Merge tag 'dt-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81         struct hlist_node hash;
82         struct list_head mm_node;
83         struct mm_struct *mm;
84 };
85
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95         struct list_head mm_head;
96         struct mm_slot *mm_slot;
97         unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102
103
104 static int set_recommended_min_free_kbytes(void)
105 {
106         struct zone *zone;
107         int nr_zones = 0;
108         unsigned long recommended_min;
109
110         if (!khugepaged_enabled())
111                 return 0;
112
113         for_each_populated_zone(zone)
114                 nr_zones++;
115
116         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117         recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119         /*
120          * Make sure that on average at least two pageblocks are almost free
121          * of another type, one for a migratetype to fall back to and a
122          * second to avoid subsequent fallbacks of other types There are 3
123          * MIGRATE_TYPES we care about.
124          */
125         recommended_min += pageblock_nr_pages * nr_zones *
126                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128         /* don't ever allow to reserve more than 5% of the lowmem */
129         recommended_min = min(recommended_min,
130                               (unsigned long) nr_free_buffer_pages() / 20);
131         recommended_min <<= (PAGE_SHIFT-10);
132
133         if (recommended_min > min_free_kbytes) {
134                 if (user_min_free_kbytes >= 0)
135                         pr_info("raising min_free_kbytes from %d to %lu "
136                                 "to help transparent hugepage allocations\n",
137                                 min_free_kbytes, recommended_min);
138
139                 min_free_kbytes = recommended_min;
140         }
141         setup_per_zone_wmarks();
142         return 0;
143 }
144 late_initcall(set_recommended_min_free_kbytes);
145
146 static int start_khugepaged(void)
147 {
148         int err = 0;
149         if (khugepaged_enabled()) {
150                 if (!khugepaged_thread)
151                         khugepaged_thread = kthread_run(khugepaged, NULL,
152                                                         "khugepaged");
153                 if (unlikely(IS_ERR(khugepaged_thread))) {
154                         printk(KERN_ERR
155                                "khugepaged: kthread_run(khugepaged) failed\n");
156                         err = PTR_ERR(khugepaged_thread);
157                         khugepaged_thread = NULL;
158                 }
159
160                 if (!list_empty(&khugepaged_scan.mm_head))
161                         wake_up_interruptible(&khugepaged_wait);
162
163                 set_recommended_min_free_kbytes();
164         } else if (khugepaged_thread) {
165                 kthread_stop(khugepaged_thread);
166                 khugepaged_thread = NULL;
167         }
168
169         return err;
170 }
171
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
174
175 static inline bool is_huge_zero_page(struct page *page)
176 {
177         return ACCESS_ONCE(huge_zero_page) == page;
178 }
179
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
181 {
182         return is_huge_zero_page(pmd_page(pmd));
183 }
184
185 static struct page *get_huge_zero_page(void)
186 {
187         struct page *zero_page;
188 retry:
189         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190                 return ACCESS_ONCE(huge_zero_page);
191
192         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193                         HPAGE_PMD_ORDER);
194         if (!zero_page) {
195                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196                 return NULL;
197         }
198         count_vm_event(THP_ZERO_PAGE_ALLOC);
199         preempt_disable();
200         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201                 preempt_enable();
202                 __free_page(zero_page);
203                 goto retry;
204         }
205
206         /* We take additional reference here. It will be put back by shrinker */
207         atomic_set(&huge_zero_refcount, 2);
208         preempt_enable();
209         return ACCESS_ONCE(huge_zero_page);
210 }
211
212 static void put_huge_zero_page(void)
213 {
214         /*
215          * Counter should never go to zero here. Only shrinker can put
216          * last reference.
217          */
218         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219 }
220
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222                                         struct shrink_control *sc)
223 {
224         /* we can free zero page only if last reference remains */
225         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229                                        struct shrink_control *sc)
230 {
231         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232                 struct page *zero_page = xchg(&huge_zero_page, NULL);
233                 BUG_ON(zero_page == NULL);
234                 __free_page(zero_page);
235                 return HPAGE_PMD_NR;
236         }
237
238         return 0;
239 }
240
241 static struct shrinker huge_zero_page_shrinker = {
242         .count_objects = shrink_huge_zero_page_count,
243         .scan_objects = shrink_huge_zero_page_scan,
244         .seeks = DEFAULT_SEEKS,
245 };
246
247 #ifdef CONFIG_SYSFS
248
249 static ssize_t double_flag_show(struct kobject *kobj,
250                                 struct kobj_attribute *attr, char *buf,
251                                 enum transparent_hugepage_flag enabled,
252                                 enum transparent_hugepage_flag req_madv)
253 {
254         if (test_bit(enabled, &transparent_hugepage_flags)) {
255                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256                 return sprintf(buf, "[always] madvise never\n");
257         } else if (test_bit(req_madv, &transparent_hugepage_flags))
258                 return sprintf(buf, "always [madvise] never\n");
259         else
260                 return sprintf(buf, "always madvise [never]\n");
261 }
262 static ssize_t double_flag_store(struct kobject *kobj,
263                                  struct kobj_attribute *attr,
264                                  const char *buf, size_t count,
265                                  enum transparent_hugepage_flag enabled,
266                                  enum transparent_hugepage_flag req_madv)
267 {
268         if (!memcmp("always", buf,
269                     min(sizeof("always")-1, count))) {
270                 set_bit(enabled, &transparent_hugepage_flags);
271                 clear_bit(req_madv, &transparent_hugepage_flags);
272         } else if (!memcmp("madvise", buf,
273                            min(sizeof("madvise")-1, count))) {
274                 clear_bit(enabled, &transparent_hugepage_flags);
275                 set_bit(req_madv, &transparent_hugepage_flags);
276         } else if (!memcmp("never", buf,
277                            min(sizeof("never")-1, count))) {
278                 clear_bit(enabled, &transparent_hugepage_flags);
279                 clear_bit(req_madv, &transparent_hugepage_flags);
280         } else
281                 return -EINVAL;
282
283         return count;
284 }
285
286 static ssize_t enabled_show(struct kobject *kobj,
287                             struct kobj_attribute *attr, char *buf)
288 {
289         return double_flag_show(kobj, attr, buf,
290                                 TRANSPARENT_HUGEPAGE_FLAG,
291                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 }
293 static ssize_t enabled_store(struct kobject *kobj,
294                              struct kobj_attribute *attr,
295                              const char *buf, size_t count)
296 {
297         ssize_t ret;
298
299         ret = double_flag_store(kobj, attr, buf, count,
300                                 TRANSPARENT_HUGEPAGE_FLAG,
301                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302
303         if (ret > 0) {
304                 int err;
305
306                 mutex_lock(&khugepaged_mutex);
307                 err = start_khugepaged();
308                 mutex_unlock(&khugepaged_mutex);
309
310                 if (err)
311                         ret = err;
312         }
313
314         return ret;
315 }
316 static struct kobj_attribute enabled_attr =
317         __ATTR(enabled, 0644, enabled_show, enabled_store);
318
319 static ssize_t single_flag_show(struct kobject *kobj,
320                                 struct kobj_attribute *attr, char *buf,
321                                 enum transparent_hugepage_flag flag)
322 {
323         return sprintf(buf, "%d\n",
324                        !!test_bit(flag, &transparent_hugepage_flags));
325 }
326
327 static ssize_t single_flag_store(struct kobject *kobj,
328                                  struct kobj_attribute *attr,
329                                  const char *buf, size_t count,
330                                  enum transparent_hugepage_flag flag)
331 {
332         unsigned long value;
333         int ret;
334
335         ret = kstrtoul(buf, 10, &value);
336         if (ret < 0)
337                 return ret;
338         if (value > 1)
339                 return -EINVAL;
340
341         if (value)
342                 set_bit(flag, &transparent_hugepage_flags);
343         else
344                 clear_bit(flag, &transparent_hugepage_flags);
345
346         return count;
347 }
348
349 /*
350  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352  * memory just to allocate one more hugepage.
353  */
354 static ssize_t defrag_show(struct kobject *kobj,
355                            struct kobj_attribute *attr, char *buf)
356 {
357         return double_flag_show(kobj, attr, buf,
358                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 }
361 static ssize_t defrag_store(struct kobject *kobj,
362                             struct kobj_attribute *attr,
363                             const char *buf, size_t count)
364 {
365         return double_flag_store(kobj, attr, buf, count,
366                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368 }
369 static struct kobj_attribute defrag_attr =
370         __ATTR(defrag, 0644, defrag_show, defrag_store);
371
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373                 struct kobj_attribute *attr, char *buf)
374 {
375         return single_flag_show(kobj, attr, buf,
376                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379                 struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381         return single_flag_store(kobj, attr, buf, count,
382                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr =
385         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388                                 struct kobj_attribute *attr, char *buf)
389 {
390         return single_flag_show(kobj, attr, buf,
391                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static ssize_t debug_cow_store(struct kobject *kobj,
394                                struct kobj_attribute *attr,
395                                const char *buf, size_t count)
396 {
397         return single_flag_store(kobj, attr, buf, count,
398                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399 }
400 static struct kobj_attribute debug_cow_attr =
401         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
403
404 static struct attribute *hugepage_attr[] = {
405         &enabled_attr.attr,
406         &defrag_attr.attr,
407         &use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409         &debug_cow_attr.attr,
410 #endif
411         NULL,
412 };
413
414 static struct attribute_group hugepage_attr_group = {
415         .attrs = hugepage_attr,
416 };
417
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419                                          struct kobj_attribute *attr,
420                                          char *buf)
421 {
422         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423 }
424
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426                                           struct kobj_attribute *attr,
427                                           const char *buf, size_t count)
428 {
429         unsigned long msecs;
430         int err;
431
432         err = kstrtoul(buf, 10, &msecs);
433         if (err || msecs > UINT_MAX)
434                 return -EINVAL;
435
436         khugepaged_scan_sleep_millisecs = msecs;
437         wake_up_interruptible(&khugepaged_wait);
438
439         return count;
440 }
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443                scan_sleep_millisecs_store);
444
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446                                           struct kobj_attribute *attr,
447                                           char *buf)
448 {
449         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450 }
451
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453                                            struct kobj_attribute *attr,
454                                            const char *buf, size_t count)
455 {
456         unsigned long msecs;
457         int err;
458
459         err = kstrtoul(buf, 10, &msecs);
460         if (err || msecs > UINT_MAX)
461                 return -EINVAL;
462
463         khugepaged_alloc_sleep_millisecs = msecs;
464         wake_up_interruptible(&khugepaged_wait);
465
466         return count;
467 }
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470                alloc_sleep_millisecs_store);
471
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473                                   struct kobj_attribute *attr,
474                                   char *buf)
475 {
476         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477 }
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479                                    struct kobj_attribute *attr,
480                                    const char *buf, size_t count)
481 {
482         int err;
483         unsigned long pages;
484
485         err = kstrtoul(buf, 10, &pages);
486         if (err || !pages || pages > UINT_MAX)
487                 return -EINVAL;
488
489         khugepaged_pages_to_scan = pages;
490
491         return count;
492 }
493 static struct kobj_attribute pages_to_scan_attr =
494         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
495                pages_to_scan_store);
496
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498                                     struct kobj_attribute *attr,
499                                     char *buf)
500 {
501         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502 }
503 static struct kobj_attribute pages_collapsed_attr =
504         __ATTR_RO(pages_collapsed);
505
506 static ssize_t full_scans_show(struct kobject *kobj,
507                                struct kobj_attribute *attr,
508                                char *buf)
509 {
510         return sprintf(buf, "%u\n", khugepaged_full_scans);
511 }
512 static struct kobj_attribute full_scans_attr =
513         __ATTR_RO(full_scans);
514
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516                                       struct kobj_attribute *attr, char *buf)
517 {
518         return single_flag_show(kobj, attr, buf,
519                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522                                        struct kobj_attribute *attr,
523                                        const char *buf, size_t count)
524 {
525         return single_flag_store(kobj, attr, buf, count,
526                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527 }
528 static struct kobj_attribute khugepaged_defrag_attr =
529         __ATTR(defrag, 0644, khugepaged_defrag_show,
530                khugepaged_defrag_store);
531
532 /*
533  * max_ptes_none controls if khugepaged should collapse hugepages over
534  * any unmapped ptes in turn potentially increasing the memory
535  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536  * reduce the available free memory in the system as it
537  * runs. Increasing max_ptes_none will instead potentially reduce the
538  * free memory in the system during the khugepaged scan.
539  */
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541                                              struct kobj_attribute *attr,
542                                              char *buf)
543 {
544         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545 }
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547                                               struct kobj_attribute *attr,
548                                               const char *buf, size_t count)
549 {
550         int err;
551         unsigned long max_ptes_none;
552
553         err = kstrtoul(buf, 10, &max_ptes_none);
554         if (err || max_ptes_none > HPAGE_PMD_NR-1)
555                 return -EINVAL;
556
557         khugepaged_max_ptes_none = max_ptes_none;
558
559         return count;
560 }
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563                khugepaged_max_ptes_none_store);
564
565 static struct attribute *khugepaged_attr[] = {
566         &khugepaged_defrag_attr.attr,
567         &khugepaged_max_ptes_none_attr.attr,
568         &pages_to_scan_attr.attr,
569         &pages_collapsed_attr.attr,
570         &full_scans_attr.attr,
571         &scan_sleep_millisecs_attr.attr,
572         &alloc_sleep_millisecs_attr.attr,
573         NULL,
574 };
575
576 static struct attribute_group khugepaged_attr_group = {
577         .attrs = khugepaged_attr,
578         .name = "khugepaged",
579 };
580
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582 {
583         int err;
584
585         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586         if (unlikely(!*hugepage_kobj)) {
587                 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588                 return -ENOMEM;
589         }
590
591         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592         if (err) {
593                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594                 goto delete_obj;
595         }
596
597         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598         if (err) {
599                 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600                 goto remove_hp_group;
601         }
602
603         return 0;
604
605 remove_hp_group:
606         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608         kobject_put(*hugepage_kobj);
609         return err;
610 }
611
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616         kobject_put(hugepage_kobj);
617 }
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 {
621         return 0;
622 }
623
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625 {
626 }
627 #endif /* CONFIG_SYSFS */
628
629 static int __init hugepage_init(void)
630 {
631         int err;
632         struct kobject *hugepage_kobj;
633
634         if (!has_transparent_hugepage()) {
635                 transparent_hugepage_flags = 0;
636                 return -EINVAL;
637         }
638
639         err = hugepage_init_sysfs(&hugepage_kobj);
640         if (err)
641                 return err;
642
643         err = khugepaged_slab_init();
644         if (err)
645                 goto out;
646
647         register_shrinker(&huge_zero_page_shrinker);
648
649         /*
650          * By default disable transparent hugepages on smaller systems,
651          * where the extra memory used could hurt more than TLB overhead
652          * is likely to save.  The admin can still enable it through /sys.
653          */
654         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655                 transparent_hugepage_flags = 0;
656
657         start_khugepaged();
658
659         return 0;
660 out:
661         hugepage_exit_sysfs(hugepage_kobj);
662         return err;
663 }
664 subsys_initcall(hugepage_init);
665
666 static int __init setup_transparent_hugepage(char *str)
667 {
668         int ret = 0;
669         if (!str)
670                 goto out;
671         if (!strcmp(str, "always")) {
672                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673                         &transparent_hugepage_flags);
674                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675                           &transparent_hugepage_flags);
676                 ret = 1;
677         } else if (!strcmp(str, "madvise")) {
678                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679                           &transparent_hugepage_flags);
680                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681                         &transparent_hugepage_flags);
682                 ret = 1;
683         } else if (!strcmp(str, "never")) {
684                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685                           &transparent_hugepage_flags);
686                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687                           &transparent_hugepage_flags);
688                 ret = 1;
689         }
690 out:
691         if (!ret)
692                 printk(KERN_WARNING
693                        "transparent_hugepage= cannot parse, ignored\n");
694         return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700         if (likely(vma->vm_flags & VM_WRITE))
701                 pmd = pmd_mkwrite(pmd);
702         return pmd;
703 }
704
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707         pmd_t entry;
708         entry = mk_pmd(page, prot);
709         entry = pmd_mkhuge(entry);
710         return entry;
711 }
712
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714                                         struct vm_area_struct *vma,
715                                         unsigned long haddr, pmd_t *pmd,
716                                         struct page *page)
717 {
718         pgtable_t pgtable;
719         spinlock_t *ptl;
720
721         VM_BUG_ON_PAGE(!PageCompound(page), page);
722         pgtable = pte_alloc_one(mm, haddr);
723         if (unlikely(!pgtable))
724                 return VM_FAULT_OOM;
725
726         clear_huge_page(page, haddr, HPAGE_PMD_NR);
727         /*
728          * The memory barrier inside __SetPageUptodate makes sure that
729          * clear_huge_page writes become visible before the set_pmd_at()
730          * write.
731          */
732         __SetPageUptodate(page);
733
734         ptl = pmd_lock(mm, pmd);
735         if (unlikely(!pmd_none(*pmd))) {
736                 spin_unlock(ptl);
737                 mem_cgroup_uncharge_page(page);
738                 put_page(page);
739                 pte_free(mm, pgtable);
740         } else {
741                 pmd_t entry;
742                 entry = mk_huge_pmd(page, vma->vm_page_prot);
743                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744                 page_add_new_anon_rmap(page, vma, haddr);
745                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
746                 set_pmd_at(mm, haddr, pmd, entry);
747                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748                 atomic_long_inc(&mm->nr_ptes);
749                 spin_unlock(ptl);
750         }
751
752         return 0;
753 }
754
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759
760 static inline struct page *alloc_hugepage_vma(int defrag,
761                                               struct vm_area_struct *vma,
762                                               unsigned long haddr, int nd,
763                                               gfp_t extra_gfp)
764 {
765         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766                                HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772                 struct page *zero_page)
773 {
774         pmd_t entry;
775         if (!pmd_none(*pmd))
776                 return false;
777         entry = mk_pmd(zero_page, vma->vm_page_prot);
778         entry = pmd_wrprotect(entry);
779         entry = pmd_mkhuge(entry);
780         pgtable_trans_huge_deposit(mm, pmd, pgtable);
781         set_pmd_at(mm, haddr, pmd, entry);
782         atomic_long_inc(&mm->nr_ptes);
783         return true;
784 }
785
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787                                unsigned long address, pmd_t *pmd,
788                                unsigned int flags)
789 {
790         struct page *page;
791         unsigned long haddr = address & HPAGE_PMD_MASK;
792
793         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794                 return VM_FAULT_FALLBACK;
795         if (unlikely(anon_vma_prepare(vma)))
796                 return VM_FAULT_OOM;
797         if (unlikely(khugepaged_enter(vma)))
798                 return VM_FAULT_OOM;
799         if (!(flags & FAULT_FLAG_WRITE) &&
800                         transparent_hugepage_use_zero_page()) {
801                 spinlock_t *ptl;
802                 pgtable_t pgtable;
803                 struct page *zero_page;
804                 bool set;
805                 pgtable = pte_alloc_one(mm, haddr);
806                 if (unlikely(!pgtable))
807                         return VM_FAULT_OOM;
808                 zero_page = get_huge_zero_page();
809                 if (unlikely(!zero_page)) {
810                         pte_free(mm, pgtable);
811                         count_vm_event(THP_FAULT_FALLBACK);
812                         return VM_FAULT_FALLBACK;
813                 }
814                 ptl = pmd_lock(mm, pmd);
815                 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816                                 zero_page);
817                 spin_unlock(ptl);
818                 if (!set) {
819                         pte_free(mm, pgtable);
820                         put_huge_zero_page();
821                 }
822                 return 0;
823         }
824         page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825                         vma, haddr, numa_node_id(), 0);
826         if (unlikely(!page)) {
827                 count_vm_event(THP_FAULT_FALLBACK);
828                 return VM_FAULT_FALLBACK;
829         }
830         if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
831                 put_page(page);
832                 count_vm_event(THP_FAULT_FALLBACK);
833                 return VM_FAULT_FALLBACK;
834         }
835         if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836                 mem_cgroup_uncharge_page(page);
837                 put_page(page);
838                 count_vm_event(THP_FAULT_FALLBACK);
839                 return VM_FAULT_FALLBACK;
840         }
841
842         count_vm_event(THP_FAULT_ALLOC);
843         return 0;
844 }
845
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848                   struct vm_area_struct *vma)
849 {
850         spinlock_t *dst_ptl, *src_ptl;
851         struct page *src_page;
852         pmd_t pmd;
853         pgtable_t pgtable;
854         int ret;
855
856         ret = -ENOMEM;
857         pgtable = pte_alloc_one(dst_mm, addr);
858         if (unlikely(!pgtable))
859                 goto out;
860
861         dst_ptl = pmd_lock(dst_mm, dst_pmd);
862         src_ptl = pmd_lockptr(src_mm, src_pmd);
863         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864
865         ret = -EAGAIN;
866         pmd = *src_pmd;
867         if (unlikely(!pmd_trans_huge(pmd))) {
868                 pte_free(dst_mm, pgtable);
869                 goto out_unlock;
870         }
871         /*
872          * When page table lock is held, the huge zero pmd should not be
873          * under splitting since we don't split the page itself, only pmd to
874          * a page table.
875          */
876         if (is_huge_zero_pmd(pmd)) {
877                 struct page *zero_page;
878                 bool set;
879                 /*
880                  * get_huge_zero_page() will never allocate a new page here,
881                  * since we already have a zero page to copy. It just takes a
882                  * reference.
883                  */
884                 zero_page = get_huge_zero_page();
885                 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886                                 zero_page);
887                 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888                 ret = 0;
889                 goto out_unlock;
890         }
891
892         if (unlikely(pmd_trans_splitting(pmd))) {
893                 /* split huge page running from under us */
894                 spin_unlock(src_ptl);
895                 spin_unlock(dst_ptl);
896                 pte_free(dst_mm, pgtable);
897
898                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899                 goto out;
900         }
901         src_page = pmd_page(pmd);
902         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903         get_page(src_page);
904         page_dup_rmap(src_page);
905         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906
907         pmdp_set_wrprotect(src_mm, addr, src_pmd);
908         pmd = pmd_mkold(pmd_wrprotect(pmd));
909         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911         atomic_long_inc(&dst_mm->nr_ptes);
912
913         ret = 0;
914 out_unlock:
915         spin_unlock(src_ptl);
916         spin_unlock(dst_ptl);
917 out:
918         return ret;
919 }
920
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922                            struct vm_area_struct *vma,
923                            unsigned long address,
924                            pmd_t *pmd, pmd_t orig_pmd,
925                            int dirty)
926 {
927         spinlock_t *ptl;
928         pmd_t entry;
929         unsigned long haddr;
930
931         ptl = pmd_lock(mm, pmd);
932         if (unlikely(!pmd_same(*pmd, orig_pmd)))
933                 goto unlock;
934
935         entry = pmd_mkyoung(orig_pmd);
936         haddr = address & HPAGE_PMD_MASK;
937         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938                 update_mmu_cache_pmd(vma, address, pmd);
939
940 unlock:
941         spin_unlock(ptl);
942 }
943
944 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
945                                         struct vm_area_struct *vma,
946                                         unsigned long address,
947                                         pmd_t *pmd, pmd_t orig_pmd,
948                                         struct page *page,
949                                         unsigned long haddr)
950 {
951         spinlock_t *ptl;
952         pgtable_t pgtable;
953         pmd_t _pmd;
954         int ret = 0, i;
955         struct page **pages;
956         unsigned long mmun_start;       /* For mmu_notifiers */
957         unsigned long mmun_end;         /* For mmu_notifiers */
958
959         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
960                         GFP_KERNEL);
961         if (unlikely(!pages)) {
962                 ret |= VM_FAULT_OOM;
963                 goto out;
964         }
965
966         for (i = 0; i < HPAGE_PMD_NR; i++) {
967                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
968                                                __GFP_OTHER_NODE,
969                                                vma, address, page_to_nid(page));
970                 if (unlikely(!pages[i] ||
971                              mem_cgroup_newpage_charge(pages[i], mm,
972                                                        GFP_KERNEL))) {
973                         if (pages[i])
974                                 put_page(pages[i]);
975                         mem_cgroup_uncharge_start();
976                         while (--i >= 0) {
977                                 mem_cgroup_uncharge_page(pages[i]);
978                                 put_page(pages[i]);
979                         }
980                         mem_cgroup_uncharge_end();
981                         kfree(pages);
982                         ret |= VM_FAULT_OOM;
983                         goto out;
984                 }
985         }
986
987         for (i = 0; i < HPAGE_PMD_NR; i++) {
988                 copy_user_highpage(pages[i], page + i,
989                                    haddr + PAGE_SIZE * i, vma);
990                 __SetPageUptodate(pages[i]);
991                 cond_resched();
992         }
993
994         mmun_start = haddr;
995         mmun_end   = haddr + HPAGE_PMD_SIZE;
996         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
997
998         ptl = pmd_lock(mm, pmd);
999         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000                 goto out_free_pages;
1001         VM_BUG_ON_PAGE(!PageHead(page), page);
1002
1003         pmdp_clear_flush(vma, haddr, pmd);
1004         /* leave pmd empty until pte is filled */
1005
1006         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007         pmd_populate(mm, &_pmd, pgtable);
1008
1009         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010                 pte_t *pte, entry;
1011                 entry = mk_pte(pages[i], vma->vm_page_prot);
1012                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013                 page_add_new_anon_rmap(pages[i], vma, haddr);
1014                 pte = pte_offset_map(&_pmd, haddr);
1015                 VM_BUG_ON(!pte_none(*pte));
1016                 set_pte_at(mm, haddr, pte, entry);
1017                 pte_unmap(pte);
1018         }
1019         kfree(pages);
1020
1021         smp_wmb(); /* make pte visible before pmd */
1022         pmd_populate(mm, pmd, pgtable);
1023         page_remove_rmap(page);
1024         spin_unlock(ptl);
1025
1026         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028         ret |= VM_FAULT_WRITE;
1029         put_page(page);
1030
1031 out:
1032         return ret;
1033
1034 out_free_pages:
1035         spin_unlock(ptl);
1036         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037         mem_cgroup_uncharge_start();
1038         for (i = 0; i < HPAGE_PMD_NR; i++) {
1039                 mem_cgroup_uncharge_page(pages[i]);
1040                 put_page(pages[i]);
1041         }
1042         mem_cgroup_uncharge_end();
1043         kfree(pages);
1044         goto out;
1045 }
1046
1047 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049 {
1050         spinlock_t *ptl;
1051         int ret = 0;
1052         struct page *page = NULL, *new_page;
1053         unsigned long haddr;
1054         unsigned long mmun_start;       /* For mmu_notifiers */
1055         unsigned long mmun_end;         /* For mmu_notifiers */
1056
1057         ptl = pmd_lockptr(mm, pmd);
1058         VM_BUG_ON(!vma->anon_vma);
1059         haddr = address & HPAGE_PMD_MASK;
1060         if (is_huge_zero_pmd(orig_pmd))
1061                 goto alloc;
1062         spin_lock(ptl);
1063         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064                 goto out_unlock;
1065
1066         page = pmd_page(orig_pmd);
1067         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068         if (page_mapcount(page) == 1) {
1069                 pmd_t entry;
1070                 entry = pmd_mkyoung(orig_pmd);
1071                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073                         update_mmu_cache_pmd(vma, address, pmd);
1074                 ret |= VM_FAULT_WRITE;
1075                 goto out_unlock;
1076         }
1077         get_page(page);
1078         spin_unlock(ptl);
1079 alloc:
1080         if (transparent_hugepage_enabled(vma) &&
1081             !transparent_hugepage_debug_cow())
1082                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083                                               vma, haddr, numa_node_id(), 0);
1084         else
1085                 new_page = NULL;
1086
1087         if (unlikely(!new_page)) {
1088                 if (!page) {
1089                         split_huge_page_pmd(vma, address, pmd);
1090                         ret |= VM_FAULT_FALLBACK;
1091                 } else {
1092                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093                                         pmd, orig_pmd, page, haddr);
1094                         if (ret & VM_FAULT_OOM) {
1095                                 split_huge_page(page);
1096                                 ret |= VM_FAULT_FALLBACK;
1097                         }
1098                         put_page(page);
1099                 }
1100                 count_vm_event(THP_FAULT_FALLBACK);
1101                 goto out;
1102         }
1103
1104         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1105                 put_page(new_page);
1106                 if (page) {
1107                         split_huge_page(page);
1108                         put_page(page);
1109                 } else
1110                         split_huge_page_pmd(vma, address, pmd);
1111                 ret |= VM_FAULT_FALLBACK;
1112                 count_vm_event(THP_FAULT_FALLBACK);
1113                 goto out;
1114         }
1115
1116         count_vm_event(THP_FAULT_ALLOC);
1117
1118         if (!page)
1119                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120         else
1121                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122         __SetPageUptodate(new_page);
1123
1124         mmun_start = haddr;
1125         mmun_end   = haddr + HPAGE_PMD_SIZE;
1126         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128         spin_lock(ptl);
1129         if (page)
1130                 put_page(page);
1131         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132                 spin_unlock(ptl);
1133                 mem_cgroup_uncharge_page(new_page);
1134                 put_page(new_page);
1135                 goto out_mn;
1136         } else {
1137                 pmd_t entry;
1138                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140                 pmdp_clear_flush(vma, haddr, pmd);
1141                 page_add_new_anon_rmap(new_page, vma, haddr);
1142                 set_pmd_at(mm, haddr, pmd, entry);
1143                 update_mmu_cache_pmd(vma, address, pmd);
1144                 if (!page) {
1145                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146                         put_huge_zero_page();
1147                 } else {
1148                         VM_BUG_ON_PAGE(!PageHead(page), page);
1149                         page_remove_rmap(page);
1150                         put_page(page);
1151                 }
1152                 ret |= VM_FAULT_WRITE;
1153         }
1154         spin_unlock(ptl);
1155 out_mn:
1156         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157 out:
1158         return ret;
1159 out_unlock:
1160         spin_unlock(ptl);
1161         return ret;
1162 }
1163
1164 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165                                    unsigned long addr,
1166                                    pmd_t *pmd,
1167                                    unsigned int flags)
1168 {
1169         struct mm_struct *mm = vma->vm_mm;
1170         struct page *page = NULL;
1171
1172         assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175                 goto out;
1176
1177         /* Avoid dumping huge zero page */
1178         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179                 return ERR_PTR(-EFAULT);
1180
1181         /* Full NUMA hinting faults to serialise migration in fault paths */
1182         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183                 goto out;
1184
1185         page = pmd_page(*pmd);
1186         VM_BUG_ON_PAGE(!PageHead(page), page);
1187         if (flags & FOLL_TOUCH) {
1188                 pmd_t _pmd;
1189                 /*
1190                  * We should set the dirty bit only for FOLL_WRITE but
1191                  * for now the dirty bit in the pmd is meaningless.
1192                  * And if the dirty bit will become meaningful and
1193                  * we'll only set it with FOLL_WRITE, an atomic
1194                  * set_bit will be required on the pmd to set the
1195                  * young bit, instead of the current set_pmd_at.
1196                  */
1197                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198                 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199                                           pmd, _pmd,  1))
1200                         update_mmu_cache_pmd(vma, addr, pmd);
1201         }
1202         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203                 if (page->mapping && trylock_page(page)) {
1204                         lru_add_drain();
1205                         if (page->mapping)
1206                                 mlock_vma_page(page);
1207                         unlock_page(page);
1208                 }
1209         }
1210         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211         VM_BUG_ON_PAGE(!PageCompound(page), page);
1212         if (flags & FOLL_GET)
1213                 get_page_foll(page);
1214
1215 out:
1216         return page;
1217 }
1218
1219 /* NUMA hinting page fault entry point for trans huge pmds */
1220 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222 {
1223         spinlock_t *ptl;
1224         struct anon_vma *anon_vma = NULL;
1225         struct page *page;
1226         unsigned long haddr = addr & HPAGE_PMD_MASK;
1227         int page_nid = -1, this_nid = numa_node_id();
1228         int target_nid, last_cpupid = -1;
1229         bool page_locked;
1230         bool migrated = false;
1231         int flags = 0;
1232
1233         ptl = pmd_lock(mm, pmdp);
1234         if (unlikely(!pmd_same(pmd, *pmdp)))
1235                 goto out_unlock;
1236
1237         /*
1238          * If there are potential migrations, wait for completion and retry
1239          * without disrupting NUMA hinting information. Do not relock and
1240          * check_same as the page may no longer be mapped.
1241          */
1242         if (unlikely(pmd_trans_migrating(*pmdp))) {
1243                 spin_unlock(ptl);
1244                 wait_migrate_huge_page(vma->anon_vma, pmdp);
1245                 goto out;
1246         }
1247
1248         page = pmd_page(pmd);
1249         BUG_ON(is_huge_zero_page(page));
1250         page_nid = page_to_nid(page);
1251         last_cpupid = page_cpupid_last(page);
1252         count_vm_numa_event(NUMA_HINT_FAULTS);
1253         if (page_nid == this_nid) {
1254                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255                 flags |= TNF_FAULT_LOCAL;
1256         }
1257
1258         /*
1259          * Avoid grouping on DSO/COW pages in specific and RO pages
1260          * in general, RO pages shouldn't hurt as much anyway since
1261          * they can be in shared cache state.
1262          */
1263         if (!pmd_write(pmd))
1264                 flags |= TNF_NO_GROUP;
1265
1266         /*
1267          * Acquire the page lock to serialise THP migrations but avoid dropping
1268          * page_table_lock if at all possible
1269          */
1270         page_locked = trylock_page(page);
1271         target_nid = mpol_misplaced(page, vma, haddr);
1272         if (target_nid == -1) {
1273                 /* If the page was locked, there are no parallel migrations */
1274                 if (page_locked)
1275                         goto clear_pmdnuma;
1276         }
1277
1278         /* Migration could have started since the pmd_trans_migrating check */
1279         if (!page_locked) {
1280                 spin_unlock(ptl);
1281                 wait_on_page_locked(page);
1282                 page_nid = -1;
1283                 goto out;
1284         }
1285
1286         /*
1287          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288          * to serialises splits
1289          */
1290         get_page(page);
1291         spin_unlock(ptl);
1292         anon_vma = page_lock_anon_vma_read(page);
1293
1294         /* Confirm the PMD did not change while page_table_lock was released */
1295         spin_lock(ptl);
1296         if (unlikely(!pmd_same(pmd, *pmdp))) {
1297                 unlock_page(page);
1298                 put_page(page);
1299                 page_nid = -1;
1300                 goto out_unlock;
1301         }
1302
1303         /* Bail if we fail to protect against THP splits for any reason */
1304         if (unlikely(!anon_vma)) {
1305                 put_page(page);
1306                 page_nid = -1;
1307                 goto clear_pmdnuma;
1308         }
1309
1310         /*
1311          * Migrate the THP to the requested node, returns with page unlocked
1312          * and pmd_numa cleared.
1313          */
1314         spin_unlock(ptl);
1315         migrated = migrate_misplaced_transhuge_page(mm, vma,
1316                                 pmdp, pmd, addr, page, target_nid);
1317         if (migrated) {
1318                 flags |= TNF_MIGRATED;
1319                 page_nid = target_nid;
1320         }
1321
1322         goto out;
1323 clear_pmdnuma:
1324         BUG_ON(!PageLocked(page));
1325         pmd = pmd_mknonnuma(pmd);
1326         set_pmd_at(mm, haddr, pmdp, pmd);
1327         VM_BUG_ON(pmd_numa(*pmdp));
1328         update_mmu_cache_pmd(vma, addr, pmdp);
1329         unlock_page(page);
1330 out_unlock:
1331         spin_unlock(ptl);
1332
1333 out:
1334         if (anon_vma)
1335                 page_unlock_anon_vma_read(anon_vma);
1336
1337         if (page_nid != -1)
1338                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339
1340         return 0;
1341 }
1342
1343 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344                  pmd_t *pmd, unsigned long addr)
1345 {
1346         spinlock_t *ptl;
1347         int ret = 0;
1348
1349         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350                 struct page *page;
1351                 pgtable_t pgtable;
1352                 pmd_t orig_pmd;
1353                 /*
1354                  * For architectures like ppc64 we look at deposited pgtable
1355                  * when calling pmdp_get_and_clear. So do the
1356                  * pgtable_trans_huge_withdraw after finishing pmdp related
1357                  * operations.
1358                  */
1359                 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361                 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362                 if (is_huge_zero_pmd(orig_pmd)) {
1363                         atomic_long_dec(&tlb->mm->nr_ptes);
1364                         spin_unlock(ptl);
1365                         put_huge_zero_page();
1366                 } else {
1367                         page = pmd_page(orig_pmd);
1368                         page_remove_rmap(page);
1369                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371                         VM_BUG_ON_PAGE(!PageHead(page), page);
1372                         atomic_long_dec(&tlb->mm->nr_ptes);
1373                         spin_unlock(ptl);
1374                         tlb_remove_page(tlb, page);
1375                 }
1376                 pte_free(tlb->mm, pgtable);
1377                 ret = 1;
1378         }
1379         return ret;
1380 }
1381
1382 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383                 unsigned long addr, unsigned long end,
1384                 unsigned char *vec)
1385 {
1386         spinlock_t *ptl;
1387         int ret = 0;
1388
1389         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390                 /*
1391                  * All logical pages in the range are present
1392                  * if backed by a huge page.
1393                  */
1394                 spin_unlock(ptl);
1395                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396                 ret = 1;
1397         }
1398
1399         return ret;
1400 }
1401
1402 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403                   unsigned long old_addr,
1404                   unsigned long new_addr, unsigned long old_end,
1405                   pmd_t *old_pmd, pmd_t *new_pmd)
1406 {
1407         spinlock_t *old_ptl, *new_ptl;
1408         int ret = 0;
1409         pmd_t pmd;
1410
1411         struct mm_struct *mm = vma->vm_mm;
1412
1413         if ((old_addr & ~HPAGE_PMD_MASK) ||
1414             (new_addr & ~HPAGE_PMD_MASK) ||
1415             old_end - old_addr < HPAGE_PMD_SIZE ||
1416             (new_vma->vm_flags & VM_NOHUGEPAGE))
1417                 goto out;
1418
1419         /*
1420          * The destination pmd shouldn't be established, free_pgtables()
1421          * should have release it.
1422          */
1423         if (WARN_ON(!pmd_none(*new_pmd))) {
1424                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425                 goto out;
1426         }
1427
1428         /*
1429          * We don't have to worry about the ordering of src and dst
1430          * ptlocks because exclusive mmap_sem prevents deadlock.
1431          */
1432         ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433         if (ret == 1) {
1434                 new_ptl = pmd_lockptr(mm, new_pmd);
1435                 if (new_ptl != old_ptl)
1436                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438                 VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440                 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441                         pgtable_t pgtable;
1442                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444                 }
1445                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446                 if (new_ptl != old_ptl)
1447                         spin_unlock(new_ptl);
1448                 spin_unlock(old_ptl);
1449         }
1450 out:
1451         return ret;
1452 }
1453
1454 /*
1455  * Returns
1456  *  - 0 if PMD could not be locked
1457  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459  */
1460 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461                 unsigned long addr, pgprot_t newprot, int prot_numa)
1462 {
1463         struct mm_struct *mm = vma->vm_mm;
1464         spinlock_t *ptl;
1465         int ret = 0;
1466
1467         if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468                 pmd_t entry;
1469                 ret = 1;
1470                 if (!prot_numa) {
1471                         entry = pmdp_get_and_clear(mm, addr, pmd);
1472                         if (pmd_numa(entry))
1473                                 entry = pmd_mknonnuma(entry);
1474                         entry = pmd_modify(entry, newprot);
1475                         ret = HPAGE_PMD_NR;
1476                         set_pmd_at(mm, addr, pmd, entry);
1477                         BUG_ON(pmd_write(entry));
1478                 } else {
1479                         struct page *page = pmd_page(*pmd);
1480
1481                         /*
1482                          * Do not trap faults against the zero page. The
1483                          * read-only data is likely to be read-cached on the
1484                          * local CPU cache and it is less useful to know about
1485                          * local vs remote hits on the zero page.
1486                          */
1487                         if (!is_huge_zero_page(page) &&
1488                             !pmd_numa(*pmd)) {
1489                                 pmdp_set_numa(mm, addr, pmd);
1490                                 ret = HPAGE_PMD_NR;
1491                         }
1492                 }
1493                 spin_unlock(ptl);
1494         }
1495
1496         return ret;
1497 }
1498
1499 /*
1500  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502  *
1503  * Note that if it returns 1, this routine returns without unlocking page
1504  * table locks. So callers must unlock them.
1505  */
1506 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507                 spinlock_t **ptl)
1508 {
1509         *ptl = pmd_lock(vma->vm_mm, pmd);
1510         if (likely(pmd_trans_huge(*pmd))) {
1511                 if (unlikely(pmd_trans_splitting(*pmd))) {
1512                         spin_unlock(*ptl);
1513                         wait_split_huge_page(vma->anon_vma, pmd);
1514                         return -1;
1515                 } else {
1516                         /* Thp mapped by 'pmd' is stable, so we can
1517                          * handle it as it is. */
1518                         return 1;
1519                 }
1520         }
1521         spin_unlock(*ptl);
1522         return 0;
1523 }
1524
1525 /*
1526  * This function returns whether a given @page is mapped onto the @address
1527  * in the virtual space of @mm.
1528  *
1529  * When it's true, this function returns *pmd with holding the page table lock
1530  * and passing it back to the caller via @ptl.
1531  * If it's false, returns NULL without holding the page table lock.
1532  */
1533 pmd_t *page_check_address_pmd(struct page *page,
1534                               struct mm_struct *mm,
1535                               unsigned long address,
1536                               enum page_check_address_pmd_flag flag,
1537                               spinlock_t **ptl)
1538 {
1539         pmd_t *pmd;
1540
1541         if (address & ~HPAGE_PMD_MASK)
1542                 return NULL;
1543
1544         pmd = mm_find_pmd(mm, address);
1545         if (!pmd)
1546                 return NULL;
1547         *ptl = pmd_lock(mm, pmd);
1548         if (pmd_none(*pmd))
1549                 goto unlock;
1550         if (pmd_page(*pmd) != page)
1551                 goto unlock;
1552         /*
1553          * split_vma() may create temporary aliased mappings. There is
1554          * no risk as long as all huge pmd are found and have their
1555          * splitting bit set before __split_huge_page_refcount
1556          * runs. Finding the same huge pmd more than once during the
1557          * same rmap walk is not a problem.
1558          */
1559         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1560             pmd_trans_splitting(*pmd))
1561                 goto unlock;
1562         if (pmd_trans_huge(*pmd)) {
1563                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1564                           !pmd_trans_splitting(*pmd));
1565                 return pmd;
1566         }
1567 unlock:
1568         spin_unlock(*ptl);
1569         return NULL;
1570 }
1571
1572 static int __split_huge_page_splitting(struct page *page,
1573                                        struct vm_area_struct *vma,
1574                                        unsigned long address)
1575 {
1576         struct mm_struct *mm = vma->vm_mm;
1577         spinlock_t *ptl;
1578         pmd_t *pmd;
1579         int ret = 0;
1580         /* For mmu_notifiers */
1581         const unsigned long mmun_start = address;
1582         const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1583
1584         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1585         pmd = page_check_address_pmd(page, mm, address,
1586                         PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1587         if (pmd) {
1588                 /*
1589                  * We can't temporarily set the pmd to null in order
1590                  * to split it, the pmd must remain marked huge at all
1591                  * times or the VM won't take the pmd_trans_huge paths
1592                  * and it won't wait on the anon_vma->root->rwsem to
1593                  * serialize against split_huge_page*.
1594                  */
1595                 pmdp_splitting_flush(vma, address, pmd);
1596                 ret = 1;
1597                 spin_unlock(ptl);
1598         }
1599         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1600
1601         return ret;
1602 }
1603
1604 static void __split_huge_page_refcount(struct page *page,
1605                                        struct list_head *list)
1606 {
1607         int i;
1608         struct zone *zone = page_zone(page);
1609         struct lruvec *lruvec;
1610         int tail_count = 0;
1611
1612         /* prevent PageLRU to go away from under us, and freeze lru stats */
1613         spin_lock_irq(&zone->lru_lock);
1614         lruvec = mem_cgroup_page_lruvec(page, zone);
1615
1616         compound_lock(page);
1617         /* complete memcg works before add pages to LRU */
1618         mem_cgroup_split_huge_fixup(page);
1619
1620         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1621                 struct page *page_tail = page + i;
1622
1623                 /* tail_page->_mapcount cannot change */
1624                 BUG_ON(page_mapcount(page_tail) < 0);
1625                 tail_count += page_mapcount(page_tail);
1626                 /* check for overflow */
1627                 BUG_ON(tail_count < 0);
1628                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1629                 /*
1630                  * tail_page->_count is zero and not changing from
1631                  * under us. But get_page_unless_zero() may be running
1632                  * from under us on the tail_page. If we used
1633                  * atomic_set() below instead of atomic_add(), we
1634                  * would then run atomic_set() concurrently with
1635                  * get_page_unless_zero(), and atomic_set() is
1636                  * implemented in C not using locked ops. spin_unlock
1637                  * on x86 sometime uses locked ops because of PPro
1638                  * errata 66, 92, so unless somebody can guarantee
1639                  * atomic_set() here would be safe on all archs (and
1640                  * not only on x86), it's safer to use atomic_add().
1641                  */
1642                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1643                            &page_tail->_count);
1644
1645                 /* after clearing PageTail the gup refcount can be released */
1646                 smp_mb();
1647
1648                 /*
1649                  * retain hwpoison flag of the poisoned tail page:
1650                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1651                  *   by the memory-failure.
1652                  */
1653                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1654                 page_tail->flags |= (page->flags &
1655                                      ((1L << PG_referenced) |
1656                                       (1L << PG_swapbacked) |
1657                                       (1L << PG_mlocked) |
1658                                       (1L << PG_uptodate) |
1659                                       (1L << PG_active) |
1660                                       (1L << PG_unevictable)));
1661                 page_tail->flags |= (1L << PG_dirty);
1662
1663                 /* clear PageTail before overwriting first_page */
1664                 smp_wmb();
1665
1666                 /*
1667                  * __split_huge_page_splitting() already set the
1668                  * splitting bit in all pmd that could map this
1669                  * hugepage, that will ensure no CPU can alter the
1670                  * mapcount on the head page. The mapcount is only
1671                  * accounted in the head page and it has to be
1672                  * transferred to all tail pages in the below code. So
1673                  * for this code to be safe, the split the mapcount
1674                  * can't change. But that doesn't mean userland can't
1675                  * keep changing and reading the page contents while
1676                  * we transfer the mapcount, so the pmd splitting
1677                  * status is achieved setting a reserved bit in the
1678                  * pmd, not by clearing the present bit.
1679                 */
1680                 page_tail->_mapcount = page->_mapcount;
1681
1682                 BUG_ON(page_tail->mapping);
1683                 page_tail->mapping = page->mapping;
1684
1685                 page_tail->index = page->index + i;
1686                 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1687
1688                 BUG_ON(!PageAnon(page_tail));
1689                 BUG_ON(!PageUptodate(page_tail));
1690                 BUG_ON(!PageDirty(page_tail));
1691                 BUG_ON(!PageSwapBacked(page_tail));
1692
1693                 lru_add_page_tail(page, page_tail, lruvec, list);
1694         }
1695         atomic_sub(tail_count, &page->_count);
1696         BUG_ON(atomic_read(&page->_count) <= 0);
1697
1698         __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1699
1700         ClearPageCompound(page);
1701         compound_unlock(page);
1702         spin_unlock_irq(&zone->lru_lock);
1703
1704         for (i = 1; i < HPAGE_PMD_NR; i++) {
1705                 struct page *page_tail = page + i;
1706                 BUG_ON(page_count(page_tail) <= 0);
1707                 /*
1708                  * Tail pages may be freed if there wasn't any mapping
1709                  * like if add_to_swap() is running on a lru page that
1710                  * had its mapping zapped. And freeing these pages
1711                  * requires taking the lru_lock so we do the put_page
1712                  * of the tail pages after the split is complete.
1713                  */
1714                 put_page(page_tail);
1715         }
1716
1717         /*
1718          * Only the head page (now become a regular page) is required
1719          * to be pinned by the caller.
1720          */
1721         BUG_ON(page_count(page) <= 0);
1722 }
1723
1724 static int __split_huge_page_map(struct page *page,
1725                                  struct vm_area_struct *vma,
1726                                  unsigned long address)
1727 {
1728         struct mm_struct *mm = vma->vm_mm;
1729         spinlock_t *ptl;
1730         pmd_t *pmd, _pmd;
1731         int ret = 0, i;
1732         pgtable_t pgtable;
1733         unsigned long haddr;
1734
1735         pmd = page_check_address_pmd(page, mm, address,
1736                         PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1737         if (pmd) {
1738                 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1739                 pmd_populate(mm, &_pmd, pgtable);
1740
1741                 haddr = address;
1742                 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1743                         pte_t *pte, entry;
1744                         BUG_ON(PageCompound(page+i));
1745                         entry = mk_pte(page + i, vma->vm_page_prot);
1746                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1747                         if (!pmd_write(*pmd))
1748                                 entry = pte_wrprotect(entry);
1749                         else
1750                                 BUG_ON(page_mapcount(page) != 1);
1751                         if (!pmd_young(*pmd))
1752                                 entry = pte_mkold(entry);
1753                         if (pmd_numa(*pmd))
1754                                 entry = pte_mknuma(entry);
1755                         pte = pte_offset_map(&_pmd, haddr);
1756                         BUG_ON(!pte_none(*pte));
1757                         set_pte_at(mm, haddr, pte, entry);
1758                         pte_unmap(pte);
1759                 }
1760
1761                 smp_wmb(); /* make pte visible before pmd */
1762                 /*
1763                  * Up to this point the pmd is present and huge and
1764                  * userland has the whole access to the hugepage
1765                  * during the split (which happens in place). If we
1766                  * overwrite the pmd with the not-huge version
1767                  * pointing to the pte here (which of course we could
1768                  * if all CPUs were bug free), userland could trigger
1769                  * a small page size TLB miss on the small sized TLB
1770                  * while the hugepage TLB entry is still established
1771                  * in the huge TLB. Some CPU doesn't like that. See
1772                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1773                  * Erratum 383 on page 93. Intel should be safe but is
1774                  * also warns that it's only safe if the permission
1775                  * and cache attributes of the two entries loaded in
1776                  * the two TLB is identical (which should be the case
1777                  * here). But it is generally safer to never allow
1778                  * small and huge TLB entries for the same virtual
1779                  * address to be loaded simultaneously. So instead of
1780                  * doing "pmd_populate(); flush_tlb_range();" we first
1781                  * mark the current pmd notpresent (atomically because
1782                  * here the pmd_trans_huge and pmd_trans_splitting
1783                  * must remain set at all times on the pmd until the
1784                  * split is complete for this pmd), then we flush the
1785                  * SMP TLB and finally we write the non-huge version
1786                  * of the pmd entry with pmd_populate.
1787                  */
1788                 pmdp_invalidate(vma, address, pmd);
1789                 pmd_populate(mm, pmd, pgtable);
1790                 ret = 1;
1791                 spin_unlock(ptl);
1792         }
1793
1794         return ret;
1795 }
1796
1797 /* must be called with anon_vma->root->rwsem held */
1798 static void __split_huge_page(struct page *page,
1799                               struct anon_vma *anon_vma,
1800                               struct list_head *list)
1801 {
1802         int mapcount, mapcount2;
1803         pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1804         struct anon_vma_chain *avc;
1805
1806         BUG_ON(!PageHead(page));
1807         BUG_ON(PageTail(page));
1808
1809         mapcount = 0;
1810         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1811                 struct vm_area_struct *vma = avc->vma;
1812                 unsigned long addr = vma_address(page, vma);
1813                 BUG_ON(is_vma_temporary_stack(vma));
1814                 mapcount += __split_huge_page_splitting(page, vma, addr);
1815         }
1816         /*
1817          * It is critical that new vmas are added to the tail of the
1818          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1819          * and establishes a child pmd before
1820          * __split_huge_page_splitting() freezes the parent pmd (so if
1821          * we fail to prevent copy_huge_pmd() from running until the
1822          * whole __split_huge_page() is complete), we will still see
1823          * the newly established pmd of the child later during the
1824          * walk, to be able to set it as pmd_trans_splitting too.
1825          */
1826         if (mapcount != page_mapcount(page))
1827                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1828                        mapcount, page_mapcount(page));
1829         BUG_ON(mapcount != page_mapcount(page));
1830
1831         __split_huge_page_refcount(page, list);
1832
1833         mapcount2 = 0;
1834         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1835                 struct vm_area_struct *vma = avc->vma;
1836                 unsigned long addr = vma_address(page, vma);
1837                 BUG_ON(is_vma_temporary_stack(vma));
1838                 mapcount2 += __split_huge_page_map(page, vma, addr);
1839         }
1840         if (mapcount != mapcount2)
1841                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1842                        mapcount, mapcount2, page_mapcount(page));
1843         BUG_ON(mapcount != mapcount2);
1844 }
1845
1846 /*
1847  * Split a hugepage into normal pages. This doesn't change the position of head
1848  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1849  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1850  * from the hugepage.
1851  * Return 0 if the hugepage is split successfully otherwise return 1.
1852  */
1853 int split_huge_page_to_list(struct page *page, struct list_head *list)
1854 {
1855         struct anon_vma *anon_vma;
1856         int ret = 1;
1857
1858         BUG_ON(is_huge_zero_page(page));
1859         BUG_ON(!PageAnon(page));
1860
1861         /*
1862          * The caller does not necessarily hold an mmap_sem that would prevent
1863          * the anon_vma disappearing so we first we take a reference to it
1864          * and then lock the anon_vma for write. This is similar to
1865          * page_lock_anon_vma_read except the write lock is taken to serialise
1866          * against parallel split or collapse operations.
1867          */
1868         anon_vma = page_get_anon_vma(page);
1869         if (!anon_vma)
1870                 goto out;
1871         anon_vma_lock_write(anon_vma);
1872
1873         ret = 0;
1874         if (!PageCompound(page))
1875                 goto out_unlock;
1876
1877         BUG_ON(!PageSwapBacked(page));
1878         __split_huge_page(page, anon_vma, list);
1879         count_vm_event(THP_SPLIT);
1880
1881         BUG_ON(PageCompound(page));
1882 out_unlock:
1883         anon_vma_unlock_write(anon_vma);
1884         put_anon_vma(anon_vma);
1885 out:
1886         return ret;
1887 }
1888
1889 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1890
1891 int hugepage_madvise(struct vm_area_struct *vma,
1892                      unsigned long *vm_flags, int advice)
1893 {
1894         struct mm_struct *mm = vma->vm_mm;
1895
1896         switch (advice) {
1897         case MADV_HUGEPAGE:
1898                 /*
1899                  * Be somewhat over-protective like KSM for now!
1900                  */
1901                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1902                         return -EINVAL;
1903                 if (mm->def_flags & VM_NOHUGEPAGE)
1904                         return -EINVAL;
1905                 *vm_flags &= ~VM_NOHUGEPAGE;
1906                 *vm_flags |= VM_HUGEPAGE;
1907                 /*
1908                  * If the vma become good for khugepaged to scan,
1909                  * register it here without waiting a page fault that
1910                  * may not happen any time soon.
1911                  */
1912                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1913                         return -ENOMEM;
1914                 break;
1915         case MADV_NOHUGEPAGE:
1916                 /*
1917                  * Be somewhat over-protective like KSM for now!
1918                  */
1919                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1920                         return -EINVAL;
1921                 *vm_flags &= ~VM_HUGEPAGE;
1922                 *vm_flags |= VM_NOHUGEPAGE;
1923                 /*
1924                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1925                  * this vma even if we leave the mm registered in khugepaged if
1926                  * it got registered before VM_NOHUGEPAGE was set.
1927                  */
1928                 break;
1929         }
1930
1931         return 0;
1932 }
1933
1934 static int __init khugepaged_slab_init(void)
1935 {
1936         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1937                                           sizeof(struct mm_slot),
1938                                           __alignof__(struct mm_slot), 0, NULL);
1939         if (!mm_slot_cache)
1940                 return -ENOMEM;
1941
1942         return 0;
1943 }
1944
1945 static inline struct mm_slot *alloc_mm_slot(void)
1946 {
1947         if (!mm_slot_cache)     /* initialization failed */
1948                 return NULL;
1949         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1950 }
1951
1952 static inline void free_mm_slot(struct mm_slot *mm_slot)
1953 {
1954         kmem_cache_free(mm_slot_cache, mm_slot);
1955 }
1956
1957 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1958 {
1959         struct mm_slot *mm_slot;
1960
1961         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1962                 if (mm == mm_slot->mm)
1963                         return mm_slot;
1964
1965         return NULL;
1966 }
1967
1968 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1969                                     struct mm_slot *mm_slot)
1970 {
1971         mm_slot->mm = mm;
1972         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1973 }
1974
1975 static inline int khugepaged_test_exit(struct mm_struct *mm)
1976 {
1977         return atomic_read(&mm->mm_users) == 0;
1978 }
1979
1980 int __khugepaged_enter(struct mm_struct *mm)
1981 {
1982         struct mm_slot *mm_slot;
1983         int wakeup;
1984
1985         mm_slot = alloc_mm_slot();
1986         if (!mm_slot)
1987                 return -ENOMEM;
1988
1989         /* __khugepaged_exit() must not run from under us */
1990         VM_BUG_ON(khugepaged_test_exit(mm));
1991         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1992                 free_mm_slot(mm_slot);
1993                 return 0;
1994         }
1995
1996         spin_lock(&khugepaged_mm_lock);
1997         insert_to_mm_slots_hash(mm, mm_slot);
1998         /*
1999          * Insert just behind the scanning cursor, to let the area settle
2000          * down a little.
2001          */
2002         wakeup = list_empty(&khugepaged_scan.mm_head);
2003         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2004         spin_unlock(&khugepaged_mm_lock);
2005
2006         atomic_inc(&mm->mm_count);
2007         if (wakeup)
2008                 wake_up_interruptible(&khugepaged_wait);
2009
2010         return 0;
2011 }
2012
2013 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2014 {
2015         unsigned long hstart, hend;
2016         if (!vma->anon_vma)
2017                 /*
2018                  * Not yet faulted in so we will register later in the
2019                  * page fault if needed.
2020                  */
2021                 return 0;
2022         if (vma->vm_ops)
2023                 /* khugepaged not yet working on file or special mappings */
2024                 return 0;
2025         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2026         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2027         hend = vma->vm_end & HPAGE_PMD_MASK;
2028         if (hstart < hend)
2029                 return khugepaged_enter(vma);
2030         return 0;
2031 }
2032
2033 void __khugepaged_exit(struct mm_struct *mm)
2034 {
2035         struct mm_slot *mm_slot;
2036         int free = 0;
2037
2038         spin_lock(&khugepaged_mm_lock);
2039         mm_slot = get_mm_slot(mm);
2040         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2041                 hash_del(&mm_slot->hash);
2042                 list_del(&mm_slot->mm_node);
2043                 free = 1;
2044         }
2045         spin_unlock(&khugepaged_mm_lock);
2046
2047         if (free) {
2048                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2049                 free_mm_slot(mm_slot);
2050                 mmdrop(mm);
2051         } else if (mm_slot) {
2052                 /*
2053                  * This is required to serialize against
2054                  * khugepaged_test_exit() (which is guaranteed to run
2055                  * under mmap sem read mode). Stop here (after we
2056                  * return all pagetables will be destroyed) until
2057                  * khugepaged has finished working on the pagetables
2058                  * under the mmap_sem.
2059                  */
2060                 down_write(&mm->mmap_sem);
2061                 up_write(&mm->mmap_sem);
2062         }
2063 }
2064
2065 static void release_pte_page(struct page *page)
2066 {
2067         /* 0 stands for page_is_file_cache(page) == false */
2068         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2069         unlock_page(page);
2070         putback_lru_page(page);
2071 }
2072
2073 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2074 {
2075         while (--_pte >= pte) {
2076                 pte_t pteval = *_pte;
2077                 if (!pte_none(pteval))
2078                         release_pte_page(pte_page(pteval));
2079         }
2080 }
2081
2082 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2083                                         unsigned long address,
2084                                         pte_t *pte)
2085 {
2086         struct page *page;
2087         pte_t *_pte;
2088         int referenced = 0, none = 0;
2089         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2090              _pte++, address += PAGE_SIZE) {
2091                 pte_t pteval = *_pte;
2092                 if (pte_none(pteval)) {
2093                         if (++none <= khugepaged_max_ptes_none)
2094                                 continue;
2095                         else
2096                                 goto out;
2097                 }
2098                 if (!pte_present(pteval) || !pte_write(pteval))
2099                         goto out;
2100                 page = vm_normal_page(vma, address, pteval);
2101                 if (unlikely(!page))
2102                         goto out;
2103
2104                 VM_BUG_ON_PAGE(PageCompound(page), page);
2105                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2106                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2107
2108                 /* cannot use mapcount: can't collapse if there's a gup pin */
2109                 if (page_count(page) != 1)
2110                         goto out;
2111                 /*
2112                  * We can do it before isolate_lru_page because the
2113                  * page can't be freed from under us. NOTE: PG_lock
2114                  * is needed to serialize against split_huge_page
2115                  * when invoked from the VM.
2116                  */
2117                 if (!trylock_page(page))
2118                         goto out;
2119                 /*
2120                  * Isolate the page to avoid collapsing an hugepage
2121                  * currently in use by the VM.
2122                  */
2123                 if (isolate_lru_page(page)) {
2124                         unlock_page(page);
2125                         goto out;
2126                 }
2127                 /* 0 stands for page_is_file_cache(page) == false */
2128                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2129                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2130                 VM_BUG_ON_PAGE(PageLRU(page), page);
2131
2132                 /* If there is no mapped pte young don't collapse the page */
2133                 if (pte_young(pteval) || PageReferenced(page) ||
2134                     mmu_notifier_test_young(vma->vm_mm, address))
2135                         referenced = 1;
2136         }
2137         if (likely(referenced))
2138                 return 1;
2139 out:
2140         release_pte_pages(pte, _pte);
2141         return 0;
2142 }
2143
2144 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2145                                       struct vm_area_struct *vma,
2146                                       unsigned long address,
2147                                       spinlock_t *ptl)
2148 {
2149         pte_t *_pte;
2150         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2151                 pte_t pteval = *_pte;
2152                 struct page *src_page;
2153
2154                 if (pte_none(pteval)) {
2155                         clear_user_highpage(page, address);
2156                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2157                 } else {
2158                         src_page = pte_page(pteval);
2159                         copy_user_highpage(page, src_page, address, vma);
2160                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2161                         release_pte_page(src_page);
2162                         /*
2163                          * ptl mostly unnecessary, but preempt has to
2164                          * be disabled to update the per-cpu stats
2165                          * inside page_remove_rmap().
2166                          */
2167                         spin_lock(ptl);
2168                         /*
2169                          * paravirt calls inside pte_clear here are
2170                          * superfluous.
2171                          */
2172                         pte_clear(vma->vm_mm, address, _pte);
2173                         page_remove_rmap(src_page);
2174                         spin_unlock(ptl);
2175                         free_page_and_swap_cache(src_page);
2176                 }
2177
2178                 address += PAGE_SIZE;
2179                 page++;
2180         }
2181 }
2182
2183 static void khugepaged_alloc_sleep(void)
2184 {
2185         wait_event_freezable_timeout(khugepaged_wait, false,
2186                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187 }
2188
2189 static int khugepaged_node_load[MAX_NUMNODES];
2190
2191 #ifdef CONFIG_NUMA
2192 static int khugepaged_find_target_node(void)
2193 {
2194         static int last_khugepaged_target_node = NUMA_NO_NODE;
2195         int nid, target_node = 0, max_value = 0;
2196
2197         /* find first node with max normal pages hit */
2198         for (nid = 0; nid < MAX_NUMNODES; nid++)
2199                 if (khugepaged_node_load[nid] > max_value) {
2200                         max_value = khugepaged_node_load[nid];
2201                         target_node = nid;
2202                 }
2203
2204         /* do some balance if several nodes have the same hit record */
2205         if (target_node <= last_khugepaged_target_node)
2206                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2207                                 nid++)
2208                         if (max_value == khugepaged_node_load[nid]) {
2209                                 target_node = nid;
2210                                 break;
2211                         }
2212
2213         last_khugepaged_target_node = target_node;
2214         return target_node;
2215 }
2216
2217 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2218 {
2219         if (IS_ERR(*hpage)) {
2220                 if (!*wait)
2221                         return false;
2222
2223                 *wait = false;
2224                 *hpage = NULL;
2225                 khugepaged_alloc_sleep();
2226         } else if (*hpage) {
2227                 put_page(*hpage);
2228                 *hpage = NULL;
2229         }
2230
2231         return true;
2232 }
2233
2234 static struct page
2235 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2236                        struct vm_area_struct *vma, unsigned long address,
2237                        int node)
2238 {
2239         VM_BUG_ON_PAGE(*hpage, *hpage);
2240         /*
2241          * Allocate the page while the vma is still valid and under
2242          * the mmap_sem read mode so there is no memory allocation
2243          * later when we take the mmap_sem in write mode. This is more
2244          * friendly behavior (OTOH it may actually hide bugs) to
2245          * filesystems in userland with daemons allocating memory in
2246          * the userland I/O paths.  Allocating memory with the
2247          * mmap_sem in read mode is good idea also to allow greater
2248          * scalability.
2249          */
2250         *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2251                 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2252         /*
2253          * After allocating the hugepage, release the mmap_sem read lock in
2254          * preparation for taking it in write mode.
2255          */
2256         up_read(&mm->mmap_sem);
2257         if (unlikely(!*hpage)) {
2258                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2259                 *hpage = ERR_PTR(-ENOMEM);
2260                 return NULL;
2261         }
2262
2263         count_vm_event(THP_COLLAPSE_ALLOC);
2264         return *hpage;
2265 }
2266 #else
2267 static int khugepaged_find_target_node(void)
2268 {
2269         return 0;
2270 }
2271
2272 static inline struct page *alloc_hugepage(int defrag)
2273 {
2274         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2275                            HPAGE_PMD_ORDER);
2276 }
2277
2278 static struct page *khugepaged_alloc_hugepage(bool *wait)
2279 {
2280         struct page *hpage;
2281
2282         do {
2283                 hpage = alloc_hugepage(khugepaged_defrag());
2284                 if (!hpage) {
2285                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2286                         if (!*wait)
2287                                 return NULL;
2288
2289                         *wait = false;
2290                         khugepaged_alloc_sleep();
2291                 } else
2292                         count_vm_event(THP_COLLAPSE_ALLOC);
2293         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2294
2295         return hpage;
2296 }
2297
2298 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2299 {
2300         if (!*hpage)
2301                 *hpage = khugepaged_alloc_hugepage(wait);
2302
2303         if (unlikely(!*hpage))
2304                 return false;
2305
2306         return true;
2307 }
2308
2309 static struct page
2310 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2311                        struct vm_area_struct *vma, unsigned long address,
2312                        int node)
2313 {
2314         up_read(&mm->mmap_sem);
2315         VM_BUG_ON(!*hpage);
2316         return  *hpage;
2317 }
2318 #endif
2319
2320 static bool hugepage_vma_check(struct vm_area_struct *vma)
2321 {
2322         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2323             (vma->vm_flags & VM_NOHUGEPAGE))
2324                 return false;
2325
2326         if (!vma->anon_vma || vma->vm_ops)
2327                 return false;
2328         if (is_vma_temporary_stack(vma))
2329                 return false;
2330         VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2331         return true;
2332 }
2333
2334 static void collapse_huge_page(struct mm_struct *mm,
2335                                    unsigned long address,
2336                                    struct page **hpage,
2337                                    struct vm_area_struct *vma,
2338                                    int node)
2339 {
2340         pmd_t *pmd, _pmd;
2341         pte_t *pte;
2342         pgtable_t pgtable;
2343         struct page *new_page;
2344         spinlock_t *pmd_ptl, *pte_ptl;
2345         int isolated;
2346         unsigned long hstart, hend;
2347         unsigned long mmun_start;       /* For mmu_notifiers */
2348         unsigned long mmun_end;         /* For mmu_notifiers */
2349
2350         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2351
2352         /* release the mmap_sem read lock. */
2353         new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2354         if (!new_page)
2355                 return;
2356
2357         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2358                 return;
2359
2360         /*
2361          * Prevent all access to pagetables with the exception of
2362          * gup_fast later hanlded by the ptep_clear_flush and the VM
2363          * handled by the anon_vma lock + PG_lock.
2364          */
2365         down_write(&mm->mmap_sem);
2366         if (unlikely(khugepaged_test_exit(mm)))
2367                 goto out;
2368
2369         vma = find_vma(mm, address);
2370         if (!vma)
2371                 goto out;
2372         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2373         hend = vma->vm_end & HPAGE_PMD_MASK;
2374         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2375                 goto out;
2376         if (!hugepage_vma_check(vma))
2377                 goto out;
2378         pmd = mm_find_pmd(mm, address);
2379         if (!pmd)
2380                 goto out;
2381         if (pmd_trans_huge(*pmd))
2382                 goto out;
2383
2384         anon_vma_lock_write(vma->anon_vma);
2385
2386         pte = pte_offset_map(pmd, address);
2387         pte_ptl = pte_lockptr(mm, pmd);
2388
2389         mmun_start = address;
2390         mmun_end   = address + HPAGE_PMD_SIZE;
2391         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2392         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2393         /*
2394          * After this gup_fast can't run anymore. This also removes
2395          * any huge TLB entry from the CPU so we won't allow
2396          * huge and small TLB entries for the same virtual address
2397          * to avoid the risk of CPU bugs in that area.
2398          */
2399         _pmd = pmdp_clear_flush(vma, address, pmd);
2400         spin_unlock(pmd_ptl);
2401         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2402
2403         spin_lock(pte_ptl);
2404         isolated = __collapse_huge_page_isolate(vma, address, pte);
2405         spin_unlock(pte_ptl);
2406
2407         if (unlikely(!isolated)) {
2408                 pte_unmap(pte);
2409                 spin_lock(pmd_ptl);
2410                 BUG_ON(!pmd_none(*pmd));
2411                 /*
2412                  * We can only use set_pmd_at when establishing
2413                  * hugepmds and never for establishing regular pmds that
2414                  * points to regular pagetables. Use pmd_populate for that
2415                  */
2416                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2417                 spin_unlock(pmd_ptl);
2418                 anon_vma_unlock_write(vma->anon_vma);
2419                 goto out;
2420         }
2421
2422         /*
2423          * All pages are isolated and locked so anon_vma rmap
2424          * can't run anymore.
2425          */
2426         anon_vma_unlock_write(vma->anon_vma);
2427
2428         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2429         pte_unmap(pte);
2430         __SetPageUptodate(new_page);
2431         pgtable = pmd_pgtable(_pmd);
2432
2433         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2434         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2435
2436         /*
2437          * spin_lock() below is not the equivalent of smp_wmb(), so
2438          * this is needed to avoid the copy_huge_page writes to become
2439          * visible after the set_pmd_at() write.
2440          */
2441         smp_wmb();
2442
2443         spin_lock(pmd_ptl);
2444         BUG_ON(!pmd_none(*pmd));
2445         page_add_new_anon_rmap(new_page, vma, address);
2446         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2447         set_pmd_at(mm, address, pmd, _pmd);
2448         update_mmu_cache_pmd(vma, address, pmd);
2449         spin_unlock(pmd_ptl);
2450
2451         *hpage = NULL;
2452
2453         khugepaged_pages_collapsed++;
2454 out_up_write:
2455         up_write(&mm->mmap_sem);
2456         return;
2457
2458 out:
2459         mem_cgroup_uncharge_page(new_page);
2460         goto out_up_write;
2461 }
2462
2463 static int khugepaged_scan_pmd(struct mm_struct *mm,
2464                                struct vm_area_struct *vma,
2465                                unsigned long address,
2466                                struct page **hpage)
2467 {
2468         pmd_t *pmd;
2469         pte_t *pte, *_pte;
2470         int ret = 0, referenced = 0, none = 0;
2471         struct page *page;
2472         unsigned long _address;
2473         spinlock_t *ptl;
2474         int node = NUMA_NO_NODE;
2475
2476         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2477
2478         pmd = mm_find_pmd(mm, address);
2479         if (!pmd)
2480                 goto out;
2481         if (pmd_trans_huge(*pmd))
2482                 goto out;
2483
2484         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2485         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2486         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2487              _pte++, _address += PAGE_SIZE) {
2488                 pte_t pteval = *_pte;
2489                 if (pte_none(pteval)) {
2490                         if (++none <= khugepaged_max_ptes_none)
2491                                 continue;
2492                         else
2493                                 goto out_unmap;
2494                 }
2495                 if (!pte_present(pteval) || !pte_write(pteval))
2496                         goto out_unmap;
2497                 page = vm_normal_page(vma, _address, pteval);
2498                 if (unlikely(!page))
2499                         goto out_unmap;
2500                 /*
2501                  * Record which node the original page is from and save this
2502                  * information to khugepaged_node_load[].
2503                  * Khupaged will allocate hugepage from the node has the max
2504                  * hit record.
2505                  */
2506                 node = page_to_nid(page);
2507                 khugepaged_node_load[node]++;
2508                 VM_BUG_ON_PAGE(PageCompound(page), page);
2509                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2510                         goto out_unmap;
2511                 /* cannot use mapcount: can't collapse if there's a gup pin */
2512                 if (page_count(page) != 1)
2513                         goto out_unmap;
2514                 if (pte_young(pteval) || PageReferenced(page) ||
2515                     mmu_notifier_test_young(vma->vm_mm, address))
2516                         referenced = 1;
2517         }
2518         if (referenced)
2519                 ret = 1;
2520 out_unmap:
2521         pte_unmap_unlock(pte, ptl);
2522         if (ret) {
2523                 node = khugepaged_find_target_node();
2524                 /* collapse_huge_page will return with the mmap_sem released */
2525                 collapse_huge_page(mm, address, hpage, vma, node);
2526         }
2527 out:
2528         return ret;
2529 }
2530
2531 static void collect_mm_slot(struct mm_slot *mm_slot)
2532 {
2533         struct mm_struct *mm = mm_slot->mm;
2534
2535         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2536
2537         if (khugepaged_test_exit(mm)) {
2538                 /* free mm_slot */
2539                 hash_del(&mm_slot->hash);
2540                 list_del(&mm_slot->mm_node);
2541
2542                 /*
2543                  * Not strictly needed because the mm exited already.
2544                  *
2545                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2546                  */
2547
2548                 /* khugepaged_mm_lock actually not necessary for the below */
2549                 free_mm_slot(mm_slot);
2550                 mmdrop(mm);
2551         }
2552 }
2553
2554 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2555                                             struct page **hpage)
2556         __releases(&khugepaged_mm_lock)
2557         __acquires(&khugepaged_mm_lock)
2558 {
2559         struct mm_slot *mm_slot;
2560         struct mm_struct *mm;
2561         struct vm_area_struct *vma;
2562         int progress = 0;
2563
2564         VM_BUG_ON(!pages);
2565         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2566
2567         if (khugepaged_scan.mm_slot)
2568                 mm_slot = khugepaged_scan.mm_slot;
2569         else {
2570                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2571                                      struct mm_slot, mm_node);
2572                 khugepaged_scan.address = 0;
2573                 khugepaged_scan.mm_slot = mm_slot;
2574         }
2575         spin_unlock(&khugepaged_mm_lock);
2576
2577         mm = mm_slot->mm;
2578         down_read(&mm->mmap_sem);
2579         if (unlikely(khugepaged_test_exit(mm)))
2580                 vma = NULL;
2581         else
2582                 vma = find_vma(mm, khugepaged_scan.address);
2583
2584         progress++;
2585         for (; vma; vma = vma->vm_next) {
2586                 unsigned long hstart, hend;
2587
2588                 cond_resched();
2589                 if (unlikely(khugepaged_test_exit(mm))) {
2590                         progress++;
2591                         break;
2592                 }
2593                 if (!hugepage_vma_check(vma)) {
2594 skip:
2595                         progress++;
2596                         continue;
2597                 }
2598                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2599                 hend = vma->vm_end & HPAGE_PMD_MASK;
2600                 if (hstart >= hend)
2601                         goto skip;
2602                 if (khugepaged_scan.address > hend)
2603                         goto skip;
2604                 if (khugepaged_scan.address < hstart)
2605                         khugepaged_scan.address = hstart;
2606                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2607
2608                 while (khugepaged_scan.address < hend) {
2609                         int ret;
2610                         cond_resched();
2611                         if (unlikely(khugepaged_test_exit(mm)))
2612                                 goto breakouterloop;
2613
2614                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2615                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2616                                   hend);
2617                         ret = khugepaged_scan_pmd(mm, vma,
2618                                                   khugepaged_scan.address,
2619                                                   hpage);
2620                         /* move to next address */
2621                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2622                         progress += HPAGE_PMD_NR;
2623                         if (ret)
2624                                 /* we released mmap_sem so break loop */
2625                                 goto breakouterloop_mmap_sem;
2626                         if (progress >= pages)
2627                                 goto breakouterloop;
2628                 }
2629         }
2630 breakouterloop:
2631         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2632 breakouterloop_mmap_sem:
2633
2634         spin_lock(&khugepaged_mm_lock);
2635         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2636         /*
2637          * Release the current mm_slot if this mm is about to die, or
2638          * if we scanned all vmas of this mm.
2639          */
2640         if (khugepaged_test_exit(mm) || !vma) {
2641                 /*
2642                  * Make sure that if mm_users is reaching zero while
2643                  * khugepaged runs here, khugepaged_exit will find
2644                  * mm_slot not pointing to the exiting mm.
2645                  */
2646                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2647                         khugepaged_scan.mm_slot = list_entry(
2648                                 mm_slot->mm_node.next,
2649                                 struct mm_slot, mm_node);
2650                         khugepaged_scan.address = 0;
2651                 } else {
2652                         khugepaged_scan.mm_slot = NULL;
2653                         khugepaged_full_scans++;
2654                 }
2655
2656                 collect_mm_slot(mm_slot);
2657         }
2658
2659         return progress;
2660 }
2661
2662 static int khugepaged_has_work(void)
2663 {
2664         return !list_empty(&khugepaged_scan.mm_head) &&
2665                 khugepaged_enabled();
2666 }
2667
2668 static int khugepaged_wait_event(void)
2669 {
2670         return !list_empty(&khugepaged_scan.mm_head) ||
2671                 kthread_should_stop();
2672 }
2673
2674 static void khugepaged_do_scan(void)
2675 {
2676         struct page *hpage = NULL;
2677         unsigned int progress = 0, pass_through_head = 0;
2678         unsigned int pages = khugepaged_pages_to_scan;
2679         bool wait = true;
2680
2681         barrier(); /* write khugepaged_pages_to_scan to local stack */
2682
2683         while (progress < pages) {
2684                 if (!khugepaged_prealloc_page(&hpage, &wait))
2685                         break;
2686
2687                 cond_resched();
2688
2689                 if (unlikely(kthread_should_stop() || freezing(current)))
2690                         break;
2691
2692                 spin_lock(&khugepaged_mm_lock);
2693                 if (!khugepaged_scan.mm_slot)
2694                         pass_through_head++;
2695                 if (khugepaged_has_work() &&
2696                     pass_through_head < 2)
2697                         progress += khugepaged_scan_mm_slot(pages - progress,
2698                                                             &hpage);
2699                 else
2700                         progress = pages;
2701                 spin_unlock(&khugepaged_mm_lock);
2702         }
2703
2704         if (!IS_ERR_OR_NULL(hpage))
2705                 put_page(hpage);
2706 }
2707
2708 static void khugepaged_wait_work(void)
2709 {
2710         try_to_freeze();
2711
2712         if (khugepaged_has_work()) {
2713                 if (!khugepaged_scan_sleep_millisecs)
2714                         return;
2715
2716                 wait_event_freezable_timeout(khugepaged_wait,
2717                                              kthread_should_stop(),
2718                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2719                 return;
2720         }
2721
2722         if (khugepaged_enabled())
2723                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2724 }
2725
2726 static int khugepaged(void *none)
2727 {
2728         struct mm_slot *mm_slot;
2729
2730         set_freezable();
2731         set_user_nice(current, 19);
2732
2733         while (!kthread_should_stop()) {
2734                 khugepaged_do_scan();
2735                 khugepaged_wait_work();
2736         }
2737
2738         spin_lock(&khugepaged_mm_lock);
2739         mm_slot = khugepaged_scan.mm_slot;
2740         khugepaged_scan.mm_slot = NULL;
2741         if (mm_slot)
2742                 collect_mm_slot(mm_slot);
2743         spin_unlock(&khugepaged_mm_lock);
2744         return 0;
2745 }
2746
2747 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2748                 unsigned long haddr, pmd_t *pmd)
2749 {
2750         struct mm_struct *mm = vma->vm_mm;
2751         pgtable_t pgtable;
2752         pmd_t _pmd;
2753         int i;
2754
2755         pmdp_clear_flush(vma, haddr, pmd);
2756         /* leave pmd empty until pte is filled */
2757
2758         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2759         pmd_populate(mm, &_pmd, pgtable);
2760
2761         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2762                 pte_t *pte, entry;
2763                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2764                 entry = pte_mkspecial(entry);
2765                 pte = pte_offset_map(&_pmd, haddr);
2766                 VM_BUG_ON(!pte_none(*pte));
2767                 set_pte_at(mm, haddr, pte, entry);
2768                 pte_unmap(pte);
2769         }
2770         smp_wmb(); /* make pte visible before pmd */
2771         pmd_populate(mm, pmd, pgtable);
2772         put_huge_zero_page();
2773 }
2774
2775 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2776                 pmd_t *pmd)
2777 {
2778         spinlock_t *ptl;
2779         struct page *page;
2780         struct mm_struct *mm = vma->vm_mm;
2781         unsigned long haddr = address & HPAGE_PMD_MASK;
2782         unsigned long mmun_start;       /* For mmu_notifiers */
2783         unsigned long mmun_end;         /* For mmu_notifiers */
2784
2785         BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2786
2787         mmun_start = haddr;
2788         mmun_end   = haddr + HPAGE_PMD_SIZE;
2789 again:
2790         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2791         ptl = pmd_lock(mm, pmd);
2792         if (unlikely(!pmd_trans_huge(*pmd))) {
2793                 spin_unlock(ptl);
2794                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2795                 return;
2796         }
2797         if (is_huge_zero_pmd(*pmd)) {
2798                 __split_huge_zero_page_pmd(vma, haddr, pmd);
2799                 spin_unlock(ptl);
2800                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2801                 return;
2802         }
2803         page = pmd_page(*pmd);
2804         VM_BUG_ON_PAGE(!page_count(page), page);
2805         get_page(page);
2806         spin_unlock(ptl);
2807         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2808
2809         split_huge_page(page);
2810
2811         put_page(page);
2812
2813         /*
2814          * We don't always have down_write of mmap_sem here: a racing
2815          * do_huge_pmd_wp_page() might have copied-on-write to another
2816          * huge page before our split_huge_page() got the anon_vma lock.
2817          */
2818         if (unlikely(pmd_trans_huge(*pmd)))
2819                 goto again;
2820 }
2821
2822 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2823                 pmd_t *pmd)
2824 {
2825         struct vm_area_struct *vma;
2826
2827         vma = find_vma(mm, address);
2828         BUG_ON(vma == NULL);
2829         split_huge_page_pmd(vma, address, pmd);
2830 }
2831
2832 static void split_huge_page_address(struct mm_struct *mm,
2833                                     unsigned long address)
2834 {
2835         pmd_t *pmd;
2836
2837         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2838
2839         pmd = mm_find_pmd(mm, address);
2840         if (!pmd)
2841                 return;
2842         /*
2843          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2844          * materialize from under us.
2845          */
2846         split_huge_page_pmd_mm(mm, address, pmd);
2847 }
2848
2849 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2850                              unsigned long start,
2851                              unsigned long end,
2852                              long adjust_next)
2853 {
2854         /*
2855          * If the new start address isn't hpage aligned and it could
2856          * previously contain an hugepage: check if we need to split
2857          * an huge pmd.
2858          */
2859         if (start & ~HPAGE_PMD_MASK &&
2860             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2861             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2862                 split_huge_page_address(vma->vm_mm, start);
2863
2864         /*
2865          * If the new end address isn't hpage aligned and it could
2866          * previously contain an hugepage: check if we need to split
2867          * an huge pmd.
2868          */
2869         if (end & ~HPAGE_PMD_MASK &&
2870             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2871             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2872                 split_huge_page_address(vma->vm_mm, end);
2873
2874         /*
2875          * If we're also updating the vma->vm_next->vm_start, if the new
2876          * vm_next->vm_start isn't page aligned and it could previously
2877          * contain an hugepage: check if we need to split an huge pmd.
2878          */
2879         if (adjust_next > 0) {
2880                 struct vm_area_struct *next = vma->vm_next;
2881                 unsigned long nstart = next->vm_start;
2882                 nstart += adjust_next << PAGE_SHIFT;
2883                 if (nstart & ~HPAGE_PMD_MASK &&
2884                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2885                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2886                         split_huge_page_address(next->vm_mm, nstart);
2887         }
2888 }