arm: ep93xx: Enable i2c support for ep9302
[linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65                                       char nbuf[16])
66 {
67         char *errstr = NULL;
68
69         switch (errno) {
70         case -EIO:
71                 errstr = "IO failure";
72                 break;
73         case -ENOMEM:
74                 errstr = "Out of memory";
75                 break;
76         case -EROFS:
77                 errstr = "Readonly filesystem";
78                 break;
79         case -EEXIST:
80                 errstr = "Object already exists";
81                 break;
82         default:
83                 if (nbuf) {
84                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
85                                 errstr = nbuf;
86                 }
87                 break;
88         }
89
90         return errstr;
91 }
92
93 static void __save_error_info(struct btrfs_fs_info *fs_info)
94 {
95         /*
96          * today we only save the error info into ram.  Long term we'll
97          * also send it down to the disk
98          */
99         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
100 }
101
102 /* NOTE:
103  *      We move write_super stuff at umount in order to avoid deadlock
104  *      for umount hold all lock.
105  */
106 static void save_error_info(struct btrfs_fs_info *fs_info)
107 {
108         __save_error_info(fs_info);
109 }
110
111 /* btrfs handle error by forcing the filesystem readonly */
112 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
113 {
114         struct super_block *sb = fs_info->sb;
115
116         if (sb->s_flags & MS_RDONLY)
117                 return;
118
119         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
120                 sb->s_flags |= MS_RDONLY;
121                 printk(KERN_INFO "btrfs is forced readonly\n");
122                 __btrfs_scrub_cancel(fs_info);
123 //              WARN_ON(1);
124         }
125 }
126
127 /*
128  * __btrfs_std_error decodes expected errors from the caller and
129  * invokes the approciate error response.
130  */
131 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
132                        unsigned int line, int errno, const char *fmt, ...)
133 {
134         struct super_block *sb = fs_info->sb;
135         char nbuf[16];
136         const char *errstr;
137         va_list args;
138         va_start(args, fmt);
139
140         /*
141          * Special case: if the error is EROFS, and we're already
142          * under MS_RDONLY, then it is safe here.
143          */
144         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
145                 return;
146
147         errstr = btrfs_decode_error(fs_info, errno, nbuf);
148         if (fmt) {
149                 struct va_format vaf = {
150                         .fmt = fmt,
151                         .va = &args,
152                 };
153
154                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
155                         sb->s_id, function, line, errstr, &vaf);
156         } else {
157                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
158                         sb->s_id, function, line, errstr);
159         }
160
161         /* Don't go through full error handling during mount */
162         if (sb->s_flags & MS_BORN) {
163                 save_error_info(fs_info);
164                 btrfs_handle_error(fs_info);
165         }
166         va_end(args);
167 }
168
169 const char *logtypes[] = {
170         "emergency",
171         "alert",
172         "critical",
173         "error",
174         "warning",
175         "notice",
176         "info",
177         "debug",
178 };
179
180 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182         struct super_block *sb = fs_info->sb;
183         char lvl[4];
184         struct va_format vaf;
185         va_list args;
186         const char *type = logtypes[4];
187
188         va_start(args, fmt);
189
190         if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
191                 memcpy(lvl, fmt, 3);
192                 lvl[3] = '\0';
193                 fmt += 3;
194                 type = logtypes[fmt[1] - '0'];
195         } else
196                 *lvl = '\0';
197
198         vaf.fmt = fmt;
199         vaf.va = &args;
200         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
201 }
202
203 /*
204  * We only mark the transaction aborted and then set the file system read-only.
205  * This will prevent new transactions from starting or trying to join this
206  * one.
207  *
208  * This means that error recovery at the call site is limited to freeing
209  * any local memory allocations and passing the error code up without
210  * further cleanup. The transaction should complete as it normally would
211  * in the call path but will return -EIO.
212  *
213  * We'll complete the cleanup in btrfs_end_transaction and
214  * btrfs_commit_transaction.
215  */
216 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
217                                struct btrfs_root *root, const char *function,
218                                unsigned int line, int errno)
219 {
220         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
221         trans->aborted = errno;
222         /* Nothing used. The other threads that have joined this
223          * transaction may be able to continue. */
224         if (!trans->blocks_used) {
225                 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
226                 return;
227         }
228         trans->transaction->aborted = errno;
229         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
230 }
231 /*
232  * __btrfs_panic decodes unexpected, fatal errors from the caller,
233  * issues an alert, and either panics or BUGs, depending on mount options.
234  */
235 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
236                    unsigned int line, int errno, const char *fmt, ...)
237 {
238         char nbuf[16];
239         char *s_id = "<unknown>";
240         const char *errstr;
241         struct va_format vaf = { .fmt = fmt };
242         va_list args;
243
244         if (fs_info)
245                 s_id = fs_info->sb->s_id;
246
247         va_start(args, fmt);
248         vaf.va = &args;
249
250         errstr = btrfs_decode_error(fs_info, errno, nbuf);
251         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
252                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
253                         s_id, function, line, &vaf, errstr);
254
255         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
256                s_id, function, line, &vaf, errstr);
257         va_end(args);
258         /* Caller calls BUG() */
259 }
260
261 static void btrfs_put_super(struct super_block *sb)
262 {
263         (void)close_ctree(btrfs_sb(sb)->tree_root);
264         /* FIXME: need to fix VFS to return error? */
265         /* AV: return it _where_?  ->put_super() can be triggered by any number
266          * of async events, up to and including delivery of SIGKILL to the
267          * last process that kept it busy.  Or segfault in the aforementioned
268          * process...  Whom would you report that to?
269          */
270 }
271
272 enum {
273         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
274         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
275         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
276         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
277         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
278         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
279         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
280         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
281         Opt_check_integrity, Opt_check_integrity_including_extent_data,
282         Opt_check_integrity_print_mask, Opt_fatal_errors,
283         Opt_err,
284 };
285
286 static match_table_t tokens = {
287         {Opt_degraded, "degraded"},
288         {Opt_subvol, "subvol=%s"},
289         {Opt_subvolid, "subvolid=%d"},
290         {Opt_device, "device=%s"},
291         {Opt_nodatasum, "nodatasum"},
292         {Opt_nodatacow, "nodatacow"},
293         {Opt_nobarrier, "nobarrier"},
294         {Opt_max_inline, "max_inline=%s"},
295         {Opt_alloc_start, "alloc_start=%s"},
296         {Opt_thread_pool, "thread_pool=%d"},
297         {Opt_compress, "compress"},
298         {Opt_compress_type, "compress=%s"},
299         {Opt_compress_force, "compress-force"},
300         {Opt_compress_force_type, "compress-force=%s"},
301         {Opt_ssd, "ssd"},
302         {Opt_ssd_spread, "ssd_spread"},
303         {Opt_nossd, "nossd"},
304         {Opt_noacl, "noacl"},
305         {Opt_notreelog, "notreelog"},
306         {Opt_flushoncommit, "flushoncommit"},
307         {Opt_ratio, "metadata_ratio=%d"},
308         {Opt_discard, "discard"},
309         {Opt_space_cache, "space_cache"},
310         {Opt_clear_cache, "clear_cache"},
311         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
312         {Opt_enospc_debug, "enospc_debug"},
313         {Opt_subvolrootid, "subvolrootid=%d"},
314         {Opt_defrag, "autodefrag"},
315         {Opt_inode_cache, "inode_cache"},
316         {Opt_no_space_cache, "nospace_cache"},
317         {Opt_recovery, "recovery"},
318         {Opt_skip_balance, "skip_balance"},
319         {Opt_check_integrity, "check_int"},
320         {Opt_check_integrity_including_extent_data, "check_int_data"},
321         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
322         {Opt_fatal_errors, "fatal_errors=%s"},
323         {Opt_err, NULL},
324 };
325
326 /*
327  * Regular mount options parser.  Everything that is needed only when
328  * reading in a new superblock is parsed here.
329  * XXX JDM: This needs to be cleaned up for remount.
330  */
331 int btrfs_parse_options(struct btrfs_root *root, char *options)
332 {
333         struct btrfs_fs_info *info = root->fs_info;
334         substring_t args[MAX_OPT_ARGS];
335         char *p, *num, *orig = NULL;
336         u64 cache_gen;
337         int intarg;
338         int ret = 0;
339         char *compress_type;
340         bool compress_force = false;
341
342         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
343         if (cache_gen)
344                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
345
346         if (!options)
347                 goto out;
348
349         /*
350          * strsep changes the string, duplicate it because parse_options
351          * gets called twice
352          */
353         options = kstrdup(options, GFP_NOFS);
354         if (!options)
355                 return -ENOMEM;
356
357         orig = options;
358
359         while ((p = strsep(&options, ",")) != NULL) {
360                 int token;
361                 if (!*p)
362                         continue;
363
364                 token = match_token(p, tokens, args);
365                 switch (token) {
366                 case Opt_degraded:
367                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
368                         btrfs_set_opt(info->mount_opt, DEGRADED);
369                         break;
370                 case Opt_subvol:
371                 case Opt_subvolid:
372                 case Opt_subvolrootid:
373                 case Opt_device:
374                         /*
375                          * These are parsed by btrfs_parse_early_options
376                          * and can be happily ignored here.
377                          */
378                         break;
379                 case Opt_nodatasum:
380                         printk(KERN_INFO "btrfs: setting nodatasum\n");
381                         btrfs_set_opt(info->mount_opt, NODATASUM);
382                         break;
383                 case Opt_nodatacow:
384                         printk(KERN_INFO "btrfs: setting nodatacow\n");
385                         btrfs_set_opt(info->mount_opt, NODATACOW);
386                         btrfs_set_opt(info->mount_opt, NODATASUM);
387                         break;
388                 case Opt_compress_force:
389                 case Opt_compress_force_type:
390                         compress_force = true;
391                 case Opt_compress:
392                 case Opt_compress_type:
393                         if (token == Opt_compress ||
394                             token == Opt_compress_force ||
395                             strcmp(args[0].from, "zlib") == 0) {
396                                 compress_type = "zlib";
397                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
398                         } else if (strcmp(args[0].from, "lzo") == 0) {
399                                 compress_type = "lzo";
400                                 info->compress_type = BTRFS_COMPRESS_LZO;
401                         } else {
402                                 ret = -EINVAL;
403                                 goto out;
404                         }
405
406                         btrfs_set_opt(info->mount_opt, COMPRESS);
407                         if (compress_force) {
408                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
409                                 pr_info("btrfs: force %s compression\n",
410                                         compress_type);
411                         } else
412                                 pr_info("btrfs: use %s compression\n",
413                                         compress_type);
414                         break;
415                 case Opt_ssd:
416                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
417                         btrfs_set_opt(info->mount_opt, SSD);
418                         break;
419                 case Opt_ssd_spread:
420                         printk(KERN_INFO "btrfs: use spread ssd "
421                                "allocation scheme\n");
422                         btrfs_set_opt(info->mount_opt, SSD);
423                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
424                         break;
425                 case Opt_nossd:
426                         printk(KERN_INFO "btrfs: not using ssd allocation "
427                                "scheme\n");
428                         btrfs_set_opt(info->mount_opt, NOSSD);
429                         btrfs_clear_opt(info->mount_opt, SSD);
430                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
431                         break;
432                 case Opt_nobarrier:
433                         printk(KERN_INFO "btrfs: turning off barriers\n");
434                         btrfs_set_opt(info->mount_opt, NOBARRIER);
435                         break;
436                 case Opt_thread_pool:
437                         intarg = 0;
438                         match_int(&args[0], &intarg);
439                         if (intarg)
440                                 info->thread_pool_size = intarg;
441                         break;
442                 case Opt_max_inline:
443                         num = match_strdup(&args[0]);
444                         if (num) {
445                                 info->max_inline = memparse(num, NULL);
446                                 kfree(num);
447
448                                 if (info->max_inline) {
449                                         info->max_inline = max_t(u64,
450                                                 info->max_inline,
451                                                 root->sectorsize);
452                                 }
453                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
454                                         (unsigned long long)info->max_inline);
455                         }
456                         break;
457                 case Opt_alloc_start:
458                         num = match_strdup(&args[0]);
459                         if (num) {
460                                 info->alloc_start = memparse(num, NULL);
461                                 kfree(num);
462                                 printk(KERN_INFO
463                                         "btrfs: allocations start at %llu\n",
464                                         (unsigned long long)info->alloc_start);
465                         }
466                         break;
467                 case Opt_noacl:
468                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
469                         break;
470                 case Opt_notreelog:
471                         printk(KERN_INFO "btrfs: disabling tree log\n");
472                         btrfs_set_opt(info->mount_opt, NOTREELOG);
473                         break;
474                 case Opt_flushoncommit:
475                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
476                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
477                         break;
478                 case Opt_ratio:
479                         intarg = 0;
480                         match_int(&args[0], &intarg);
481                         if (intarg) {
482                                 info->metadata_ratio = intarg;
483                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
484                                        info->metadata_ratio);
485                         }
486                         break;
487                 case Opt_discard:
488                         btrfs_set_opt(info->mount_opt, DISCARD);
489                         break;
490                 case Opt_space_cache:
491                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
492                         break;
493                 case Opt_no_space_cache:
494                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
495                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
496                         break;
497                 case Opt_inode_cache:
498                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
499                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
500                         break;
501                 case Opt_clear_cache:
502                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
503                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
504                         break;
505                 case Opt_user_subvol_rm_allowed:
506                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
507                         break;
508                 case Opt_enospc_debug:
509                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
510                         break;
511                 case Opt_defrag:
512                         printk(KERN_INFO "btrfs: enabling auto defrag");
513                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
514                         break;
515                 case Opt_recovery:
516                         printk(KERN_INFO "btrfs: enabling auto recovery");
517                         btrfs_set_opt(info->mount_opt, RECOVERY);
518                         break;
519                 case Opt_skip_balance:
520                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
521                         break;
522 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
523                 case Opt_check_integrity_including_extent_data:
524                         printk(KERN_INFO "btrfs: enabling check integrity"
525                                " including extent data\n");
526                         btrfs_set_opt(info->mount_opt,
527                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
528                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
529                         break;
530                 case Opt_check_integrity:
531                         printk(KERN_INFO "btrfs: enabling check integrity\n");
532                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
533                         break;
534                 case Opt_check_integrity_print_mask:
535                         intarg = 0;
536                         match_int(&args[0], &intarg);
537                         if (intarg) {
538                                 info->check_integrity_print_mask = intarg;
539                                 printk(KERN_INFO "btrfs:"
540                                        " check_integrity_print_mask 0x%x\n",
541                                        info->check_integrity_print_mask);
542                         }
543                         break;
544 #else
545                 case Opt_check_integrity_including_extent_data:
546                 case Opt_check_integrity:
547                 case Opt_check_integrity_print_mask:
548                         printk(KERN_ERR "btrfs: support for check_integrity*"
549                                " not compiled in!\n");
550                         ret = -EINVAL;
551                         goto out;
552 #endif
553                 case Opt_fatal_errors:
554                         if (strcmp(args[0].from, "panic") == 0)
555                                 btrfs_set_opt(info->mount_opt,
556                                               PANIC_ON_FATAL_ERROR);
557                         else if (strcmp(args[0].from, "bug") == 0)
558                                 btrfs_clear_opt(info->mount_opt,
559                                               PANIC_ON_FATAL_ERROR);
560                         else {
561                                 ret = -EINVAL;
562                                 goto out;
563                         }
564                         break;
565                 case Opt_err:
566                         printk(KERN_INFO "btrfs: unrecognized mount option "
567                                "'%s'\n", p);
568                         ret = -EINVAL;
569                         goto out;
570                 default:
571                         break;
572                 }
573         }
574 out:
575         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
576                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
577         kfree(orig);
578         return ret;
579 }
580
581 /*
582  * Parse mount options that are required early in the mount process.
583  *
584  * All other options will be parsed on much later in the mount process and
585  * only when we need to allocate a new super block.
586  */
587 static int btrfs_parse_early_options(const char *options, fmode_t flags,
588                 void *holder, char **subvol_name, u64 *subvol_objectid,
589                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
590 {
591         substring_t args[MAX_OPT_ARGS];
592         char *device_name, *opts, *orig, *p;
593         int error = 0;
594         int intarg;
595
596         if (!options)
597                 return 0;
598
599         /*
600          * strsep changes the string, duplicate it because parse_options
601          * gets called twice
602          */
603         opts = kstrdup(options, GFP_KERNEL);
604         if (!opts)
605                 return -ENOMEM;
606         orig = opts;
607
608         while ((p = strsep(&opts, ",")) != NULL) {
609                 int token;
610                 if (!*p)
611                         continue;
612
613                 token = match_token(p, tokens, args);
614                 switch (token) {
615                 case Opt_subvol:
616                         kfree(*subvol_name);
617                         *subvol_name = match_strdup(&args[0]);
618                         break;
619                 case Opt_subvolid:
620                         intarg = 0;
621                         error = match_int(&args[0], &intarg);
622                         if (!error) {
623                                 /* we want the original fs_tree */
624                                 if (!intarg)
625                                         *subvol_objectid =
626                                                 BTRFS_FS_TREE_OBJECTID;
627                                 else
628                                         *subvol_objectid = intarg;
629                         }
630                         break;
631                 case Opt_subvolrootid:
632                         intarg = 0;
633                         error = match_int(&args[0], &intarg);
634                         if (!error) {
635                                 /* we want the original fs_tree */
636                                 if (!intarg)
637                                         *subvol_rootid =
638                                                 BTRFS_FS_TREE_OBJECTID;
639                                 else
640                                         *subvol_rootid = intarg;
641                         }
642                         break;
643                 case Opt_device:
644                         device_name = match_strdup(&args[0]);
645                         if (!device_name) {
646                                 error = -ENOMEM;
647                                 goto out;
648                         }
649                         error = btrfs_scan_one_device(device_name,
650                                         flags, holder, fs_devices);
651                         kfree(device_name);
652                         if (error)
653                                 goto out;
654                         break;
655                 default:
656                         break;
657                 }
658         }
659
660 out:
661         kfree(orig);
662         return error;
663 }
664
665 static struct dentry *get_default_root(struct super_block *sb,
666                                        u64 subvol_objectid)
667 {
668         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
669         struct btrfs_root *root = fs_info->tree_root;
670         struct btrfs_root *new_root;
671         struct btrfs_dir_item *di;
672         struct btrfs_path *path;
673         struct btrfs_key location;
674         struct inode *inode;
675         u64 dir_id;
676         int new = 0;
677
678         /*
679          * We have a specific subvol we want to mount, just setup location and
680          * go look up the root.
681          */
682         if (subvol_objectid) {
683                 location.objectid = subvol_objectid;
684                 location.type = BTRFS_ROOT_ITEM_KEY;
685                 location.offset = (u64)-1;
686                 goto find_root;
687         }
688
689         path = btrfs_alloc_path();
690         if (!path)
691                 return ERR_PTR(-ENOMEM);
692         path->leave_spinning = 1;
693
694         /*
695          * Find the "default" dir item which points to the root item that we
696          * will mount by default if we haven't been given a specific subvolume
697          * to mount.
698          */
699         dir_id = btrfs_super_root_dir(fs_info->super_copy);
700         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
701         if (IS_ERR(di)) {
702                 btrfs_free_path(path);
703                 return ERR_CAST(di);
704         }
705         if (!di) {
706                 /*
707                  * Ok the default dir item isn't there.  This is weird since
708                  * it's always been there, but don't freak out, just try and
709                  * mount to root most subvolume.
710                  */
711                 btrfs_free_path(path);
712                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
713                 new_root = fs_info->fs_root;
714                 goto setup_root;
715         }
716
717         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
718         btrfs_free_path(path);
719
720 find_root:
721         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
722         if (IS_ERR(new_root))
723                 return ERR_CAST(new_root);
724
725         if (btrfs_root_refs(&new_root->root_item) == 0)
726                 return ERR_PTR(-ENOENT);
727
728         dir_id = btrfs_root_dirid(&new_root->root_item);
729 setup_root:
730         location.objectid = dir_id;
731         location.type = BTRFS_INODE_ITEM_KEY;
732         location.offset = 0;
733
734         inode = btrfs_iget(sb, &location, new_root, &new);
735         if (IS_ERR(inode))
736                 return ERR_CAST(inode);
737
738         /*
739          * If we're just mounting the root most subvol put the inode and return
740          * a reference to the dentry.  We will have already gotten a reference
741          * to the inode in btrfs_fill_super so we're good to go.
742          */
743         if (!new && sb->s_root->d_inode == inode) {
744                 iput(inode);
745                 return dget(sb->s_root);
746         }
747
748         return d_obtain_alias(inode);
749 }
750
751 static int btrfs_fill_super(struct super_block *sb,
752                             struct btrfs_fs_devices *fs_devices,
753                             void *data, int silent)
754 {
755         struct inode *inode;
756         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
757         struct btrfs_key key;
758         int err;
759
760         sb->s_maxbytes = MAX_LFS_FILESIZE;
761         sb->s_magic = BTRFS_SUPER_MAGIC;
762         sb->s_op = &btrfs_super_ops;
763         sb->s_d_op = &btrfs_dentry_operations;
764         sb->s_export_op = &btrfs_export_ops;
765         sb->s_xattr = btrfs_xattr_handlers;
766         sb->s_time_gran = 1;
767 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
768         sb->s_flags |= MS_POSIXACL;
769 #endif
770         sb->s_flags |= MS_I_VERSION;
771         err = open_ctree(sb, fs_devices, (char *)data);
772         if (err) {
773                 printk("btrfs: open_ctree failed\n");
774                 return err;
775         }
776
777         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
778         key.type = BTRFS_INODE_ITEM_KEY;
779         key.offset = 0;
780         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
781         if (IS_ERR(inode)) {
782                 err = PTR_ERR(inode);
783                 goto fail_close;
784         }
785
786         sb->s_root = d_make_root(inode);
787         if (!sb->s_root) {
788                 err = -ENOMEM;
789                 goto fail_close;
790         }
791
792         save_mount_options(sb, data);
793         cleancache_init_fs(sb);
794         sb->s_flags |= MS_ACTIVE;
795         return 0;
796
797 fail_close:
798         close_ctree(fs_info->tree_root);
799         return err;
800 }
801
802 int btrfs_sync_fs(struct super_block *sb, int wait)
803 {
804         struct btrfs_trans_handle *trans;
805         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
806         struct btrfs_root *root = fs_info->tree_root;
807         int ret;
808
809         trace_btrfs_sync_fs(wait);
810
811         if (!wait) {
812                 filemap_flush(fs_info->btree_inode->i_mapping);
813                 return 0;
814         }
815
816         btrfs_wait_ordered_extents(root, 0, 0);
817
818         trans = btrfs_start_transaction(root, 0);
819         if (IS_ERR(trans))
820                 return PTR_ERR(trans);
821         ret = btrfs_commit_transaction(trans, root);
822         return ret;
823 }
824
825 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
826 {
827         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
828         struct btrfs_root *root = info->tree_root;
829         char *compress_type;
830
831         if (btrfs_test_opt(root, DEGRADED))
832                 seq_puts(seq, ",degraded");
833         if (btrfs_test_opt(root, NODATASUM))
834                 seq_puts(seq, ",nodatasum");
835         if (btrfs_test_opt(root, NODATACOW))
836                 seq_puts(seq, ",nodatacow");
837         if (btrfs_test_opt(root, NOBARRIER))
838                 seq_puts(seq, ",nobarrier");
839         if (info->max_inline != 8192 * 1024)
840                 seq_printf(seq, ",max_inline=%llu",
841                            (unsigned long long)info->max_inline);
842         if (info->alloc_start != 0)
843                 seq_printf(seq, ",alloc_start=%llu",
844                            (unsigned long long)info->alloc_start);
845         if (info->thread_pool_size !=  min_t(unsigned long,
846                                              num_online_cpus() + 2, 8))
847                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
848         if (btrfs_test_opt(root, COMPRESS)) {
849                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
850                         compress_type = "zlib";
851                 else
852                         compress_type = "lzo";
853                 if (btrfs_test_opt(root, FORCE_COMPRESS))
854                         seq_printf(seq, ",compress-force=%s", compress_type);
855                 else
856                         seq_printf(seq, ",compress=%s", compress_type);
857         }
858         if (btrfs_test_opt(root, NOSSD))
859                 seq_puts(seq, ",nossd");
860         if (btrfs_test_opt(root, SSD_SPREAD))
861                 seq_puts(seq, ",ssd_spread");
862         else if (btrfs_test_opt(root, SSD))
863                 seq_puts(seq, ",ssd");
864         if (btrfs_test_opt(root, NOTREELOG))
865                 seq_puts(seq, ",notreelog");
866         if (btrfs_test_opt(root, FLUSHONCOMMIT))
867                 seq_puts(seq, ",flushoncommit");
868         if (btrfs_test_opt(root, DISCARD))
869                 seq_puts(seq, ",discard");
870         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
871                 seq_puts(seq, ",noacl");
872         if (btrfs_test_opt(root, SPACE_CACHE))
873                 seq_puts(seq, ",space_cache");
874         else
875                 seq_puts(seq, ",nospace_cache");
876         if (btrfs_test_opt(root, CLEAR_CACHE))
877                 seq_puts(seq, ",clear_cache");
878         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
879                 seq_puts(seq, ",user_subvol_rm_allowed");
880         if (btrfs_test_opt(root, ENOSPC_DEBUG))
881                 seq_puts(seq, ",enospc_debug");
882         if (btrfs_test_opt(root, AUTO_DEFRAG))
883                 seq_puts(seq, ",autodefrag");
884         if (btrfs_test_opt(root, INODE_MAP_CACHE))
885                 seq_puts(seq, ",inode_cache");
886         if (btrfs_test_opt(root, SKIP_BALANCE))
887                 seq_puts(seq, ",skip_balance");
888         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
889                 seq_puts(seq, ",fatal_errors=panic");
890         return 0;
891 }
892
893 static int btrfs_test_super(struct super_block *s, void *data)
894 {
895         struct btrfs_fs_info *p = data;
896         struct btrfs_fs_info *fs_info = btrfs_sb(s);
897
898         return fs_info->fs_devices == p->fs_devices;
899 }
900
901 static int btrfs_set_super(struct super_block *s, void *data)
902 {
903         int err = set_anon_super(s, data);
904         if (!err)
905                 s->s_fs_info = data;
906         return err;
907 }
908
909 /*
910  * subvolumes are identified by ino 256
911  */
912 static inline int is_subvolume_inode(struct inode *inode)
913 {
914         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
915                 return 1;
916         return 0;
917 }
918
919 /*
920  * This will strip out the subvol=%s argument for an argument string and add
921  * subvolid=0 to make sure we get the actual tree root for path walking to the
922  * subvol we want.
923  */
924 static char *setup_root_args(char *args)
925 {
926         unsigned len = strlen(args) + 2 + 1;
927         char *src, *dst, *buf;
928
929         /*
930          * We need the same args as before, but with this substitution:
931          * s!subvol=[^,]+!subvolid=0!
932          *
933          * Since the replacement string is up to 2 bytes longer than the
934          * original, allocate strlen(args) + 2 + 1 bytes.
935          */
936
937         src = strstr(args, "subvol=");
938         /* This shouldn't happen, but just in case.. */
939         if (!src)
940                 return NULL;
941
942         buf = dst = kmalloc(len, GFP_NOFS);
943         if (!buf)
944                 return NULL;
945
946         /*
947          * If the subvol= arg is not at the start of the string,
948          * copy whatever precedes it into buf.
949          */
950         if (src != args) {
951                 *src++ = '\0';
952                 strcpy(buf, args);
953                 dst += strlen(args);
954         }
955
956         strcpy(dst, "subvolid=0");
957         dst += strlen("subvolid=0");
958
959         /*
960          * If there is a "," after the original subvol=... string,
961          * copy that suffix into our buffer.  Otherwise, we're done.
962          */
963         src = strchr(src, ',');
964         if (src)
965                 strcpy(dst, src);
966
967         return buf;
968 }
969
970 static struct dentry *mount_subvol(const char *subvol_name, int flags,
971                                    const char *device_name, char *data)
972 {
973         struct dentry *root;
974         struct vfsmount *mnt;
975         char *newargs;
976
977         newargs = setup_root_args(data);
978         if (!newargs)
979                 return ERR_PTR(-ENOMEM);
980         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
981                              newargs);
982         kfree(newargs);
983         if (IS_ERR(mnt))
984                 return ERR_CAST(mnt);
985
986         root = mount_subtree(mnt, subvol_name);
987
988         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
989                 struct super_block *s = root->d_sb;
990                 dput(root);
991                 root = ERR_PTR(-EINVAL);
992                 deactivate_locked_super(s);
993                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
994                                 subvol_name);
995         }
996
997         return root;
998 }
999
1000 /*
1001  * Find a superblock for the given device / mount point.
1002  *
1003  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1004  *        for multiple device setup.  Make sure to keep it in sync.
1005  */
1006 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1007                 const char *device_name, void *data)
1008 {
1009         struct block_device *bdev = NULL;
1010         struct super_block *s;
1011         struct dentry *root;
1012         struct btrfs_fs_devices *fs_devices = NULL;
1013         struct btrfs_fs_info *fs_info = NULL;
1014         fmode_t mode = FMODE_READ;
1015         char *subvol_name = NULL;
1016         u64 subvol_objectid = 0;
1017         u64 subvol_rootid = 0;
1018         int error = 0;
1019
1020         if (!(flags & MS_RDONLY))
1021                 mode |= FMODE_WRITE;
1022
1023         error = btrfs_parse_early_options(data, mode, fs_type,
1024                                           &subvol_name, &subvol_objectid,
1025                                           &subvol_rootid, &fs_devices);
1026         if (error) {
1027                 kfree(subvol_name);
1028                 return ERR_PTR(error);
1029         }
1030
1031         if (subvol_name) {
1032                 root = mount_subvol(subvol_name, flags, device_name, data);
1033                 kfree(subvol_name);
1034                 return root;
1035         }
1036
1037         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1038         if (error)
1039                 return ERR_PTR(error);
1040
1041         /*
1042          * Setup a dummy root and fs_info for test/set super.  This is because
1043          * we don't actually fill this stuff out until open_ctree, but we need
1044          * it for searching for existing supers, so this lets us do that and
1045          * then open_ctree will properly initialize everything later.
1046          */
1047         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1048         if (!fs_info)
1049                 return ERR_PTR(-ENOMEM);
1050
1051         fs_info->fs_devices = fs_devices;
1052
1053         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1054         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1056                 error = -ENOMEM;
1057                 goto error_fs_info;
1058         }
1059
1060         error = btrfs_open_devices(fs_devices, mode, fs_type);
1061         if (error)
1062                 goto error_fs_info;
1063
1064         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1065                 error = -EACCES;
1066                 goto error_close_devices;
1067         }
1068
1069         bdev = fs_devices->latest_bdev;
1070         s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1071         if (IS_ERR(s)) {
1072                 error = PTR_ERR(s);
1073                 goto error_close_devices;
1074         }
1075
1076         if (s->s_root) {
1077                 btrfs_close_devices(fs_devices);
1078                 free_fs_info(fs_info);
1079                 if ((flags ^ s->s_flags) & MS_RDONLY)
1080                         error = -EBUSY;
1081         } else {
1082                 char b[BDEVNAME_SIZE];
1083
1084                 s->s_flags = flags | MS_NOSEC;
1085                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1086                 btrfs_sb(s)->bdev_holder = fs_type;
1087                 error = btrfs_fill_super(s, fs_devices, data,
1088                                          flags & MS_SILENT ? 1 : 0);
1089         }
1090
1091         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1092         if (IS_ERR(root))
1093                 deactivate_locked_super(s);
1094
1095         return root;
1096
1097 error_close_devices:
1098         btrfs_close_devices(fs_devices);
1099 error_fs_info:
1100         free_fs_info(fs_info);
1101         return ERR_PTR(error);
1102 }
1103
1104 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1105 {
1106         spin_lock_irq(&workers->lock);
1107         workers->max_workers = new_limit;
1108         spin_unlock_irq(&workers->lock);
1109 }
1110
1111 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1112                                      int new_pool_size, int old_pool_size)
1113 {
1114         if (new_pool_size == old_pool_size)
1115                 return;
1116
1117         fs_info->thread_pool_size = new_pool_size;
1118
1119         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1120                old_pool_size, new_pool_size);
1121
1122         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1123         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1124         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1125         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1126         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1127         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1128         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1129         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1130         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1131         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1132         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1133         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1134         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1135         btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1136 }
1137
1138 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1139 {
1140         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1141         struct btrfs_root *root = fs_info->tree_root;
1142         unsigned old_flags = sb->s_flags;
1143         unsigned long old_opts = fs_info->mount_opt;
1144         unsigned long old_compress_type = fs_info->compress_type;
1145         u64 old_max_inline = fs_info->max_inline;
1146         u64 old_alloc_start = fs_info->alloc_start;
1147         int old_thread_pool_size = fs_info->thread_pool_size;
1148         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1149         int ret;
1150
1151         ret = btrfs_parse_options(root, data);
1152         if (ret) {
1153                 ret = -EINVAL;
1154                 goto restore;
1155         }
1156
1157         btrfs_resize_thread_pool(fs_info,
1158                 fs_info->thread_pool_size, old_thread_pool_size);
1159
1160         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1161                 return 0;
1162
1163         if (*flags & MS_RDONLY) {
1164                 sb->s_flags |= MS_RDONLY;
1165
1166                 ret = btrfs_commit_super(root);
1167                 if (ret)
1168                         goto restore;
1169         } else {
1170                 if (fs_info->fs_devices->rw_devices == 0) {
1171                         ret = -EACCES;
1172                         goto restore;
1173                 }
1174
1175                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1176                         ret = -EINVAL;
1177                         goto restore;
1178                 }
1179
1180                 ret = btrfs_cleanup_fs_roots(fs_info);
1181                 if (ret)
1182                         goto restore;
1183
1184                 /* recover relocation */
1185                 ret = btrfs_recover_relocation(root);
1186                 if (ret)
1187                         goto restore;
1188
1189                 sb->s_flags &= ~MS_RDONLY;
1190         }
1191
1192         return 0;
1193
1194 restore:
1195         /* We've hit an error - don't reset MS_RDONLY */
1196         if (sb->s_flags & MS_RDONLY)
1197                 old_flags |= MS_RDONLY;
1198         sb->s_flags = old_flags;
1199         fs_info->mount_opt = old_opts;
1200         fs_info->compress_type = old_compress_type;
1201         fs_info->max_inline = old_max_inline;
1202         fs_info->alloc_start = old_alloc_start;
1203         btrfs_resize_thread_pool(fs_info,
1204                 old_thread_pool_size, fs_info->thread_pool_size);
1205         fs_info->metadata_ratio = old_metadata_ratio;
1206         return ret;
1207 }
1208
1209 /* Used to sort the devices by max_avail(descending sort) */
1210 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1211                                        const void *dev_info2)
1212 {
1213         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1214             ((struct btrfs_device_info *)dev_info2)->max_avail)
1215                 return -1;
1216         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1217                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1218                 return 1;
1219         else
1220         return 0;
1221 }
1222
1223 /*
1224  * sort the devices by max_avail, in which max free extent size of each device
1225  * is stored.(Descending Sort)
1226  */
1227 static inline void btrfs_descending_sort_devices(
1228                                         struct btrfs_device_info *devices,
1229                                         size_t nr_devices)
1230 {
1231         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1232              btrfs_cmp_device_free_bytes, NULL);
1233 }
1234
1235 /*
1236  * The helper to calc the free space on the devices that can be used to store
1237  * file data.
1238  */
1239 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1240 {
1241         struct btrfs_fs_info *fs_info = root->fs_info;
1242         struct btrfs_device_info *devices_info;
1243         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1244         struct btrfs_device *device;
1245         u64 skip_space;
1246         u64 type;
1247         u64 avail_space;
1248         u64 used_space;
1249         u64 min_stripe_size;
1250         int min_stripes = 1, num_stripes = 1;
1251         int i = 0, nr_devices;
1252         int ret;
1253
1254         nr_devices = fs_info->fs_devices->open_devices;
1255         BUG_ON(!nr_devices);
1256
1257         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1258                                GFP_NOFS);
1259         if (!devices_info)
1260                 return -ENOMEM;
1261
1262         /* calc min stripe number for data space alloction */
1263         type = btrfs_get_alloc_profile(root, 1);
1264         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1265                 min_stripes = 2;
1266                 num_stripes = nr_devices;
1267         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1268                 min_stripes = 2;
1269                 num_stripes = 2;
1270         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1271                 min_stripes = 4;
1272                 num_stripes = 4;
1273         }
1274
1275         if (type & BTRFS_BLOCK_GROUP_DUP)
1276                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1277         else
1278                 min_stripe_size = BTRFS_STRIPE_LEN;
1279
1280         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1281                 if (!device->in_fs_metadata || !device->bdev)
1282                         continue;
1283
1284                 avail_space = device->total_bytes - device->bytes_used;
1285
1286                 /* align with stripe_len */
1287                 do_div(avail_space, BTRFS_STRIPE_LEN);
1288                 avail_space *= BTRFS_STRIPE_LEN;
1289
1290                 /*
1291                  * In order to avoid overwritting the superblock on the drive,
1292                  * btrfs starts at an offset of at least 1MB when doing chunk
1293                  * allocation.
1294                  */
1295                 skip_space = 1024 * 1024;
1296
1297                 /* user can set the offset in fs_info->alloc_start. */
1298                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1299                     device->total_bytes)
1300                         skip_space = max(fs_info->alloc_start, skip_space);
1301
1302                 /*
1303                  * btrfs can not use the free space in [0, skip_space - 1],
1304                  * we must subtract it from the total. In order to implement
1305                  * it, we account the used space in this range first.
1306                  */
1307                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1308                                                      &used_space);
1309                 if (ret) {
1310                         kfree(devices_info);
1311                         return ret;
1312                 }
1313
1314                 /* calc the free space in [0, skip_space - 1] */
1315                 skip_space -= used_space;
1316
1317                 /*
1318                  * we can use the free space in [0, skip_space - 1], subtract
1319                  * it from the total.
1320                  */
1321                 if (avail_space && avail_space >= skip_space)
1322                         avail_space -= skip_space;
1323                 else
1324                         avail_space = 0;
1325
1326                 if (avail_space < min_stripe_size)
1327                         continue;
1328
1329                 devices_info[i].dev = device;
1330                 devices_info[i].max_avail = avail_space;
1331
1332                 i++;
1333         }
1334
1335         nr_devices = i;
1336
1337         btrfs_descending_sort_devices(devices_info, nr_devices);
1338
1339         i = nr_devices - 1;
1340         avail_space = 0;
1341         while (nr_devices >= min_stripes) {
1342                 if (num_stripes > nr_devices)
1343                         num_stripes = nr_devices;
1344
1345                 if (devices_info[i].max_avail >= min_stripe_size) {
1346                         int j;
1347                         u64 alloc_size;
1348
1349                         avail_space += devices_info[i].max_avail * num_stripes;
1350                         alloc_size = devices_info[i].max_avail;
1351                         for (j = i + 1 - num_stripes; j <= i; j++)
1352                                 devices_info[j].max_avail -= alloc_size;
1353                 }
1354                 i--;
1355                 nr_devices--;
1356         }
1357
1358         kfree(devices_info);
1359         *free_bytes = avail_space;
1360         return 0;
1361 }
1362
1363 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1364 {
1365         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1366         struct btrfs_super_block *disk_super = fs_info->super_copy;
1367         struct list_head *head = &fs_info->space_info;
1368         struct btrfs_space_info *found;
1369         u64 total_used = 0;
1370         u64 total_free_data = 0;
1371         int bits = dentry->d_sb->s_blocksize_bits;
1372         __be32 *fsid = (__be32 *)fs_info->fsid;
1373         int ret;
1374
1375         /* holding chunk_muext to avoid allocating new chunks */
1376         mutex_lock(&fs_info->chunk_mutex);
1377         rcu_read_lock();
1378         list_for_each_entry_rcu(found, head, list) {
1379                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1380                         total_free_data += found->disk_total - found->disk_used;
1381                         total_free_data -=
1382                                 btrfs_account_ro_block_groups_free_space(found);
1383                 }
1384
1385                 total_used += found->disk_used;
1386         }
1387         rcu_read_unlock();
1388
1389         buf->f_namelen = BTRFS_NAME_LEN;
1390         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1391         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1392         buf->f_bsize = dentry->d_sb->s_blocksize;
1393         buf->f_type = BTRFS_SUPER_MAGIC;
1394         buf->f_bavail = total_free_data;
1395         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1396         if (ret) {
1397                 mutex_unlock(&fs_info->chunk_mutex);
1398                 return ret;
1399         }
1400         buf->f_bavail += total_free_data;
1401         buf->f_bavail = buf->f_bavail >> bits;
1402         mutex_unlock(&fs_info->chunk_mutex);
1403
1404         /* We treat it as constant endianness (it doesn't matter _which_)
1405            because we want the fsid to come out the same whether mounted
1406            on a big-endian or little-endian host */
1407         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1408         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1409         /* Mask in the root object ID too, to disambiguate subvols */
1410         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1411         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1412
1413         return 0;
1414 }
1415
1416 static void btrfs_kill_super(struct super_block *sb)
1417 {
1418         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1419         kill_anon_super(sb);
1420         free_fs_info(fs_info);
1421 }
1422
1423 static struct file_system_type btrfs_fs_type = {
1424         .owner          = THIS_MODULE,
1425         .name           = "btrfs",
1426         .mount          = btrfs_mount,
1427         .kill_sb        = btrfs_kill_super,
1428         .fs_flags       = FS_REQUIRES_DEV,
1429 };
1430
1431 /*
1432  * used by btrfsctl to scan devices when no FS is mounted
1433  */
1434 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1435                                 unsigned long arg)
1436 {
1437         struct btrfs_ioctl_vol_args *vol;
1438         struct btrfs_fs_devices *fs_devices;
1439         int ret = -ENOTTY;
1440
1441         if (!capable(CAP_SYS_ADMIN))
1442                 return -EPERM;
1443
1444         vol = memdup_user((void __user *)arg, sizeof(*vol));
1445         if (IS_ERR(vol))
1446                 return PTR_ERR(vol);
1447
1448         switch (cmd) {
1449         case BTRFS_IOC_SCAN_DEV:
1450                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1451                                             &btrfs_fs_type, &fs_devices);
1452                 break;
1453         }
1454
1455         kfree(vol);
1456         return ret;
1457 }
1458
1459 static int btrfs_freeze(struct super_block *sb)
1460 {
1461         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1462         mutex_lock(&fs_info->transaction_kthread_mutex);
1463         mutex_lock(&fs_info->cleaner_mutex);
1464         return 0;
1465 }
1466
1467 static int btrfs_unfreeze(struct super_block *sb)
1468 {
1469         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1470         mutex_unlock(&fs_info->cleaner_mutex);
1471         mutex_unlock(&fs_info->transaction_kthread_mutex);
1472         return 0;
1473 }
1474
1475 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1476 {
1477         int ret;
1478
1479         ret = btrfs_dirty_inode(inode);
1480         if (ret)
1481                 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1482                                    "error %d\n", btrfs_ino(inode), ret);
1483 }
1484
1485 static const struct super_operations btrfs_super_ops = {
1486         .drop_inode     = btrfs_drop_inode,
1487         .evict_inode    = btrfs_evict_inode,
1488         .put_super      = btrfs_put_super,
1489         .sync_fs        = btrfs_sync_fs,
1490         .show_options   = btrfs_show_options,
1491         .write_inode    = btrfs_write_inode,
1492         .dirty_inode    = btrfs_fs_dirty_inode,
1493         .alloc_inode    = btrfs_alloc_inode,
1494         .destroy_inode  = btrfs_destroy_inode,
1495         .statfs         = btrfs_statfs,
1496         .remount_fs     = btrfs_remount,
1497         .freeze_fs      = btrfs_freeze,
1498         .unfreeze_fs    = btrfs_unfreeze,
1499 };
1500
1501 static const struct file_operations btrfs_ctl_fops = {
1502         .unlocked_ioctl  = btrfs_control_ioctl,
1503         .compat_ioctl = btrfs_control_ioctl,
1504         .owner   = THIS_MODULE,
1505         .llseek = noop_llseek,
1506 };
1507
1508 static struct miscdevice btrfs_misc = {
1509         .minor          = BTRFS_MINOR,
1510         .name           = "btrfs-control",
1511         .fops           = &btrfs_ctl_fops
1512 };
1513
1514 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1515 MODULE_ALIAS("devname:btrfs-control");
1516
1517 static int btrfs_interface_init(void)
1518 {
1519         return misc_register(&btrfs_misc);
1520 }
1521
1522 static void btrfs_interface_exit(void)
1523 {
1524         if (misc_deregister(&btrfs_misc) < 0)
1525                 printk(KERN_INFO "misc_deregister failed for control device");
1526 }
1527
1528 static int __init init_btrfs_fs(void)
1529 {
1530         int err;
1531
1532         err = btrfs_init_sysfs();
1533         if (err)
1534                 return err;
1535
1536         btrfs_init_compress();
1537
1538         err = btrfs_init_cachep();
1539         if (err)
1540                 goto free_compress;
1541
1542         err = extent_io_init();
1543         if (err)
1544                 goto free_cachep;
1545
1546         err = extent_map_init();
1547         if (err)
1548                 goto free_extent_io;
1549
1550         err = btrfs_delayed_inode_init();
1551         if (err)
1552                 goto free_extent_map;
1553
1554         err = btrfs_interface_init();
1555         if (err)
1556                 goto free_delayed_inode;
1557
1558         err = register_filesystem(&btrfs_fs_type);
1559         if (err)
1560                 goto unregister_ioctl;
1561
1562         btrfs_init_lockdep();
1563
1564         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1565         return 0;
1566
1567 unregister_ioctl:
1568         btrfs_interface_exit();
1569 free_delayed_inode:
1570         btrfs_delayed_inode_exit();
1571 free_extent_map:
1572         extent_map_exit();
1573 free_extent_io:
1574         extent_io_exit();
1575 free_cachep:
1576         btrfs_destroy_cachep();
1577 free_compress:
1578         btrfs_exit_compress();
1579         btrfs_exit_sysfs();
1580         return err;
1581 }
1582
1583 static void __exit exit_btrfs_fs(void)
1584 {
1585         btrfs_destroy_cachep();
1586         btrfs_delayed_inode_exit();
1587         extent_map_exit();
1588         extent_io_exit();
1589         btrfs_interface_exit();
1590         unregister_filesystem(&btrfs_fs_type);
1591         btrfs_exit_sysfs();
1592         btrfs_cleanup_fs_uuids();
1593         btrfs_exit_compress();
1594 }
1595
1596 module_init(init_btrfs_fs)
1597 module_exit(exit_btrfs_fs)
1598
1599 MODULE_LICENSE("GPL");