Merge branch 'qgroup' of git://git.jan-o-sch.net/btrfs-unstable into for-linus
[linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37         WARN_ON(atomic_read(&transaction->use_count) == 0);
38         if (atomic_dec_and_test(&transaction->use_count)) {
39                 BUG_ON(!list_empty(&transaction->list));
40                 WARN_ON(transaction->delayed_refs.root.rb_node);
41                 memset(transaction, 0, sizeof(*transaction));
42                 kmem_cache_free(btrfs_transaction_cachep, transaction);
43         }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48         free_extent_buffer(root->commit_root);
49         root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53  * either allocate a new transaction or hop into the existing one
54  */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57         struct btrfs_transaction *cur_trans;
58         struct btrfs_fs_info *fs_info = root->fs_info;
59
60         spin_lock(&fs_info->trans_lock);
61 loop:
62         /* The file system has been taken offline. No new transactions. */
63         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
64                 spin_unlock(&fs_info->trans_lock);
65                 return -EROFS;
66         }
67
68         if (fs_info->trans_no_join) {
69                 if (!nofail) {
70                         spin_unlock(&fs_info->trans_lock);
71                         return -EBUSY;
72                 }
73         }
74
75         cur_trans = fs_info->running_transaction;
76         if (cur_trans) {
77                 if (cur_trans->aborted) {
78                         spin_unlock(&fs_info->trans_lock);
79                         return cur_trans->aborted;
80                 }
81                 atomic_inc(&cur_trans->use_count);
82                 atomic_inc(&cur_trans->num_writers);
83                 cur_trans->num_joined++;
84                 spin_unlock(&fs_info->trans_lock);
85                 return 0;
86         }
87         spin_unlock(&fs_info->trans_lock);
88
89         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
90         if (!cur_trans)
91                 return -ENOMEM;
92
93         spin_lock(&fs_info->trans_lock);
94         if (fs_info->running_transaction) {
95                 /*
96                  * someone started a transaction after we unlocked.  Make sure
97                  * to redo the trans_no_join checks above
98                  */
99                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
100                 cur_trans = fs_info->running_transaction;
101                 goto loop;
102         } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
103                 spin_unlock(&fs_info->trans_lock);
104                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
105                 return -EROFS;
106         }
107
108         atomic_set(&cur_trans->num_writers, 1);
109         cur_trans->num_joined = 0;
110         init_waitqueue_head(&cur_trans->writer_wait);
111         init_waitqueue_head(&cur_trans->commit_wait);
112         cur_trans->in_commit = 0;
113         cur_trans->blocked = 0;
114         /*
115          * One for this trans handle, one so it will live on until we
116          * commit the transaction.
117          */
118         atomic_set(&cur_trans->use_count, 2);
119         cur_trans->commit_done = 0;
120         cur_trans->start_time = get_seconds();
121
122         cur_trans->delayed_refs.root = RB_ROOT;
123         cur_trans->delayed_refs.num_entries = 0;
124         cur_trans->delayed_refs.num_heads_ready = 0;
125         cur_trans->delayed_refs.num_heads = 0;
126         cur_trans->delayed_refs.flushing = 0;
127         cur_trans->delayed_refs.run_delayed_start = 0;
128
129         /*
130          * although the tree mod log is per file system and not per transaction,
131          * the log must never go across transaction boundaries.
132          */
133         smp_mb();
134         if (!list_empty(&fs_info->tree_mod_seq_list)) {
135                 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
136                         "creating a fresh transaction\n");
137                 WARN_ON(1);
138         }
139         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
140                 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
141                         "creating a fresh transaction\n");
142                 WARN_ON(1);
143         }
144         atomic_set(&fs_info->tree_mod_seq, 0);
145
146         spin_lock_init(&cur_trans->commit_lock);
147         spin_lock_init(&cur_trans->delayed_refs.lock);
148
149         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
150         list_add_tail(&cur_trans->list, &fs_info->trans_list);
151         extent_io_tree_init(&cur_trans->dirty_pages,
152                              fs_info->btree_inode->i_mapping);
153         fs_info->generation++;
154         cur_trans->transid = fs_info->generation;
155         fs_info->running_transaction = cur_trans;
156         cur_trans->aborted = 0;
157         spin_unlock(&fs_info->trans_lock);
158
159         return 0;
160 }
161
162 /*
163  * this does all the record keeping required to make sure that a reference
164  * counted root is properly recorded in a given transaction.  This is required
165  * to make sure the old root from before we joined the transaction is deleted
166  * when the transaction commits
167  */
168 static int record_root_in_trans(struct btrfs_trans_handle *trans,
169                                struct btrfs_root *root)
170 {
171         if (root->ref_cows && root->last_trans < trans->transid) {
172                 WARN_ON(root == root->fs_info->extent_root);
173                 WARN_ON(root->commit_root != root->node);
174
175                 /*
176                  * see below for in_trans_setup usage rules
177                  * we have the reloc mutex held now, so there
178                  * is only one writer in this function
179                  */
180                 root->in_trans_setup = 1;
181
182                 /* make sure readers find in_trans_setup before
183                  * they find our root->last_trans update
184                  */
185                 smp_wmb();
186
187                 spin_lock(&root->fs_info->fs_roots_radix_lock);
188                 if (root->last_trans == trans->transid) {
189                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
190                         return 0;
191                 }
192                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
193                            (unsigned long)root->root_key.objectid,
194                            BTRFS_ROOT_TRANS_TAG);
195                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
196                 root->last_trans = trans->transid;
197
198                 /* this is pretty tricky.  We don't want to
199                  * take the relocation lock in btrfs_record_root_in_trans
200                  * unless we're really doing the first setup for this root in
201                  * this transaction.
202                  *
203                  * Normally we'd use root->last_trans as a flag to decide
204                  * if we want to take the expensive mutex.
205                  *
206                  * But, we have to set root->last_trans before we
207                  * init the relocation root, otherwise, we trip over warnings
208                  * in ctree.c.  The solution used here is to flag ourselves
209                  * with root->in_trans_setup.  When this is 1, we're still
210                  * fixing up the reloc trees and everyone must wait.
211                  *
212                  * When this is zero, they can trust root->last_trans and fly
213                  * through btrfs_record_root_in_trans without having to take the
214                  * lock.  smp_wmb() makes sure that all the writes above are
215                  * done before we pop in the zero below
216                  */
217                 btrfs_init_reloc_root(trans, root);
218                 smp_wmb();
219                 root->in_trans_setup = 0;
220         }
221         return 0;
222 }
223
224
225 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
226                                struct btrfs_root *root)
227 {
228         if (!root->ref_cows)
229                 return 0;
230
231         /*
232          * see record_root_in_trans for comments about in_trans_setup usage
233          * and barriers
234          */
235         smp_rmb();
236         if (root->last_trans == trans->transid &&
237             !root->in_trans_setup)
238                 return 0;
239
240         mutex_lock(&root->fs_info->reloc_mutex);
241         record_root_in_trans(trans, root);
242         mutex_unlock(&root->fs_info->reloc_mutex);
243
244         return 0;
245 }
246
247 /* wait for commit against the current transaction to become unblocked
248  * when this is done, it is safe to start a new transaction, but the current
249  * transaction might not be fully on disk.
250  */
251 static void wait_current_trans(struct btrfs_root *root)
252 {
253         struct btrfs_transaction *cur_trans;
254
255         spin_lock(&root->fs_info->trans_lock);
256         cur_trans = root->fs_info->running_transaction;
257         if (cur_trans && cur_trans->blocked) {
258                 atomic_inc(&cur_trans->use_count);
259                 spin_unlock(&root->fs_info->trans_lock);
260
261                 wait_event(root->fs_info->transaction_wait,
262                            !cur_trans->blocked);
263                 put_transaction(cur_trans);
264         } else {
265                 spin_unlock(&root->fs_info->trans_lock);
266         }
267 }
268
269 enum btrfs_trans_type {
270         TRANS_START,
271         TRANS_JOIN,
272         TRANS_USERSPACE,
273         TRANS_JOIN_NOLOCK,
274 };
275
276 static int may_wait_transaction(struct btrfs_root *root, int type)
277 {
278         if (root->fs_info->log_root_recovering)
279                 return 0;
280
281         if (type == TRANS_USERSPACE)
282                 return 1;
283
284         if (type == TRANS_START &&
285             !atomic_read(&root->fs_info->open_ioctl_trans))
286                 return 1;
287
288         return 0;
289 }
290
291 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
292                                                     u64 num_items, int type)
293 {
294         struct btrfs_trans_handle *h;
295         struct btrfs_transaction *cur_trans;
296         u64 num_bytes = 0;
297         int ret;
298         u64 qgroup_reserved = 0;
299
300         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
301                 return ERR_PTR(-EROFS);
302
303         if (current->journal_info) {
304                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
305                 h = current->journal_info;
306                 h->use_count++;
307                 h->orig_rsv = h->block_rsv;
308                 h->block_rsv = NULL;
309                 goto got_it;
310         }
311
312         /*
313          * Do the reservation before we join the transaction so we can do all
314          * the appropriate flushing if need be.
315          */
316         if (num_items > 0 && root != root->fs_info->chunk_root) {
317                 if (root->fs_info->quota_enabled &&
318                     is_fstree(root->root_key.objectid)) {
319                         qgroup_reserved = num_items * root->leafsize;
320                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
321                         if (ret)
322                                 return ERR_PTR(ret);
323                 }
324
325                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
326                 ret = btrfs_block_rsv_add(root,
327                                           &root->fs_info->trans_block_rsv,
328                                           num_bytes);
329                 if (ret)
330                         return ERR_PTR(ret);
331         }
332 again:
333         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
334         if (!h)
335                 return ERR_PTR(-ENOMEM);
336
337         if (may_wait_transaction(root, type))
338                 wait_current_trans(root);
339
340         do {
341                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
342                 if (ret == -EBUSY)
343                         wait_current_trans(root);
344         } while (ret == -EBUSY);
345
346         if (ret < 0) {
347                 kmem_cache_free(btrfs_trans_handle_cachep, h);
348                 return ERR_PTR(ret);
349         }
350
351         cur_trans = root->fs_info->running_transaction;
352
353         h->transid = cur_trans->transid;
354         h->transaction = cur_trans;
355         h->blocks_used = 0;
356         h->bytes_reserved = 0;
357         h->root = root;
358         h->delayed_ref_updates = 0;
359         h->use_count = 1;
360         h->adding_csums = 0;
361         h->block_rsv = NULL;
362         h->orig_rsv = NULL;
363         h->aborted = 0;
364         h->qgroup_reserved = qgroup_reserved;
365         h->delayed_ref_elem.seq = 0;
366         INIT_LIST_HEAD(&h->qgroup_ref_list);
367
368         smp_mb();
369         if (cur_trans->blocked && may_wait_transaction(root, type)) {
370                 btrfs_commit_transaction(h, root);
371                 goto again;
372         }
373
374         if (num_bytes) {
375                 trace_btrfs_space_reservation(root->fs_info, "transaction",
376                                               h->transid, num_bytes, 1);
377                 h->block_rsv = &root->fs_info->trans_block_rsv;
378                 h->bytes_reserved = num_bytes;
379         }
380
381 got_it:
382         btrfs_record_root_in_trans(h, root);
383
384         if (!current->journal_info && type != TRANS_USERSPACE)
385                 current->journal_info = h;
386         return h;
387 }
388
389 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
390                                                    int num_items)
391 {
392         return start_transaction(root, num_items, TRANS_START);
393 }
394 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
395 {
396         return start_transaction(root, 0, TRANS_JOIN);
397 }
398
399 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
400 {
401         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
402 }
403
404 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
405 {
406         return start_transaction(root, 0, TRANS_USERSPACE);
407 }
408
409 /* wait for a transaction commit to be fully complete */
410 static noinline void wait_for_commit(struct btrfs_root *root,
411                                     struct btrfs_transaction *commit)
412 {
413         wait_event(commit->commit_wait, commit->commit_done);
414 }
415
416 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
417 {
418         struct btrfs_transaction *cur_trans = NULL, *t;
419         int ret;
420
421         ret = 0;
422         if (transid) {
423                 if (transid <= root->fs_info->last_trans_committed)
424                         goto out;
425
426                 /* find specified transaction */
427                 spin_lock(&root->fs_info->trans_lock);
428                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
429                         if (t->transid == transid) {
430                                 cur_trans = t;
431                                 atomic_inc(&cur_trans->use_count);
432                                 break;
433                         }
434                         if (t->transid > transid)
435                                 break;
436                 }
437                 spin_unlock(&root->fs_info->trans_lock);
438                 ret = -EINVAL;
439                 if (!cur_trans)
440                         goto out;  /* bad transid */
441         } else {
442                 /* find newest transaction that is committing | committed */
443                 spin_lock(&root->fs_info->trans_lock);
444                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
445                                             list) {
446                         if (t->in_commit) {
447                                 if (t->commit_done)
448                                         break;
449                                 cur_trans = t;
450                                 atomic_inc(&cur_trans->use_count);
451                                 break;
452                         }
453                 }
454                 spin_unlock(&root->fs_info->trans_lock);
455                 if (!cur_trans)
456                         goto out;  /* nothing committing|committed */
457         }
458
459         wait_for_commit(root, cur_trans);
460
461         put_transaction(cur_trans);
462         ret = 0;
463 out:
464         return ret;
465 }
466
467 void btrfs_throttle(struct btrfs_root *root)
468 {
469         if (!atomic_read(&root->fs_info->open_ioctl_trans))
470                 wait_current_trans(root);
471 }
472
473 static int should_end_transaction(struct btrfs_trans_handle *trans,
474                                   struct btrfs_root *root)
475 {
476         int ret;
477
478         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
479         return ret ? 1 : 0;
480 }
481
482 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
483                                  struct btrfs_root *root)
484 {
485         struct btrfs_transaction *cur_trans = trans->transaction;
486         int updates;
487         int err;
488
489         smp_mb();
490         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
491                 return 1;
492
493         updates = trans->delayed_ref_updates;
494         trans->delayed_ref_updates = 0;
495         if (updates) {
496                 err = btrfs_run_delayed_refs(trans, root, updates);
497                 if (err) /* Error code will also eval true */
498                         return err;
499         }
500
501         return should_end_transaction(trans, root);
502 }
503
504 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
505                           struct btrfs_root *root, int throttle, int lock)
506 {
507         struct btrfs_transaction *cur_trans = trans->transaction;
508         struct btrfs_fs_info *info = root->fs_info;
509         int count = 0;
510         int err = 0;
511
512         if (--trans->use_count) {
513                 trans->block_rsv = trans->orig_rsv;
514                 return 0;
515         }
516
517         /*
518          * do the qgroup accounting as early as possible
519          */
520         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
521
522         btrfs_trans_release_metadata(trans, root);
523         trans->block_rsv = NULL;
524         /*
525          * the same root has to be passed to start_transaction and
526          * end_transaction. Subvolume quota depends on this.
527          */
528         WARN_ON(trans->root != root);
529
530         if (trans->qgroup_reserved) {
531                 btrfs_qgroup_free(root, trans->qgroup_reserved);
532                 trans->qgroup_reserved = 0;
533         }
534
535         while (count < 2) {
536                 unsigned long cur = trans->delayed_ref_updates;
537                 trans->delayed_ref_updates = 0;
538                 if (cur &&
539                     trans->transaction->delayed_refs.num_heads_ready > 64) {
540                         trans->delayed_ref_updates = 0;
541                         btrfs_run_delayed_refs(trans, root, cur);
542                 } else {
543                         break;
544                 }
545                 count++;
546         }
547         btrfs_trans_release_metadata(trans, root);
548         trans->block_rsv = NULL;
549
550         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
551             should_end_transaction(trans, root)) {
552                 trans->transaction->blocked = 1;
553                 smp_wmb();
554         }
555
556         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
557                 if (throttle) {
558                         /*
559                          * We may race with somebody else here so end up having
560                          * to call end_transaction on ourselves again, so inc
561                          * our use_count.
562                          */
563                         trans->use_count++;
564                         return btrfs_commit_transaction(trans, root);
565                 } else {
566                         wake_up_process(info->transaction_kthread);
567                 }
568         }
569
570         WARN_ON(cur_trans != info->running_transaction);
571         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
572         atomic_dec(&cur_trans->num_writers);
573
574         smp_mb();
575         if (waitqueue_active(&cur_trans->writer_wait))
576                 wake_up(&cur_trans->writer_wait);
577         put_transaction(cur_trans);
578
579         if (current->journal_info == trans)
580                 current->journal_info = NULL;
581
582         if (throttle)
583                 btrfs_run_delayed_iputs(root);
584
585         if (trans->aborted ||
586             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
587                 err = -EIO;
588         }
589         assert_qgroups_uptodate(trans);
590
591         memset(trans, 0, sizeof(*trans));
592         kmem_cache_free(btrfs_trans_handle_cachep, trans);
593         return err;
594 }
595
596 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
597                           struct btrfs_root *root)
598 {
599         int ret;
600
601         ret = __btrfs_end_transaction(trans, root, 0, 1);
602         if (ret)
603                 return ret;
604         return 0;
605 }
606
607 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
608                                    struct btrfs_root *root)
609 {
610         int ret;
611
612         ret = __btrfs_end_transaction(trans, root, 1, 1);
613         if (ret)
614                 return ret;
615         return 0;
616 }
617
618 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
619                                  struct btrfs_root *root)
620 {
621         int ret;
622
623         ret = __btrfs_end_transaction(trans, root, 0, 0);
624         if (ret)
625                 return ret;
626         return 0;
627 }
628
629 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
630                                 struct btrfs_root *root)
631 {
632         return __btrfs_end_transaction(trans, root, 1, 1);
633 }
634
635 /*
636  * when btree blocks are allocated, they have some corresponding bits set for
637  * them in one of two extent_io trees.  This is used to make sure all of
638  * those extents are sent to disk but does not wait on them
639  */
640 int btrfs_write_marked_extents(struct btrfs_root *root,
641                                struct extent_io_tree *dirty_pages, int mark)
642 {
643         int err = 0;
644         int werr = 0;
645         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
646         u64 start = 0;
647         u64 end;
648
649         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
650                                       mark)) {
651                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
652                                    GFP_NOFS);
653                 err = filemap_fdatawrite_range(mapping, start, end);
654                 if (err)
655                         werr = err;
656                 cond_resched();
657                 start = end + 1;
658         }
659         if (err)
660                 werr = err;
661         return werr;
662 }
663
664 /*
665  * when btree blocks are allocated, they have some corresponding bits set for
666  * them in one of two extent_io trees.  This is used to make sure all of
667  * those extents are on disk for transaction or log commit.  We wait
668  * on all the pages and clear them from the dirty pages state tree
669  */
670 int btrfs_wait_marked_extents(struct btrfs_root *root,
671                               struct extent_io_tree *dirty_pages, int mark)
672 {
673         int err = 0;
674         int werr = 0;
675         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
676         u64 start = 0;
677         u64 end;
678
679         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
680                                       EXTENT_NEED_WAIT)) {
681                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
682                 err = filemap_fdatawait_range(mapping, start, end);
683                 if (err)
684                         werr = err;
685                 cond_resched();
686                 start = end + 1;
687         }
688         if (err)
689                 werr = err;
690         return werr;
691 }
692
693 /*
694  * when btree blocks are allocated, they have some corresponding bits set for
695  * them in one of two extent_io trees.  This is used to make sure all of
696  * those extents are on disk for transaction or log commit
697  */
698 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
699                                 struct extent_io_tree *dirty_pages, int mark)
700 {
701         int ret;
702         int ret2;
703
704         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
705         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
706
707         if (ret)
708                 return ret;
709         if (ret2)
710                 return ret2;
711         return 0;
712 }
713
714 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
715                                      struct btrfs_root *root)
716 {
717         if (!trans || !trans->transaction) {
718                 struct inode *btree_inode;
719                 btree_inode = root->fs_info->btree_inode;
720                 return filemap_write_and_wait(btree_inode->i_mapping);
721         }
722         return btrfs_write_and_wait_marked_extents(root,
723                                            &trans->transaction->dirty_pages,
724                                            EXTENT_DIRTY);
725 }
726
727 /*
728  * this is used to update the root pointer in the tree of tree roots.
729  *
730  * But, in the case of the extent allocation tree, updating the root
731  * pointer may allocate blocks which may change the root of the extent
732  * allocation tree.
733  *
734  * So, this loops and repeats and makes sure the cowonly root didn't
735  * change while the root pointer was being updated in the metadata.
736  */
737 static int update_cowonly_root(struct btrfs_trans_handle *trans,
738                                struct btrfs_root *root)
739 {
740         int ret;
741         u64 old_root_bytenr;
742         u64 old_root_used;
743         struct btrfs_root *tree_root = root->fs_info->tree_root;
744
745         old_root_used = btrfs_root_used(&root->root_item);
746         btrfs_write_dirty_block_groups(trans, root);
747
748         while (1) {
749                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
750                 if (old_root_bytenr == root->node->start &&
751                     old_root_used == btrfs_root_used(&root->root_item))
752                         break;
753
754                 btrfs_set_root_node(&root->root_item, root->node);
755                 ret = btrfs_update_root(trans, tree_root,
756                                         &root->root_key,
757                                         &root->root_item);
758                 if (ret)
759                         return ret;
760
761                 old_root_used = btrfs_root_used(&root->root_item);
762                 ret = btrfs_write_dirty_block_groups(trans, root);
763                 if (ret)
764                         return ret;
765         }
766
767         if (root != root->fs_info->extent_root)
768                 switch_commit_root(root);
769
770         return 0;
771 }
772
773 /*
774  * update all the cowonly tree roots on disk
775  *
776  * The error handling in this function may not be obvious. Any of the
777  * failures will cause the file system to go offline. We still need
778  * to clean up the delayed refs.
779  */
780 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
781                                          struct btrfs_root *root)
782 {
783         struct btrfs_fs_info *fs_info = root->fs_info;
784         struct list_head *next;
785         struct extent_buffer *eb;
786         int ret;
787
788         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
789         if (ret)
790                 return ret;
791
792         eb = btrfs_lock_root_node(fs_info->tree_root);
793         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
794                               0, &eb);
795         btrfs_tree_unlock(eb);
796         free_extent_buffer(eb);
797
798         if (ret)
799                 return ret;
800
801         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
802         if (ret)
803                 return ret;
804
805         ret = btrfs_run_dev_stats(trans, root->fs_info);
806         BUG_ON(ret);
807
808         ret = btrfs_run_qgroups(trans, root->fs_info);
809         BUG_ON(ret);
810
811         /* run_qgroups might have added some more refs */
812         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
813         BUG_ON(ret);
814
815         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
816                 next = fs_info->dirty_cowonly_roots.next;
817                 list_del_init(next);
818                 root = list_entry(next, struct btrfs_root, dirty_list);
819
820                 ret = update_cowonly_root(trans, root);
821                 if (ret)
822                         return ret;
823         }
824
825         down_write(&fs_info->extent_commit_sem);
826         switch_commit_root(fs_info->extent_root);
827         up_write(&fs_info->extent_commit_sem);
828
829         return 0;
830 }
831
832 /*
833  * dead roots are old snapshots that need to be deleted.  This allocates
834  * a dirty root struct and adds it into the list of dead roots that need to
835  * be deleted
836  */
837 int btrfs_add_dead_root(struct btrfs_root *root)
838 {
839         spin_lock(&root->fs_info->trans_lock);
840         list_add(&root->root_list, &root->fs_info->dead_roots);
841         spin_unlock(&root->fs_info->trans_lock);
842         return 0;
843 }
844
845 /*
846  * update all the cowonly tree roots on disk
847  */
848 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
849                                     struct btrfs_root *root)
850 {
851         struct btrfs_root *gang[8];
852         struct btrfs_fs_info *fs_info = root->fs_info;
853         int i;
854         int ret;
855         int err = 0;
856
857         spin_lock(&fs_info->fs_roots_radix_lock);
858         while (1) {
859                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
860                                                  (void **)gang, 0,
861                                                  ARRAY_SIZE(gang),
862                                                  BTRFS_ROOT_TRANS_TAG);
863                 if (ret == 0)
864                         break;
865                 for (i = 0; i < ret; i++) {
866                         root = gang[i];
867                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
868                                         (unsigned long)root->root_key.objectid,
869                                         BTRFS_ROOT_TRANS_TAG);
870                         spin_unlock(&fs_info->fs_roots_radix_lock);
871
872                         btrfs_free_log(trans, root);
873                         btrfs_update_reloc_root(trans, root);
874                         btrfs_orphan_commit_root(trans, root);
875
876                         btrfs_save_ino_cache(root, trans);
877
878                         /* see comments in should_cow_block() */
879                         root->force_cow = 0;
880                         smp_wmb();
881
882                         if (root->commit_root != root->node) {
883                                 mutex_lock(&root->fs_commit_mutex);
884                                 switch_commit_root(root);
885                                 btrfs_unpin_free_ino(root);
886                                 mutex_unlock(&root->fs_commit_mutex);
887
888                                 btrfs_set_root_node(&root->root_item,
889                                                     root->node);
890                         }
891
892                         err = btrfs_update_root(trans, fs_info->tree_root,
893                                                 &root->root_key,
894                                                 &root->root_item);
895                         spin_lock(&fs_info->fs_roots_radix_lock);
896                         if (err)
897                                 break;
898                 }
899         }
900         spin_unlock(&fs_info->fs_roots_radix_lock);
901         return err;
902 }
903
904 /*
905  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
906  * otherwise every leaf in the btree is read and defragged.
907  */
908 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
909 {
910         struct btrfs_fs_info *info = root->fs_info;
911         struct btrfs_trans_handle *trans;
912         int ret;
913         unsigned long nr;
914
915         if (xchg(&root->defrag_running, 1))
916                 return 0;
917
918         while (1) {
919                 trans = btrfs_start_transaction(root, 0);
920                 if (IS_ERR(trans))
921                         return PTR_ERR(trans);
922
923                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
924
925                 nr = trans->blocks_used;
926                 btrfs_end_transaction(trans, root);
927                 btrfs_btree_balance_dirty(info->tree_root, nr);
928                 cond_resched();
929
930                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
931                         break;
932         }
933         root->defrag_running = 0;
934         return ret;
935 }
936
937 /*
938  * new snapshots need to be created at a very specific time in the
939  * transaction commit.  This does the actual creation
940  */
941 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
942                                    struct btrfs_fs_info *fs_info,
943                                    struct btrfs_pending_snapshot *pending)
944 {
945         struct btrfs_key key;
946         struct btrfs_root_item *new_root_item;
947         struct btrfs_root *tree_root = fs_info->tree_root;
948         struct btrfs_root *root = pending->root;
949         struct btrfs_root *parent_root;
950         struct btrfs_block_rsv *rsv;
951         struct inode *parent_inode;
952         struct dentry *parent;
953         struct dentry *dentry;
954         struct extent_buffer *tmp;
955         struct extent_buffer *old;
956         int ret;
957         u64 to_reserve = 0;
958         u64 index = 0;
959         u64 objectid;
960         u64 root_flags;
961
962         rsv = trans->block_rsv;
963
964         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
965         if (!new_root_item) {
966                 ret = pending->error = -ENOMEM;
967                 goto fail;
968         }
969
970         ret = btrfs_find_free_objectid(tree_root, &objectid);
971         if (ret) {
972                 pending->error = ret;
973                 goto fail;
974         }
975
976         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
977
978         if (to_reserve > 0) {
979                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
980                                                   to_reserve);
981                 if (ret) {
982                         pending->error = ret;
983                         goto fail;
984                 }
985         }
986
987         ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
988                                    objectid, pending->inherit);
989         kfree(pending->inherit);
990         if (ret) {
991                 pending->error = ret;
992                 goto fail;
993         }
994
995         key.objectid = objectid;
996         key.offset = (u64)-1;
997         key.type = BTRFS_ROOT_ITEM_KEY;
998
999         trans->block_rsv = &pending->block_rsv;
1000
1001         dentry = pending->dentry;
1002         parent = dget_parent(dentry);
1003         parent_inode = parent->d_inode;
1004         parent_root = BTRFS_I(parent_inode)->root;
1005         record_root_in_trans(trans, parent_root);
1006
1007         /*
1008          * insert the directory item
1009          */
1010         ret = btrfs_set_inode_index(parent_inode, &index);
1011         BUG_ON(ret); /* -ENOMEM */
1012         ret = btrfs_insert_dir_item(trans, parent_root,
1013                                 dentry->d_name.name, dentry->d_name.len,
1014                                 parent_inode, &key,
1015                                 BTRFS_FT_DIR, index);
1016         if (ret == -EEXIST) {
1017                 pending->error = -EEXIST;
1018                 dput(parent);
1019                 goto fail;
1020         } else if (ret) {
1021                 goto abort_trans_dput;
1022         }
1023
1024         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1025                                          dentry->d_name.len * 2);
1026         ret = btrfs_update_inode(trans, parent_root, parent_inode);
1027         if (ret)
1028                 goto abort_trans_dput;
1029
1030         /*
1031          * pull in the delayed directory update
1032          * and the delayed inode item
1033          * otherwise we corrupt the FS during
1034          * snapshot
1035          */
1036         ret = btrfs_run_delayed_items(trans, root);
1037         if (ret) { /* Transaction aborted */
1038                 dput(parent);
1039                 goto fail;
1040         }
1041
1042         record_root_in_trans(trans, root);
1043         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1044         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1045         btrfs_check_and_init_root_item(new_root_item);
1046
1047         root_flags = btrfs_root_flags(new_root_item);
1048         if (pending->readonly)
1049                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1050         else
1051                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1052         btrfs_set_root_flags(new_root_item, root_flags);
1053
1054         old = btrfs_lock_root_node(root);
1055         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1056         if (ret) {
1057                 btrfs_tree_unlock(old);
1058                 free_extent_buffer(old);
1059                 goto abort_trans_dput;
1060         }
1061
1062         btrfs_set_lock_blocking(old);
1063
1064         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1065         /* clean up in any case */
1066         btrfs_tree_unlock(old);
1067         free_extent_buffer(old);
1068         if (ret)
1069                 goto abort_trans_dput;
1070
1071         /* see comments in should_cow_block() */
1072         root->force_cow = 1;
1073         smp_wmb();
1074
1075         btrfs_set_root_node(new_root_item, tmp);
1076         /* record when the snapshot was created in key.offset */
1077         key.offset = trans->transid;
1078         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1079         btrfs_tree_unlock(tmp);
1080         free_extent_buffer(tmp);
1081         if (ret)
1082                 goto abort_trans_dput;
1083
1084         /*
1085          * insert root back/forward references
1086          */
1087         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1088                                  parent_root->root_key.objectid,
1089                                  btrfs_ino(parent_inode), index,
1090                                  dentry->d_name.name, dentry->d_name.len);
1091         dput(parent);
1092         if (ret)
1093                 goto fail;
1094
1095         key.offset = (u64)-1;
1096         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1097         if (IS_ERR(pending->snap)) {
1098                 ret = PTR_ERR(pending->snap);
1099                 goto abort_trans;
1100         }
1101
1102         ret = btrfs_reloc_post_snapshot(trans, pending);
1103         if (ret)
1104                 goto abort_trans;
1105         ret = 0;
1106 fail:
1107         kfree(new_root_item);
1108         trans->block_rsv = rsv;
1109         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1110         return ret;
1111
1112 abort_trans_dput:
1113         dput(parent);
1114 abort_trans:
1115         btrfs_abort_transaction(trans, root, ret);
1116         goto fail;
1117 }
1118
1119 /*
1120  * create all the snapshots we've scheduled for creation
1121  */
1122 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1123                                              struct btrfs_fs_info *fs_info)
1124 {
1125         struct btrfs_pending_snapshot *pending;
1126         struct list_head *head = &trans->transaction->pending_snapshots;
1127
1128         list_for_each_entry(pending, head, list)
1129                 create_pending_snapshot(trans, fs_info, pending);
1130         return 0;
1131 }
1132
1133 static void update_super_roots(struct btrfs_root *root)
1134 {
1135         struct btrfs_root_item *root_item;
1136         struct btrfs_super_block *super;
1137
1138         super = root->fs_info->super_copy;
1139
1140         root_item = &root->fs_info->chunk_root->root_item;
1141         super->chunk_root = root_item->bytenr;
1142         super->chunk_root_generation = root_item->generation;
1143         super->chunk_root_level = root_item->level;
1144
1145         root_item = &root->fs_info->tree_root->root_item;
1146         super->root = root_item->bytenr;
1147         super->generation = root_item->generation;
1148         super->root_level = root_item->level;
1149         if (btrfs_test_opt(root, SPACE_CACHE))
1150                 super->cache_generation = root_item->generation;
1151 }
1152
1153 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1154 {
1155         int ret = 0;
1156         spin_lock(&info->trans_lock);
1157         if (info->running_transaction)
1158                 ret = info->running_transaction->in_commit;
1159         spin_unlock(&info->trans_lock);
1160         return ret;
1161 }
1162
1163 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1164 {
1165         int ret = 0;
1166         spin_lock(&info->trans_lock);
1167         if (info->running_transaction)
1168                 ret = info->running_transaction->blocked;
1169         spin_unlock(&info->trans_lock);
1170         return ret;
1171 }
1172
1173 /*
1174  * wait for the current transaction commit to start and block subsequent
1175  * transaction joins
1176  */
1177 static void wait_current_trans_commit_start(struct btrfs_root *root,
1178                                             struct btrfs_transaction *trans)
1179 {
1180         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1181 }
1182
1183 /*
1184  * wait for the current transaction to start and then become unblocked.
1185  * caller holds ref.
1186  */
1187 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1188                                          struct btrfs_transaction *trans)
1189 {
1190         wait_event(root->fs_info->transaction_wait,
1191                    trans->commit_done || (trans->in_commit && !trans->blocked));
1192 }
1193
1194 /*
1195  * commit transactions asynchronously. once btrfs_commit_transaction_async
1196  * returns, any subsequent transaction will not be allowed to join.
1197  */
1198 struct btrfs_async_commit {
1199         struct btrfs_trans_handle *newtrans;
1200         struct btrfs_root *root;
1201         struct delayed_work work;
1202 };
1203
1204 static void do_async_commit(struct work_struct *work)
1205 {
1206         struct btrfs_async_commit *ac =
1207                 container_of(work, struct btrfs_async_commit, work.work);
1208
1209         btrfs_commit_transaction(ac->newtrans, ac->root);
1210         kfree(ac);
1211 }
1212
1213 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1214                                    struct btrfs_root *root,
1215                                    int wait_for_unblock)
1216 {
1217         struct btrfs_async_commit *ac;
1218         struct btrfs_transaction *cur_trans;
1219
1220         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1221         if (!ac)
1222                 return -ENOMEM;
1223
1224         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1225         ac->root = root;
1226         ac->newtrans = btrfs_join_transaction(root);
1227         if (IS_ERR(ac->newtrans)) {
1228                 int err = PTR_ERR(ac->newtrans);
1229                 kfree(ac);
1230                 return err;
1231         }
1232
1233         /* take transaction reference */
1234         cur_trans = trans->transaction;
1235         atomic_inc(&cur_trans->use_count);
1236
1237         btrfs_end_transaction(trans, root);
1238         schedule_delayed_work(&ac->work, 0);
1239
1240         /* wait for transaction to start and unblock */
1241         if (wait_for_unblock)
1242                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1243         else
1244                 wait_current_trans_commit_start(root, cur_trans);
1245
1246         if (current->journal_info == trans)
1247                 current->journal_info = NULL;
1248
1249         put_transaction(cur_trans);
1250         return 0;
1251 }
1252
1253
1254 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1255                                 struct btrfs_root *root, int err)
1256 {
1257         struct btrfs_transaction *cur_trans = trans->transaction;
1258
1259         WARN_ON(trans->use_count > 1);
1260
1261         btrfs_abort_transaction(trans, root, err);
1262
1263         spin_lock(&root->fs_info->trans_lock);
1264         list_del_init(&cur_trans->list);
1265         if (cur_trans == root->fs_info->running_transaction) {
1266                 root->fs_info->running_transaction = NULL;
1267                 root->fs_info->trans_no_join = 0;
1268         }
1269         spin_unlock(&root->fs_info->trans_lock);
1270
1271         btrfs_cleanup_one_transaction(trans->transaction, root);
1272
1273         put_transaction(cur_trans);
1274         put_transaction(cur_trans);
1275
1276         trace_btrfs_transaction_commit(root);
1277
1278         btrfs_scrub_continue(root);
1279
1280         if (current->journal_info == trans)
1281                 current->journal_info = NULL;
1282
1283         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1284 }
1285
1286 /*
1287  * btrfs_transaction state sequence:
1288  *    in_commit = 0, blocked = 0  (initial)
1289  *    in_commit = 1, blocked = 1
1290  *    blocked = 0
1291  *    commit_done = 1
1292  */
1293 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1294                              struct btrfs_root *root)
1295 {
1296         unsigned long joined = 0;
1297         struct btrfs_transaction *cur_trans = trans->transaction;
1298         struct btrfs_transaction *prev_trans = NULL;
1299         DEFINE_WAIT(wait);
1300         int ret = -EIO;
1301         int should_grow = 0;
1302         unsigned long now = get_seconds();
1303         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1304
1305         btrfs_run_ordered_operations(root, 0);
1306
1307         if (cur_trans->aborted)
1308                 goto cleanup_transaction;
1309
1310         /* make a pass through all the delayed refs we have so far
1311          * any runnings procs may add more while we are here
1312          */
1313         ret = btrfs_run_delayed_refs(trans, root, 0);
1314         if (ret)
1315                 goto cleanup_transaction;
1316
1317         btrfs_trans_release_metadata(trans, root);
1318         trans->block_rsv = NULL;
1319
1320         cur_trans = trans->transaction;
1321
1322         /*
1323          * set the flushing flag so procs in this transaction have to
1324          * start sending their work down.
1325          */
1326         cur_trans->delayed_refs.flushing = 1;
1327
1328         ret = btrfs_run_delayed_refs(trans, root, 0);
1329         if (ret)
1330                 goto cleanup_transaction;
1331
1332         spin_lock(&cur_trans->commit_lock);
1333         if (cur_trans->in_commit) {
1334                 spin_unlock(&cur_trans->commit_lock);
1335                 atomic_inc(&cur_trans->use_count);
1336                 ret = btrfs_end_transaction(trans, root);
1337
1338                 wait_for_commit(root, cur_trans);
1339
1340                 put_transaction(cur_trans);
1341
1342                 return ret;
1343         }
1344
1345         trans->transaction->in_commit = 1;
1346         trans->transaction->blocked = 1;
1347         spin_unlock(&cur_trans->commit_lock);
1348         wake_up(&root->fs_info->transaction_blocked_wait);
1349
1350         spin_lock(&root->fs_info->trans_lock);
1351         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1352                 prev_trans = list_entry(cur_trans->list.prev,
1353                                         struct btrfs_transaction, list);
1354                 if (!prev_trans->commit_done) {
1355                         atomic_inc(&prev_trans->use_count);
1356                         spin_unlock(&root->fs_info->trans_lock);
1357
1358                         wait_for_commit(root, prev_trans);
1359
1360                         put_transaction(prev_trans);
1361                 } else {
1362                         spin_unlock(&root->fs_info->trans_lock);
1363                 }
1364         } else {
1365                 spin_unlock(&root->fs_info->trans_lock);
1366         }
1367
1368         if (!btrfs_test_opt(root, SSD) &&
1369             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1370                 should_grow = 1;
1371
1372         do {
1373                 int snap_pending = 0;
1374
1375                 joined = cur_trans->num_joined;
1376                 if (!list_empty(&trans->transaction->pending_snapshots))
1377                         snap_pending = 1;
1378
1379                 WARN_ON(cur_trans != trans->transaction);
1380
1381                 if (flush_on_commit || snap_pending) {
1382                         btrfs_start_delalloc_inodes(root, 1);
1383                         btrfs_wait_ordered_extents(root, 0, 1);
1384                 }
1385
1386                 ret = btrfs_run_delayed_items(trans, root);
1387                 if (ret)
1388                         goto cleanup_transaction;
1389
1390                 /*
1391                  * running the delayed items may have added new refs. account
1392                  * them now so that they hinder processing of more delayed refs
1393                  * as little as possible.
1394                  */
1395                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1396
1397                 /*
1398                  * rename don't use btrfs_join_transaction, so, once we
1399                  * set the transaction to blocked above, we aren't going
1400                  * to get any new ordered operations.  We can safely run
1401                  * it here and no for sure that nothing new will be added
1402                  * to the list
1403                  */
1404                 btrfs_run_ordered_operations(root, 1);
1405
1406                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1407                                 TASK_UNINTERRUPTIBLE);
1408
1409                 if (atomic_read(&cur_trans->num_writers) > 1)
1410                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1411                 else if (should_grow)
1412                         schedule_timeout(1);
1413
1414                 finish_wait(&cur_trans->writer_wait, &wait);
1415         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1416                  (should_grow && cur_trans->num_joined != joined));
1417
1418         /*
1419          * Ok now we need to make sure to block out any other joins while we
1420          * commit the transaction.  We could have started a join before setting
1421          * no_join so make sure to wait for num_writers to == 1 again.
1422          */
1423         spin_lock(&root->fs_info->trans_lock);
1424         root->fs_info->trans_no_join = 1;
1425         spin_unlock(&root->fs_info->trans_lock);
1426         wait_event(cur_trans->writer_wait,
1427                    atomic_read(&cur_trans->num_writers) == 1);
1428
1429         /*
1430          * the reloc mutex makes sure that we stop
1431          * the balancing code from coming in and moving
1432          * extents around in the middle of the commit
1433          */
1434         mutex_lock(&root->fs_info->reloc_mutex);
1435
1436         ret = btrfs_run_delayed_items(trans, root);
1437         if (ret) {
1438                 mutex_unlock(&root->fs_info->reloc_mutex);
1439                 goto cleanup_transaction;
1440         }
1441
1442         ret = create_pending_snapshots(trans, root->fs_info);
1443         if (ret) {
1444                 mutex_unlock(&root->fs_info->reloc_mutex);
1445                 goto cleanup_transaction;
1446         }
1447
1448         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1449         if (ret) {
1450                 mutex_unlock(&root->fs_info->reloc_mutex);
1451                 goto cleanup_transaction;
1452         }
1453
1454         /*
1455          * make sure none of the code above managed to slip in a
1456          * delayed item
1457          */
1458         btrfs_assert_delayed_root_empty(root);
1459
1460         WARN_ON(cur_trans != trans->transaction);
1461
1462         btrfs_scrub_pause(root);
1463         /* btrfs_commit_tree_roots is responsible for getting the
1464          * various roots consistent with each other.  Every pointer
1465          * in the tree of tree roots has to point to the most up to date
1466          * root for every subvolume and other tree.  So, we have to keep
1467          * the tree logging code from jumping in and changing any
1468          * of the trees.
1469          *
1470          * At this point in the commit, there can't be any tree-log
1471          * writers, but a little lower down we drop the trans mutex
1472          * and let new people in.  By holding the tree_log_mutex
1473          * from now until after the super is written, we avoid races
1474          * with the tree-log code.
1475          */
1476         mutex_lock(&root->fs_info->tree_log_mutex);
1477
1478         ret = commit_fs_roots(trans, root);
1479         if (ret) {
1480                 mutex_unlock(&root->fs_info->tree_log_mutex);
1481                 mutex_unlock(&root->fs_info->reloc_mutex);
1482                 goto cleanup_transaction;
1483         }
1484
1485         /* commit_fs_roots gets rid of all the tree log roots, it is now
1486          * safe to free the root of tree log roots
1487          */
1488         btrfs_free_log_root_tree(trans, root->fs_info);
1489
1490         ret = commit_cowonly_roots(trans, root);
1491         if (ret) {
1492                 mutex_unlock(&root->fs_info->tree_log_mutex);
1493                 mutex_unlock(&root->fs_info->reloc_mutex);
1494                 goto cleanup_transaction;
1495         }
1496
1497         btrfs_prepare_extent_commit(trans, root);
1498
1499         cur_trans = root->fs_info->running_transaction;
1500
1501         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1502                             root->fs_info->tree_root->node);
1503         switch_commit_root(root->fs_info->tree_root);
1504
1505         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1506                             root->fs_info->chunk_root->node);
1507         switch_commit_root(root->fs_info->chunk_root);
1508
1509         assert_qgroups_uptodate(trans);
1510         update_super_roots(root);
1511
1512         if (!root->fs_info->log_root_recovering) {
1513                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1514                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1515         }
1516
1517         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1518                sizeof(*root->fs_info->super_copy));
1519
1520         trans->transaction->blocked = 0;
1521         spin_lock(&root->fs_info->trans_lock);
1522         root->fs_info->running_transaction = NULL;
1523         root->fs_info->trans_no_join = 0;
1524         spin_unlock(&root->fs_info->trans_lock);
1525         mutex_unlock(&root->fs_info->reloc_mutex);
1526
1527         wake_up(&root->fs_info->transaction_wait);
1528
1529         ret = btrfs_write_and_wait_transaction(trans, root);
1530         if (ret) {
1531                 btrfs_error(root->fs_info, ret,
1532                             "Error while writing out transaction.");
1533                 mutex_unlock(&root->fs_info->tree_log_mutex);
1534                 goto cleanup_transaction;
1535         }
1536
1537         ret = write_ctree_super(trans, root, 0);
1538         if (ret) {
1539                 mutex_unlock(&root->fs_info->tree_log_mutex);
1540                 goto cleanup_transaction;
1541         }
1542
1543         /*
1544          * the super is written, we can safely allow the tree-loggers
1545          * to go about their business
1546          */
1547         mutex_unlock(&root->fs_info->tree_log_mutex);
1548
1549         btrfs_finish_extent_commit(trans, root);
1550
1551         cur_trans->commit_done = 1;
1552
1553         root->fs_info->last_trans_committed = cur_trans->transid;
1554
1555         wake_up(&cur_trans->commit_wait);
1556
1557         spin_lock(&root->fs_info->trans_lock);
1558         list_del_init(&cur_trans->list);
1559         spin_unlock(&root->fs_info->trans_lock);
1560
1561         put_transaction(cur_trans);
1562         put_transaction(cur_trans);
1563
1564         trace_btrfs_transaction_commit(root);
1565
1566         btrfs_scrub_continue(root);
1567
1568         if (current->journal_info == trans)
1569                 current->journal_info = NULL;
1570
1571         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1572
1573         if (current != root->fs_info->transaction_kthread)
1574                 btrfs_run_delayed_iputs(root);
1575
1576         return ret;
1577
1578 cleanup_transaction:
1579         btrfs_trans_release_metadata(trans, root);
1580         trans->block_rsv = NULL;
1581         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1582 //      WARN_ON(1);
1583         if (current->journal_info == trans)
1584                 current->journal_info = NULL;
1585         cleanup_transaction(trans, root, ret);
1586
1587         return ret;
1588 }
1589
1590 /*
1591  * interface function to delete all the snapshots we have scheduled for deletion
1592  */
1593 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1594 {
1595         LIST_HEAD(list);
1596         struct btrfs_fs_info *fs_info = root->fs_info;
1597
1598         spin_lock(&fs_info->trans_lock);
1599         list_splice_init(&fs_info->dead_roots, &list);
1600         spin_unlock(&fs_info->trans_lock);
1601
1602         while (!list_empty(&list)) {
1603                 int ret;
1604
1605                 root = list_entry(list.next, struct btrfs_root, root_list);
1606                 list_del(&root->root_list);
1607
1608                 btrfs_kill_all_delayed_nodes(root);
1609
1610                 if (btrfs_header_backref_rev(root->node) <
1611                     BTRFS_MIXED_BACKREF_REV)
1612                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1613                 else
1614                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1615                 BUG_ON(ret < 0);
1616         }
1617         return 0;
1618 }