Merge branch 'bdw-fixes' of git://people.freedesktop.org/~danvet/drm-intel into drm...
[linux.git] / drivers / power / ab8500_fg.c
1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/of.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35 #include <linux/kernel.h>
36
37 #define MILLI_TO_MICRO                  1000
38 #define FG_LSB_IN_MA                    1627
39 #define QLSB_NANO_AMP_HOURS_X10         1071
40 #define INS_CURR_TIMEOUT                (3 * HZ)
41
42 #define SEC_TO_SAMPLE(S)                (S * 4)
43
44 #define NBR_AVG_SAMPLES                 20
45
46 #define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
47
48 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
49 #define BATT_OK_MIN                     2360 /* mV */
50 #define BATT_OK_INCREMENT               50 /* mV */
51 #define BATT_OK_MAX_NR_INCREMENTS       0xE
52
53 /* FG constants */
54 #define BATT_OVV                        0x01
55
56 #define interpolate(x, x1, y1, x2, y2) \
57         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
58
59 #define to_ab8500_fg_device_info(x) container_of((x), \
60         struct ab8500_fg, fg_psy);
61
62 /**
63  * struct ab8500_fg_interrupts - ab8500 fg interupts
64  * @name:       name of the interrupt
65  * @isr         function pointer to the isr
66  */
67 struct ab8500_fg_interrupts {
68         char *name;
69         irqreturn_t (*isr)(int irq, void *data);
70 };
71
72 enum ab8500_fg_discharge_state {
73         AB8500_FG_DISCHARGE_INIT,
74         AB8500_FG_DISCHARGE_INITMEASURING,
75         AB8500_FG_DISCHARGE_INIT_RECOVERY,
76         AB8500_FG_DISCHARGE_RECOVERY,
77         AB8500_FG_DISCHARGE_READOUT_INIT,
78         AB8500_FG_DISCHARGE_READOUT,
79         AB8500_FG_DISCHARGE_WAKEUP,
80 };
81
82 static char *discharge_state[] = {
83         "DISCHARGE_INIT",
84         "DISCHARGE_INITMEASURING",
85         "DISCHARGE_INIT_RECOVERY",
86         "DISCHARGE_RECOVERY",
87         "DISCHARGE_READOUT_INIT",
88         "DISCHARGE_READOUT",
89         "DISCHARGE_WAKEUP",
90 };
91
92 enum ab8500_fg_charge_state {
93         AB8500_FG_CHARGE_INIT,
94         AB8500_FG_CHARGE_READOUT,
95 };
96
97 static char *charge_state[] = {
98         "CHARGE_INIT",
99         "CHARGE_READOUT",
100 };
101
102 enum ab8500_fg_calibration_state {
103         AB8500_FG_CALIB_INIT,
104         AB8500_FG_CALIB_WAIT,
105         AB8500_FG_CALIB_END,
106 };
107
108 struct ab8500_fg_avg_cap {
109         int avg;
110         int samples[NBR_AVG_SAMPLES];
111         __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
112         int pos;
113         int nbr_samples;
114         int sum;
115 };
116
117 struct ab8500_fg_cap_scaling {
118         bool enable;
119         int cap_to_scale[2];
120         int disable_cap_level;
121         int scaled_cap;
122 };
123
124 struct ab8500_fg_battery_capacity {
125         int max_mah_design;
126         int max_mah;
127         int mah;
128         int permille;
129         int level;
130         int prev_mah;
131         int prev_percent;
132         int prev_level;
133         int user_mah;
134         struct ab8500_fg_cap_scaling cap_scale;
135 };
136
137 struct ab8500_fg_flags {
138         bool fg_enabled;
139         bool conv_done;
140         bool charging;
141         bool fully_charged;
142         bool force_full;
143         bool low_bat_delay;
144         bool low_bat;
145         bool bat_ovv;
146         bool batt_unknown;
147         bool calibrate;
148         bool user_cap;
149         bool batt_id_received;
150 };
151
152 struct inst_curr_result_list {
153         struct list_head list;
154         int *result;
155 };
156
157 /**
158  * struct ab8500_fg - ab8500 FG device information
159  * @dev:                Pointer to the structure device
160  * @node:               a list of AB8500 FGs, hence prepared for reentrance
161  * @irq                 holds the CCEOC interrupt number
162  * @vbat:               Battery voltage in mV
163  * @vbat_nom:           Nominal battery voltage in mV
164  * @inst_curr:          Instantenous battery current in mA
165  * @avg_curr:           Average battery current in mA
166  * @bat_temp            battery temperature
167  * @fg_samples:         Number of samples used in the FG accumulation
168  * @accu_charge:        Accumulated charge from the last conversion
169  * @recovery_cnt:       Counter for recovery mode
170  * @high_curr_cnt:      Counter for high current mode
171  * @init_cnt:           Counter for init mode
172  * @low_bat_cnt         Counter for number of consecutive low battery measures
173  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
174  * @recovery_needed:    Indicate if recovery is needed
175  * @high_curr_mode:     Indicate if we're in high current mode
176  * @init_capacity:      Indicate if initial capacity measuring should be done
177  * @turn_off_fg:        True if fg was off before current measurement
178  * @calib_state         State during offset calibration
179  * @discharge_state:    Current discharge state
180  * @charge_state:       Current charge state
181  * @ab8500_fg_started   Completion struct used for the instant current start
182  * @ab8500_fg_complete  Completion struct used for the instant current reading
183  * @flags:              Structure for information about events triggered
184  * @bat_cap:            Structure for battery capacity specific parameters
185  * @avg_cap:            Average capacity filter
186  * @parent:             Pointer to the struct ab8500
187  * @gpadc:              Pointer to the struct gpadc
188  * @bm:                 Platform specific battery management information
189  * @fg_psy:             Structure that holds the FG specific battery properties
190  * @fg_wq:              Work queue for running the FG algorithm
191  * @fg_periodic_work:   Work to run the FG algorithm periodically
192  * @fg_low_bat_work:    Work to check low bat condition
193  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
194  * @fg_work:            Work to run the FG algorithm instantly
195  * @fg_acc_cur_work:    Work to read the FG accumulator
196  * @fg_check_hw_failure_work:   Work for checking HW state
197  * @cc_lock:            Mutex for locking the CC
198  * @fg_kobject:         Structure of type kobject
199  */
200 struct ab8500_fg {
201         struct device *dev;
202         struct list_head node;
203         int irq;
204         int vbat;
205         int vbat_nom;
206         int inst_curr;
207         int avg_curr;
208         int bat_temp;
209         int fg_samples;
210         int accu_charge;
211         int recovery_cnt;
212         int high_curr_cnt;
213         int init_cnt;
214         int low_bat_cnt;
215         int nbr_cceoc_irq_cnt;
216         bool recovery_needed;
217         bool high_curr_mode;
218         bool init_capacity;
219         bool turn_off_fg;
220         enum ab8500_fg_calibration_state calib_state;
221         enum ab8500_fg_discharge_state discharge_state;
222         enum ab8500_fg_charge_state charge_state;
223         struct completion ab8500_fg_started;
224         struct completion ab8500_fg_complete;
225         struct ab8500_fg_flags flags;
226         struct ab8500_fg_battery_capacity bat_cap;
227         struct ab8500_fg_avg_cap avg_cap;
228         struct ab8500 *parent;
229         struct ab8500_gpadc *gpadc;
230         struct abx500_bm_data *bm;
231         struct power_supply fg_psy;
232         struct workqueue_struct *fg_wq;
233         struct delayed_work fg_periodic_work;
234         struct delayed_work fg_low_bat_work;
235         struct delayed_work fg_reinit_work;
236         struct work_struct fg_work;
237         struct work_struct fg_acc_cur_work;
238         struct delayed_work fg_check_hw_failure_work;
239         struct mutex cc_lock;
240         struct kobject fg_kobject;
241 };
242 static LIST_HEAD(ab8500_fg_list);
243
244 /**
245  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
246  * (i.e. the first fuel gauge in the instance list)
247  */
248 struct ab8500_fg *ab8500_fg_get(void)
249 {
250         struct ab8500_fg *fg;
251
252         if (list_empty(&ab8500_fg_list))
253                 return NULL;
254
255         fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
256         return fg;
257 }
258
259 /* Main battery properties */
260 static enum power_supply_property ab8500_fg_props[] = {
261         POWER_SUPPLY_PROP_VOLTAGE_NOW,
262         POWER_SUPPLY_PROP_CURRENT_NOW,
263         POWER_SUPPLY_PROP_CURRENT_AVG,
264         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
265         POWER_SUPPLY_PROP_ENERGY_FULL,
266         POWER_SUPPLY_PROP_ENERGY_NOW,
267         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
268         POWER_SUPPLY_PROP_CHARGE_FULL,
269         POWER_SUPPLY_PROP_CHARGE_NOW,
270         POWER_SUPPLY_PROP_CAPACITY,
271         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
272 };
273
274 /*
275  * This array maps the raw hex value to lowbat voltage used by the AB8500
276  * Values taken from the UM0836
277  */
278 static int ab8500_fg_lowbat_voltage_map[] = {
279         2300 ,
280         2325 ,
281         2350 ,
282         2375 ,
283         2400 ,
284         2425 ,
285         2450 ,
286         2475 ,
287         2500 ,
288         2525 ,
289         2550 ,
290         2575 ,
291         2600 ,
292         2625 ,
293         2650 ,
294         2675 ,
295         2700 ,
296         2725 ,
297         2750 ,
298         2775 ,
299         2800 ,
300         2825 ,
301         2850 ,
302         2875 ,
303         2900 ,
304         2925 ,
305         2950 ,
306         2975 ,
307         3000 ,
308         3025 ,
309         3050 ,
310         3075 ,
311         3100 ,
312         3125 ,
313         3150 ,
314         3175 ,
315         3200 ,
316         3225 ,
317         3250 ,
318         3275 ,
319         3300 ,
320         3325 ,
321         3350 ,
322         3375 ,
323         3400 ,
324         3425 ,
325         3450 ,
326         3475 ,
327         3500 ,
328         3525 ,
329         3550 ,
330         3575 ,
331         3600 ,
332         3625 ,
333         3650 ,
334         3675 ,
335         3700 ,
336         3725 ,
337         3750 ,
338         3775 ,
339         3800 ,
340         3825 ,
341         3850 ,
342         3850 ,
343 };
344
345 static u8 ab8500_volt_to_regval(int voltage)
346 {
347         int i;
348
349         if (voltage < ab8500_fg_lowbat_voltage_map[0])
350                 return 0;
351
352         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
353                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
354                         return (u8) i - 1;
355         }
356
357         /* If not captured above, return index of last element */
358         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
359 }
360
361 /**
362  * ab8500_fg_is_low_curr() - Low or high current mode
363  * @di:         pointer to the ab8500_fg structure
364  * @curr:       the current to base or our decision on
365  *
366  * Low current mode if the current consumption is below a certain threshold
367  */
368 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
369 {
370         /*
371          * We want to know if we're in low current mode
372          */
373         if (curr > -di->bm->fg_params->high_curr_threshold)
374                 return true;
375         else
376                 return false;
377 }
378
379 /**
380  * ab8500_fg_add_cap_sample() - Add capacity to average filter
381  * @di:         pointer to the ab8500_fg structure
382  * @sample:     the capacity in mAh to add to the filter
383  *
384  * A capacity is added to the filter and a new mean capacity is calculated and
385  * returned
386  */
387 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
388 {
389         struct timespec ts;
390         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
391
392         getnstimeofday(&ts);
393
394         do {
395                 avg->sum += sample - avg->samples[avg->pos];
396                 avg->samples[avg->pos] = sample;
397                 avg->time_stamps[avg->pos] = ts.tv_sec;
398                 avg->pos++;
399
400                 if (avg->pos == NBR_AVG_SAMPLES)
401                         avg->pos = 0;
402
403                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
404                         avg->nbr_samples++;
405
406                 /*
407                  * Check the time stamp for each sample. If too old,
408                  * replace with latest sample
409                  */
410         } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
411
412         avg->avg = avg->sum / avg->nbr_samples;
413
414         return avg->avg;
415 }
416
417 /**
418  * ab8500_fg_clear_cap_samples() - Clear average filter
419  * @di:         pointer to the ab8500_fg structure
420  *
421  * The capacity filter is is reset to zero.
422  */
423 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
424 {
425         int i;
426         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
427
428         avg->pos = 0;
429         avg->nbr_samples = 0;
430         avg->sum = 0;
431         avg->avg = 0;
432
433         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
434                 avg->samples[i] = 0;
435                 avg->time_stamps[i] = 0;
436         }
437 }
438
439 /**
440  * ab8500_fg_fill_cap_sample() - Fill average filter
441  * @di:         pointer to the ab8500_fg structure
442  * @sample:     the capacity in mAh to fill the filter with
443  *
444  * The capacity filter is filled with a capacity in mAh
445  */
446 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
447 {
448         int i;
449         struct timespec ts;
450         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
451
452         getnstimeofday(&ts);
453
454         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
455                 avg->samples[i] = sample;
456                 avg->time_stamps[i] = ts.tv_sec;
457         }
458
459         avg->pos = 0;
460         avg->nbr_samples = NBR_AVG_SAMPLES;
461         avg->sum = sample * NBR_AVG_SAMPLES;
462         avg->avg = sample;
463 }
464
465 /**
466  * ab8500_fg_coulomb_counter() - enable coulomb counter
467  * @di:         pointer to the ab8500_fg structure
468  * @enable:     enable/disable
469  *
470  * Enable/Disable coulomb counter.
471  * On failure returns negative value.
472  */
473 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
474 {
475         int ret = 0;
476         mutex_lock(&di->cc_lock);
477         if (enable) {
478                 /* To be able to reprogram the number of samples, we have to
479                  * first stop the CC and then enable it again */
480                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
481                         AB8500_RTC_CC_CONF_REG, 0x00);
482                 if (ret)
483                         goto cc_err;
484
485                 /* Program the samples */
486                 ret = abx500_set_register_interruptible(di->dev,
487                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
488                         di->fg_samples);
489                 if (ret)
490                         goto cc_err;
491
492                 /* Start the CC */
493                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
494                         AB8500_RTC_CC_CONF_REG,
495                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
496                 if (ret)
497                         goto cc_err;
498
499                 di->flags.fg_enabled = true;
500         } else {
501                 /* Clear any pending read requests */
502                 ret = abx500_mask_and_set_register_interruptible(di->dev,
503                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
504                         (RESET_ACCU | READ_REQ), 0);
505                 if (ret)
506                         goto cc_err;
507
508                 ret = abx500_set_register_interruptible(di->dev,
509                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
510                 if (ret)
511                         goto cc_err;
512
513                 /* Stop the CC */
514                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
515                         AB8500_RTC_CC_CONF_REG, 0);
516                 if (ret)
517                         goto cc_err;
518
519                 di->flags.fg_enabled = false;
520
521         }
522         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
523                 enable, di->fg_samples);
524
525         mutex_unlock(&di->cc_lock);
526
527         return ret;
528 cc_err:
529         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
530         mutex_unlock(&di->cc_lock);
531         return ret;
532 }
533
534 /**
535  * ab8500_fg_inst_curr_start() - start battery instantaneous current
536  * @di:         pointer to the ab8500_fg structure
537  *
538  * Returns 0 or error code
539  * Note: This is part "one" and has to be called before
540  * ab8500_fg_inst_curr_finalize()
541  */
542 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
543 {
544         u8 reg_val;
545         int ret;
546
547         mutex_lock(&di->cc_lock);
548
549         di->nbr_cceoc_irq_cnt = 0;
550         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
551                 AB8500_RTC_CC_CONF_REG, &reg_val);
552         if (ret < 0)
553                 goto fail;
554
555         if (!(reg_val & CC_PWR_UP_ENA)) {
556                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
557                 di->turn_off_fg = true;
558
559                 /* Program the samples */
560                 ret = abx500_set_register_interruptible(di->dev,
561                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
562                         SEC_TO_SAMPLE(10));
563                 if (ret)
564                         goto fail;
565
566                 /* Start the CC */
567                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
568                         AB8500_RTC_CC_CONF_REG,
569                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
570                 if (ret)
571                         goto fail;
572         } else {
573                 di->turn_off_fg = false;
574         }
575
576         /* Return and WFI */
577         reinit_completion(&di->ab8500_fg_started);
578         reinit_completion(&di->ab8500_fg_complete);
579         enable_irq(di->irq);
580
581         /* Note: cc_lock is still locked */
582         return 0;
583 fail:
584         mutex_unlock(&di->cc_lock);
585         return ret;
586 }
587
588 /**
589  * ab8500_fg_inst_curr_started() - check if fg conversion has started
590  * @di:         pointer to the ab8500_fg structure
591  *
592  * Returns 1 if conversion started, 0 if still waiting
593  */
594 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
595 {
596         return completion_done(&di->ab8500_fg_started);
597 }
598
599 /**
600  * ab8500_fg_inst_curr_done() - check if fg conversion is done
601  * @di:         pointer to the ab8500_fg structure
602  *
603  * Returns 1 if conversion done, 0 if still waiting
604  */
605 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
606 {
607         return completion_done(&di->ab8500_fg_complete);
608 }
609
610 /**
611  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
612  * @di:         pointer to the ab8500_fg structure
613  * @res:        battery instantenous current(on success)
614  *
615  * Returns 0 or an error code
616  * Note: This is part "two" and has to be called at earliest 250 ms
617  * after ab8500_fg_inst_curr_start()
618  */
619 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
620 {
621         u8 low, high;
622         int val;
623         int ret;
624         int timeout;
625
626         if (!completion_done(&di->ab8500_fg_complete)) {
627                 timeout = wait_for_completion_timeout(
628                         &di->ab8500_fg_complete,
629                         INS_CURR_TIMEOUT);
630                 dev_dbg(di->dev, "Finalize time: %d ms\n",
631                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
632                 if (!timeout) {
633                         ret = -ETIME;
634                         disable_irq(di->irq);
635                         di->nbr_cceoc_irq_cnt = 0;
636                         dev_err(di->dev, "completion timed out [%d]\n",
637                                 __LINE__);
638                         goto fail;
639                 }
640         }
641
642         disable_irq(di->irq);
643         di->nbr_cceoc_irq_cnt = 0;
644
645         ret = abx500_mask_and_set_register_interruptible(di->dev,
646                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
647                         READ_REQ, READ_REQ);
648
649         /* 100uS between read request and read is needed */
650         usleep_range(100, 100);
651
652         /* Read CC Sample conversion value Low and high */
653         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
654                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
655         if (ret < 0)
656                 goto fail;
657
658         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
659                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
660         if (ret < 0)
661                 goto fail;
662
663         /*
664          * negative value for Discharging
665          * convert 2's compliment into decimal
666          */
667         if (high & 0x10)
668                 val = (low | (high << 8) | 0xFFFFE000);
669         else
670                 val = (low | (high << 8));
671
672         /*
673          * Convert to unit value in mA
674          * Full scale input voltage is
675          * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
676          * Given a 250ms conversion cycle time the LSB corresponds
677          * to 107.1 nAh. Convert to current by dividing by the conversion
678          * time in hours (250ms = 1 / (3600 * 4)h)
679          * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
680          */
681         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
682                 (1000 * di->bm->fg_res);
683
684         if (di->turn_off_fg) {
685                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
686
687                 /* Clear any pending read requests */
688                 ret = abx500_set_register_interruptible(di->dev,
689                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
690                 if (ret)
691                         goto fail;
692
693                 /* Stop the CC */
694                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
695                         AB8500_RTC_CC_CONF_REG, 0);
696                 if (ret)
697                         goto fail;
698         }
699         mutex_unlock(&di->cc_lock);
700         (*res) = val;
701
702         return 0;
703 fail:
704         mutex_unlock(&di->cc_lock);
705         return ret;
706 }
707
708 /**
709  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
710  * @di:         pointer to the ab8500_fg structure
711  * @res:        battery instantenous current(on success)
712  *
713  * Returns 0 else error code
714  */
715 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
716 {
717         int ret;
718         int timeout;
719         int res = 0;
720
721         ret = ab8500_fg_inst_curr_start(di);
722         if (ret) {
723                 dev_err(di->dev, "Failed to initialize fg_inst\n");
724                 return 0;
725         }
726
727         /* Wait for CC to actually start */
728         if (!completion_done(&di->ab8500_fg_started)) {
729                 timeout = wait_for_completion_timeout(
730                         &di->ab8500_fg_started,
731                         INS_CURR_TIMEOUT);
732                 dev_dbg(di->dev, "Start time: %d ms\n",
733                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
734                 if (!timeout) {
735                         ret = -ETIME;
736                         dev_err(di->dev, "completion timed out [%d]\n",
737                                 __LINE__);
738                         goto fail;
739                 }
740         }
741
742         ret = ab8500_fg_inst_curr_finalize(di, &res);
743         if (ret) {
744                 dev_err(di->dev, "Failed to finalize fg_inst\n");
745                 return 0;
746         }
747
748         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
749         return res;
750 fail:
751         disable_irq(di->irq);
752         mutex_unlock(&di->cc_lock);
753         return ret;
754 }
755
756 /**
757  * ab8500_fg_acc_cur_work() - average battery current
758  * @work:       pointer to the work_struct structure
759  *
760  * Updated the average battery current obtained from the
761  * coulomb counter.
762  */
763 static void ab8500_fg_acc_cur_work(struct work_struct *work)
764 {
765         int val;
766         int ret;
767         u8 low, med, high;
768
769         struct ab8500_fg *di = container_of(work,
770                 struct ab8500_fg, fg_acc_cur_work);
771
772         mutex_lock(&di->cc_lock);
773         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
774                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
775         if (ret)
776                 goto exit;
777
778         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
779                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
780         if (ret < 0)
781                 goto exit;
782
783         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
784                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
785         if (ret < 0)
786                 goto exit;
787
788         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
789                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
790         if (ret < 0)
791                 goto exit;
792
793         /* Check for sign bit in case of negative value, 2's compliment */
794         if (high & 0x10)
795                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
796         else
797                 val = (low | (med << 8) | (high << 16));
798
799         /*
800          * Convert to uAh
801          * Given a 250ms conversion cycle time the LSB corresponds
802          * to 112.9 nAh.
803          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
804          */
805         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
806                 (100 * di->bm->fg_res);
807
808         /*
809          * Convert to unit value in mA
810          * by dividing by the conversion
811          * time in hours (= samples / (3600 * 4)h)
812          * and multiply with 1000
813          */
814         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
815                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
816
817         di->flags.conv_done = true;
818
819         mutex_unlock(&di->cc_lock);
820
821         queue_work(di->fg_wq, &di->fg_work);
822
823         dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
824                                 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
825         return;
826 exit:
827         dev_err(di->dev,
828                 "Failed to read or write gas gauge registers\n");
829         mutex_unlock(&di->cc_lock);
830         queue_work(di->fg_wq, &di->fg_work);
831 }
832
833 /**
834  * ab8500_fg_bat_voltage() - get battery voltage
835  * @di:         pointer to the ab8500_fg structure
836  *
837  * Returns battery voltage(on success) else error code
838  */
839 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
840 {
841         int vbat;
842         static int prev;
843
844         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
845         if (vbat < 0) {
846                 dev_err(di->dev,
847                         "%s gpadc conversion failed, using previous value\n",
848                         __func__);
849                 return prev;
850         }
851
852         prev = vbat;
853         return vbat;
854 }
855
856 /**
857  * ab8500_fg_volt_to_capacity() - Voltage based capacity
858  * @di:         pointer to the ab8500_fg structure
859  * @voltage:    The voltage to convert to a capacity
860  *
861  * Returns battery capacity in per mille based on voltage
862  */
863 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
864 {
865         int i, tbl_size;
866         const struct abx500_v_to_cap *tbl;
867         int cap = 0;
868
869         tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
870         tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
871
872         for (i = 0; i < tbl_size; ++i) {
873                 if (voltage > tbl[i].voltage)
874                         break;
875         }
876
877         if ((i > 0) && (i < tbl_size)) {
878                 cap = interpolate(voltage,
879                         tbl[i].voltage,
880                         tbl[i].capacity * 10,
881                         tbl[i-1].voltage,
882                         tbl[i-1].capacity * 10);
883         } else if (i == 0) {
884                 cap = 1000;
885         } else {
886                 cap = 0;
887         }
888
889         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
890                 __func__, voltage, cap);
891
892         return cap;
893 }
894
895 /**
896  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
897  * @di:         pointer to the ab8500_fg structure
898  *
899  * Returns battery capacity based on battery voltage that is not compensated
900  * for the voltage drop due to the load
901  */
902 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
903 {
904         di->vbat = ab8500_fg_bat_voltage(di);
905         return ab8500_fg_volt_to_capacity(di, di->vbat);
906 }
907
908 /**
909  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
910  * @di:         pointer to the ab8500_fg structure
911  *
912  * Returns battery inner resistance added with the fuel gauge resistor value
913  * to get the total resistance in the whole link from gnd to bat+ node.
914  */
915 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
916 {
917         int i, tbl_size;
918         const struct batres_vs_temp *tbl;
919         int resist = 0;
920
921         tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
922         tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
923
924         for (i = 0; i < tbl_size; ++i) {
925                 if (di->bat_temp / 10 > tbl[i].temp)
926                         break;
927         }
928
929         if ((i > 0) && (i < tbl_size)) {
930                 resist = interpolate(di->bat_temp / 10,
931                         tbl[i].temp,
932                         tbl[i].resist,
933                         tbl[i-1].temp,
934                         tbl[i-1].resist);
935         } else if (i == 0) {
936                 resist = tbl[0].resist;
937         } else {
938                 resist = tbl[tbl_size - 1].resist;
939         }
940
941         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
942             " fg resistance %d, total: %d (mOhm)\n",
943                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
944                 (di->bm->fg_res / 10) + resist);
945
946         /* fg_res variable is in 0.1mOhm */
947         resist += di->bm->fg_res / 10;
948
949         return resist;
950 }
951
952 /**
953  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
954  * @di:         pointer to the ab8500_fg structure
955  *
956  * Returns battery capacity based on battery voltage that is load compensated
957  * for the voltage drop
958  */
959 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
960 {
961         int vbat_comp, res;
962         int i = 0;
963         int vbat = 0;
964
965         ab8500_fg_inst_curr_start(di);
966
967         do {
968                 vbat += ab8500_fg_bat_voltage(di);
969                 i++;
970                 usleep_range(5000, 6000);
971         } while (!ab8500_fg_inst_curr_done(di));
972
973         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
974
975         di->vbat = vbat / i;
976         res = ab8500_fg_battery_resistance(di);
977
978         /* Use Ohms law to get the load compensated voltage */
979         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
980
981         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
982                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
983                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
984
985         return ab8500_fg_volt_to_capacity(di, vbat_comp);
986 }
987
988 /**
989  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
990  * @di:         pointer to the ab8500_fg structure
991  * @cap_mah:    capacity in mAh
992  *
993  * Converts capacity in mAh to capacity in permille
994  */
995 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
996 {
997         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
998 }
999
1000 /**
1001  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1002  * @di:         pointer to the ab8500_fg structure
1003  * @cap_pm:     capacity in permille
1004  *
1005  * Converts capacity in permille to capacity in mAh
1006  */
1007 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1008 {
1009         return cap_pm * di->bat_cap.max_mah_design / 1000;
1010 }
1011
1012 /**
1013  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1014  * @di:         pointer to the ab8500_fg structure
1015  * @cap_mah:    capacity in mAh
1016  *
1017  * Converts capacity in mAh to capacity in uWh
1018  */
1019 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1020 {
1021         u64 div_res;
1022         u32 div_rem;
1023
1024         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1025         div_rem = do_div(div_res, 1000);
1026
1027         /* Make sure to round upwards if necessary */
1028         if (div_rem >= 1000 / 2)
1029                 div_res++;
1030
1031         return (int) div_res;
1032 }
1033
1034 /**
1035  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1036  * @di:         pointer to the ab8500_fg structure
1037  *
1038  * Return the capacity in mAh based on previous calculated capcity and the FG
1039  * accumulator register value. The filter is filled with this capacity
1040  */
1041 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1042 {
1043         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1044                 __func__,
1045                 di->bat_cap.mah,
1046                 di->accu_charge);
1047
1048         /* Capacity should not be less than 0 */
1049         if (di->bat_cap.mah + di->accu_charge > 0)
1050                 di->bat_cap.mah += di->accu_charge;
1051         else
1052                 di->bat_cap.mah = 0;
1053         /*
1054          * We force capacity to 100% once when the algorithm
1055          * reports that it's full.
1056          */
1057         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1058                 di->flags.force_full) {
1059                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1060         }
1061
1062         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1063         di->bat_cap.permille =
1064                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1065
1066         /* We need to update battery voltage and inst current when charging */
1067         di->vbat = ab8500_fg_bat_voltage(di);
1068         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1069
1070         return di->bat_cap.mah;
1071 }
1072
1073 /**
1074  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1075  * @di:         pointer to the ab8500_fg structure
1076  * @comp:       if voltage should be load compensated before capacity calc
1077  *
1078  * Return the capacity in mAh based on the battery voltage. The voltage can
1079  * either be load compensated or not. This value is added to the filter and a
1080  * new mean value is calculated and returned.
1081  */
1082 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1083 {
1084         int permille, mah;
1085
1086         if (comp)
1087                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1088         else
1089                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1090
1091         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1092
1093         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1094         di->bat_cap.permille =
1095                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1096
1097         return di->bat_cap.mah;
1098 }
1099
1100 /**
1101  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1102  * @di:         pointer to the ab8500_fg structure
1103  *
1104  * Return the capacity in mAh based on previous calculated capcity and the FG
1105  * accumulator register value. This value is added to the filter and a
1106  * new mean value is calculated and returned.
1107  */
1108 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1109 {
1110         int permille_volt, permille;
1111
1112         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1113                 __func__,
1114                 di->bat_cap.mah,
1115                 di->accu_charge);
1116
1117         /* Capacity should not be less than 0 */
1118         if (di->bat_cap.mah + di->accu_charge > 0)
1119                 di->bat_cap.mah += di->accu_charge;
1120         else
1121                 di->bat_cap.mah = 0;
1122
1123         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1124                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1125
1126         /*
1127          * Check against voltage based capacity. It can not be lower
1128          * than what the uncompensated voltage says
1129          */
1130         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1131         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1132
1133         if (permille < permille_volt) {
1134                 di->bat_cap.permille = permille_volt;
1135                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1136                         di->bat_cap.permille);
1137
1138                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1139                         __func__,
1140                         permille,
1141                         permille_volt);
1142
1143                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144         } else {
1145                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1146                 di->bat_cap.permille =
1147                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1148         }
1149
1150         return di->bat_cap.mah;
1151 }
1152
1153 /**
1154  * ab8500_fg_capacity_level() - Get the battery capacity level
1155  * @di:         pointer to the ab8500_fg structure
1156  *
1157  * Get the battery capacity level based on the capacity in percent
1158  */
1159 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1160 {
1161         int ret, percent;
1162
1163         percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1164
1165         if (percent <= di->bm->cap_levels->critical ||
1166                 di->flags.low_bat)
1167                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1168         else if (percent <= di->bm->cap_levels->low)
1169                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1170         else if (percent <= di->bm->cap_levels->normal)
1171                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1172         else if (percent <= di->bm->cap_levels->high)
1173                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1174         else
1175                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1176
1177         return ret;
1178 }
1179
1180 /**
1181  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1182  * @di:         pointer to the ab8500_fg structure
1183  *
1184  * Calculates the capacity to be shown to upper layers. Scales the capacity
1185  * to have 100% as a reference from the actual capacity upon removal of charger
1186  * when charging is in maintenance mode.
1187  */
1188 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1189 {
1190         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1191         int capacity = di->bat_cap.prev_percent;
1192
1193         if (!cs->enable)
1194                 return capacity;
1195
1196         /*
1197          * As long as we are in fully charge mode scale the capacity
1198          * to show 100%.
1199          */
1200         if (di->flags.fully_charged) {
1201                 cs->cap_to_scale[0] = 100;
1202                 cs->cap_to_scale[1] =
1203                         max(capacity, di->bm->fg_params->maint_thres);
1204                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1205                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1206         }
1207
1208         /* Calculates the scaled capacity. */
1209         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1210                                         && (cs->cap_to_scale[1] > 0))
1211                 capacity = min(100,
1212                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1213                                                  cs->cap_to_scale[0],
1214                                                  cs->cap_to_scale[1]));
1215
1216         if (di->flags.charging) {
1217                 if (capacity < cs->disable_cap_level) {
1218                         cs->disable_cap_level = capacity;
1219                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1220                                 cs->disable_cap_level);
1221                 } else if (!di->flags.fully_charged) {
1222                         if (di->bat_cap.prev_percent >=
1223                             cs->disable_cap_level) {
1224                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1225                                 cs->enable = false;
1226                                 capacity = di->bat_cap.prev_percent;
1227                         } else {
1228                                 dev_dbg(di->dev,
1229                                         "Waiting in cap to level %d%%\n",
1230                                         cs->disable_cap_level);
1231                                 capacity = cs->disable_cap_level;
1232                         }
1233                 }
1234         }
1235
1236         return capacity;
1237 }
1238
1239 /**
1240  * ab8500_fg_update_cap_scalers() - Capacity scaling
1241  * @di:         pointer to the ab8500_fg structure
1242  *
1243  * To be called when state change from charge<->discharge to update
1244  * the capacity scalers.
1245  */
1246 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1247 {
1248         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1249
1250         if (!cs->enable)
1251                 return;
1252         if (di->flags.charging) {
1253                 di->bat_cap.cap_scale.disable_cap_level =
1254                         di->bat_cap.cap_scale.scaled_cap;
1255                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1256                                 di->bat_cap.cap_scale.disable_cap_level);
1257         } else {
1258                 if (cs->scaled_cap != 100) {
1259                         cs->cap_to_scale[0] = cs->scaled_cap;
1260                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1261                 } else {
1262                         cs->cap_to_scale[0] = 100;
1263                         cs->cap_to_scale[1] =
1264                                 max(di->bat_cap.prev_percent,
1265                                     di->bm->fg_params->maint_thres);
1266                 }
1267
1268                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1269                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1270         }
1271 }
1272
1273 /**
1274  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1275  * @di:         pointer to the ab8500_fg structure
1276  * @init:       capacity is allowed to go up in init mode
1277  *
1278  * Check if capacity or capacity limit has changed and notify the system
1279  * about it using the power_supply framework
1280  */
1281 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1282 {
1283         bool changed = false;
1284         int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1285
1286         di->bat_cap.level = ab8500_fg_capacity_level(di);
1287
1288         if (di->bat_cap.level != di->bat_cap.prev_level) {
1289                 /*
1290                  * We do not allow reported capacity level to go up
1291                  * unless we're charging or if we're in init
1292                  */
1293                 if (!(!di->flags.charging && di->bat_cap.level >
1294                         di->bat_cap.prev_level) || init) {
1295                         dev_dbg(di->dev, "level changed from %d to %d\n",
1296                                 di->bat_cap.prev_level,
1297                                 di->bat_cap.level);
1298                         di->bat_cap.prev_level = di->bat_cap.level;
1299                         changed = true;
1300                 } else {
1301                         dev_dbg(di->dev, "level not allowed to go up "
1302                                 "since no charger is connected: %d to %d\n",
1303                                 di->bat_cap.prev_level,
1304                                 di->bat_cap.level);
1305                 }
1306         }
1307
1308         /*
1309          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1310          * shutdown
1311          */
1312         if (di->flags.low_bat) {
1313                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1314                 di->bat_cap.prev_percent = 0;
1315                 di->bat_cap.permille = 0;
1316                 percent = 0;
1317                 di->bat_cap.prev_mah = 0;
1318                 di->bat_cap.mah = 0;
1319                 changed = true;
1320         } else if (di->flags.fully_charged) {
1321                 /*
1322                  * We report 100% if algorithm reported fully charged
1323                  * and show 100% during maintenance charging (scaling).
1324                  */
1325                 if (di->flags.force_full) {
1326                         di->bat_cap.prev_percent = percent;
1327                         di->bat_cap.prev_mah = di->bat_cap.mah;
1328
1329                         changed = true;
1330
1331                         if (!di->bat_cap.cap_scale.enable &&
1332                                                 di->bm->capacity_scaling) {
1333                                 di->bat_cap.cap_scale.enable = true;
1334                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1335                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1336                                                 di->bat_cap.prev_percent;
1337                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1338                         }
1339                 } else if (di->bat_cap.prev_percent != percent) {
1340                         dev_dbg(di->dev,
1341                                 "battery reported full "
1342                                 "but capacity dropping: %d\n",
1343                                 percent);
1344                         di->bat_cap.prev_percent = percent;
1345                         di->bat_cap.prev_mah = di->bat_cap.mah;
1346
1347                         changed = true;
1348                 }
1349         } else if (di->bat_cap.prev_percent != percent) {
1350                 if (percent == 0) {
1351                         /*
1352                          * We will not report 0% unless we've got
1353                          * the LOW_BAT IRQ, no matter what the FG
1354                          * algorithm says.
1355                          */
1356                         di->bat_cap.prev_percent = 1;
1357                         percent = 1;
1358
1359                         changed = true;
1360                 } else if (!(!di->flags.charging &&
1361                         percent > di->bat_cap.prev_percent) || init) {
1362                         /*
1363                          * We do not allow reported capacity to go up
1364                          * unless we're charging or if we're in init
1365                          */
1366                         dev_dbg(di->dev,
1367                                 "capacity changed from %d to %d (%d)\n",
1368                                 di->bat_cap.prev_percent,
1369                                 percent,
1370                                 di->bat_cap.permille);
1371                         di->bat_cap.prev_percent = percent;
1372                         di->bat_cap.prev_mah = di->bat_cap.mah;
1373
1374                         changed = true;
1375                 } else {
1376                         dev_dbg(di->dev, "capacity not allowed to go up since "
1377                                 "no charger is connected: %d to %d (%d)\n",
1378                                 di->bat_cap.prev_percent,
1379                                 percent,
1380                                 di->bat_cap.permille);
1381                 }
1382         }
1383
1384         if (changed) {
1385                 if (di->bm->capacity_scaling) {
1386                         di->bat_cap.cap_scale.scaled_cap =
1387                                 ab8500_fg_calculate_scaled_capacity(di);
1388
1389                         dev_info(di->dev, "capacity=%d (%d)\n",
1390                                 di->bat_cap.prev_percent,
1391                                 di->bat_cap.cap_scale.scaled_cap);
1392                 }
1393                 power_supply_changed(&di->fg_psy);
1394                 if (di->flags.fully_charged && di->flags.force_full) {
1395                         dev_dbg(di->dev, "Battery full, notifying.\n");
1396                         di->flags.force_full = false;
1397                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1398                 }
1399                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1400         }
1401 }
1402
1403 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1404         enum ab8500_fg_charge_state new_state)
1405 {
1406         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1407                 di->charge_state,
1408                 charge_state[di->charge_state],
1409                 new_state,
1410                 charge_state[new_state]);
1411
1412         di->charge_state = new_state;
1413 }
1414
1415 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1416         enum ab8500_fg_discharge_state new_state)
1417 {
1418         dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1419                 di->discharge_state,
1420                 discharge_state[di->discharge_state],
1421                 new_state,
1422                 discharge_state[new_state]);
1423
1424         di->discharge_state = new_state;
1425 }
1426
1427 /**
1428  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1429  * @di:         pointer to the ab8500_fg structure
1430  *
1431  * Battery capacity calculation state machine for when we're charging
1432  */
1433 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1434 {
1435         /*
1436          * If we change to discharge mode
1437          * we should start with recovery
1438          */
1439         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1440                 ab8500_fg_discharge_state_to(di,
1441                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1442
1443         switch (di->charge_state) {
1444         case AB8500_FG_CHARGE_INIT:
1445                 di->fg_samples = SEC_TO_SAMPLE(
1446                         di->bm->fg_params->accu_charging);
1447
1448                 ab8500_fg_coulomb_counter(di, true);
1449                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1450
1451                 break;
1452
1453         case AB8500_FG_CHARGE_READOUT:
1454                 /*
1455                  * Read the FG and calculate the new capacity
1456                  */
1457                 mutex_lock(&di->cc_lock);
1458                 if (!di->flags.conv_done && !di->flags.force_full) {
1459                         /* Wasn't the CC IRQ that got us here */
1460                         mutex_unlock(&di->cc_lock);
1461                         dev_dbg(di->dev, "%s CC conv not done\n",
1462                                 __func__);
1463
1464                         break;
1465                 }
1466                 di->flags.conv_done = false;
1467                 mutex_unlock(&di->cc_lock);
1468
1469                 ab8500_fg_calc_cap_charging(di);
1470
1471                 break;
1472
1473         default:
1474                 break;
1475         }
1476
1477         /* Check capacity limits */
1478         ab8500_fg_check_capacity_limits(di, false);
1479 }
1480
1481 static void force_capacity(struct ab8500_fg *di)
1482 {
1483         int cap;
1484
1485         ab8500_fg_clear_cap_samples(di);
1486         cap = di->bat_cap.user_mah;
1487         if (cap > di->bat_cap.max_mah_design) {
1488                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1489                         " %d\n", cap, di->bat_cap.max_mah_design);
1490                 cap = di->bat_cap.max_mah_design;
1491         }
1492         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1493         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1494         di->bat_cap.mah = cap;
1495         ab8500_fg_check_capacity_limits(di, true);
1496 }
1497
1498 static bool check_sysfs_capacity(struct ab8500_fg *di)
1499 {
1500         int cap, lower, upper;
1501         int cap_permille;
1502
1503         cap = di->bat_cap.user_mah;
1504
1505         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1506                 di->bat_cap.user_mah);
1507
1508         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1509         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1510
1511         if (lower < 0)
1512                 lower = 0;
1513         /* 1000 is permille, -> 100 percent */
1514         if (upper > 1000)
1515                 upper = 1000;
1516
1517         dev_dbg(di->dev, "Capacity limits:"
1518                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1519                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1520
1521         /* If within limits, use the saved capacity and exit estimation...*/
1522         if (cap_permille > lower && cap_permille < upper) {
1523                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1524                 force_capacity(di);
1525                 return true;
1526         }
1527         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1528         return false;
1529 }
1530
1531 /**
1532  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1533  * @di:         pointer to the ab8500_fg structure
1534  *
1535  * Battery capacity calculation state machine for when we're discharging
1536  */
1537 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1538 {
1539         int sleep_time;
1540
1541         /* If we change to charge mode we should start with init */
1542         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1543                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1544
1545         switch (di->discharge_state) {
1546         case AB8500_FG_DISCHARGE_INIT:
1547                 /* We use the FG IRQ to work on */
1548                 di->init_cnt = 0;
1549                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1550                 ab8500_fg_coulomb_counter(di, true);
1551                 ab8500_fg_discharge_state_to(di,
1552                         AB8500_FG_DISCHARGE_INITMEASURING);
1553
1554                 /* Intentional fallthrough */
1555         case AB8500_FG_DISCHARGE_INITMEASURING:
1556                 /*
1557                  * Discard a number of samples during startup.
1558                  * After that, use compensated voltage for a few
1559                  * samples to get an initial capacity.
1560                  * Then go to READOUT
1561                  */
1562                 sleep_time = di->bm->fg_params->init_timer;
1563
1564                 /* Discard the first [x] seconds */
1565                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1566                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1567
1568                         ab8500_fg_check_capacity_limits(di, true);
1569                 }
1570
1571                 di->init_cnt += sleep_time;
1572                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1573                         ab8500_fg_discharge_state_to(di,
1574                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1575
1576                 break;
1577
1578         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1579                 di->recovery_cnt = 0;
1580                 di->recovery_needed = true;
1581                 ab8500_fg_discharge_state_to(di,
1582                         AB8500_FG_DISCHARGE_RECOVERY);
1583
1584                 /* Intentional fallthrough */
1585
1586         case AB8500_FG_DISCHARGE_RECOVERY:
1587                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1588
1589                 /*
1590                  * We should check the power consumption
1591                  * If low, go to READOUT (after x min) or
1592                  * RECOVERY_SLEEP if time left.
1593                  * If high, go to READOUT
1594                  */
1595                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1596
1597                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1598                         if (di->recovery_cnt >
1599                                 di->bm->fg_params->recovery_total_time) {
1600                                 di->fg_samples = SEC_TO_SAMPLE(
1601                                         di->bm->fg_params->accu_high_curr);
1602                                 ab8500_fg_coulomb_counter(di, true);
1603                                 ab8500_fg_discharge_state_to(di,
1604                                         AB8500_FG_DISCHARGE_READOUT);
1605                                 di->recovery_needed = false;
1606                         } else {
1607                                 queue_delayed_work(di->fg_wq,
1608                                         &di->fg_periodic_work,
1609                                         sleep_time * HZ);
1610                         }
1611                         di->recovery_cnt += sleep_time;
1612                 } else {
1613                         di->fg_samples = SEC_TO_SAMPLE(
1614                                 di->bm->fg_params->accu_high_curr);
1615                         ab8500_fg_coulomb_counter(di, true);
1616                         ab8500_fg_discharge_state_to(di,
1617                                 AB8500_FG_DISCHARGE_READOUT);
1618                 }
1619                 break;
1620
1621         case AB8500_FG_DISCHARGE_READOUT_INIT:
1622                 di->fg_samples = SEC_TO_SAMPLE(
1623                         di->bm->fg_params->accu_high_curr);
1624                 ab8500_fg_coulomb_counter(di, true);
1625                 ab8500_fg_discharge_state_to(di,
1626                                 AB8500_FG_DISCHARGE_READOUT);
1627                 break;
1628
1629         case AB8500_FG_DISCHARGE_READOUT:
1630                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1631
1632                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1633                         /* Detect mode change */
1634                         if (di->high_curr_mode) {
1635                                 di->high_curr_mode = false;
1636                                 di->high_curr_cnt = 0;
1637                         }
1638
1639                         if (di->recovery_needed) {
1640                                 ab8500_fg_discharge_state_to(di,
1641                                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1642
1643                                 queue_delayed_work(di->fg_wq,
1644                                         &di->fg_periodic_work, 0);
1645
1646                                 break;
1647                         }
1648
1649                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1650                 } else {
1651                         mutex_lock(&di->cc_lock);
1652                         if (!di->flags.conv_done) {
1653                                 /* Wasn't the CC IRQ that got us here */
1654                                 mutex_unlock(&di->cc_lock);
1655                                 dev_dbg(di->dev, "%s CC conv not done\n",
1656                                         __func__);
1657
1658                                 break;
1659                         }
1660                         di->flags.conv_done = false;
1661                         mutex_unlock(&di->cc_lock);
1662
1663                         /* Detect mode change */
1664                         if (!di->high_curr_mode) {
1665                                 di->high_curr_mode = true;
1666                                 di->high_curr_cnt = 0;
1667                         }
1668
1669                         di->high_curr_cnt +=
1670                                 di->bm->fg_params->accu_high_curr;
1671                         if (di->high_curr_cnt >
1672                                 di->bm->fg_params->high_curr_time)
1673                                 di->recovery_needed = true;
1674
1675                         ab8500_fg_calc_cap_discharge_fg(di);
1676                 }
1677
1678                 ab8500_fg_check_capacity_limits(di, false);
1679
1680                 break;
1681
1682         case AB8500_FG_DISCHARGE_WAKEUP:
1683                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1684
1685                 di->fg_samples = SEC_TO_SAMPLE(
1686                         di->bm->fg_params->accu_high_curr);
1687                 ab8500_fg_coulomb_counter(di, true);
1688                 ab8500_fg_discharge_state_to(di,
1689                                 AB8500_FG_DISCHARGE_READOUT);
1690
1691                 ab8500_fg_check_capacity_limits(di, false);
1692
1693                 break;
1694
1695         default:
1696                 break;
1697         }
1698 }
1699
1700 /**
1701  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1702  * @di:         pointer to the ab8500_fg structure
1703  *
1704  */
1705 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1706 {
1707         int ret;
1708
1709         switch (di->calib_state) {
1710         case AB8500_FG_CALIB_INIT:
1711                 dev_dbg(di->dev, "Calibration ongoing...\n");
1712
1713                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1714                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1715                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1716                 if (ret < 0)
1717                         goto err;
1718
1719                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1720                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1721                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1722                 if (ret < 0)
1723                         goto err;
1724                 di->calib_state = AB8500_FG_CALIB_WAIT;
1725                 break;
1726         case AB8500_FG_CALIB_END:
1727                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1728                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1729                         CC_MUXOFFSET, CC_MUXOFFSET);
1730                 if (ret < 0)
1731                         goto err;
1732                 di->flags.calibrate = false;
1733                 dev_dbg(di->dev, "Calibration done...\n");
1734                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1735                 break;
1736         case AB8500_FG_CALIB_WAIT:
1737                 dev_dbg(di->dev, "Calibration WFI\n");
1738         default:
1739                 break;
1740         }
1741         return;
1742 err:
1743         /* Something went wrong, don't calibrate then */
1744         dev_err(di->dev, "failed to calibrate the CC\n");
1745         di->flags.calibrate = false;
1746         di->calib_state = AB8500_FG_CALIB_INIT;
1747         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1748 }
1749
1750 /**
1751  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1752  * @di:         pointer to the ab8500_fg structure
1753  *
1754  * Entry point for the battery capacity calculation state machine
1755  */
1756 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1757 {
1758         if (di->flags.calibrate)
1759                 ab8500_fg_algorithm_calibrate(di);
1760         else {
1761                 if (di->flags.charging)
1762                         ab8500_fg_algorithm_charging(di);
1763                 else
1764                         ab8500_fg_algorithm_discharging(di);
1765         }
1766
1767         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1768                 "%d %d %d %d %d %d %d\n",
1769                 di->bat_cap.max_mah_design,
1770                 di->bat_cap.max_mah,
1771                 di->bat_cap.mah,
1772                 di->bat_cap.permille,
1773                 di->bat_cap.level,
1774                 di->bat_cap.prev_mah,
1775                 di->bat_cap.prev_percent,
1776                 di->bat_cap.prev_level,
1777                 di->vbat,
1778                 di->inst_curr,
1779                 di->avg_curr,
1780                 di->accu_charge,
1781                 di->flags.charging,
1782                 di->charge_state,
1783                 di->discharge_state,
1784                 di->high_curr_mode,
1785                 di->recovery_needed);
1786 }
1787
1788 /**
1789  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1790  * @work:       pointer to the work_struct structure
1791  *
1792  * Work queue function for periodic work
1793  */
1794 static void ab8500_fg_periodic_work(struct work_struct *work)
1795 {
1796         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1797                 fg_periodic_work.work);
1798
1799         if (di->init_capacity) {
1800                 /* Get an initial capacity calculation */
1801                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1802                 ab8500_fg_check_capacity_limits(di, true);
1803                 di->init_capacity = false;
1804
1805                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1806         } else if (di->flags.user_cap) {
1807                 if (check_sysfs_capacity(di)) {
1808                         ab8500_fg_check_capacity_limits(di, true);
1809                         if (di->flags.charging)
1810                                 ab8500_fg_charge_state_to(di,
1811                                         AB8500_FG_CHARGE_INIT);
1812                         else
1813                                 ab8500_fg_discharge_state_to(di,
1814                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1815                 }
1816                 di->flags.user_cap = false;
1817                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1818         } else
1819                 ab8500_fg_algorithm(di);
1820
1821 }
1822
1823 /**
1824  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1825  * @work:       pointer to the work_struct structure
1826  *
1827  * Work queue function for checking the OVV_BAT condition
1828  */
1829 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1830 {
1831         int ret;
1832         u8 reg_value;
1833
1834         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1835                 fg_check_hw_failure_work.work);
1836
1837         /*
1838          * If we have had a battery over-voltage situation,
1839          * check ovv-bit to see if it should be reset.
1840          */
1841         ret = abx500_get_register_interruptible(di->dev,
1842                 AB8500_CHARGER, AB8500_CH_STAT_REG,
1843                 &reg_value);
1844         if (ret < 0) {
1845                 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1846                 return;
1847         }
1848         if ((reg_value & BATT_OVV) == BATT_OVV) {
1849                 if (!di->flags.bat_ovv) {
1850                         dev_dbg(di->dev, "Battery OVV\n");
1851                         di->flags.bat_ovv = true;
1852                         power_supply_changed(&di->fg_psy);
1853                 }
1854                 /* Not yet recovered from ovv, reschedule this test */
1855                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1856                                    HZ);
1857                 } else {
1858                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1859                         di->flags.bat_ovv = false;
1860                         power_supply_changed(&di->fg_psy);
1861         }
1862 }
1863
1864 /**
1865  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1866  * @work:       pointer to the work_struct structure
1867  *
1868  * Work queue function for checking the LOW_BAT condition
1869  */
1870 static void ab8500_fg_low_bat_work(struct work_struct *work)
1871 {
1872         int vbat;
1873
1874         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1875                 fg_low_bat_work.work);
1876
1877         vbat = ab8500_fg_bat_voltage(di);
1878
1879         /* Check if LOW_BAT still fulfilled */
1880         if (vbat < di->bm->fg_params->lowbat_threshold) {
1881                 /* Is it time to shut down? */
1882                 if (di->low_bat_cnt < 1) {
1883                         di->flags.low_bat = true;
1884                         dev_warn(di->dev, "Shut down pending...\n");
1885                 } else {
1886                         /*
1887                         * Else we need to re-schedule this check to be able to detect
1888                         * if the voltage increases again during charging or
1889                         * due to decreasing load.
1890                         */
1891                         di->low_bat_cnt--;
1892                         dev_warn(di->dev, "Battery voltage still LOW\n");
1893                         queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1894                                 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1895                 }
1896         } else {
1897                 di->flags.low_bat_delay = false;
1898                 di->low_bat_cnt = 10;
1899                 dev_warn(di->dev, "Battery voltage OK again\n");
1900         }
1901
1902         /* This is needed to dispatch LOW_BAT */
1903         ab8500_fg_check_capacity_limits(di, false);
1904 }
1905
1906 /**
1907  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1908  * to the target voltage.
1909  * @di:       pointer to the ab8500_fg structure
1910  * @target    target voltage
1911  *
1912  * Returns bit pattern closest to the target voltage
1913  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1914  */
1915
1916 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1917 {
1918         if (target > BATT_OK_MIN +
1919                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1920                 return BATT_OK_MAX_NR_INCREMENTS;
1921         if (target < BATT_OK_MIN)
1922                 return 0;
1923         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1924 }
1925
1926 /**
1927  * ab8500_fg_battok_init_hw_register - init battok levels
1928  * @di:       pointer to the ab8500_fg structure
1929  *
1930  */
1931
1932 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1933 {
1934         int selected;
1935         int sel0;
1936         int sel1;
1937         int cbp_sel0;
1938         int cbp_sel1;
1939         int ret;
1940         int new_val;
1941
1942         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1943         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1944
1945         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1946         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1947
1948         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1949
1950         if (selected != sel0)
1951                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1952                         sel0, selected, cbp_sel0);
1953
1954         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1955
1956         if (selected != sel1)
1957                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1958                         sel1, selected, cbp_sel1);
1959
1960         new_val = cbp_sel0 | (cbp_sel1 << 4);
1961
1962         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1963         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1964                 AB8500_BATT_OK_REG, new_val);
1965         return ret;
1966 }
1967
1968 /**
1969  * ab8500_fg_instant_work() - Run the FG state machine instantly
1970  * @work:       pointer to the work_struct structure
1971  *
1972  * Work queue function for instant work
1973  */
1974 static void ab8500_fg_instant_work(struct work_struct *work)
1975 {
1976         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1977
1978         ab8500_fg_algorithm(di);
1979 }
1980
1981 /**
1982  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1983  * @irq:       interrupt number
1984  * @_di:       pointer to the ab8500_fg structure
1985  *
1986  * Returns IRQ status(IRQ_HANDLED)
1987  */
1988 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1989 {
1990         struct ab8500_fg *di = _di;
1991         if (!di->nbr_cceoc_irq_cnt) {
1992                 di->nbr_cceoc_irq_cnt++;
1993                 complete(&di->ab8500_fg_started);
1994         } else {
1995                 di->nbr_cceoc_irq_cnt = 0;
1996                 complete(&di->ab8500_fg_complete);
1997         }
1998         return IRQ_HANDLED;
1999 }
2000
2001 /**
2002  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2003  * @irq:       interrupt number
2004  * @_di:       pointer to the ab8500_fg structure
2005  *
2006  * Returns IRQ status(IRQ_HANDLED)
2007  */
2008 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2009 {
2010         struct ab8500_fg *di = _di;
2011         di->calib_state = AB8500_FG_CALIB_END;
2012         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2013         return IRQ_HANDLED;
2014 }
2015
2016 /**
2017  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2018  * @irq:       interrupt number
2019  * @_di:       pointer to the ab8500_fg structure
2020  *
2021  * Returns IRQ status(IRQ_HANDLED)
2022  */
2023 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2024 {
2025         struct ab8500_fg *di = _di;
2026
2027         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2028
2029         return IRQ_HANDLED;
2030 }
2031
2032 /**
2033  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2034  * @irq:       interrupt number
2035  * @_di:       pointer to the ab8500_fg structure
2036  *
2037  * Returns IRQ status(IRQ_HANDLED)
2038  */
2039 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2040 {
2041         struct ab8500_fg *di = _di;
2042
2043         dev_dbg(di->dev, "Battery OVV\n");
2044
2045         /* Schedule a new HW failure check */
2046         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2047
2048         return IRQ_HANDLED;
2049 }
2050
2051 /**
2052  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2053  * @irq:       interrupt number
2054  * @_di:       pointer to the ab8500_fg structure
2055  *
2056  * Returns IRQ status(IRQ_HANDLED)
2057  */
2058 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2059 {
2060         struct ab8500_fg *di = _di;
2061
2062         /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2063         if (!di->flags.low_bat_delay) {
2064                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2065                 di->flags.low_bat_delay = true;
2066                 /*
2067                  * Start a timer to check LOW_BAT again after some time
2068                  * This is done to avoid shutdown on single voltage dips
2069                  */
2070                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2071                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2072         }
2073         return IRQ_HANDLED;
2074 }
2075
2076 /**
2077  * ab8500_fg_get_property() - get the fg properties
2078  * @psy:        pointer to the power_supply structure
2079  * @psp:        pointer to the power_supply_property structure
2080  * @val:        pointer to the power_supply_propval union
2081  *
2082  * This function gets called when an application tries to get the
2083  * fg properties by reading the sysfs files.
2084  * voltage_now:         battery voltage
2085  * current_now:         battery instant current
2086  * current_avg:         battery average current
2087  * charge_full_design:  capacity where battery is considered full
2088  * charge_now:          battery capacity in nAh
2089  * capacity:            capacity in percent
2090  * capacity_level:      capacity level
2091  *
2092  * Returns error code in case of failure else 0 on success
2093  */
2094 static int ab8500_fg_get_property(struct power_supply *psy,
2095         enum power_supply_property psp,
2096         union power_supply_propval *val)
2097 {
2098         struct ab8500_fg *di;
2099
2100         di = to_ab8500_fg_device_info(psy);
2101
2102         /*
2103          * If battery is identified as unknown and charging of unknown
2104          * batteries is disabled, we always report 100% capacity and
2105          * capacity level UNKNOWN, since we can't calculate
2106          * remaining capacity
2107          */
2108
2109         switch (psp) {
2110         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2111                 if (di->flags.bat_ovv)
2112                         val->intval = BATT_OVV_VALUE * 1000;
2113                 else
2114                         val->intval = di->vbat * 1000;
2115                 break;
2116         case POWER_SUPPLY_PROP_CURRENT_NOW:
2117                 val->intval = di->inst_curr * 1000;
2118                 break;
2119         case POWER_SUPPLY_PROP_CURRENT_AVG:
2120                 val->intval = di->avg_curr * 1000;
2121                 break;
2122         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2123                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124                                 di->bat_cap.max_mah_design);
2125                 break;
2126         case POWER_SUPPLY_PROP_ENERGY_FULL:
2127                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2128                                 di->bat_cap.max_mah);
2129                 break;
2130         case POWER_SUPPLY_PROP_ENERGY_NOW:
2131                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2132                                 di->flags.batt_id_received)
2133                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2134                                         di->bat_cap.max_mah);
2135                 else
2136                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2137                                         di->bat_cap.prev_mah);
2138                 break;
2139         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2140                 val->intval = di->bat_cap.max_mah_design;
2141                 break;
2142         case POWER_SUPPLY_PROP_CHARGE_FULL:
2143                 val->intval = di->bat_cap.max_mah;
2144                 break;
2145         case POWER_SUPPLY_PROP_CHARGE_NOW:
2146                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2147                                 di->flags.batt_id_received)
2148                         val->intval = di->bat_cap.max_mah;
2149                 else
2150                         val->intval = di->bat_cap.prev_mah;
2151                 break;
2152         case POWER_SUPPLY_PROP_CAPACITY:
2153                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2154                                 di->flags.batt_id_received)
2155                         val->intval = 100;
2156                 else
2157                         val->intval = di->bat_cap.prev_percent;
2158                 break;
2159         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2160                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2161                                 di->flags.batt_id_received)
2162                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2163                 else
2164                         val->intval = di->bat_cap.prev_level;
2165                 break;
2166         default:
2167                 return -EINVAL;
2168         }
2169         return 0;
2170 }
2171
2172 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2173 {
2174         struct power_supply *psy;
2175         struct power_supply *ext;
2176         struct ab8500_fg *di;
2177         union power_supply_propval ret;
2178         int i, j;
2179         bool psy_found = false;
2180
2181         psy = (struct power_supply *)data;
2182         ext = dev_get_drvdata(dev);
2183         di = to_ab8500_fg_device_info(psy);
2184
2185         /*
2186          * For all psy where the name of your driver
2187          * appears in any supplied_to
2188          */
2189         for (i = 0; i < ext->num_supplicants; i++) {
2190                 if (!strcmp(ext->supplied_to[i], psy->name))
2191                         psy_found = true;
2192         }
2193
2194         if (!psy_found)
2195                 return 0;
2196
2197         /* Go through all properties for the psy */
2198         for (j = 0; j < ext->num_properties; j++) {
2199                 enum power_supply_property prop;
2200                 prop = ext->properties[j];
2201
2202                 if (ext->get_property(ext, prop, &ret))
2203                         continue;
2204
2205                 switch (prop) {
2206                 case POWER_SUPPLY_PROP_STATUS:
2207                         switch (ext->type) {
2208                         case POWER_SUPPLY_TYPE_BATTERY:
2209                                 switch (ret.intval) {
2210                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2211                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2212                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2213                                         if (!di->flags.charging)
2214                                                 break;
2215                                         di->flags.charging = false;
2216                                         di->flags.fully_charged = false;
2217                                         if (di->bm->capacity_scaling)
2218                                                 ab8500_fg_update_cap_scalers(di);
2219                                         queue_work(di->fg_wq, &di->fg_work);
2220                                         break;
2221                                 case POWER_SUPPLY_STATUS_FULL:
2222                                         if (di->flags.fully_charged)
2223                                                 break;
2224                                         di->flags.fully_charged = true;
2225                                         di->flags.force_full = true;
2226                                         /* Save current capacity as maximum */
2227                                         di->bat_cap.max_mah = di->bat_cap.mah;
2228                                         queue_work(di->fg_wq, &di->fg_work);
2229                                         break;
2230                                 case POWER_SUPPLY_STATUS_CHARGING:
2231                                         if (di->flags.charging &&
2232                                                 !di->flags.fully_charged)
2233                                                 break;
2234                                         di->flags.charging = true;
2235                                         di->flags.fully_charged = false;
2236                                         if (di->bm->capacity_scaling)
2237                                                 ab8500_fg_update_cap_scalers(di);
2238                                         queue_work(di->fg_wq, &di->fg_work);
2239                                         break;
2240                                 };
2241                         default:
2242                                 break;
2243                         };
2244                         break;
2245                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2246                         switch (ext->type) {
2247                         case POWER_SUPPLY_TYPE_BATTERY:
2248                                 if (!di->flags.batt_id_received &&
2249                                     di->bm->batt_id != BATTERY_UNKNOWN) {
2250                                         const struct abx500_battery_type *b;
2251
2252                                         b = &(di->bm->bat_type[di->bm->batt_id]);
2253
2254                                         di->flags.batt_id_received = true;
2255
2256                                         di->bat_cap.max_mah_design =
2257                                                 MILLI_TO_MICRO *
2258                                                 b->charge_full_design;
2259
2260                                         di->bat_cap.max_mah =
2261                                                 di->bat_cap.max_mah_design;
2262
2263                                         di->vbat_nom = b->nominal_voltage;
2264                                 }
2265
2266                                 if (ret.intval)
2267                                         di->flags.batt_unknown = false;
2268                                 else
2269                                         di->flags.batt_unknown = true;
2270                                 break;
2271                         default:
2272                                 break;
2273                         }
2274                         break;
2275                 case POWER_SUPPLY_PROP_TEMP:
2276                         switch (ext->type) {
2277                         case POWER_SUPPLY_TYPE_BATTERY:
2278                                 if (di->flags.batt_id_received)
2279                                         di->bat_temp = ret.intval;
2280                                 break;
2281                         default:
2282                                 break;
2283                         }
2284                         break;
2285                 default:
2286                         break;
2287                 }
2288         }
2289         return 0;
2290 }
2291
2292 /**
2293  * ab8500_fg_init_hw_registers() - Set up FG related registers
2294  * @di:         pointer to the ab8500_fg structure
2295  *
2296  * Set up battery OVV, low battery voltage registers
2297  */
2298 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2299 {
2300         int ret;
2301
2302         /* Set VBAT OVV threshold */
2303         ret = abx500_mask_and_set_register_interruptible(di->dev,
2304                 AB8500_CHARGER,
2305                 AB8500_BATT_OVV,
2306                 BATT_OVV_TH_4P75,
2307                 BATT_OVV_TH_4P75);
2308         if (ret) {
2309                 dev_err(di->dev, "failed to set BATT_OVV\n");
2310                 goto out;
2311         }
2312
2313         /* Enable VBAT OVV detection */
2314         ret = abx500_mask_and_set_register_interruptible(di->dev,
2315                 AB8500_CHARGER,
2316                 AB8500_BATT_OVV,
2317                 BATT_OVV_ENA,
2318                 BATT_OVV_ENA);
2319         if (ret) {
2320                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2321                 goto out;
2322         }
2323
2324         /* Low Battery Voltage */
2325         ret = abx500_set_register_interruptible(di->dev,
2326                 AB8500_SYS_CTRL2_BLOCK,
2327                 AB8500_LOW_BAT_REG,
2328                 ab8500_volt_to_regval(
2329                         di->bm->fg_params->lowbat_threshold) << 1 |
2330                 LOW_BAT_ENABLE);
2331         if (ret) {
2332                 dev_err(di->dev, "%s write failed\n", __func__);
2333                 goto out;
2334         }
2335
2336         /* Battery OK threshold */
2337         ret = ab8500_fg_battok_init_hw_register(di);
2338         if (ret) {
2339                 dev_err(di->dev, "BattOk init write failed.\n");
2340                 goto out;
2341         }
2342
2343         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2344                         abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2345                         || is_ab8540(di->parent)) {
2346                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2347                         AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2348
2349                 if (ret) {
2350                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2351                         goto out;
2352                 };
2353
2354                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2355                         AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2356
2357                 if (ret) {
2358                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2359                         goto out;
2360                 };
2361
2362                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2363                         AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2364
2365                 if (ret) {
2366                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2367                         goto out;
2368                 };
2369
2370                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2371                         AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2372
2373                 if (ret) {
2374                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2375                         goto out;
2376                 };
2377
2378                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2379                         AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2380
2381                 if (ret) {
2382                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2383                         goto out;
2384                 };
2385         }
2386 out:
2387         return ret;
2388 }
2389
2390 /**
2391  * ab8500_fg_external_power_changed() - callback for power supply changes
2392  * @psy:       pointer to the structure power_supply
2393  *
2394  * This function is the entry point of the pointer external_power_changed
2395  * of the structure power_supply.
2396  * This function gets executed when there is a change in any external power
2397  * supply that this driver needs to be notified of.
2398  */
2399 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2400 {
2401         struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2402
2403         class_for_each_device(power_supply_class, NULL,
2404                 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2405 }
2406
2407 /**
2408  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2409  * @work:       pointer to the work_struct structure
2410  *
2411  * Used to reset the current battery capacity to be able to
2412  * retrigger a new voltage base capacity calculation. For
2413  * test and verification purpose.
2414  */
2415 static void ab8500_fg_reinit_work(struct work_struct *work)
2416 {
2417         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2418                 fg_reinit_work.work);
2419
2420         if (di->flags.calibrate == false) {
2421                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2422                 ab8500_fg_clear_cap_samples(di);
2423                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2424                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2425                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2426                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2427
2428         } else {
2429                 dev_err(di->dev, "Residual offset calibration ongoing "
2430                         "retrying..\n");
2431                 /* Wait one second until next try*/
2432                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2433                         round_jiffies(1));
2434         }
2435 }
2436
2437 /**
2438  * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2439  *
2440  * This function can be used to force the FG algorithm to recalculate a new
2441  * voltage based battery capacity.
2442  */
2443 void ab8500_fg_reinit(void)
2444 {
2445         struct ab8500_fg *di = ab8500_fg_get();
2446         /* User won't be notified if a null pointer returned. */
2447         if (di != NULL)
2448                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2449 }
2450
2451 /* Exposure to the sysfs interface */
2452
2453 struct ab8500_fg_sysfs_entry {
2454         struct attribute attr;
2455         ssize_t (*show)(struct ab8500_fg *, char *);
2456         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2457 };
2458
2459 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2460 {
2461         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2462 }
2463
2464 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2465                                  size_t count)
2466 {
2467         unsigned long charge_full;
2468         ssize_t ret;
2469
2470         ret = kstrtoul(buf, 10, &charge_full);
2471
2472         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2473
2474         if (!ret) {
2475                 di->bat_cap.max_mah = (int) charge_full;
2476                 ret = count;
2477         }
2478         return ret;
2479 }
2480
2481 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2482 {
2483         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2484 }
2485
2486 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2487                                  size_t count)
2488 {
2489         unsigned long charge_now;
2490         ssize_t ret;
2491
2492         ret = kstrtoul(buf, 10, &charge_now);
2493
2494         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2495                 ret, charge_now, di->bat_cap.prev_mah);
2496
2497         if (!ret) {
2498                 di->bat_cap.user_mah = (int) charge_now;
2499                 di->flags.user_cap = true;
2500                 ret = count;
2501                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2502         }
2503         return ret;
2504 }
2505
2506 static struct ab8500_fg_sysfs_entry charge_full_attr =
2507         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2508
2509 static struct ab8500_fg_sysfs_entry charge_now_attr =
2510         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2511
2512 static ssize_t
2513 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2514 {
2515         struct ab8500_fg_sysfs_entry *entry;
2516         struct ab8500_fg *di;
2517
2518         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2519         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2520
2521         if (!entry->show)
2522                 return -EIO;
2523
2524         return entry->show(di, buf);
2525 }
2526 static ssize_t
2527 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2528                 size_t count)
2529 {
2530         struct ab8500_fg_sysfs_entry *entry;
2531         struct ab8500_fg *di;
2532
2533         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2534         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2535
2536         if (!entry->store)
2537                 return -EIO;
2538
2539         return entry->store(di, buf, count);
2540 }
2541
2542 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2543         .show = ab8500_fg_show,
2544         .store = ab8500_fg_store,
2545 };
2546
2547 static struct attribute *ab8500_fg_attrs[] = {
2548         &charge_full_attr.attr,
2549         &charge_now_attr.attr,
2550         NULL,
2551 };
2552
2553 static struct kobj_type ab8500_fg_ktype = {
2554         .sysfs_ops = &ab8500_fg_sysfs_ops,
2555         .default_attrs = ab8500_fg_attrs,
2556 };
2557
2558 /**
2559  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2560  * @di:                pointer to the struct ab8500_chargalg
2561  *
2562  * This function removes the entry in sysfs.
2563  */
2564 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2565 {
2566         kobject_del(&di->fg_kobject);
2567 }
2568
2569 /**
2570  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2571  * @di:                pointer to the struct ab8500_chargalg
2572  *
2573  * This function adds an entry in sysfs.
2574  * Returns error code in case of failure else 0(on success)
2575  */
2576 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2577 {
2578         int ret = 0;
2579
2580         ret = kobject_init_and_add(&di->fg_kobject,
2581                 &ab8500_fg_ktype,
2582                 NULL, "battery");
2583         if (ret < 0)
2584                 dev_err(di->dev, "failed to create sysfs entry\n");
2585
2586         return ret;
2587 }
2588
2589 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2590                              struct device_attribute *attr,
2591                              char *buf)
2592 {
2593         int ret;
2594         u8 reg_value;
2595         struct power_supply *psy = dev_get_drvdata(dev);
2596         struct ab8500_fg *di;
2597
2598         di = to_ab8500_fg_device_info(psy);
2599
2600         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2601                 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2602
2603         if (ret < 0) {
2604                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2605                 goto fail;
2606         }
2607
2608         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2609
2610 fail:
2611         return ret;
2612 }
2613
2614 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2615                                   struct device_attribute *attr,
2616                                   const char *buf, size_t count)
2617 {
2618         int ret;
2619         long unsigned reg_value;
2620         struct power_supply *psy = dev_get_drvdata(dev);
2621         struct ab8500_fg *di;
2622
2623         di = to_ab8500_fg_device_info(psy);
2624
2625         reg_value = simple_strtoul(buf, NULL, 10);
2626
2627         if (reg_value > 0x7F) {
2628                 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2629                 goto fail;
2630         }
2631
2632         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2633                 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2634
2635         if (ret < 0)
2636                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2637
2638 fail:
2639         return count;
2640 }
2641
2642 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2643                              struct device_attribute *attr,
2644                              char *buf)
2645 {
2646         int ret;
2647         u8 reg_value;
2648         struct power_supply *psy = dev_get_drvdata(dev);
2649         struct ab8500_fg *di;
2650
2651         di = to_ab8500_fg_device_info(psy);
2652
2653         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2654                 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2655
2656         if (ret < 0) {
2657                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2658                 goto fail;
2659         }
2660
2661         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2662
2663 fail:
2664         return ret;
2665
2666 }
2667
2668 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2669                                   struct device_attribute *attr,
2670                                   const char *buf, size_t count)
2671 {
2672         int ret;
2673         int reg_value;
2674         struct power_supply *psy = dev_get_drvdata(dev);
2675         struct ab8500_fg *di;
2676
2677         di = to_ab8500_fg_device_info(psy);
2678
2679         reg_value = simple_strtoul(buf, NULL, 10);
2680         if (reg_value > 0x7F) {
2681                 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2682                 goto fail;
2683         }
2684
2685         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2686                 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2687
2688         if (ret < 0)
2689                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2690
2691 fail:
2692         return count;
2693 }
2694
2695 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2696                              struct device_attribute *attr,
2697                              char *buf)
2698 {
2699         int ret;
2700         u8 reg_value;
2701         struct power_supply *psy = dev_get_drvdata(dev);
2702         struct ab8500_fg *di;
2703
2704         di = to_ab8500_fg_device_info(psy);
2705
2706         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2707                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2708
2709         if (ret < 0) {
2710                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2711                 goto fail;
2712         }
2713
2714         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2715
2716 fail:
2717         return ret;
2718 }
2719
2720 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2721                                              struct device_attribute *attr,
2722                                              const char *buf, size_t count)
2723 {
2724         int ret;
2725         int reg_value;
2726         struct power_supply *psy = dev_get_drvdata(dev);
2727         struct ab8500_fg *di;
2728
2729         di = to_ab8500_fg_device_info(psy);
2730
2731         reg_value = simple_strtoul(buf, NULL, 10);
2732         if (reg_value > 0xF) {
2733                 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2734                 goto fail;
2735         }
2736
2737         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2738                                                 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2739
2740         if (ret < 0)
2741                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2742
2743 fail:
2744         return count;
2745
2746 }
2747
2748 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2749                                           struct device_attribute *attr,
2750                                           char *buf)
2751 {
2752         int ret;
2753         u8 reg_value;
2754         struct power_supply *psy = dev_get_drvdata(dev);
2755         struct ab8500_fg *di;
2756
2757         di = to_ab8500_fg_device_info(psy);
2758
2759         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2760                                                 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2761
2762         if (ret < 0) {
2763                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2764                 goto fail;
2765         }
2766
2767         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2768
2769 fail:
2770         return ret;
2771 }
2772
2773 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2774                                                     struct device_attribute *attr,
2775                                                     char *buf)
2776 {
2777         int ret;
2778         u8 reg_value;
2779         struct power_supply *psy = dev_get_drvdata(dev);
2780         struct ab8500_fg *di;
2781
2782         di = to_ab8500_fg_device_info(psy);
2783
2784         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2785                                                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2786
2787         if (ret < 0) {
2788                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2789                 goto fail;
2790         }
2791
2792         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2793
2794 fail:
2795         return ret;
2796 }
2797
2798 static ssize_t ab8505_powercut_read(struct device *dev,
2799                                     struct device_attribute *attr,
2800                                     char *buf)
2801 {
2802         int ret;
2803         u8 reg_value;
2804         struct power_supply *psy = dev_get_drvdata(dev);
2805         struct ab8500_fg *di;
2806
2807         di = to_ab8500_fg_device_info(psy);
2808
2809         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2810                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2811
2812         if (ret < 0)
2813                 goto fail;
2814
2815         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2816
2817 fail:
2818         return ret;
2819 }
2820
2821 static ssize_t ab8505_powercut_write(struct device *dev,
2822                                      struct device_attribute *attr,
2823                                      const char *buf, size_t count)
2824 {
2825         int ret;
2826         int reg_value;
2827         struct power_supply *psy = dev_get_drvdata(dev);
2828         struct ab8500_fg *di;
2829
2830         di = to_ab8500_fg_device_info(psy);
2831
2832         reg_value = simple_strtoul(buf, NULL, 10);
2833         if (reg_value > 0x1) {
2834                 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2835                 goto fail;
2836         }
2837
2838         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2839                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2840
2841         if (ret < 0)
2842                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2843
2844 fail:
2845         return count;
2846 }
2847
2848 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2849                                          struct device_attribute *attr,
2850                                          char *buf)
2851 {
2852
2853         int ret;
2854         u8 reg_value;
2855         struct power_supply *psy = dev_get_drvdata(dev);
2856         struct ab8500_fg *di;
2857
2858         di = to_ab8500_fg_device_info(psy);
2859
2860         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2861                                                 AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2862
2863         if (ret < 0) {
2864                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2865                 goto fail;
2866         }
2867
2868         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2869
2870 fail:
2871         return ret;
2872 }
2873
2874 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2875                                              struct device_attribute *attr,
2876                                              char *buf)
2877 {
2878         int ret;
2879         u8 reg_value;
2880         struct power_supply *psy = dev_get_drvdata(dev);
2881         struct ab8500_fg *di;
2882
2883         di = to_ab8500_fg_device_info(psy);
2884
2885         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2886                                                 AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2887
2888         if (ret < 0) {
2889                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2890                 goto fail;
2891         }
2892
2893         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2894
2895 fail:
2896         return ret;
2897 }
2898
2899 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2900                                               struct device_attribute *attr,
2901                                               const char *buf, size_t count)
2902 {
2903         int ret;
2904         int reg_value;
2905         struct power_supply *psy = dev_get_drvdata(dev);
2906         struct ab8500_fg *di;
2907
2908         di = to_ab8500_fg_device_info(psy);
2909
2910         reg_value = simple_strtoul(buf, NULL, 10);
2911         if (reg_value > 0x7) {
2912                 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2913                 goto fail;
2914         }
2915
2916         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2917                                                 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2918
2919         if (ret < 0)
2920                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2921
2922 fail:
2923         return count;
2924 }
2925
2926 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2927                                                   struct device_attribute *attr,
2928                                                   char *buf)
2929 {
2930         int ret;
2931         u8 reg_value;
2932         struct power_supply *psy = dev_get_drvdata(dev);
2933         struct ab8500_fg *di;
2934
2935         di = to_ab8500_fg_device_info(psy);
2936
2937         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2938                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2939
2940         if (ret < 0) {
2941                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2942                 goto fail;
2943         }
2944
2945         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2946
2947 fail:
2948         return ret;
2949 }
2950
2951 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2952         __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2953                 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2954         __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2955                 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2956         __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2957                 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2958         __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2959         __ATTR(powercut_restart_counter, S_IRUGO,
2960                 ab8505_powercut_restart_counter_read, NULL),
2961         __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2962                 ab8505_powercut_read, ab8505_powercut_write),
2963         __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2964         __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2965                 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2966         __ATTR(powercut_enable_status, S_IRUGO,
2967                 ab8505_powercut_enable_status_read, NULL),
2968 };
2969
2970 static int ab8500_fg_sysfs_psy_create_attrs(struct device *dev)
2971 {
2972         unsigned int i, j;
2973         struct power_supply *psy = dev_get_drvdata(dev);
2974         struct ab8500_fg *di;
2975
2976         di = to_ab8500_fg_device_info(psy);
2977
2978         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2979              abx500_get_chip_id(dev->parent) >= AB8500_CUT2P0)
2980             || is_ab8540(di->parent)) {
2981                 for (j = 0; j < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); j++)
2982                         if (device_create_file(dev, &ab8505_fg_sysfs_psy_attrs[j]))
2983                                 goto sysfs_psy_create_attrs_failed_ab8505;
2984         }
2985         return 0;
2986 sysfs_psy_create_attrs_failed_ab8505:
2987         dev_err(dev, "Failed creating sysfs psy attrs for ab8505.\n");
2988         while (j--)
2989                 device_remove_file(dev, &ab8505_fg_sysfs_psy_attrs[i]);
2990
2991         return -EIO;
2992 }
2993
2994 static void ab8500_fg_sysfs_psy_remove_attrs(struct device *dev)
2995 {
2996         unsigned int i;
2997         struct power_supply *psy = dev_get_drvdata(dev);
2998         struct ab8500_fg *di;
2999
3000         di = to_ab8500_fg_device_info(psy);
3001
3002         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
3003              abx500_get_chip_id(dev->parent) >= AB8500_CUT2P0)
3004             || is_ab8540(di->parent)) {
3005                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
3006                         (void)device_remove_file(dev, &ab8505_fg_sysfs_psy_attrs[i]);
3007         }
3008 }
3009
3010 /* Exposure to the sysfs interface <<END>> */
3011
3012 #if defined(CONFIG_PM)
3013 static int ab8500_fg_resume(struct platform_device *pdev)
3014 {
3015         struct ab8500_fg *di = platform_get_drvdata(pdev);
3016
3017         /*
3018          * Change state if we're not charging. If we're charging we will wake
3019          * up on the FG IRQ
3020          */
3021         if (!di->flags.charging) {
3022                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
3023                 queue_work(di->fg_wq, &di->fg_work);
3024         }
3025
3026         return 0;
3027 }
3028
3029 static int ab8500_fg_suspend(struct platform_device *pdev,
3030         pm_message_t state)
3031 {
3032         struct ab8500_fg *di = platform_get_drvdata(pdev);
3033
3034         flush_delayed_work(&di->fg_periodic_work);
3035         flush_work(&di->fg_work);
3036         flush_work(&di->fg_acc_cur_work);
3037         flush_delayed_work(&di->fg_reinit_work);
3038         flush_delayed_work(&di->fg_low_bat_work);
3039         flush_delayed_work(&di->fg_check_hw_failure_work);
3040
3041         /*
3042          * If the FG is enabled we will disable it before going to suspend
3043          * only if we're not charging
3044          */
3045         if (di->flags.fg_enabled && !di->flags.charging)
3046                 ab8500_fg_coulomb_counter(di, false);
3047
3048         return 0;
3049 }
3050 #else
3051 #define ab8500_fg_suspend      NULL
3052 #define ab8500_fg_resume       NULL
3053 #endif
3054
3055 static int ab8500_fg_remove(struct platform_device *pdev)
3056 {
3057         int ret = 0;
3058         struct ab8500_fg *di = platform_get_drvdata(pdev);
3059
3060         list_del(&di->node);
3061
3062         /* Disable coulomb counter */
3063         ret = ab8500_fg_coulomb_counter(di, false);
3064         if (ret)
3065                 dev_err(di->dev, "failed to disable coulomb counter\n");
3066
3067         destroy_workqueue(di->fg_wq);
3068         ab8500_fg_sysfs_exit(di);
3069
3070         flush_scheduled_work();
3071         ab8500_fg_sysfs_psy_remove_attrs(di->fg_psy.dev);
3072         power_supply_unregister(&di->fg_psy);
3073         return ret;
3074 }
3075
3076 /* ab8500 fg driver interrupts and their respective isr */
3077 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
3078         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3079         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3080         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3081         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3082         {"CCEOC", ab8500_fg_cc_data_end_handler},
3083 };
3084
3085 static char *supply_interface[] = {
3086         "ab8500_chargalg",
3087         "ab8500_usb",
3088 };
3089
3090 static int ab8500_fg_probe(struct platform_device *pdev)
3091 {
3092         struct device_node *np = pdev->dev.of_node;
3093         struct abx500_bm_data *plat = pdev->dev.platform_data;
3094         struct ab8500_fg *di;
3095         int i, irq;
3096         int ret = 0;
3097
3098         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3099         if (!di) {
3100                 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3101                 return -ENOMEM;
3102         }
3103
3104         if (!plat) {
3105                 dev_err(&pdev->dev, "no battery management data supplied\n");
3106                 return -EINVAL;
3107         }
3108         di->bm = plat;
3109
3110         if (np) {
3111                 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3112                 if (ret) {
3113                         dev_err(&pdev->dev, "failed to get battery information\n");
3114                         return ret;
3115                 }
3116         }
3117
3118         mutex_init(&di->cc_lock);
3119
3120         /* get parent data */
3121         di->dev = &pdev->dev;
3122         di->parent = dev_get_drvdata(pdev->dev.parent);
3123         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3124
3125         di->fg_psy.name = "ab8500_fg";
3126         di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
3127         di->fg_psy.properties = ab8500_fg_props;
3128         di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
3129         di->fg_psy.get_property = ab8500_fg_get_property;
3130         di->fg_psy.supplied_to = supply_interface;
3131         di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
3132         di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
3133
3134         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3135                 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3136
3137         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3138
3139         di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3140
3141         di->init_capacity = true;
3142
3143         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3144         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3145
3146         /* Create a work queue for running the FG algorithm */
3147         di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3148         if (di->fg_wq == NULL) {
3149                 dev_err(di->dev, "failed to create work queue\n");
3150                 return -ENOMEM;
3151         }
3152
3153         /* Init work for running the fg algorithm instantly */
3154         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3155
3156         /* Init work for getting the battery accumulated current */
3157         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3158
3159         /* Init work for reinitialising the fg algorithm */
3160         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3161                 ab8500_fg_reinit_work);
3162
3163         /* Work delayed Queue to run the state machine */
3164         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3165                 ab8500_fg_periodic_work);
3166
3167         /* Work to check low battery condition */
3168         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3169                 ab8500_fg_low_bat_work);
3170
3171         /* Init work for HW failure check */
3172         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3173                 ab8500_fg_check_hw_failure_work);
3174
3175         /* Reset battery low voltage flag */
3176         di->flags.low_bat = false;
3177
3178         /* Initialize low battery counter */
3179         di->low_bat_cnt = 10;
3180
3181         /* Initialize OVV, and other registers */
3182         ret = ab8500_fg_init_hw_registers(di);
3183         if (ret) {
3184                 dev_err(di->dev, "failed to initialize registers\n");
3185                 goto free_inst_curr_wq;
3186         }
3187
3188         /* Consider battery unknown until we're informed otherwise */
3189         di->flags.batt_unknown = true;
3190         di->flags.batt_id_received = false;
3191
3192         /* Register FG power supply class */
3193         ret = power_supply_register(di->dev, &di->fg_psy);
3194         if (ret) {
3195                 dev_err(di->dev, "failed to register FG psy\n");
3196                 goto free_inst_curr_wq;
3197         }
3198
3199         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3200         ab8500_fg_coulomb_counter(di, true);
3201
3202         /*
3203          * Initialize completion used to notify completion and start
3204          * of inst current
3205          */
3206         init_completion(&di->ab8500_fg_started);
3207         init_completion(&di->ab8500_fg_complete);
3208
3209         /* Register interrupts */
3210         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3211                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3212                 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
3213                         IRQF_SHARED | IRQF_NO_SUSPEND,
3214                         ab8500_fg_irq[i].name, di);
3215
3216                 if (ret != 0) {
3217                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
3218                                 , ab8500_fg_irq[i].name, irq, ret);
3219                         goto free_irq;
3220                 }
3221                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3222                         ab8500_fg_irq[i].name, irq, ret);
3223         }
3224         di->irq = platform_get_irq_byname(pdev, "CCEOC");
3225         disable_irq(di->irq);
3226         di->nbr_cceoc_irq_cnt = 0;
3227
3228         platform_set_drvdata(pdev, di);
3229
3230         ret = ab8500_fg_sysfs_init(di);
3231         if (ret) {
3232                 dev_err(di->dev, "failed to create sysfs entry\n");
3233                 goto free_irq;
3234         }
3235
3236         ret = ab8500_fg_sysfs_psy_create_attrs(di->fg_psy.dev);
3237         if (ret) {
3238                 dev_err(di->dev, "failed to create FG psy\n");
3239                 ab8500_fg_sysfs_exit(di);
3240                 goto free_irq;
3241         }
3242
3243         /* Calibrate the fg first time */
3244         di->flags.calibrate = true;
3245         di->calib_state = AB8500_FG_CALIB_INIT;
3246
3247         /* Use room temp as default value until we get an update from driver. */
3248         di->bat_temp = 210;
3249
3250         /* Run the FG algorithm */
3251         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3252
3253         list_add_tail(&di->node, &ab8500_fg_list);
3254
3255         return ret;
3256
3257 free_irq:
3258         power_supply_unregister(&di->fg_psy);
3259
3260         /* We also have to free all successfully registered irqs */
3261         for (i = i - 1; i >= 0; i--) {
3262                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3263                 free_irq(irq, di);
3264         }
3265 free_inst_curr_wq:
3266         destroy_workqueue(di->fg_wq);
3267         return ret;
3268 }
3269
3270 static const struct of_device_id ab8500_fg_match[] = {
3271         { .compatible = "stericsson,ab8500-fg", },
3272         { },
3273 };
3274
3275 static struct platform_driver ab8500_fg_driver = {
3276         .probe = ab8500_fg_probe,
3277         .remove = ab8500_fg_remove,
3278         .suspend = ab8500_fg_suspend,
3279         .resume = ab8500_fg_resume,
3280         .driver = {
3281                 .name = "ab8500-fg",
3282                 .owner = THIS_MODULE,
3283                 .of_match_table = ab8500_fg_match,
3284         },
3285 };
3286
3287 static int __init ab8500_fg_init(void)
3288 {
3289         return platform_driver_register(&ab8500_fg_driver);
3290 }
3291
3292 static void __exit ab8500_fg_exit(void)
3293 {
3294         platform_driver_unregister(&ab8500_fg_driver);
3295 }
3296
3297 subsys_initcall_sync(ab8500_fg_init);
3298 module_exit(ab8500_fg_exit);
3299
3300 MODULE_LICENSE("GPL v2");
3301 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3302 MODULE_ALIAS("platform:ab8500-fg");
3303 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");