _regulator_disable(rdev);
2262         mutex_unlock(&rdev->mutex);
2263
2264         if (ret == 0 && rdev->supply)
2265                 regulator_disable(rdev->supply);
2266
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_disable);
2270
2271 /* locks held by regulator_force_disable() */
2272 static int _regulator_force_disable(struct regulator_dev *rdev)
2273 {
2274         int ret = 0;
2275
2276         lockdep_assert_held_once(&rdev->mutex);
2277
2278         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2279                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2280         if (ret & NOTIFY_STOP_MASK)
2281                 return -EINVAL;
2282
2283         ret = _regulator_do_disable(rdev);
2284         if (ret < 0) {
2285                 rdev_err(rdev, "failed to force disable\n");
2286                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2287                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2288                 return ret;
2289         }
2290
2291         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2292                         REGULATOR_EVENT_DISABLE, NULL);
2293
2294         return 0;
2295 }
2296
2297 /**
2298  * regulator_force_disable - force disable regulator output
2299  * @regulator: regulator source
2300  *
2301  * Forcibly disable the regulator output voltage or current.
2302  * NOTE: this *will* disable the regulator output even if other consumer
2303  * devices have it enabled. This should be used for situations when device
2304  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2305  */
2306 int regulator_force_disable(struct regulator *regulator)
2307 {
2308         struct regulator_dev *rdev = regulator->rdev;
2309         int ret;
2310
2311         mutex_lock(&rdev->mutex);
2312         regulator->uA_load = 0;
2313         ret = _regulator_force_disable(regulator->rdev);
2314         mutex_unlock(&rdev->mutex);
2315
2316         if (rdev->supply)
2317                 while (rdev->open_count--)
2318                         regulator_disable(rdev->supply);
2319
2320         return ret;
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_force_disable);
2323
2324 static void regulator_disable_work(struct work_struct *work)
2325 {
2326         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2327                                                   disable_work.work);
2328         int count, i, ret;
2329
2330         mutex_lock(&rdev->mutex);
2331
2332         BUG_ON(!rdev->deferred_disables);
2333
2334         count = rdev->deferred_disables;
2335         rdev->deferred_disables = 0;
2336
2337         for (i = 0; i < count; i++) {
2338                 ret = _regulator_disable(rdev);
2339                 if (ret != 0)
2340                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2341         }
2342
2343         mutex_unlock(&rdev->mutex);
2344
2345         if (rdev->supply) {
2346                 for (i = 0; i < count; i++) {
2347                         ret = regulator_disable(rdev->supply);
2348                         if (ret != 0) {
2349                                 rdev_err(rdev,
2350                                          "Supply disable failed: %d\n", ret);
2351                         }
2352                 }
2353         }
2354 }
2355
2356 /**
2357  * regulator_disable_deferred - disable regulator output with delay
2358  * @regulator: regulator source
2359  * @ms: miliseconds until the regulator is disabled
2360  *
2361  * Execute regulator_disable() on the regulator after a delay.  This
2362  * is intended for use with devices that require some time to quiesce.
2363  *
2364  * NOTE: this will only disable the regulator output if no other consumer
2365  * devices have it enabled, the regulator device supports disabling and
2366  * machine constraints permit this operation.
2367  */
2368 int regulator_disable_deferred(struct regulator *regulator, int ms)
2369 {
2370         struct regulator_dev *rdev = regulator->rdev;
2371
2372         if (regulator->always_on)
2373                 return 0;
2374
2375         if (!ms)
2376                 return regulator_disable(regulator);
2377
2378         mutex_lock(&rdev->mutex);
2379         rdev->deferred_disables++;
2380         mutex_unlock(&rdev->mutex);
2381
2382         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2383                            msecs_to_jiffies(ms));
2384         return 0;
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2387
2388 static int _regulator_is_enabled(struct regulator_dev *rdev)
2389 {
2390         /* A GPIO control always takes precedence */
2391         if (rdev->ena_pin)
2392                 return rdev->ena_gpio_state;
2393
2394         /* If we don't know then assume that the regulator is always on */
2395         if (!rdev->desc->ops->is_enabled)
2396                 return 1;
2397
2398         return rdev->desc->ops->is_enabled(rdev);
2399 }
2400
2401 static int _regulator_list_voltage(struct regulator *regulator,
2402                                     unsigned selector, int lock)
2403 {
2404         struct regulator_dev *rdev = regulator->rdev;
2405         const struct regulator_ops *ops = rdev->desc->ops;
2406         int ret;
2407
2408         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2409                 return rdev->desc->fixed_uV;
2410
2411         if (ops->list_voltage) {
2412                 if (selector >= rdev->desc->n_voltages)
2413                         return -EINVAL;
2414                 if (lock)
2415                         mutex_lock(&rdev->mutex);
2416                 ret = ops->list_voltage(rdev, selector);
2417                 if (lock)
2418                         mutex_unlock(&rdev->mutex);
2419         } else if (rdev->supply) {
2420                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2421         } else {
2422                 return -EINVAL;
2423         }
2424
2425         if (ret > 0) {
2426                 if (ret < rdev->constraints->min_uV)
2427                         ret = 0;
2428                 else if (ret > rdev->constraints->max_uV)
2429                         ret = 0;
2430         }
2431
2432         return ret;
2433 }
2434
2435 /**
2436  * regulator_is_enabled - is the regulator output enabled
2437  * @regulator: regulator source
2438  *
2439  * Returns positive if the regulator driver backing the source/client
2440  * has requested that the device be enabled, zero if it hasn't, else a
2441  * negative errno code.
2442  *
2443  * Note that the device backing this regulator handle can have multiple
2444  * users, so it might be enabled even if regulator_enable() was never
2445  * called for this particular source.
2446  */
2447 int regulator_is_enabled(struct regulator *regulator)
2448 {
2449         int ret;
2450
2451         if (regulator->always_on)
2452                 return 1;
2453
2454         mutex_lock(&regulator->rdev->mutex);
2455         ret = _regulator_is_enabled(regulator->rdev);
2456         mutex_unlock(&regulator->rdev->mutex);
2457
2458         return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2461
2462 /**
2463  * regulator_can_change_voltage - check if regulator can change voltage
2464  * @regulator: regulator source
2465  *
2466  * Returns positive if the regulator driver backing the source/client
2467  * can change its voltage, false otherwise. Useful for detecting fixed
2468  * or dummy regulators and disabling voltage change logic in the client
2469  * driver.
2470  */
2471 int regulator_can_change_voltage(struct regulator *regulator)
2472 {
2473         struct regulator_dev    *rdev = regulator->rdev;
2474
2475         if (rdev->constraints &&
2476             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2477                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2478                         return 1;
2479
2480                 if (rdev->desc->continuous_voltage_range &&
2481                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2482                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2483                         return 1;
2484         }
2485
2486         return 0;
2487 }
2488 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2489
2490 /**
2491  * regulator_count_voltages - count regulator_list_voltage() selectors
2492  * @regulator: regulator source
2493  *
2494  * Returns number of selectors, or negative errno.  Selectors are
2495  * numbered starting at zero, and typically correspond to bitfields
2496  * in hardware registers.
2497  */
2498 int regulator_count_voltages(struct regulator *regulator)
2499 {
2500         struct regulator_dev    *rdev = regulator->rdev;
2501
2502         if (rdev->desc->n_voltages)
2503                 return rdev->desc->n_voltages;
2504
2505         if (!rdev->supply)
2506                 return -EINVAL;
2507
2508         return regulator_count_voltages(rdev->supply);
2509 }
2510 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2511
2512 /**
2513  * regulator_list_voltage - enumerate supported voltages
2514  * @regulator: regulator source
2515  * @selector: identify voltage to list
2516  * Context: can sleep
2517  *
2518  * Returns a voltage that can be passed to @regulator_set_voltage(),
2519  * zero if this selector code can't be used on this system, or a
2520  * negative errno.
2521  */
2522 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2523 {
2524         return _regulator_list_voltage(regulator, selector, 1);
2525 }
2526 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2527
2528 /**
2529  * regulator_get_regmap - get the regulator's register map
2530  * @regulator: regulator source
2531  *
2532  * Returns the register map for the given regulator, or an ERR_PTR value
2533  * if the regulator doesn't use regmap.
2534  */
2535 struct regmap *regulator_get_regmap(struct regulator *regulator)
2536 {
2537         struct regmap *map = regulator->rdev->regmap;
2538
2539         return map ? map : ERR_PTR(-EOPNOTSUPP);
2540 }
2541
2542 /**
2543  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2544  * @regulator: regulator source
2545  * @vsel_reg: voltage selector register, output parameter
2546  * @vsel_mask: mask for voltage selector bitfield, output parameter
2547  *
2548  * Returns the hardware register offset and bitmask used for setting the
2549  * regulator voltage. This might be useful when configuring voltage-scaling
2550  * hardware or firmware that can make I2C requests behind the kernel's back,
2551  * for example.
2552  *
2553  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2554  * and 0 is returned, otherwise a negative errno is returned.
2555  */
2556 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2557                                          unsigned *vsel_reg,
2558                                          unsigned *vsel_mask)
2559 {
2560         struct regulator_dev *rdev = regulator->rdev;
2561         const struct regulator_ops *ops = rdev->desc->ops;
2562
2563         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2564                 return -EOPNOTSUPP;
2565
2566          *vsel_reg = rdev->desc->vsel_reg;
2567          *vsel_mask = rdev->desc->vsel_mask;
2568
2569          return 0;
2570 }
2571 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2572
2573 /**
2574  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2575  * @regulator: regulator source
2576  * @selector: identify voltage to list
2577  *
2578  * Converts the selector to a hardware-specific voltage selector that can be
2579  * directly written to the regulator registers. The address of the voltage
2580  * register can be determined by calling @regulator_get_hardware_vsel_register.
2581  *
2582  * On error a negative errno is returned.
2583  */
2584 int regulator_list_hardware_vsel(struct regulator *regulator,
2585                                  unsigned selector)
2586 {
2587         struct regulator_dev *rdev = regulator->rdev;
2588         const struct regulator_ops *ops = rdev->desc->ops;
2589
2590         if (selector >= rdev->desc->n_voltages)
2591                 return -EINVAL;
2592         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2593                 return -EOPNOTSUPP;
2594
2595         return selector;
2596 }
2597 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2598
2599 /**
2600  * regulator_get_linear_step - return the voltage step size between VSEL values
2601  * @regulator: regulator source
2602  *
2603  * Returns the voltage step size between VSEL values for linear
2604  * regulators, or return 0 if the regulator isn't a linear regulator.
2605  */
2606 unsigned int regulator_get_linear_step(struct regulator *regulator)
2607 {
2608         struct regulator_dev *rdev = regulator->rdev;
2609
2610         return rdev->desc->uV_step;
2611 }
2612 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2613
2614 /**
2615  * regulator_is_supported_voltage - check if a voltage range can be supported
2616  *
2617  * @regulator: Regulator to check.
2618  * @min_uV: Minimum required voltage in uV.
2619  * @max_uV: Maximum required voltage in uV.
2620  *
2621  * Returns a boolean or a negative error code.
2622  */
2623 int regulator_is_supported_voltage(struct regulator *regulator,
2624                                    int min_uV, int max_uV)
2625 {
2626         struct regulator_dev *rdev = regulator->rdev;
2627         int i, voltages, ret;
2628
2629         /* If we can't change voltage check the current voltage */
2630         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2631                 ret = regulator_get_voltage(regulator);
2632                 if (ret >= 0)
2633                         return min_uV <= ret && ret <= max_uV;
2634                 else
2635                         return ret;
2636         }
2637
2638         /* Any voltage within constrains range is fine? */
2639         if (rdev->desc->continuous_voltage_range)
2640                 return min_uV >= rdev->constraints->min_uV &&
2641                                 max_uV <= rdev->constraints->max_uV;
2642
2643         ret = regulator_count_voltages(regulator);
2644         if (ret < 0)
2645                 return ret;
2646         voltages = ret;
2647
2648         for (i = 0; i < voltages; i++) {
2649                 ret = regulator_list_voltage(regulator, i);
2650
2651                 if (ret >= min_uV && ret <= max_uV)
2652                         return 1;
2653         }
2654
2655         return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2658
2659 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2660                                  int max_uV)
2661 {
2662         const struct regulator_desc *desc = rdev->desc;
2663
2664         if (desc->ops->map_voltage)
2665                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2666
2667         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2668                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2669
2670         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2671                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2672
2673         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2674 }
2675
2676 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2677                                        int min_uV, int max_uV,
2678                                        unsigned *selector)
2679 {
2680         struct pre_voltage_change_data data;
2681         int ret;
2682
2683         data.old_uV = _regulator_get_voltage(rdev);
2684         data.min_uV = min_uV;
2685         data.max_uV = max_uV;
2686         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2687                                    &data);
2688         if (ret & NOTIFY_STOP_MASK)
2689                 return -EINVAL;
2690
2691         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2692         if (ret >= 0)
2693                 return ret;
2694
2695         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2696                              (void *)data.old_uV);
2697
2698         return ret;
2699 }
2700
2701 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2702                                            int uV, unsigned selector)
2703 {
2704         struct pre_voltage_change_data data;
2705         int ret;
2706
2707         data.old_uV = _regulator_get_voltage(rdev);
2708         data.min_uV = uV;
2709         data.max_uV = uV;
2710         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2711                                    &data);
2712         if (ret & NOTIFY_STOP_MASK)
2713                 return -EINVAL;
2714
2715         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2716         if (ret >= 0)
2717                 return ret;
2718
2719         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2720                              (void *)data.old_uV);
2721
2722         return ret;
2723 }
2724
2725 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2726                                      int min_uV, int max_uV)
2727 {
2728         int ret;
2729         int delay = 0;
2730         int best_val = 0;
2731         unsigned int selector;
2732         int old_selector = -1;
2733
2734         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2735
2736         min_uV += rdev->constraints->uV_offset;
2737         max_uV += rdev->constraints->uV_offset;
2738
2739         /*
2740          * If we can't obtain the old selector there is not enough
2741          * info to call set_voltage_time_sel().
2742          */
2743         if (_regulator_is_enabled(rdev) &&
2744             rdev->desc->ops->set_voltage_time_sel &&
2745             rdev->desc->ops->get_voltage_sel) {
2746                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2747                 if (old_selector < 0)
2748                         return old_selector;
2749         }
2750
2751         if (rdev->desc->ops->set_voltage) {
2752                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2753                                                   &selector);
2754
2755                 if (ret >= 0) {
2756                         if (rdev->desc->ops->list_voltage)
2757                                 best_val = rdev->desc->ops->list_voltage(rdev,
2758                                                                          selector);
2759                         else
2760                                 best_val = _regulator_get_voltage(rdev);
2761                 }
2762
2763         } else if (rdev->desc->ops->set_voltage_sel) {
2764                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2765                 if (ret >= 0) {
2766                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2767                         if (min_uV <= best_val && max_uV >= best_val) {
2768                                 selector = ret;
2769                                 if (old_selector == selector)
2770                                         ret = 0;
2771                                 else
2772                                         ret = _regulator_call_set_voltage_sel(
2773                                                 rdev, best_val, selector);
2774                         } else {
2775                                 ret = -EINVAL;
2776                         }
2777                 }
2778         } else {
2779                 ret = -EINVAL;
2780         }
2781
2782         /* Call set_voltage_time_sel if successfully obtained old_selector */
2783         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2784                 && old_selector != selector) {
2785
2786                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2787                                                 old_selector, selector);
2788                 if (delay < 0) {
2789                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2790                                   delay);
2791                         delay = 0;
2792                 }
2793
2794                 /* Insert any necessary delays */
2795                 if (delay >= 1000) {
2796                         mdelay(delay / 1000);
2797                         udelay(delay % 1000);
2798                 } else if (delay) {
2799                         udelay(delay);
2800                 }
2801         }
2802
2803         if (ret == 0 && best_val >= 0) {
2804                 unsigned long data = best_val;
2805
2806                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2807                                      (void *)data);
2808         }
2809
2810         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2811
2812         return ret;
2813 }
2814
2815 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2816                                           int min_uV, int max_uV)
2817 {
2818         struct regulator_dev *rdev = regulator->rdev;
2819         int ret = 0;
2820         int old_min_uV, old_max_uV;
2821         int current_uV;
2822         int best_supply_uV = 0;
2823         int supply_change_uV = 0;
2824
2825         /* If we're setting the same range as last time the change
2826          * should be a noop (some cpufreq implementations use the same
2827          * voltage for multiple frequencies, for example).
2828          */
2829         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2830                 goto out;
2831
2832         /* If we're trying to set a range that overlaps the current voltage,
2833          * return successfully even though the regulator does not support
2834          * changing the voltage.
2835          */
2836         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2837                 current_uV = _regulator_get_voltage(rdev);
2838                 if (min_uV <= current_uV && current_uV <= max_uV) {
2839                         regulator->min_uV = min_uV;
2840                         regulator->max_uV = max_uV;
2841                         goto out;
2842                 }
2843         }
2844
2845         /* sanity check */
2846         if (!rdev->desc->ops->set_voltage &&
2847             !rdev->desc->ops->set_voltage_sel) {
2848                 ret = -EINVAL;
2849                 goto out;
2850         }
2851
2852         /* constraints check */
2853         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2854         if (ret < 0)
2855                 goto out;
2856
2857         /* restore original values in case of error */
2858         old_min_uV = regulator->min_uV;
2859         old_max_uV = regulator->max_uV;
2860         regulator->min_uV = min_uV;
2861         regulator->max_uV = max_uV;
2862
2863         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2864         if (ret < 0)
2865                 goto out2;
2866
2867         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2868                                 !rdev->desc->ops->get_voltage)) {
2869                 int current_supply_uV;
2870                 int selector;
2871
2872                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2873                 if (selector < 0) {
2874                         ret = selector;
2875                         goto out2;
2876                 }
2877
2878                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2879                 if (best_supply_uV < 0) {
2880                         ret = best_supply_uV;
2881                         goto out2;
2882                 }
2883
2884                 best_supply_uV += rdev->desc->min_dropout_uV;
2885
2886                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2887                 if (current_supply_uV < 0) {
2888                         ret = current_supply_uV;
2889                         goto out2;
2890                 }
2891
2892                 supply_change_uV = best_supply_uV - current_supply_uV;
2893         }
2894
2895         if (supply_change_uV > 0) {
2896                 ret = regulator_set_voltage_unlocked(rdev->supply,
2897                                 best_supply_uV, INT_MAX);
2898                 if (ret) {
2899                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2900                                         ret);
2901                         goto out2;
2902                 }
2903         }
2904
2905         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2906         if (ret < 0)
2907                 goto out2;
2908
2909         if (supply_change_uV < 0) {
2910                 ret = regulator_set_voltage_unlocked(rdev->supply,
2911                                 best_supply_uV, INT_MAX);
2912                 if (ret)
2913                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2914                                         ret);
2915                 /* No need to fail here */
2916                 ret = 0;
2917         }
2918
2919 out:
2920         return ret;
2921 out2:
2922         regulator->min_uV = old_min_uV;
2923         regulator->max_uV = old_max_uV;
2924
2925         return ret;
2926 }
2927
2928 /**
2929  * regulator_set_voltage - set regulator output voltage
2930  * @regulator: regulator source
2931  * @min_uV: Minimum required voltage in uV
2932  * @max_uV: Maximum acceptable voltage in uV
2933  *
2934  * Sets a voltage regulator to the desired output voltage. This can be set
2935  * during any regulator state. IOW, regulator can be disabled or enabled.
2936  *
2937  * If the regulator is enabled then the voltage will change to the new value
2938  * immediately otherwise if the regulator is disabled the regulator will
2939  * output at the new voltage when enabled.
2940  *
2941  * NOTE: If the regulator is shared between several devices then the lowest
2942  * request voltage that meets the system constraints will be used.
2943  * Regulator system constraints must be set for this regulator before
2944  * calling this function otherwise this call will fail.
2945  */
2946 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2947 {
2948         int ret = 0;
2949
2950         regulator_lock_supply(regulator->rdev);
2951
2952         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2953
2954         regulator_unlock_supply(regulator->rdev);
2955
2956         return ret;
2957 }
2958 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2959
2960 /**
2961  * regulator_set_voltage_time - get raise/fall time
2962  * @regulator: regulator source
2963  * @old_uV: starting voltage in microvolts
2964  * @new_uV: target voltage in microvolts
2965  *
2966  * Provided with the starting and ending voltage, this function attempts to
2967  * calculate the time in microseconds required to rise or fall to this new
2968  * voltage.
2969  */
2970 int regulator_set_voltage_time(struct regulator *regulator,
2971                                int old_uV, int new_uV)
2972 {
2973         struct regulator_dev *rdev = regulator->rdev;
2974         const struct regulator_ops *ops = rdev->desc->ops;
2975         int old_sel = -1;
2976         int new_sel = -1;
2977         int voltage;
2978         int i;
2979
2980         /* Currently requires operations to do this */
2981         if (!ops->list_voltage || !ops->set_voltage_time_sel
2982             || !rdev->desc->n_voltages)
2983                 return -EINVAL;
2984
2985         for (i = 0; i < rdev->desc->n_voltages; i++) {
2986                 /* We only look for exact voltage matches here */
2987                 voltage = regulator_list_voltage(regulator, i);
2988                 if (voltage < 0)
2989                         return -EINVAL;
2990                 if (voltage == 0)
2991                         continue;
2992                 if (voltage == old_uV)
2993                         old_sel = i;
2994                 if (voltage == new_uV)
2995                         new_sel = i;
2996         }
2997
2998         if (old_sel < 0 || new_sel < 0)
2999                 return -EINVAL;
3000
3001         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3002 }
3003 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3004
3005 /**
3006  * regulator_set_voltage_time_sel - get raise/fall time
3007  * @rdev: regulator source device
3008  * @old_selector: selector for starting voltage
3009  * @new_selector: selector for target voltage
3010  *
3011  * Provided with the starting and target voltage selectors, this function
3012  * returns time in microseconds required to rise or fall to this new voltage
3013  *
3014  * Drivers providing ramp_delay in regulation_constraints can use this as their
3015  * set_voltage_time_sel() operation.
3016  */
3017 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3018                                    unsigned int old_selector,
3019                                    unsigned int new_selector)
3020 {
3021         unsigned int ramp_delay = 0;
3022         int old_volt, new_volt;
3023
3024         if (rdev->constraints->ramp_delay)
3025                 ramp_delay = rdev->constraints->ramp_delay;
3026         else if (rdev->desc->ramp_delay)
3027                 ramp_delay = rdev->desc->ramp_delay;
3028
3029         if (ramp_delay == 0) {
3030                 rdev_warn(rdev, "ramp_delay not set\n");
3031                 return 0;
3032         }
3033
3034         /* sanity check */
3035         if (!rdev->desc->ops->list_voltage)
3036                 return -EINVAL;
3037
3038         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3039         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3040
3041         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3042 }
3043 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3044
3045 /**
3046  * regulator_sync_voltage - re-apply last regulator output voltage
3047  * @regulator: regulator source
3048  *
3049  * Re-apply the last configured voltage.  This is intended to be used
3050  * where some external control source the consumer is cooperating with
3051  * has caused the configured voltage to change.
3052  */
3053 int regulator_sync_voltage(struct regulator *regulator)
3054 {
3055         struct regulator_dev *rdev = regulator->rdev;
3056         int ret, min_uV, max_uV;
3057
3058         mutex_lock(&rdev->mutex);
3059
3060         if (!rdev->desc->ops->set_voltage &&
3061             !rdev->desc->ops->set_voltage_sel) {
3062                 ret = -EINVAL;
3063                 goto out;
3064         }
3065
3066         /* This is only going to work if we've had a voltage configured. */
3067         if (!regulator->min_uV && !regulator->max_uV) {
3068                 ret = -EINVAL;
3069                 goto out;
3070         }
3071
3072         min_uV = regulator->min_uV;
3073         max_uV = regulator->max_uV;
3074
3075         /* This should be a paranoia check... */
3076         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3077         if (ret < 0)
3078                 goto out;
3079
3080         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3081         if (ret < 0)
3082                 goto out;
3083
3084         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3085
3086 out:
3087         mutex_unlock(&rdev->mutex);
3088         return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3091
3092 static int _regulator_get_voltage(struct regulator_dev *rdev)
3093 {
3094         int sel, ret;
3095
3096         if (rdev->desc->ops->get_voltage_sel) {
3097                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3098                 if (sel < 0)
3099                         return sel;
3100                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3101         } else if (rdev->desc->ops->get_voltage) {
3102                 ret = rdev->desc->ops->get_voltage(rdev);
3103         } else if (rdev->desc->ops->list_voltage) {
3104                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3105         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3106                 ret = rdev->desc->fixed_uV;
3107         } else if (rdev->supply) {
3108                 ret = _regulator_get_voltage(rdev->supply->rdev);
3109         } else {
3110                 return -EINVAL;
3111         }
3112
3113         if (ret < 0)
3114                 return ret;
3115         return ret - rdev->constraints->uV_offset;
3116 }
3117
3118 /**
3119  * regulator_get_voltage - get regulator output voltage
3120  * @regulator: regulator source
3121  *
3122  * This returns the current regulator voltage in uV.
3123  *
3124  * NOTE: If the regulator is disabled it will return the voltage value. This
3125  * function should not be used to determine regulator state.
3126  */
3127 int regulator_get_voltage(struct regulator *regulator)
3128 {
3129         int ret;
3130
3131         regulator_lock_supply(regulator->rdev);
3132
3133         ret = _regulator_get_voltage(regulator->rdev);
3134
3135         regulator_unlock_supply(regulator->rdev);
3136
3137         return ret;
3138 }
3139 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3140
3141 /**
3142  * regulator_set_current_limit - set regulator output current limit
3143  * @regulator: regulator source
3144  * @min_uA: Minimum supported current in uA
3145  * @max_uA: Maximum supported current in uA
3146  *
3147  * Sets current sink to the desired output current. This can be set during
3148  * any regulator state. IOW, regulator can be disabled or enabled.
3149  *
3150  * If the regulator is enabled then the current will change to the new value
3151  * immediately otherwise if the regulator is disabled the regulator will
3152  * output at the new current when enabled.
3153  *
3154  * NOTE: Regulator system constraints must be set for this regulator before
3155  * calling this function otherwise this call will fail.
3156  */
3157 int regulator_set_current_limit(struct regulator *regulator,
3158                                int min_uA, int max_uA)
3159 {
3160         struct regulator_dev *rdev = regulator->rdev;
3161         int ret;
3162
3163         mutex_lock(&rdev->mutex);
3164
3165         /* sanity check */
3166         if (!rdev->desc->ops->set_current_limit) {
3167                 ret = -EINVAL;
3168                 goto out;
3169         }
3170
3171         /* constraints check */
3172         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3173         if (ret < 0)
3174                 goto out;
3175
3176         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3177 out:
3178         mutex_unlock(&rdev->mutex);
3179         return ret;
3180 }
3181 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3182
3183 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3184 {
3185         int ret;
3186
3187         mutex_lock(&rdev->mutex);
3188
3189         /* sanity check */
3190         if (!rdev->desc->ops->get_current_limit) {
3191                 ret = -EINVAL;
3192                 goto out;
3193         }
3194
3195         ret = rdev->desc->ops->get_current_limit(rdev);
3196 out:
3197         mutex_unlock(&rdev->mutex);
3198         return ret;
3199 }
3200
3201 /**
3202  * regulator_get_current_limit - get regulator output current
3203  * @regulator: regulator source
3204  *
3205  * This returns the current supplied by the specified current sink in uA.
3206  *
3207  * NOTE: If the regulator is disabled it will return the current value. This
3208  * function should not be used to determine regulator state.
3209  */
3210 int regulator_get_current_limit(struct regulator *regulator)
3211 {
3212         return _regulator_get_current_limit(regulator->rdev);
3213 }
3214 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3215
3216 /**
3217  * regulator_set_mode - set regulator operating mode
3218  * @regulator: regulator source
3219  * @mode: operating mode - one of the REGULATOR_MODE constants
3220  *
3221  * Set regulator operating mode to increase regulator efficiency or improve
3222  * regulation performance.
3223  *
3224  * NOTE: Regulator system constraints must be set for this regulator before
3225  * calling this function otherwise this call will fail.
3226  */
3227 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3228 {
3229         struct regulator_dev *rdev = regulator->rdev;
3230         int ret;
3231         int regulator_curr_mode;
3232
3233         mutex_lock(&rdev->mutex);
3234
3235         /* sanity check */
3236         if (!rdev->desc->ops->set_mode) {
3237                 ret = -EINVAL;
3238                 goto out;
3239         }
3240
3241         /* return if the same mode is requested */
3242         if (rdev->desc->ops->get_mode) {
3243                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3244                 if (regulator_curr_mode == mode) {
3245                         ret = 0;
3246                         goto out;
3247                 }
3248         }
3249
3250         /* constraints check */
3251         ret = regulator_mode_constrain(rdev, &mode);
3252         if (ret < 0)
3253                 goto out;
3254
3255         ret = rdev->desc->ops->set_mode(rdev, mode);
3256 out:
3257         mutex_unlock(&rdev->mutex);
3258         return ret;
3259 }
3260 EXPORT_SYMBOL_GPL(regulator_set_mode);
3261
3262 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3263 {
3264         int ret;
3265
3266         mutex_lock(&rdev->mutex);
3267
3268         /* sanity check */
3269         if (!rdev->desc->ops->get_mode) {
3270                 ret = -EINVAL;
3271                 goto out;
3272         }
3273
3274         ret = rdev->desc->ops->get_mode(rdev);
3275 out:
3276         mutex_unlock(&rdev->mutex);
3277         return ret;
3278 }
3279
3280 /**
3281  * regulator_get_mode - get regulator operating mode
3282  * @regulator: regulator source
3283  *
3284  * Get the current regulator operating mode.
3285  */
3286 unsigned int regulator_get_mode(struct regulator *regulator)
3287 {
3288         return _regulator_get_mode(regulator->rdev);
3289 }
3290 EXPORT_SYMBOL_GPL(regulator_get_mode);
3291
3292 /**
3293  * regulator_set_load - set regulator load
3294  * @regulator: regulator source
3295  * @uA_load: load current
3296  *
3297  * Notifies the regulator core of a new device load. This is then used by
3298  * DRMS (if enabled by constraints) to set the most efficient regulator
3299  * operating mode for the new regulator loading.
3300  *
3301  * Consumer devices notify their supply regulator of the maximum power
3302  * they will require (can be taken from device datasheet in the power
3303  * consumption tables) when they change operational status and hence power
3304  * state. Examples of operational state changes that can affect power
3305  * consumption are :-
3306  *
3307  *    o Device is opened / closed.
3308  *    o Device I/O is about to begin or has just finished.
3309  *    o Device is idling in between work.
3310  *
3311  * This information is also exported via sysfs to userspace.
3312  *
3313  * DRMS will sum the total requested load on the regulator and change
3314  * to the most efficient operating mode if platform constraints allow.
3315  *
3316  * On error a negative errno is returned.
3317  */
3318 int regulator_set_load(struct regulator *regulator, int uA_load)
3319 {
3320         struct regulator_dev *rdev = regulator->rdev;
3321         int ret;
3322
3323         mutex_lock(&rdev->mutex);
3324         regulator->uA_load = uA_load;
3325         ret = drms_uA_update(rdev);
3326         mutex_unlock(&rdev->mutex);
3327
3328         return ret;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_set_load);
3331
3332 /**
3333  * regulator_allow_bypass - allow the regulator to go into bypass mode
3334  *
3335  * @regulator: Regulator to configure
3336  * @enable: enable or disable bypass mode
3337  *
3338  * Allow the regulator to go into bypass mode if all other consumers
3339  * for the regulator also enable bypass mode and the machine
3340  * constraints allow this.  Bypass mode means that the regulator is
3341  * simply passing the input directly to the output with no regulation.
3342  */
3343 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3344 {
3345         struct regulator_dev *rdev = regulator->rdev;
3346         int ret = 0;
3347
3348         if (!rdev->desc->ops->set_bypass)
3349                 return 0;
3350
3351         if (rdev->constraints &&
3352             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3353                 return 0;
3354
3355         mutex_lock(&rdev->mutex);
3356
3357         if (enable && !regulator->bypass) {
3358                 rdev->bypass_count++;
3359
3360                 if (rdev->bypass_count == rdev->open_count) {
3361                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3362                         if (ret != 0)
3363                                 rdev->bypass_count--;
3364                 }
3365
3366         } else if (!enable && regulator->bypass) {
3367                 rdev->bypass_count--;
3368
3369                 if (rdev->bypass_count != rdev->open_count) {
3370                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3371                         if (ret != 0)
3372                                 rdev->bypass_count++;
3373                 }
3374         }
3375
3376         if (ret == 0)
3377                 regulator->bypass = enable;
3378
3379         mutex_unlock(&rdev->mutex);
3380
3381         return ret;
3382 }
3383 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3384
3385 /**
3386  * regulator_register_notifier - register regulator event notifier
3387  * @regulator: regulator source
3388  * @nb: notifier block
3389  *
3390  * Register notifier block to receive regulator events.
3391  */
3392 int regulator_register_notifier(struct regulator *regulator,
3393                               struct notifier_block *nb)
3394 {
3395         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3396                                                 nb);
3397 }
3398 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3399
3400 /**
3401  * regulator_unregister_notifier - unregister regulator event notifier
3402  * @regulator: regulator source
3403  * @nb: notifier block
3404  *
3405  * Unregister regulator event notifier block.
3406  */
3407 int regulator_unregister_notifier(struct regulator *regulator,
3408                                 struct notifier_block *nb)
3409 {
3410         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3411                                                   nb);
3412 }
3413 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3414
3415 /* notify regulator consumers and downstream regulator consumers.
3416  * Note mutex must be held by caller.
3417  */
3418 static int _notifier_call_chain(struct regulator_dev *rdev,
3419                                   unsigned long event, void *data)
3420 {
3421         /* call rdev chain first */
3422         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3423 }
3424
3425 /**
3426  * regulator_bulk_get - get multiple regulator consumers
3427  *
3428  * @dev:           Device to supply
3429  * @num_consumers: Number of consumers to register
3430  * @consumers:     Configuration of consumers; clients are stored here.
3431  *
3432  * @return 0 on success, an errno on failure.
3433  *
3434  * This helper function allows drivers to get several regulator
3435  * consumers in one operation.  If any of the regulators cannot be
3436  * acquired then any regulators that were allocated will be freed
3437  * before returning to the caller.
3438  */
3439 int regulator_bulk_get(struct device *dev, int num_consumers,
3440                        struct regulator_bulk_data *consumers)
3441 {
3442         int i;
3443         int ret;
3444
3445         for (i = 0; i < num_consumers; i++)
3446                 consumers[i].consumer = NULL;
3447
3448         for (i = 0; i < num_consumers; i++) {
3449                 consumers[i].consumer = _regulator_get(dev,
3450                                                        consumers[i].supply,
3451                                                        false,
3452                                                        !consumers[i].optional);
3453                 if (IS_ERR(consumers[i].consumer)) {
3454                         ret = PTR_ERR(consumers[i].consumer);
3455                         dev_err(dev, "Failed to get supply '%s': %d\n",
3456                                 consumers[i].supply, ret);
3457                         consumers[i].consumer = NULL;
3458                         goto err;
3459                 }
3460         }
3461
3462         return 0;
3463
3464 err:
3465         while (--i >= 0)
3466                 regulator_put(consumers[i].consumer);
3467
3468         return ret;
3469 }
3470 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3471
3472 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3473 {
3474         struct regulator_bulk_data *bulk = data;
3475
3476         bulk->ret = regulator_enable(bulk->consumer);
3477 }
3478
3479 /**
3480  * regulator_bulk_enable - enable multiple regulator consumers
3481  *
3482  * @num_consumers: Number of consumers
3483  * @consumers:     Consumer data; clients are stored here.
3484  * @return         0 on success, an errno on failure
3485  *
3486  * This convenience API allows consumers to enable multiple regulator
3487  * clients in a single API call.  If any consumers cannot be enabled
3488  * then any others that were enabled will be disabled again prior to
3489  * return.
3490  */
3491 int regulator_bulk_enable(int num_consumers,
3492                           struct regulator_bulk_data *consumers)
3493 {
3494         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3495         int i;
3496         int ret = 0;
3497
3498         for (i = 0; i < num_consumers; i++) {
3499                 if (consumers[i].consumer->always_on)
3500                         consumers[i].ret = 0;
3501                 else
3502                         async_schedule_domain(regulator_bulk_enable_async,
3503                                               &consumers[i], &async_domain);
3504         }
3505
3506         async_synchronize_full_domain(&async_domain);
3507
3508         /* If any consumer failed we need to unwind any that succeeded */
3509         for (i = 0; i < num_consumers; i++) {
3510                 if (consumers[i].ret != 0) {
3511                         ret = consumers[i].ret;
3512                         goto err;
3513                 }
3514         }
3515
3516         return 0;
3517
3518 err:
3519         for (i = 0; i < num_consumers; i++) {
3520                 if (consumers[i].ret < 0)
3521                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3522                                consumers[i].ret);
3523                 else
3524                         regulator_disable(consumers[i].consumer);
3525         }
3526
3527         return ret;
3528 }
3529 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3530
3531 /**
3532  * regulator_bulk_disable - disable multiple regulator consumers
3533  *
3534  * @num_consumers: Number of consumers
3535  * @consumers:     Consumer data; clients are stored here.
3536  * @return         0 on success, an errno on failure
3537  *
3538  * This convenience API allows consumers to disable multiple regulator
3539  * clients in a single API call.  If any consumers cannot be disabled
3540  * then any others that were disabled will be enabled again prior to
3541  * return.
3542  */
3543 int regulator_bulk_disable(int num_consumers,
3544                            struct regulator_bulk_data *consumers)
3545 {
3546         int i;
3547         int ret, r;
3548
3549         for (i = num_consumers - 1; i >= 0; --i) {
3550                 ret = regulator_disable(consumers[i].consumer);
3551                 if (ret != 0)
3552                         goto err;
3553         }
3554
3555         return 0;
3556
3557 err:
3558         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3559         for (++i; i < num_consumers; ++i) {
3560                 r = regulator_enable(consumers[i].consumer);
3561                 if (r != 0)
3562                         pr_err("Failed to reename %s: %d\n",
3563                                consumers[i].supply, r);
3564         }
3565
3566         return ret;
3567 }
3568 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3569
3570 /**
3571  * regulator_bulk_force_disable - force disable multiple regulator consumers
3572  *
3573  * @num_consumers: Number of consumers
3574  * @consumers:     Consumer data; clients are stored here.
3575  * @return         0 on success, an errno on failure
3576  *
3577  * This convenience API allows consumers to forcibly disable multiple regulator
3578  * clients in a single API call.
3579  * NOTE: This should be used for situations when device damage will
3580  * likely occur if the regulators are not disabled (e.g. over temp).
3581  * Although regulator_force_disable function call for some consumers can
3582  * return error numbers, the function is called for all consumers.
3583  */
3584 int regulator_bulk_force_disable(int num_consumers,
3585                            struct regulator_bulk_data *consumers)
3586 {
3587         int i;
3588         int ret;
3589
3590         for (i = 0; i < num_consumers; i++)
3591                 consumers[i].ret =
3592                             regulator_force_disable(consumers[i].consumer);
3593
3594         for (i = 0; i < num_consumers; i++) {
3595                 if (consumers[i].ret != 0) {
3596                         ret = consumers[i].ret;
3597                         goto out;
3598                 }
3599         }
3600
3601         return 0;
3602 out:
3603         return ret;
3604 }
3605 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3606
3607 /**
3608  * regulator_bulk_free - free multiple regulator consumers
3609  *
3610  * @num_consumers: Number of consumers
3611  * @consumers:     Consumer data; clients are stored here.
3612  *
3613  * This convenience API allows consumers to free multiple regulator
3614  * clients in a single API call.
3615  */
3616 void regulator_bulk_free(int num_consumers,
3617                          struct regulator_bulk_data *consumers)
3618 {
3619         int i;
3620
3621         for (i = 0; i < num_consumers; i++) {
3622                 regulator_put(consumers[i].consumer);
3623                 consumers[i].consumer = NULL;
3624         }
3625 }
3626 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3627
3628 /**
3629  * regulator_notifier_call_chain - call regulator event notifier
3630  * @rdev: regulator source
3631  * @event: notifier block
3632  * @data: callback-specific data.
3633  *
3634  * Called by regulator drivers to notify clients a regulator event has
3635  * occurred. We also notify regulator clients downstream.
3636  * Note lock must be held by caller.
3637  */
3638 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3639                                   unsigned long event, void *data)
3640 {
3641         lockdep_assert_held_once(&rdev->mutex);
3642
3643         _notifier_call_chain(rdev, event, data);
3644         return NOTIFY_DONE;
3645
3646 }
3647 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3648
3649 /**
3650  * regulator_mode_to_status - convert a regulator mode into a status
3651  *
3652  * @mode: Mode to convert
3653  *
3654  * Convert a regulator mode into a status.
3655  */
3656 int regulator_mode_to_status(unsigned int mode)
3657 {
3658         switch (mode) {
3659         case REGULATOR_MODE_FAST:
3660                 return REGULATOR_STATUS_FAST;
3661         case REGULATOR_MODE_NORMAL:
3662                 return REGULATOR_STATUS_NORMAL;
3663         case REGULATOR_MODE_IDLE:
3664                 return REGULATOR_STATUS_IDLE;
3665         case REGULATOR_MODE_STANDBY:
3666                 return REGULATOR_STATUS_STANDBY;
3667         default:
3668                 return REGULATOR_STATUS_UNDEFINED;
3669         }
3670 }
3671 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3672
3673 static struct attribute *regulator_dev_attrs[] = {
3674         &dev_attr_name.attr,
3675         &dev_attr_num_users.attr,
3676         &dev_attr_type.attr,
3677         &dev_attr_microvolts.attr,
3678         &dev_attr_microamps.attr,
3679         &dev_attr_opmode.attr,
3680         &dev_attr_state.attr,
3681         &dev_attr_status.attr,
3682         &dev_attr_bypass.attr,
3683         &dev_attr_requested_microamps.attr,
3684         &dev_attr_min_microvolts.attr,
3685         &dev_attr_max_microvolts.attr,
3686         &dev_attr_min_microamps.attr,
3687         &dev_attr_max_microamps.attr,
3688         &dev_attr_suspend_standby_state.attr,
3689         &dev_attr_suspend_mem_state.attr,
3690         &dev_attr_suspend_disk_state.attr,
3691         &dev_attr_suspend_standby_microvolts.attr,
3692         &dev_attr_suspend_mem_microvolts.attr,
3693         &dev_attr_suspend_disk_microvolts.attr,
3694         &dev_attr_suspend_standby_mode.attr,
3695         &dev_attr_suspend_mem_mode.attr,
3696         &dev_attr_suspend_disk_mode.attr,
3697         NULL
3698 };
3699
3700 /*
3701  * To avoid cluttering sysfs (and memory) with useless state, only
3702  * create attributes that can be meaningfully displayed.
3703  */
3704 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3705                                          struct attribute *attr, int idx)
3706 {
3707         struct device *dev = kobj_to_dev(kobj);
3708         struct regulator_dev *rdev = dev_to_rdev(dev);
3709         const struct regulator_ops *ops = rdev->desc->ops;
3710         umode_t mode = attr->mode;
3711
3712         /* these three are always present */
3713         if (attr == &dev_attr_name.attr ||
3714             attr == &dev_attr_num_users.attr ||
3715             attr == &dev_attr_type.attr)
3716                 return mode;
3717
3718         /* some attributes need specific methods to be displayed */
3719         if (attr == &dev_attr_microvolts.attr) {
3720                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3721                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3722                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3723                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3724                         return mode;
3725                 return 0;
3726         }
3727
3728         if (attr == &dev_attr_microamps.attr)
3729                 return ops->get_current_limit ? mode : 0;
3730
3731         if (attr == &dev_attr_opmode.attr)
3732                 return ops->get_mode ? mode : 0;
3733
3734         if (attr == &dev_attr_state.attr)
3735                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3736
3737         if (attr == &dev_attr_status.attr)
3738                 return ops->get_status ? mode : 0;
3739
3740         if (attr == &dev_attr_bypass.attr)
3741                 return ops->get_bypass ? mode : 0;
3742
3743         /* some attributes are type-specific */
3744         if (attr == &dev_attr_requested_microamps.attr)
3745                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3746
3747         /* constraints need specific supporting methods */
3748         if (attr == &dev_attr_min_microvolts.attr ||
3749             attr == &dev_attr_max_microvolts.attr)
3750                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3751
3752         if (attr == &dev_attr_min_microamps.attr ||
3753             attr == &dev_attr_max_microamps.attr)
3754                 return ops->set_current_limit ? mode : 0;
3755
3756         if (attr == &dev_attr_suspend_standby_state.attr ||
3757             attr == &dev_attr_suspend_mem_state.attr ||
3758             attr == &dev_attr_suspend_disk_state.attr)
3759                 return mode;
3760
3761         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3762             attr == &dev_attr_suspend_mem_microvolts.attr ||
3763             attr == &dev_attr_suspend_disk_microvolts.attr)
3764                 return ops->set_suspend_voltage ? mode : 0;
3765
3766         if (attr == &dev_attr_suspend_standby_mode.attr ||
3767             attr == &dev_attr_suspend_mem_mode.attr ||
3768             attr == &dev_attr_suspend_disk_mode.attr)
3769                 return ops->set_suspend_mode ? mode : 0;
3770
3771         return mode;
3772 }
3773
3774 static const struct attribute_group regulator_dev_group = {
3775         .attrs = regulator_dev_attrs,
3776         .is_visible = regulator_attr_is_visible,
3777 };
3778
3779 static const struct attribute_group *regulator_dev_groups[] = {
3780         &regulator_dev_group,
3781         NULL
3782 };
3783
3784 static void regulator_dev_release(struct device *dev)
3785 {
3786         struct regulator_dev *rdev = dev_get_drvdata(dev);
3787
3788         kfree(rdev->constraints);
3789         of_node_put(rdev->dev.of_node);
3790         kfree(rdev);
3791 }
3792
3793 static struct class regulator_class = {
3794         .name = "regulator",
3795         .dev_release = regulator_dev_release,
3796         .dev_groups = regulator_dev_groups,
3797 };
3798
3799 static void rdev_init_debugfs(struct regulator_dev *rdev)
3800 {
3801         struct device *parent = rdev->dev.parent;
3802         const char *rname = rdev_get_name(rdev);
3803         char name[NAME_MAX];
3804
3805         /* Avoid duplicate debugfs directory names */
3806         if (parent && rname == rdev->desc->name) {
3807                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3808                          rname);
3809                 rname = name;
3810         }
3811
3812         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3813         if (!rdev->debugfs) {
3814                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3815                 return;
3816         }
3817
3818         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3819                            &rdev->use_count);
3820         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3821                            &rdev->open_count);
3822         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3823                            &rdev->bypass_count);
3824 }
3825
3826 /**
3827  * regulator_register - register regulator
3828  * @regulator_desc: regulator to register
3829  * @cfg: runtime configuration for regulator
3830  *
3831  * Called by regulator drivers to register a regulator.
3832  * Returns a valid pointer to struct regulator_dev on success
3833  * or an ERR_PTR() on error.
3834  */
3835 struct regulator_dev *
3836 regulator_register(const struct regulator_desc *regulator_desc,
3837                    const struct regulator_config *cfg)
3838 {
3839         const struct regulation_constraints *constraints = NULL;
3840         const struct regulator_init_data *init_data;
3841         struct regulator_config *config = NULL;
3842         static atomic_t regulator_no = ATOMIC_INIT(-1);
3843         struct regulator_dev *rdev;
3844         struct device *dev;
3845         int ret, i;
3846
3847         if (regulator_desc == NULL || cfg == NULL)
3848                 return ERR_PTR(-EINVAL);
3849
3850         dev = cfg->dev;
3851         WARN_ON(!dev);
3852
3853         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3854                 return ERR_PTR(-EINVAL);
3855
3856         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3857             regulator_desc->type != REGULATOR_CURRENT)
3858                 return ERR_PTR(-EINVAL);
3859
3860         /* Only one of each should be implemented */
3861         WARN_ON(regulator_desc->ops->get_voltage &&
3862                 regulator_desc->ops->get_voltage_sel);
3863         WARN_ON(regulator_desc->ops->set_voltage &&
3864                 regulator_desc->ops->set_voltage_sel);
3865
3866         /* If we're using selectors we must implement list_voltage. */
3867         if (regulator_desc->ops->get_voltage_sel &&
3868             !regulator_desc->ops->list_voltage) {
3869                 return ERR_PTR(-EINVAL);
3870         }
3871         if (regulator_desc->ops->set_voltage_sel &&
3872             !regulator_desc->ops->list_voltage) {
3873                 return ERR_PTR(-EINVAL);
3874         }
3875
3876         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3877         if (rdev == NULL)
3878                 return ERR_PTR(-ENOMEM);
3879
3880         /*
3881          * Duplicate the config so the driver could override it after
3882          * parsing init data.
3883          */
3884         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3885         if (config == NULL) {
3886                 kfree(rdev);
3887                 return ERR_PTR(-ENOMEM);
3888         }
3889
3890         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3891                                                &rdev->dev.of_node);
3892         if (!init_data) {
3893                 init_data = config->init_data;
3894                 rdev->dev.of_node = of_node_get(config->of_node);
3895         }
3896
3897         mutex_lock(&regulator_list_mutex);
3898
3899         mutex_init(&rdev->mutex);
3900         rdev->reg_data = config->driver_data;
3901         rdev->owner = regulator_desc->owner;
3902         rdev->desc = regulator_desc;
3903         if (config->regmap)
3904                 rdev->regmap = config->regmap;
3905         else if (dev_get_regmap(dev, NULL))
3906                 rdev->regmap = dev_get_regmap(dev, NULL);
3907         else if (dev->parent)
3908                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3909         INIT_LIST_HEAD(&rdev->consumer_list);
3910         INIT_LIST_HEAD(&rdev->list);
3911         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3912         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3913
3914         /* preform any regulator specific init */
3915         if (init_data && init_data->regulator_init) {
3916                 ret = init_data->regulator_init(rdev->reg_data);
3917                 if (ret < 0)
3918                         goto clean;
3919         }
3920
3921         /* register with sysfs */
3922         rdev->dev.class = &regulator_class;
3923         rdev->dev.parent = dev;
3924         dev_set_name(&rdev->dev, "regulator.%lu",
3925                     (unsigned long) atomic_inc_return(&regulator_no));
3926         ret = device_register(&rdev->dev);
3927         if (ret != 0) {
3928                 put_device(&rdev->dev);
3929                 goto clean;
3930         }
3931
3932         dev_set_drvdata(&rdev->dev, rdev);
3933
3934         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3935             gpio_is_valid(config->ena_gpio)) {
3936                 ret = regulator_ena_gpio_request(rdev, config);
3937                 if (ret != 0) {
3938                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3939                                  config->ena_gpio, ret);
3940                         goto wash;
3941                 }
3942         }
3943
3944         /* set regulator constraints */
3945         if (init_data)
3946                 constraints = &init_data->constraints;
3947
3948         ret = set_machine_constraints(rdev, constraints);
3949         if (ret < 0)
3950                 goto scrub;
3951
3952         if (init_data && init_data->supply_regulator)
3953                 rdev->supply_name = init_data->supply_regulator;
3954         else if (regulator_desc->supply_name)
3955                 rdev->supply_name = regulator_desc->supply_name;
3956
3957         /* add consumers devices */
3958         if (init_data) {
3959                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3960                         ret = set_consumer_device_supply(rdev,
3961                                 init_data->consumer_supplies[i].dev_name,
3962                                 init_data->consumer_supplies[i].supply);
3963                         if (ret < 0) {
3964                                 dev_err(dev, "Failed to set supply %s\n",
3965                                         init_data->consumer_supplies[i].supply);
3966                                 goto unset_supplies;
3967                         }
3968                 }
3969         }
3970
3971         rdev_init_debugfs(rdev);
3972 out:
3973         mutex_unlock(&regulator_list_mutex);
3974         kfree(config);
3975         return rdev;
3976
3977 unset_supplies:
3978         unset_regulator_supplies(rdev);
3979
3980 scrub:
3981         regulator_ena_gpio_free(rdev);
3982         kfree(rdev->constraints);
3983 wash:
3984         device_unregister(&rdev->dev);
3985         /* device core frees rdev */
3986         rdev = ERR_PTR(ret);
3987         goto out;
3988
3989 clean:
3990         kfree(rdev);
3991         rdev = ERR_PTR(ret);
3992         goto out;
3993 }
3994 EXPORT_SYMBOL_GPL(regulator_register);
3995
3996 /**
3997  * regulator_unregister - unregister regulator
3998  * @rdev: regulator to unregister
3999  *
4000  * Called by regulator drivers to unregister a regulator.
4001  */
4002 void regulator_unregister(struct regulator_dev *rdev)
4003 {
4004         if (rdev == NULL)
4005                 return;
4006
4007         if (rdev->supply) {
4008                 while (rdev->use_count--)
4009                         regulator_disable(rdev->supply);
4010                 regulator_put(rdev->supply);
4011         }
4012         mutex_lock(&regulator_list_mutex);
4013         debugfs_remove_recursive(rdev->debugfs);
4014         flush_work(&rdev->disable_work.work);
4015         WARN_ON(rdev->open_count);
4016         unset_regulator_supplies(rdev);
4017         list_del(&rdev->list);
4018         mutex_unlock(&regulator_list_mutex);
4019         regulator_ena_gpio_free(rdev);
4020         device_unregister(&rdev->dev);
4021 }
4022 EXPORT_SYMBOL_GPL(regulator_unregister);
4023
4024 static int _regulator_suspend_prepare(struct device *dev, void *data)
4025 {
4026         struct regulator_dev *rdev = dev_to_rdev(dev);
4027         const suspend_state_t *state = data;
4028         int ret;
4029
4030         mutex_lock(&rdev->mutex);
4031         ret = suspend_prepare(rdev, *state);
4032         mutex_unlock(&rdev->mutex);
4033
4034         return ret;
4035 }
4036
4037 /**
4038  * regulator_suspend_prepare - prepare regulators for system wide suspend
4039  * @state: system suspend state
4040  *
4041  * Configure each regulator with it's suspend operating parameters for state.
4042  * This will usually be called by machine suspend code prior to supending.
4043  */
4044 int regulator_suspend_prepare(suspend_state_t state)
4045 {
4046         /* ON is handled by regulator active state */
4047         if (state == PM_SUSPEND_ON)
4048                 return -EINVAL;
4049
4050         return class_for_each_device(&regulator_class, NULL, &state,
4051                                      _regulator_suspend_prepare);
4052 }
4053 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4054
4055 static int _regulator_suspend_finish(struct device *dev, void *data)
4056 {
4057         struct regulator_dev *rdev = dev_to_rdev(dev);
4058         int ret;
4059
4060         mutex_lock(&rdev->mutex);
4061         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4062                 if (!_regulator_is_enabled(rdev)) {
4063                         ret = _regulator_do_enable(rdev);
4064                         if (ret)
4065                                 dev_err(dev,
4066                                         "Failed to resume regulator %d\n",
4067                                         ret);
4068                 }
4069         } else {
4070                 if (!have_full_constraints())
4071                         goto unlock;
4072                 if (!_regulator_is_enabled(rdev))
4073                         goto unlock;
4074
4075                 ret = _regulator_do_disable(rdev);
4076                 if (ret)
4077                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4078         }
4079 unlock:
4080         mutex_unlock(&rdev->mutex);
4081
4082         /* Keep processing regulators in spite of any errors */
4083         return 0;
4084 }
4085
4086 /**
4087  * regulator_suspend_finish - resume regulators from system wide suspend
4088  *
4089  * Turn on regulators that might be turned off by regulator_suspend_prepare
4090  * and that should be turned on according to the regulators properties.
4091  */
4092 int regulator_suspend_finish(void)
4093 {
4094         return class_for_each_device(&regulator_class, NULL, NULL,
4095                                      _regulator_suspend_finish);
4096 }
4097 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4098
4099 /**
4100  * regulator_has_full_constraints - the system has fully specified constraints
4101  *
4102  * Calling this function will cause the regulator API to disable all
4103  * regulators which have a zero use count and don't have an always_on
4104  * constraint in a late_initcall.
4105  *
4106  * The intention is that this will become the default behaviour in a
4107  * future kernel release so users are encouraged to use this facility
4108  * now.
4109  */
4110 void regulator_has_full_constraints(void)
4111 {
4112         has_full_constraints = 1;
4113 }
4114 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4115
4116 /**
4117  * rdev_get_drvdata - get rdev regulator driver data
4118  * @rdev: regulator
4119  *
4120  * Get rdev regulator driver private data. This call can be used in the
4121  * regulator driver context.
4122  */
4123 void *rdev_get_drvdata(struct regulator_dev *rdev)
4124 {
4125         return rdev->reg_data;
4126 }
4127 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4128
4129 /**
4130  * regulator_get_drvdata - get regulator driver data
4131  * @regulator: regulator
4132  *
4133  * Get regulator driver private data. This call can be used in the consumer
4134  * driver context when non API regulator specific functions need to be called.
4135  */
4136 void *regulator_get_drvdata(struct regulator *regulator)
4137 {
4138         return regulator->rdev->reg_data;
4139 }
4140 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4141
4142 /**
4143  * regulator_set_drvdata - set regulator driver data
4144  * @regulator: regulator
4145  * @data: data
4146  */
4147 void regulator_set_drvdata(struct regulator *regulator, void *data)
4148 {
4149         regulator->rdev->reg_data = data;
4150 }
4151 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4152
4153 /**
4154  * regulator_get_id - get regulator ID
4155  * @rdev: regulator
4156  */
4157 int rdev_get_id(struct regulator_dev *rdev)
4158 {
4159         return rdev->desc->id;
4160 }
4161 EXPORT_SYMBOL_GPL(rdev_get_id);
4162
4163 struct device *rdev_get_dev(struct regulator_dev *rdev)
4164 {
4165         return &rdev->dev;
4166 }
4167 EXPORT_SYMBOL_GPL(rdev_get_dev);
4168
4169 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4170 {
4171         return reg_init_data->driver_data;
4172 }
4173 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4174
4175 #ifdef CONFIG_DEBUG_FS
4176 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4177                                     size_t count, loff_t *ppos)
4178 {
4179         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4180         ssize_t len, ret = 0;
4181         struct regulator_map *map;
4182
4183         if (!buf)
4184                 return -ENOMEM;
4185
4186         list_for_each_entry(map, &regulator_map_list, list) {
4187                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4188                                "%s -> %s.%s\n",
4189                                rdev_get_name(map->regulator), map->dev_name,
4190                                map->supply);
4191                 if (len >= 0)
4192                         ret += len;
4193                 if (ret > PAGE_SIZE) {
4194                         ret = PAGE_SIZE;
4195                         break;
4196                 }
4197         }
4198
4199         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4200
4201         kfree(buf);
4202
4203         return ret;
4204 }
4205 #endif
4206
4207 static const struct file_operations supply_map_fops = {
4208 #ifdef CONFIG_DEBUG_FS
4209         .read = supply_map_read_file,
4210         .llseek = default_llseek,
4211 #endif
4212 };
4213
4214 #ifdef CONFIG_DEBUG_FS
4215 struct summary_data {
4216         struct seq_file *s;
4217         struct regulator_dev *parent;
4218         int level;
4219 };
4220
4221 static void regulator_summary_show_subtree(struct seq_file *s,
4222                                            struct regulator_dev *rdev,
4223                                            int level);
4224
4225 static int regulator_summary_show_children(struct device *dev, void *data)
4226 {
4227         struct regulator_dev *rdev = dev_to_rdev(dev);
4228         struct summary_data *summary_data = data;
4229
4230         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4231                 regulator_summary_show_subtree(summary_data->s, rdev,
4232                                                summary_data->level + 1);
4233
4234         return 0;
4235 }
4236
4237 static void regulator_summary_show_subtree(struct seq_file *s,
4238                                            struct regulator_dev *rdev,
4239                                            int level)
4240 {
4241         struct regulation_constraints *c;
4242         struct regulator *consumer;
4243         struct summary_data summary_data;
4244
4245         if (!rdev)
4246                 return;
4247
4248         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4249                    level * 3 + 1, "",
4250                    30 - level * 3, rdev_get_name(rdev),
4251                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4252
4253         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4254         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4255
4256         c = rdev->constraints;
4257         if (c) {
4258                 switch (rdev->desc->type) {
4259                 case REGULATOR_VOLTAGE:
4260                         seq_printf(s, "%5dmV %5dmV ",
4261                                    c->min_uV / 1000, c->max_uV / 1000);
4262                         break;
4263                 case REGULATOR_CURRENT:
4264                         seq_printf(s, "%5dmA %5dmA ",
4265                                    c->min_uA / 1000, c->max_uA / 1000);
4266                         break;
4267                 }
4268         }
4269
4270         seq_puts(s, "\n");
4271
4272         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4273                 if (consumer->dev->class == &regulator_class)
4274                         continue;
4275
4276                 seq_printf(s, "%*s%-*s ",
4277                            (level + 1) * 3 + 1, "",
4278                            30 - (level + 1) * 3, dev_name(consumer->dev));
4279
4280                 switch (rdev->desc->type) {
4281                 case REGULATOR_VOLTAGE:
4282                         seq_printf(s, "%37dmV %5dmV",
4283                                    consumer->min_uV / 1000,
4284                                    consumer->max_uV / 1000);
4285                         break;
4286                 case REGULATOR_CURRENT:
4287                         break;
4288                 }
4289
4290                 seq_puts(s, "\n");
4291         }
4292
4293         summary_data.s = s;
4294         summary_data.level = level;
4295         summary_data.parent = rdev;
4296
4297         class_for_each_device(&regulator_class, NULL, &summary_data,
4298                               regulator_summary_show_children);
4299 }
4300
4301 static int regulator_summary_show_roots(struct device *dev, void *data)
4302 {
4303         struct regulator_dev *rdev = dev_to_rdev(dev);
4304         struct seq_file *s = data;
4305
4306         if (!rdev->supply)
4307                 regulator_summary_show_subtree(s, rdev, 0);
4308
4309         return 0;
4310 }
4311
4312 static int regulator_summary_show(struct seq_file *s, void *data)
4313 {
4314         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4315         seq_puts(s, "-------------------------------------------------------------------------------\n");
4316
4317         class_for_each_device(&regulator_class, NULL, s,
4318                               regulator_summary_show_roots);
4319
4320         return 0;
4321 }
4322
4323 static int regulator_summary_open(struct inode *inode, struct file *file)
4324 {
4325         return single_open(file, regulator_summary_show, inode->i_private);
4326 }
4327 #endif
4328
4329 static const struct file_operations regulator_summary_fops = {
4330 #ifdef CONFIG_DEBUG_FS
4331         .open           = regulator_summary_open,
4332         .read           = seq_read,
4333         .llseek         = seq_lseek,
4334         .release        = single_release,
4335 #endif
4336 };
4337
4338 static int __init regulator_init(void)
4339 {
4340         int ret;
4341
4342         ret = class_register(&regulator_class);
4343
4344         debugfs_root = debugfs_create_dir("regulator", NULL);
4345         if (!debugfs_root)
4346                 pr_warn("regulator: Failed to create debugfs directory\n");
4347
4348         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4349                             &supply_map_fops);
4350
4351         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4352                             NULL, &regulator_summary_fops);
4353
4354         regulator_dummy_init();
4355
4356         return ret;
4357 }
4358
4359 /* init early to allow our consumers to complete system booting */
4360 core_initcall(regulator_init);
4361
4362 static int __init regulator_late_cleanup(struct device *dev, void *data)
4363 {
4364         struct regulator_dev *rdev = dev_to_rdev(dev);
4365         const struct regulator_ops *ops = rdev->desc->ops;
4366         struct regulation_constraints *c = rdev->constraints;
4367         int enabled, ret;
4368
4369         if (c && c->always_on)
4370                 return 0;
4371
4372         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4373                 return 0;
4374
4375         mutex_lock(&rdev->mutex);
4376
4377         if (rdev->use_count)
4378                 goto unlock;
4379
4380         /* If we can't read the status assume it's on. */
4381         if (ops->is_enabled)
4382                 enabled = ops->is_enabled(rdev);
4383         else
4384                 enabled = 1;
4385
4386         if (!enabled)
4387                 goto unlock;
4388
4389         if (have_full_constraints()) {
4390                 /* We log since this may kill the system if it goes
4391                  * wrong. */
4392                 rdev_info(rdev, "disabling\n");
4393                 ret = _regulator_do_disable(rdev);
4394                 if (ret != 0)
4395                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4396         } else {
4397                 /* The intention is that in future we will
4398                  * assume that full constraints are provided
4399                  * so warn even if we aren't going to do
4400                  * anything here.
4401                  */
4402                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4403         }
4404
4405 unlock:
4406         mutex_unlock(&rdev->mutex);
4407
4408         return 0;
4409 }
4410
4411 static int __init regulator_init_complete(void)
4412 {
4413         /*
4414          * Since DT doesn't provide an idiomatic mechanism for
4415          * enabling full constraints and since it's much more natural
4416          * with DT to provide them just assume that a DT enabled
4417          * system has full constraints.
4418          */
4419         if (of_have_populated_dt())
4420                 has_full_constraints = true;
4421
4422         /* If we have a full configuration then disable any regulators
4423          * we have permission to change the status for and which are
4424          * not in use or always_on.  This is effectively the default
4425          * for DT and ACPI as they have full constraints.
4426          */
4427         class_for_each_device(&regulator_class, NULL, NULL,
4428                               regulator_late_cleanup);
4429
4430         return 0;
4431 }
4432 late_initcall_sync(regulator_init_complete);