Merge tag 'md/3.15' of git://neil.brown.name/md
[linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95         spin_lock_irq(conf->hash_locks + hash);
96         spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101         spin_unlock(&conf->device_lock);
102         spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107         int i;
108         local_irq_disable();
109         spin_lock(conf->hash_locks);
110         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112         spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117         int i;
118         spin_unlock(&conf->device_lock);
119         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120                 spin_unlock(conf->hash_locks + i - 1);
121         local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135         int sectors = bio_sectors(bio);
136         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137                 return bio->bi_next;
138         else
139                 return NULL;
140 }
141
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149         return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155         return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161         atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165         unsigned int cnt)
166 {
167         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168         int old, new;
169
170         do {
171                 old = atomic_read(segments);
172                 new = (old & 0xffff) | (cnt << 16);
173         } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179         atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185         if (sh->ddf_layout)
186                 /* ddf always start from first device */
187                 return 0;
188         /* md starts just after Q block */
189         if (sh->qd_idx == sh->disks - 1)
190                 return 0;
191         else
192                 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196         disk++;
197         return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206                              int *count, int syndrome_disks)
207 {
208         int slot = *count;
209
210         if (sh->ddf_layout)
211                 (*count)++;
212         if (idx == sh->pd_idx)
213                 return syndrome_disks;
214         if (idx == sh->qd_idx)
215                 return syndrome_disks + 1;
216         if (!sh->ddf_layout)
217                 (*count)++;
218         return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223         struct bio *bi = return_bi;
224         while (bi) {
225
226                 return_bi = bi->bi_next;
227                 bi->bi_next = NULL;
228                 bi->bi_iter.bi_size = 0;
229                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230                                          bi, 0);
231                 bio_endio(bi, 0);
232                 bi = return_bi;
233         }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240         return sh->check_state || sh->reconstruct_state ||
241                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247         struct r5conf *conf = sh->raid_conf;
248         struct r5worker_group *group;
249         int thread_cnt;
250         int i, cpu = sh->cpu;
251
252         if (!cpu_online(cpu)) {
253                 cpu = cpumask_any(cpu_online_mask);
254                 sh->cpu = cpu;
255         }
256
257         if (list_empty(&sh->lru)) {
258                 struct r5worker_group *group;
259                 group = conf->worker_groups + cpu_to_group(cpu);
260                 list_add_tail(&sh->lru, &group->handle_list);
261                 group->stripes_cnt++;
262                 sh->group = group;
263         }
264
265         if (conf->worker_cnt_per_group == 0) {
266                 md_wakeup_thread(conf->mddev->thread);
267                 return;
268         }
269
270         group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272         group->workers[0].working = true;
273         /* at least one worker should run to avoid race */
274         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277         /* wakeup more workers */
278         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279                 if (group->workers[i].working == false) {
280                         group->workers[i].working = true;
281                         queue_work_on(sh->cpu, raid5_wq,
282                                       &group->workers[i].work);
283                         thread_cnt--;
284                 }
285         }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289                               struct list_head *temp_inactive_list)
290 {
291         BUG_ON(!list_empty(&sh->lru));
292         BUG_ON(atomic_read(&conf->active_stripes)==0);
293         if (test_bit(STRIPE_HANDLE, &sh->state)) {
294                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296                         list_add_tail(&sh->lru, &conf->delayed_list);
297                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298                            sh->bm_seq - conf->seq_write > 0)
299                         list_add_tail(&sh->lru, &conf->bitmap_list);
300                 else {
301                         clear_bit(STRIPE_DELAYED, &sh->state);
302                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
303                         if (conf->worker_cnt_per_group == 0) {
304                                 list_add_tail(&sh->lru, &conf->handle_list);
305                         } else {
306                                 raid5_wakeup_stripe_thread(sh);
307                                 return;
308                         }
309                 }
310                 md_wakeup_thread(conf->mddev->thread);
311         } else {
312                 BUG_ON(stripe_operations_active(sh));
313                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314                         if (atomic_dec_return(&conf->preread_active_stripes)
315                             < IO_THRESHOLD)
316                                 md_wakeup_thread(conf->mddev->thread);
317                 atomic_dec(&conf->active_stripes);
318                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319                         list_add_tail(&sh->lru, temp_inactive_list);
320         }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324                              struct list_head *temp_inactive_list)
325 {
326         if (atomic_dec_and_test(&sh->count))
327                 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338                                          struct list_head *temp_inactive_list,
339                                          int hash)
340 {
341         int size;
342         bool do_wakeup = false;
343         unsigned long flags;
344
345         if (hash == NR_STRIPE_HASH_LOCKS) {
346                 size = NR_STRIPE_HASH_LOCKS;
347                 hash = NR_STRIPE_HASH_LOCKS - 1;
348         } else
349                 size = 1;
350         while (size) {
351                 struct list_head *list = &temp_inactive_list[size - 1];
352
353                 /*
354                  * We don't hold any lock here yet, get_active_stripe() might
355                  * remove stripes from the list
356                  */
357                 if (!list_empty_careful(list)) {
358                         spin_lock_irqsave(conf->hash_locks + hash, flags);
359                         if (list_empty(conf->inactive_list + hash) &&
360                             !list_empty(list))
361                                 atomic_dec(&conf->empty_inactive_list_nr);
362                         list_splice_tail_init(list, conf->inactive_list + hash);
363                         do_wakeup = true;
364                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365                 }
366                 size--;
367                 hash--;
368         }
369
370         if (do_wakeup) {
371                 wake_up(&conf->wait_for_stripe);
372                 if (conf->retry_read_aligned)
373                         md_wakeup_thread(conf->mddev->thread);
374         }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379                                struct list_head *temp_inactive_list)
380 {
381         struct stripe_head *sh;
382         int count = 0;
383         struct llist_node *head;
384
385         head = llist_del_all(&conf->released_stripes);
386         head = llist_reverse_order(head);
387         while (head) {
388                 int hash;
389
390                 sh = llist_entry(head, struct stripe_head, release_list);
391                 head = llist_next(head);
392                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393                 smp_mb();
394                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395                 /*
396                  * Don't worry the bit is set here, because if the bit is set
397                  * again, the count is always > 1. This is true for
398                  * STRIPE_ON_UNPLUG_LIST bit too.
399                  */
400                 hash = sh->hash_lock_index;
401                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402                 count++;
403         }
404
405         return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410         struct r5conf *conf = sh->raid_conf;
411         unsigned long flags;
412         struct list_head list;
413         int hash;
414         bool wakeup;
415
416         if (unlikely(!conf->mddev->thread) ||
417                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418                 goto slow_path;
419         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420         if (wakeup)
421                 md_wakeup_thread(conf->mddev->thread);
422         return;
423 slow_path:
424         local_irq_save(flags);
425         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427                 INIT_LIST_HEAD(&list);
428                 hash = sh->hash_lock_index;
429                 do_release_stripe(conf, sh, &list);
430                 spin_unlock(&conf->device_lock);
431                 release_inactive_stripe_list(conf, &list, hash);
432         }
433         local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438         pr_debug("remove_hash(), stripe %llu\n",
439                 (unsigned long long)sh->sector);
440
441         hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446         struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448         pr_debug("insert_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458         struct stripe_head *sh = NULL;
459         struct list_head *first;
460
461         if (list_empty(conf->inactive_list + hash))
462                 goto out;
463         first = (conf->inactive_list + hash)->next;
464         sh = list_entry(first, struct stripe_head, lru);
465         list_del_init(first);
466         remove_hash(sh);
467         atomic_inc(&conf->active_stripes);
468         BUG_ON(hash != sh->hash_lock_index);
469         if (list_empty(conf->inactive_list + hash))
470                 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472         return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477         struct page *p;
478         int i;
479         int num = sh->raid_conf->pool_size;
480
481         for (i = 0; i < num ; i++) {
482                 p = sh->dev[i].page;
483                 if (!p)
484                         continue;
485                 sh->dev[i].page = NULL;
486                 put_page(p);
487         }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492         int i;
493         int num = sh->raid_conf->pool_size;
494
495         for (i = 0; i < num; i++) {
496                 struct page *page;
497
498                 if (!(page = alloc_page(GFP_KERNEL))) {
499                         return 1;
500                 }
501                 sh->dev[i].page = page;
502         }
503         return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508                             struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512         struct r5conf *conf = sh->raid_conf;
513         int i, seq;
514
515         BUG_ON(atomic_read(&sh->count) != 0);
516         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517         BUG_ON(stripe_operations_active(sh));
518
519         pr_debug("init_stripe called, stripe %llu\n",
520                 (unsigned long long)sh->sector);
521
522         remove_hash(sh);
523 retry:
524         seq = read_seqcount_begin(&conf->gen_lock);
525         sh->generation = conf->generation - previous;
526         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527         sh->sector = sector;
528         stripe_set_idx(sector, conf, previous, sh);
529         sh->state = 0;
530
531
532         for (i = sh->disks; i--; ) {
533                 struct r5dev *dev = &sh->dev[i];
534
535                 if (dev->toread || dev->read || dev->towrite || dev->written ||
536                     test_bit(R5_LOCKED, &dev->flags)) {
537                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538                                (unsigned long long)sh->sector, i, dev->toread,
539                                dev->read, dev->towrite, dev->written,
540                                test_bit(R5_LOCKED, &dev->flags));
541                         WARN_ON(1);
542                 }
543                 dev->flags = 0;
544                 raid5_build_block(sh, i, previous);
545         }
546         if (read_seqcount_retry(&conf->gen_lock, seq))
547                 goto retry;
548         insert_hash(conf, sh);
549         sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553                                          short generation)
554 {
555         struct stripe_head *sh;
556
557         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559                 if (sh->sector == sector && sh->generation == generation)
560                         return sh;
561         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562         return NULL;
563 }
564
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580         int degraded, degraded2;
581         int i;
582
583         rcu_read_lock();
584         degraded = 0;
585         for (i = 0; i < conf->previous_raid_disks; i++) {
586                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587                 if (rdev && test_bit(Faulty, &rdev->flags))
588                         rdev = rcu_dereference(conf->disks[i].replacement);
589                 if (!rdev || test_bit(Faulty, &rdev->flags))
590                         degraded++;
591                 else if (test_bit(In_sync, &rdev->flags))
592                         ;
593                 else
594                         /* not in-sync or faulty.
595                          * If the reshape increases the number of devices,
596                          * this is being recovered by the reshape, so
597                          * this 'previous' section is not in_sync.
598                          * If the number of devices is being reduced however,
599                          * the device can only be part of the array if
600                          * we are reverting a reshape, so this section will
601                          * be in-sync.
602                          */
603                         if (conf->raid_disks >= conf->previous_raid_disks)
604                                 degraded++;
605         }
606         rcu_read_unlock();
607         if (conf->raid_disks == conf->previous_raid_disks)
608                 return degraded;
609         rcu_read_lock();
610         degraded2 = 0;
611         for (i = 0; i < conf->raid_disks; i++) {
612                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613                 if (rdev && test_bit(Faulty, &rdev->flags))
614                         rdev = rcu_dereference(conf->disks[i].replacement);
615                 if (!rdev || test_bit(Faulty, &rdev->flags))
616                         degraded2++;
617                 else if (test_bit(In_sync, &rdev->flags))
618                         ;
619                 else
620                         /* not in-sync or faulty.
621                          * If reshape increases the number of devices, this
622                          * section has already been recovered, else it
623                          * almost certainly hasn't.
624                          */
625                         if (conf->raid_disks <= conf->previous_raid_disks)
626                                 degraded2++;
627         }
628         rcu_read_unlock();
629         if (degraded2 > degraded)
630                 return degraded2;
631         return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636         int degraded;
637
638         if (conf->mddev->reshape_position == MaxSector)
639                 return conf->mddev->degraded > conf->max_degraded;
640
641         degraded = calc_degraded(conf);
642         if (degraded > conf->max_degraded)
643                 return 1;
644         return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649                   int previous, int noblock, int noquiesce)
650 {
651         struct stripe_head *sh;
652         int hash = stripe_hash_locks_hash(sector);
653
654         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656         spin_lock_irq(conf->hash_locks + hash);
657
658         do {
659                 wait_event_lock_irq(conf->wait_for_stripe,
660                                     conf->quiesce == 0 || noquiesce,
661                                     *(conf->hash_locks + hash));
662                 sh = __find_stripe(conf, sector, conf->generation - previous);
663                 if (!sh) {
664                         if (!conf->inactive_blocked)
665                                 sh = get_free_stripe(conf, hash);
666                         if (noblock && sh == NULL)
667                                 break;
668                         if (!sh) {
669                                 conf->inactive_blocked = 1;
670                                 wait_event_lock_irq(
671                                         conf->wait_for_stripe,
672                                         !list_empty(conf->inactive_list + hash) &&
673                                         (atomic_read(&conf->active_stripes)
674                                          < (conf->max_nr_stripes * 3 / 4)
675                                          || !conf->inactive_blocked),
676                                         *(conf->hash_locks + hash));
677                                 conf->inactive_blocked = 0;
678                         } else {
679                                 init_stripe(sh, sector, previous);
680                                 atomic_inc(&sh->count);
681                         }
682                 } else if (!atomic_inc_not_zero(&sh->count)) {
683                         spin_lock(&conf->device_lock);
684                         if (!atomic_read(&sh->count)) {
685                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
686                                         atomic_inc(&conf->active_stripes);
687                                 BUG_ON(list_empty(&sh->lru) &&
688                                        !test_bit(STRIPE_EXPANDING, &sh->state));
689                                 list_del_init(&sh->lru);
690                                 if (sh->group) {
691                                         sh->group->stripes_cnt--;
692                                         sh->group = NULL;
693                                 }
694                         }
695                         atomic_inc(&sh->count);
696                         spin_unlock(&conf->device_lock);
697                 }
698         } while (sh == NULL);
699
700         spin_unlock_irq(conf->hash_locks + hash);
701         return sh;
702 }
703
704 /* Determine if 'data_offset' or 'new_data_offset' should be used
705  * in this stripe_head.
706  */
707 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
708 {
709         sector_t progress = conf->reshape_progress;
710         /* Need a memory barrier to make sure we see the value
711          * of conf->generation, or ->data_offset that was set before
712          * reshape_progress was updated.
713          */
714         smp_rmb();
715         if (progress == MaxSector)
716                 return 0;
717         if (sh->generation == conf->generation - 1)
718                 return 0;
719         /* We are in a reshape, and this is a new-generation stripe,
720          * so use new_data_offset.
721          */
722         return 1;
723 }
724
725 static void
726 raid5_end_read_request(struct bio *bi, int error);
727 static void
728 raid5_end_write_request(struct bio *bi, int error);
729
730 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
731 {
732         struct r5conf *conf = sh->raid_conf;
733         int i, disks = sh->disks;
734
735         might_sleep();
736
737         for (i = disks; i--; ) {
738                 int rw;
739                 int replace_only = 0;
740                 struct bio *bi, *rbi;
741                 struct md_rdev *rdev, *rrdev = NULL;
742                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
743                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
744                                 rw = WRITE_FUA;
745                         else
746                                 rw = WRITE;
747                         if (test_bit(R5_Discard, &sh->dev[i].flags))
748                                 rw |= REQ_DISCARD;
749                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
750                         rw = READ;
751                 else if (test_and_clear_bit(R5_WantReplace,
752                                             &sh->dev[i].flags)) {
753                         rw = WRITE;
754                         replace_only = 1;
755                 } else
756                         continue;
757                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
758                         rw |= REQ_SYNC;
759
760                 bi = &sh->dev[i].req;
761                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
762
763                 rcu_read_lock();
764                 rrdev = rcu_dereference(conf->disks[i].replacement);
765                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
766                 rdev = rcu_dereference(conf->disks[i].rdev);
767                 if (!rdev) {
768                         rdev = rrdev;
769                         rrdev = NULL;
770                 }
771                 if (rw & WRITE) {
772                         if (replace_only)
773                                 rdev = NULL;
774                         if (rdev == rrdev)
775                                 /* We raced and saw duplicates */
776                                 rrdev = NULL;
777                 } else {
778                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
779                                 rdev = rrdev;
780                         rrdev = NULL;
781                 }
782
783                 if (rdev && test_bit(Faulty, &rdev->flags))
784                         rdev = NULL;
785                 if (rdev)
786                         atomic_inc(&rdev->nr_pending);
787                 if (rrdev && test_bit(Faulty, &rrdev->flags))
788                         rrdev = NULL;
789                 if (rrdev)
790                         atomic_inc(&rrdev->nr_pending);
791                 rcu_read_unlock();
792
793                 /* We have already checked bad blocks for reads.  Now
794                  * need to check for writes.  We never accept write errors
795                  * on the replacement, so we don't to check rrdev.
796                  */
797                 while ((rw & WRITE) && rdev &&
798                        test_bit(WriteErrorSeen, &rdev->flags)) {
799                         sector_t first_bad;
800                         int bad_sectors;
801                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
802                                               &first_bad, &bad_sectors);
803                         if (!bad)
804                                 break;
805
806                         if (bad < 0) {
807                                 set_bit(BlockedBadBlocks, &rdev->flags);
808                                 if (!conf->mddev->external &&
809                                     conf->mddev->flags) {
810                                         /* It is very unlikely, but we might
811                                          * still need to write out the
812                                          * bad block log - better give it
813                                          * a chance*/
814                                         md_check_recovery(conf->mddev);
815                                 }
816                                 /*
817                                  * Because md_wait_for_blocked_rdev
818                                  * will dec nr_pending, we must
819                                  * increment it first.
820                                  */
821                                 atomic_inc(&rdev->nr_pending);
822                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
823                         } else {
824                                 /* Acknowledged bad block - skip the write */
825                                 rdev_dec_pending(rdev, conf->mddev);
826                                 rdev = NULL;
827                         }
828                 }
829
830                 if (rdev) {
831                         if (s->syncing || s->expanding || s->expanded
832                             || s->replacing)
833                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
834
835                         set_bit(STRIPE_IO_STARTED, &sh->state);
836
837                         bio_reset(bi);
838                         bi->bi_bdev = rdev->bdev;
839                         bi->bi_rw = rw;
840                         bi->bi_end_io = (rw & WRITE)
841                                 ? raid5_end_write_request
842                                 : raid5_end_read_request;
843                         bi->bi_private = sh;
844
845                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
846                                 __func__, (unsigned long long)sh->sector,
847                                 bi->bi_rw, i);
848                         atomic_inc(&sh->count);
849                         if (use_new_offset(conf, sh))
850                                 bi->bi_iter.bi_sector = (sh->sector
851                                                  + rdev->new_data_offset);
852                         else
853                                 bi->bi_iter.bi_sector = (sh->sector
854                                                  + rdev->data_offset);
855                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
856                                 bi->bi_rw |= REQ_NOMERGE;
857
858                         bi->bi_vcnt = 1;
859                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
860                         bi->bi_io_vec[0].bv_offset = 0;
861                         bi->bi_iter.bi_size = STRIPE_SIZE;
862                         /*
863                          * If this is discard request, set bi_vcnt 0. We don't
864                          * want to confuse SCSI because SCSI will replace payload
865                          */
866                         if (rw & REQ_DISCARD)
867                                 bi->bi_vcnt = 0;
868                         if (rrdev)
869                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
870
871                         if (conf->mddev->gendisk)
872                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
873                                                       bi, disk_devt(conf->mddev->gendisk),
874                                                       sh->dev[i].sector);
875                         generic_make_request(bi);
876                 }
877                 if (rrdev) {
878                         if (s->syncing || s->expanding || s->expanded
879                             || s->replacing)
880                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
881
882                         set_bit(STRIPE_IO_STARTED, &sh->state);
883
884                         bio_reset(rbi);
885                         rbi->bi_bdev = rrdev->bdev;
886                         rbi->bi_rw = rw;
887                         BUG_ON(!(rw & WRITE));
888                         rbi->bi_end_io = raid5_end_write_request;
889                         rbi->bi_private = sh;
890
891                         pr_debug("%s: for %llu schedule op %ld on "
892                                  "replacement disc %d\n",
893                                 __func__, (unsigned long long)sh->sector,
894                                 rbi->bi_rw, i);
895                         atomic_inc(&sh->count);
896                         if (use_new_offset(conf, sh))
897                                 rbi->bi_iter.bi_sector = (sh->sector
898                                                   + rrdev->new_data_offset);
899                         else
900                                 rbi->bi_iter.bi_sector = (sh->sector
901                                                   + rrdev->data_offset);
902                         rbi->bi_vcnt = 1;
903                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
904                         rbi->bi_io_vec[0].bv_offset = 0;
905                         rbi->bi_iter.bi_size = STRIPE_SIZE;
906                         /*
907                          * If this is discard request, set bi_vcnt 0. We don't
908                          * want to confuse SCSI because SCSI will replace payload
909                          */
910                         if (rw & REQ_DISCARD)
911                                 rbi->bi_vcnt = 0;
912                         if (conf->mddev->gendisk)
913                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
914                                                       rbi, disk_devt(conf->mddev->gendisk),
915                                                       sh->dev[i].sector);
916                         generic_make_request(rbi);
917                 }
918                 if (!rdev && !rrdev) {
919                         if (rw & WRITE)
920                                 set_bit(STRIPE_DEGRADED, &sh->state);
921                         pr_debug("skip op %ld on disc %d for sector %llu\n",
922                                 bi->bi_rw, i, (unsigned long long)sh->sector);
923                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
924                         set_bit(STRIPE_HANDLE, &sh->state);
925                 }
926         }
927 }
928
929 static struct dma_async_tx_descriptor *
930 async_copy_data(int frombio, struct bio *bio, struct page *page,
931         sector_t sector, struct dma_async_tx_descriptor *tx)
932 {
933         struct bio_vec bvl;
934         struct bvec_iter iter;
935         struct page *bio_page;
936         int page_offset;
937         struct async_submit_ctl submit;
938         enum async_tx_flags flags = 0;
939
940         if (bio->bi_iter.bi_sector >= sector)
941                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
942         else
943                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
944
945         if (frombio)
946                 flags |= ASYNC_TX_FENCE;
947         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
948
949         bio_for_each_segment(bvl, bio, iter) {
950                 int len = bvl.bv_len;
951                 int clen;
952                 int b_offset = 0;
953
954                 if (page_offset < 0) {
955                         b_offset = -page_offset;
956                         page_offset += b_offset;
957                         len -= b_offset;
958                 }
959
960                 if (len > 0 && page_offset + len > STRIPE_SIZE)
961                         clen = STRIPE_SIZE - page_offset;
962                 else
963                         clen = len;
964
965                 if (clen > 0) {
966                         b_offset += bvl.bv_offset;
967                         bio_page = bvl.bv_page;
968                         if (frombio)
969                                 tx = async_memcpy(page, bio_page, page_offset,
970                                                   b_offset, clen, &submit);
971                         else
972                                 tx = async_memcpy(bio_page, page, b_offset,
973                                                   page_offset, clen, &submit);
974                 }
975                 /* chain the operations */
976                 submit.depend_tx = tx;
977
978                 if (clen < len) /* hit end of page */
979                         break;
980                 page_offset +=  len;
981         }
982
983         return tx;
984 }
985
986 static void ops_complete_biofill(void *stripe_head_ref)
987 {
988         struct stripe_head *sh = stripe_head_ref;
989         struct bio *return_bi = NULL;
990         int i;
991
992         pr_debug("%s: stripe %llu\n", __func__,
993                 (unsigned long long)sh->sector);
994
995         /* clear completed biofills */
996         for (i = sh->disks; i--; ) {
997                 struct r5dev *dev = &sh->dev[i];
998
999                 /* acknowledge completion of a biofill operation */
1000                 /* and check if we need to reply to a read request,
1001                  * new R5_Wantfill requests are held off until
1002                  * !STRIPE_BIOFILL_RUN
1003                  */
1004                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1005                         struct bio *rbi, *rbi2;
1006
1007                         BUG_ON(!dev->read);
1008                         rbi = dev->read;
1009                         dev->read = NULL;
1010                         while (rbi && rbi->bi_iter.bi_sector <
1011                                 dev->sector + STRIPE_SECTORS) {
1012                                 rbi2 = r5_next_bio(rbi, dev->sector);
1013                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1014                                         rbi->bi_next = return_bi;
1015                                         return_bi = rbi;
1016                                 }
1017                                 rbi = rbi2;
1018                         }
1019                 }
1020         }
1021         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1022
1023         return_io(return_bi);
1024
1025         set_bit(STRIPE_HANDLE, &sh->state);
1026         release_stripe(sh);
1027 }
1028
1029 static void ops_run_biofill(struct stripe_head *sh)
1030 {
1031         struct dma_async_tx_descriptor *tx = NULL;
1032         struct async_submit_ctl submit;
1033         int i;
1034
1035         pr_debug("%s: stripe %llu\n", __func__,
1036                 (unsigned long long)sh->sector);
1037
1038         for (i = sh->disks; i--; ) {
1039                 struct r5dev *dev = &sh->dev[i];
1040                 if (test_bit(R5_Wantfill, &dev->flags)) {
1041                         struct bio *rbi;
1042                         spin_lock_irq(&sh->stripe_lock);
1043                         dev->read = rbi = dev->toread;
1044                         dev->toread = NULL;
1045                         spin_unlock_irq(&sh->stripe_lock);
1046                         while (rbi && rbi->bi_iter.bi_sector <
1047                                 dev->sector + STRIPE_SECTORS) {
1048                                 tx = async_copy_data(0, rbi, dev->page,
1049                                         dev->sector, tx);
1050                                 rbi = r5_next_bio(rbi, dev->sector);
1051                         }
1052                 }
1053         }
1054
1055         atomic_inc(&sh->count);
1056         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1057         async_trigger_callback(&submit);
1058 }
1059
1060 static void mark_target_uptodate(struct stripe_head *sh, int target)
1061 {
1062         struct r5dev *tgt;
1063
1064         if (target < 0)
1065                 return;
1066
1067         tgt = &sh->dev[target];
1068         set_bit(R5_UPTODATE, &tgt->flags);
1069         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1070         clear_bit(R5_Wantcompute, &tgt->flags);
1071 }
1072
1073 static void ops_complete_compute(void *stripe_head_ref)
1074 {
1075         struct stripe_head *sh = stripe_head_ref;
1076
1077         pr_debug("%s: stripe %llu\n", __func__,
1078                 (unsigned long long)sh->sector);
1079
1080         /* mark the computed target(s) as uptodate */
1081         mark_target_uptodate(sh, sh->ops.target);
1082         mark_target_uptodate(sh, sh->ops.target2);
1083
1084         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1085         if (sh->check_state == check_state_compute_run)
1086                 sh->check_state = check_state_compute_result;
1087         set_bit(STRIPE_HANDLE, &sh->state);
1088         release_stripe(sh);
1089 }
1090
1091 /* return a pointer to the address conversion region of the scribble buffer */
1092 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1093                                  struct raid5_percpu *percpu)
1094 {
1095         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1096 }
1097
1098 static struct dma_async_tx_descriptor *
1099 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1100 {
1101         int disks = sh->disks;
1102         struct page **xor_srcs = percpu->scribble;
1103         int target = sh->ops.target;
1104         struct r5dev *tgt = &sh->dev[target];
1105         struct page *xor_dest = tgt->page;
1106         int count = 0;
1107         struct dma_async_tx_descriptor *tx;
1108         struct async_submit_ctl submit;
1109         int i;
1110
1111         pr_debug("%s: stripe %llu block: %d\n",
1112                 __func__, (unsigned long long)sh->sector, target);
1113         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1114
1115         for (i = disks; i--; )
1116                 if (i != target)
1117                         xor_srcs[count++] = sh->dev[i].page;
1118
1119         atomic_inc(&sh->count);
1120
1121         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1122                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1123         if (unlikely(count == 1))
1124                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125         else
1126                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127
1128         return tx;
1129 }
1130
1131 /* set_syndrome_sources - populate source buffers for gen_syndrome
1132  * @srcs - (struct page *) array of size sh->disks
1133  * @sh - stripe_head to parse
1134  *
1135  * Populates srcs in proper layout order for the stripe and returns the
1136  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1137  * destination buffer is recorded in srcs[count] and the Q destination
1138  * is recorded in srcs[count+1]].
1139  */
1140 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1141 {
1142         int disks = sh->disks;
1143         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1144         int d0_idx = raid6_d0(sh);
1145         int count;
1146         int i;
1147
1148         for (i = 0; i < disks; i++)
1149                 srcs[i] = NULL;
1150
1151         count = 0;
1152         i = d0_idx;
1153         do {
1154                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1155
1156                 srcs[slot] = sh->dev[i].page;
1157                 i = raid6_next_disk(i, disks);
1158         } while (i != d0_idx);
1159
1160         return syndrome_disks;
1161 }
1162
1163 static struct dma_async_tx_descriptor *
1164 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1165 {
1166         int disks = sh->disks;
1167         struct page **blocks = percpu->scribble;
1168         int target;
1169         int qd_idx = sh->qd_idx;
1170         struct dma_async_tx_descriptor *tx;
1171         struct async_submit_ctl submit;
1172         struct r5dev *tgt;
1173         struct page *dest;
1174         int i;
1175         int count;
1176
1177         if (sh->ops.target < 0)
1178                 target = sh->ops.target2;
1179         else if (sh->ops.target2 < 0)
1180                 target = sh->ops.target;
1181         else
1182                 /* we should only have one valid target */
1183                 BUG();
1184         BUG_ON(target < 0);
1185         pr_debug("%s: stripe %llu block: %d\n",
1186                 __func__, (unsigned long long)sh->sector, target);
1187
1188         tgt = &sh->dev[target];
1189         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1190         dest = tgt->page;
1191
1192         atomic_inc(&sh->count);
1193
1194         if (target == qd_idx) {
1195                 count = set_syndrome_sources(blocks, sh);
1196                 blocks[count] = NULL; /* regenerating p is not necessary */
1197                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1198                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1199                                   ops_complete_compute, sh,
1200                                   to_addr_conv(sh, percpu));
1201                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1202         } else {
1203                 /* Compute any data- or p-drive using XOR */
1204                 count = 0;
1205                 for (i = disks; i-- ; ) {
1206                         if (i == target || i == qd_idx)
1207                                 continue;
1208                         blocks[count++] = sh->dev[i].page;
1209                 }
1210
1211                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1212                                   NULL, ops_complete_compute, sh,
1213                                   to_addr_conv(sh, percpu));
1214                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1215         }
1216
1217         return tx;
1218 }
1219
1220 static struct dma_async_tx_descriptor *
1221 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1222 {
1223         int i, count, disks = sh->disks;
1224         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1225         int d0_idx = raid6_d0(sh);
1226         int faila = -1, failb = -1;
1227         int target = sh->ops.target;
1228         int target2 = sh->ops.target2;
1229         struct r5dev *tgt = &sh->dev[target];
1230         struct r5dev *tgt2 = &sh->dev[target2];
1231         struct dma_async_tx_descriptor *tx;
1232         struct page **blocks = percpu->scribble;
1233         struct async_submit_ctl submit;
1234
1235         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1236                  __func__, (unsigned long long)sh->sector, target, target2);
1237         BUG_ON(target < 0 || target2 < 0);
1238         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1239         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1240
1241         /* we need to open-code set_syndrome_sources to handle the
1242          * slot number conversion for 'faila' and 'failb'
1243          */
1244         for (i = 0; i < disks ; i++)
1245                 blocks[i] = NULL;
1246         count = 0;
1247         i = d0_idx;
1248         do {
1249                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1250
1251                 blocks[slot] = sh->dev[i].page;
1252
1253                 if (i == target)
1254                         faila = slot;
1255                 if (i == target2)
1256                         failb = slot;
1257                 i = raid6_next_disk(i, disks);
1258         } while (i != d0_idx);
1259
1260         BUG_ON(faila == failb);
1261         if (failb < faila)
1262                 swap(faila, failb);
1263         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1264                  __func__, (unsigned long long)sh->sector, faila, failb);
1265
1266         atomic_inc(&sh->count);
1267
1268         if (failb == syndrome_disks+1) {
1269                 /* Q disk is one of the missing disks */
1270                 if (faila == syndrome_disks) {
1271                         /* Missing P+Q, just recompute */
1272                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1273                                           ops_complete_compute, sh,
1274                                           to_addr_conv(sh, percpu));
1275                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1276                                                   STRIPE_SIZE, &submit);
1277                 } else {
1278                         struct page *dest;
1279                         int data_target;
1280                         int qd_idx = sh->qd_idx;
1281
1282                         /* Missing D+Q: recompute D from P, then recompute Q */
1283                         if (target == qd_idx)
1284                                 data_target = target2;
1285                         else
1286                                 data_target = target;
1287
1288                         count = 0;
1289                         for (i = disks; i-- ; ) {
1290                                 if (i == data_target || i == qd_idx)
1291                                         continue;
1292                                 blocks[count++] = sh->dev[i].page;
1293                         }
1294                         dest = sh->dev[data_target].page;
1295                         init_async_submit(&submit,
1296                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1297                                           NULL, NULL, NULL,
1298                                           to_addr_conv(sh, percpu));
1299                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1300                                        &submit);
1301
1302                         count = set_syndrome_sources(blocks, sh);
1303                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1304                                           ops_complete_compute, sh,
1305                                           to_addr_conv(sh, percpu));
1306                         return async_gen_syndrome(blocks, 0, count+2,
1307                                                   STRIPE_SIZE, &submit);
1308                 }
1309         } else {
1310                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1311                                   ops_complete_compute, sh,
1312                                   to_addr_conv(sh, percpu));
1313                 if (failb == syndrome_disks) {
1314                         /* We're missing D+P. */
1315                         return async_raid6_datap_recov(syndrome_disks+2,
1316                                                        STRIPE_SIZE, faila,
1317                                                        blocks, &submit);
1318                 } else {
1319                         /* We're missing D+D. */
1320                         return async_raid6_2data_recov(syndrome_disks+2,
1321                                                        STRIPE_SIZE, faila, failb,
1322                                                        blocks, &submit);
1323                 }
1324         }
1325 }
1326
1327
1328 static void ops_complete_prexor(void *stripe_head_ref)
1329 {
1330         struct stripe_head *sh = stripe_head_ref;
1331
1332         pr_debug("%s: stripe %llu\n", __func__,
1333                 (unsigned long long)sh->sector);
1334 }
1335
1336 static struct dma_async_tx_descriptor *
1337 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1338                struct dma_async_tx_descriptor *tx)
1339 {
1340         int disks = sh->disks;
1341         struct page **xor_srcs = percpu->scribble;
1342         int count = 0, pd_idx = sh->pd_idx, i;
1343         struct async_submit_ctl submit;
1344
1345         /* existing parity data subtracted */
1346         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1347
1348         pr_debug("%s: stripe %llu\n", __func__,
1349                 (unsigned long long)sh->sector);
1350
1351         for (i = disks; i--; ) {
1352                 struct r5dev *dev = &sh->dev[i];
1353                 /* Only process blocks that are known to be uptodate */
1354                 if (test_bit(R5_Wantdrain, &dev->flags))
1355                         xor_srcs[count++] = dev->page;
1356         }
1357
1358         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1359                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1360         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1361
1362         return tx;
1363 }
1364
1365 static struct dma_async_tx_descriptor *
1366 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1367 {
1368         int disks = sh->disks;
1369         int i;
1370
1371         pr_debug("%s: stripe %llu\n", __func__,
1372                 (unsigned long long)sh->sector);
1373
1374         for (i = disks; i--; ) {
1375                 struct r5dev *dev = &sh->dev[i];
1376                 struct bio *chosen;
1377
1378                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1379                         struct bio *wbi;
1380
1381                         spin_lock_irq(&sh->stripe_lock);
1382                         chosen = dev->towrite;
1383                         dev->towrite = NULL;
1384                         BUG_ON(dev->written);
1385                         wbi = dev->written = chosen;
1386                         spin_unlock_irq(&sh->stripe_lock);
1387
1388                         while (wbi && wbi->bi_iter.bi_sector <
1389                                 dev->sector + STRIPE_SECTORS) {
1390                                 if (wbi->bi_rw & REQ_FUA)
1391                                         set_bit(R5_WantFUA, &dev->flags);
1392                                 if (wbi->bi_rw & REQ_SYNC)
1393                                         set_bit(R5_SyncIO, &dev->flags);
1394                                 if (wbi->bi_rw & REQ_DISCARD)
1395                                         set_bit(R5_Discard, &dev->flags);
1396                                 else
1397                                         tx = async_copy_data(1, wbi, dev->page,
1398                                                 dev->sector, tx);
1399                                 wbi = r5_next_bio(wbi, dev->sector);
1400                         }
1401                 }
1402         }
1403
1404         return tx;
1405 }
1406
1407 static void ops_complete_reconstruct(void *stripe_head_ref)
1408 {
1409         struct stripe_head *sh = stripe_head_ref;
1410         int disks = sh->disks;
1411         int pd_idx = sh->pd_idx;
1412         int qd_idx = sh->qd_idx;
1413         int i;
1414         bool fua = false, sync = false, discard = false;
1415
1416         pr_debug("%s: stripe %llu\n", __func__,
1417                 (unsigned long long)sh->sector);
1418
1419         for (i = disks; i--; ) {
1420                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1421                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1422                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1423         }
1424
1425         for (i = disks; i--; ) {
1426                 struct r5dev *dev = &sh->dev[i];
1427
1428                 if (dev->written || i == pd_idx || i == qd_idx) {
1429                         if (!discard)
1430                                 set_bit(R5_UPTODATE, &dev->flags);
1431                         if (fua)
1432                                 set_bit(R5_WantFUA, &dev->flags);
1433                         if (sync)
1434                                 set_bit(R5_SyncIO, &dev->flags);
1435                 }
1436         }
1437
1438         if (sh->reconstruct_state == reconstruct_state_drain_run)
1439                 sh->reconstruct_state = reconstruct_state_drain_result;
1440         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1441                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1442         else {
1443                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1444                 sh->reconstruct_state = reconstruct_state_result;
1445         }
1446
1447         set_bit(STRIPE_HANDLE, &sh->state);
1448         release_stripe(sh);
1449 }
1450
1451 static void
1452 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1453                      struct dma_async_tx_descriptor *tx)
1454 {
1455         int disks = sh->disks;
1456         struct page **xor_srcs = percpu->scribble;
1457         struct async_submit_ctl submit;
1458         int count = 0, pd_idx = sh->pd_idx, i;
1459         struct page *xor_dest;
1460         int prexor = 0;
1461         unsigned long flags;
1462
1463         pr_debug("%s: stripe %llu\n", __func__,
1464                 (unsigned long long)sh->sector);
1465
1466         for (i = 0; i < sh->disks; i++) {
1467                 if (pd_idx == i)
1468                         continue;
1469                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1470                         break;
1471         }
1472         if (i >= sh->disks) {
1473                 atomic_inc(&sh->count);
1474                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1475                 ops_complete_reconstruct(sh);
1476                 return;
1477         }
1478         /* check if prexor is active which means only process blocks
1479          * that are part of a read-modify-write (written)
1480          */
1481         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1482                 prexor = 1;
1483                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1484                 for (i = disks; i--; ) {
1485                         struct r5dev *dev = &sh->dev[i];
1486                         if (dev->written)
1487                                 xor_srcs[count++] = dev->page;
1488                 }
1489         } else {
1490                 xor_dest = sh->dev[pd_idx].page;
1491                 for (i = disks; i--; ) {
1492                         struct r5dev *dev = &sh->dev[i];
1493                         if (i != pd_idx)
1494                                 xor_srcs[count++] = dev->page;
1495                 }
1496         }
1497
1498         /* 1/ if we prexor'd then the dest is reused as a source
1499          * 2/ if we did not prexor then we are redoing the parity
1500          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1501          * for the synchronous xor case
1502          */
1503         flags = ASYNC_TX_ACK |
1504                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1505
1506         atomic_inc(&sh->count);
1507
1508         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1509                           to_addr_conv(sh, percpu));
1510         if (unlikely(count == 1))
1511                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1512         else
1513                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1514 }
1515
1516 static void
1517 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1518                      struct dma_async_tx_descriptor *tx)
1519 {
1520         struct async_submit_ctl submit;
1521         struct page **blocks = percpu->scribble;
1522         int count, i;
1523
1524         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1525
1526         for (i = 0; i < sh->disks; i++) {
1527                 if (sh->pd_idx == i || sh->qd_idx == i)
1528                         continue;
1529                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1530                         break;
1531         }
1532         if (i >= sh->disks) {
1533                 atomic_inc(&sh->count);
1534                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1535                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1536                 ops_complete_reconstruct(sh);
1537                 return;
1538         }
1539
1540         count = set_syndrome_sources(blocks, sh);
1541
1542         atomic_inc(&sh->count);
1543
1544         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1545                           sh, to_addr_conv(sh, percpu));
1546         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1547 }
1548
1549 static void ops_complete_check(void *stripe_head_ref)
1550 {
1551         struct stripe_head *sh = stripe_head_ref;
1552
1553         pr_debug("%s: stripe %llu\n", __func__,
1554                 (unsigned long long)sh->sector);
1555
1556         sh->check_state = check_state_check_result;
1557         set_bit(STRIPE_HANDLE, &sh->state);
1558         release_stripe(sh);
1559 }
1560
1561 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1562 {
1563         int disks = sh->disks;
1564         int pd_idx = sh->pd_idx;
1565         int qd_idx = sh->qd_idx;
1566         struct page *xor_dest;
1567         struct page **xor_srcs = percpu->scribble;
1568         struct dma_async_tx_descriptor *tx;
1569         struct async_submit_ctl submit;
1570         int count;
1571         int i;
1572
1573         pr_debug("%s: stripe %llu\n", __func__,
1574                 (unsigned long long)sh->sector);
1575
1576         count = 0;
1577         xor_dest = sh->dev[pd_idx].page;
1578         xor_srcs[count++] = xor_dest;
1579         for (i = disks; i--; ) {
1580                 if (i == pd_idx || i == qd_idx)
1581                         continue;
1582                 xor_srcs[count++] = sh->dev[i].page;
1583         }
1584
1585         init_async_submit(&submit, 0, NULL, NULL, NULL,
1586                           to_addr_conv(sh, percpu));
1587         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1588                            &sh->ops.zero_sum_result, &submit);
1589
1590         atomic_inc(&sh->count);
1591         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1592         tx = async_trigger_callback(&submit);
1593 }
1594
1595 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1596 {
1597         struct page **srcs = percpu->scribble;
1598         struct async_submit_ctl submit;
1599         int count;
1600
1601         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1602                 (unsigned long long)sh->sector, checkp);
1603
1604         count = set_syndrome_sources(srcs, sh);
1605         if (!checkp)
1606                 srcs[count] = NULL;
1607
1608         atomic_inc(&sh->count);
1609         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1610                           sh, to_addr_conv(sh, percpu));
1611         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1612                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1613 }
1614
1615 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1616 {
1617         int overlap_clear = 0, i, disks = sh->disks;
1618         struct dma_async_tx_descriptor *tx = NULL;
1619         struct r5conf *conf = sh->raid_conf;
1620         int level = conf->level;
1621         struct raid5_percpu *percpu;
1622         unsigned long cpu;
1623
1624         cpu = get_cpu();
1625         percpu = per_cpu_ptr(conf->percpu, cpu);
1626         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1627                 ops_run_biofill(sh);
1628                 overlap_clear++;
1629         }
1630
1631         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1632                 if (level < 6)
1633                         tx = ops_run_compute5(sh, percpu);
1634                 else {
1635                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1636                                 tx = ops_run_compute6_1(sh, percpu);
1637                         else
1638                                 tx = ops_run_compute6_2(sh, percpu);
1639                 }
1640                 /* terminate the chain if reconstruct is not set to be run */
1641                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1642                         async_tx_ack(tx);
1643         }
1644
1645         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1646                 tx = ops_run_prexor(sh, percpu, tx);
1647
1648         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1649                 tx = ops_run_biodrain(sh, tx);
1650                 overlap_clear++;
1651         }
1652
1653         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1654                 if (level < 6)
1655                         ops_run_reconstruct5(sh, percpu, tx);
1656                 else
1657                         ops_run_reconstruct6(sh, percpu, tx);
1658         }
1659
1660         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1661                 if (sh->check_state == check_state_run)
1662                         ops_run_check_p(sh, percpu);
1663                 else if (sh->check_state == check_state_run_q)
1664                         ops_run_check_pq(sh, percpu, 0);
1665                 else if (sh->check_state == check_state_run_pq)
1666                         ops_run_check_pq(sh, percpu, 1);
1667                 else
1668                         BUG();
1669         }
1670
1671         if (overlap_clear)
1672                 for (i = disks; i--; ) {
1673                         struct r5dev *dev = &sh->dev[i];
1674                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1675                                 wake_up(&sh->raid_conf->wait_for_overlap);
1676                 }
1677         put_cpu();
1678 }
1679
1680 static int grow_one_stripe(struct r5conf *conf, int hash)
1681 {
1682         struct stripe_head *sh;
1683         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1684         if (!sh)
1685                 return 0;
1686
1687         sh->raid_conf = conf;
1688
1689         spin_lock_init(&sh->stripe_lock);
1690
1691         if (grow_buffers(sh)) {
1692                 shrink_buffers(sh);
1693                 kmem_cache_free(conf->slab_cache, sh);
1694                 return 0;
1695         }
1696         sh->hash_lock_index = hash;
1697         /* we just created an active stripe so... */
1698         atomic_set(&sh->count, 1);
1699         atomic_inc(&conf->active_stripes);
1700         INIT_LIST_HEAD(&sh->lru);
1701         release_stripe(sh);
1702         return 1;
1703 }
1704
1705 static int grow_stripes(struct r5conf *conf, int num)
1706 {
1707         struct kmem_cache *sc;
1708         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1709         int hash;
1710
1711         if (conf->mddev->gendisk)
1712                 sprintf(conf->cache_name[0],
1713                         "raid%d-%s", conf->level, mdname(conf->mddev));
1714         else
1715                 sprintf(conf->cache_name[0],
1716                         "raid%d-%p", conf->level, conf->mddev);
1717         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1718
1719         conf->active_name = 0;
1720         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1721                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1722                                0, 0, NULL);
1723         if (!sc)
1724                 return 1;
1725         conf->slab_cache = sc;
1726         conf->pool_size = devs;
1727         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1728         while (num--) {
1729                 if (!grow_one_stripe(conf, hash))
1730                         return 1;
1731                 conf->max_nr_stripes++;
1732                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1733         }
1734         return 0;
1735 }
1736
1737 /**
1738  * scribble_len - return the required size of the scribble region
1739  * @num - total number of disks in the array
1740  *
1741  * The size must be enough to contain:
1742  * 1/ a struct page pointer for each device in the array +2
1743  * 2/ room to convert each entry in (1) to its corresponding dma
1744  *    (dma_map_page()) or page (page_address()) address.
1745  *
1746  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1747  * calculate over all devices (not just the data blocks), using zeros in place
1748  * of the P and Q blocks.
1749  */
1750 static size_t scribble_len(int num)
1751 {
1752         size_t len;
1753
1754         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1755
1756         return len;
1757 }
1758
1759 static int resize_stripes(struct r5conf *conf, int newsize)
1760 {
1761         /* Make all the stripes able to hold 'newsize' devices.
1762          * New slots in each stripe get 'page' set to a new page.
1763          *
1764          * This happens in stages:
1765          * 1/ create a new kmem_cache and allocate the required number of
1766          *    stripe_heads.
1767          * 2/ gather all the old stripe_heads and transfer the pages across
1768          *    to the new stripe_heads.  This will have the side effect of
1769          *    freezing the array as once all stripe_heads have been collected,
1770          *    no IO will be possible.  Old stripe heads are freed once their
1771          *    pages have been transferred over, and the old kmem_cache is
1772          *    freed when all stripes are done.
1773          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1774          *    we simple return a failre status - no need to clean anything up.
1775          * 4/ allocate new pages for the new slots in the new stripe_heads.
1776          *    If this fails, we don't bother trying the shrink the
1777          *    stripe_heads down again, we just leave them as they are.
1778          *    As each stripe_head is processed the new one is released into
1779          *    active service.
1780          *
1781          * Once step2 is started, we cannot afford to wait for a write,
1782          * so we use GFP_NOIO allocations.
1783          */
1784         struct stripe_head *osh, *nsh;
1785         LIST_HEAD(newstripes);
1786         struct disk_info *ndisks;
1787         unsigned long cpu;
1788         int err;
1789         struct kmem_cache *sc;
1790         int i;
1791         int hash, cnt;
1792
1793         if (newsize <= conf->pool_size)
1794                 return 0; /* never bother to shrink */
1795
1796         err = md_allow_write(conf->mddev);
1797         if (err)
1798                 return err;
1799
1800         /* Step 1 */
1801         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1802                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1803                                0, 0, NULL);
1804         if (!sc)
1805                 return -ENOMEM;
1806
1807         for (i = conf->max_nr_stripes; i; i--) {
1808                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1809                 if (!nsh)
1810                         break;
1811
1812                 nsh->raid_conf = conf;
1813                 spin_lock_init(&nsh->stripe_lock);
1814
1815                 list_add(&nsh->lru, &newstripes);
1816         }
1817         if (i) {
1818                 /* didn't get enough, give up */
1819                 while (!list_empty(&newstripes)) {
1820                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1821                         list_del(&nsh->lru);
1822                         kmem_cache_free(sc, nsh);
1823                 }
1824                 kmem_cache_destroy(sc);
1825                 return -ENOMEM;
1826         }
1827         /* Step 2 - Must use GFP_NOIO now.
1828          * OK, we have enough stripes, start collecting inactive
1829          * stripes and copying them over
1830          */
1831         hash = 0;
1832         cnt = 0;
1833         list_for_each_entry(nsh, &newstripes, lru) {
1834                 lock_device_hash_lock(conf, hash);
1835                 wait_event_cmd(conf->wait_for_stripe,
1836                                     !list_empty(conf->inactive_list + hash),
1837                                     unlock_device_hash_lock(conf, hash),
1838                                     lock_device_hash_lock(conf, hash));
1839                 osh = get_free_stripe(conf, hash);
1840                 unlock_device_hash_lock(conf, hash);
1841                 atomic_set(&nsh->count, 1);
1842                 for(i=0; i<conf->pool_size; i++)
1843                         nsh->dev[i].page = osh->dev[i].page;
1844                 for( ; i<newsize; i++)
1845                         nsh->dev[i].page = NULL;
1846                 nsh->hash_lock_index = hash;
1847                 kmem_cache_free(conf->slab_cache, osh);
1848                 cnt++;
1849                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1850                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1851                         hash++;
1852                         cnt = 0;
1853                 }
1854         }
1855         kmem_cache_destroy(conf->slab_cache);
1856
1857         /* Step 3.
1858          * At this point, we are holding all the stripes so the array
1859          * is completely stalled, so now is a good time to resize
1860          * conf->disks and the scribble region
1861          */
1862         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1863         if (ndisks) {
1864                 for (i=0; i<conf->raid_disks; i++)
1865                         ndisks[i] = conf->disks[i];
1866                 kfree(conf->disks);
1867                 conf->disks = ndisks;
1868         } else
1869                 err = -ENOMEM;
1870
1871         get_online_cpus();
1872         conf->scribble_len = scribble_len(newsize);
1873         for_each_present_cpu(cpu) {
1874                 struct raid5_percpu *percpu;
1875                 void *scribble;
1876
1877                 percpu = per_cpu_ptr(conf->percpu, cpu);
1878                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1879
1880                 if (scribble) {
1881                         kfree(percpu->scribble);
1882                         percpu->scribble = scribble;
1883                 } else {
1884                         err = -ENOMEM;
1885                         break;
1886                 }
1887         }
1888         put_online_cpus();
1889
1890         /* Step 4, return new stripes to service */
1891         while(!list_empty(&newstripes)) {
1892                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1893                 list_del_init(&nsh->lru);
1894
1895                 for (i=conf->raid_disks; i < newsize; i++)
1896                         if (nsh->dev[i].page == NULL) {
1897                                 struct page *p = alloc_page(GFP_NOIO);
1898                                 nsh->dev[i].page = p;
1899                                 if (!p)
1900                                         err = -ENOMEM;
1901                         }
1902                 release_stripe(nsh);
1903         }
1904         /* critical section pass, GFP_NOIO no longer needed */
1905
1906         conf->slab_cache = sc;
1907         conf->active_name = 1-conf->active_name;
1908         conf->pool_size = newsize;
1909         return err;
1910 }
1911
1912 static int drop_one_stripe(struct r5conf *conf, int hash)
1913 {
1914         struct stripe_head *sh;
1915
1916         spin_lock_irq(conf->hash_locks + hash);
1917         sh = get_free_stripe(conf, hash);
1918         spin_unlock_irq(conf->hash_locks + hash);
1919         if (!sh)
1920                 return 0;
1921         BUG_ON(atomic_read(&sh->count));
1922         shrink_buffers(sh);
1923         kmem_cache_free(conf->slab_cache, sh);
1924         atomic_dec(&conf->active_stripes);
1925         return 1;
1926 }
1927
1928 static void shrink_stripes(struct r5conf *conf)
1929 {
1930         int hash;
1931         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1932                 while (drop_one_stripe(conf, hash))
1933                         ;
1934
1935         if (conf->slab_cache)
1936                 kmem_cache_destroy(conf->slab_cache);
1937         conf->slab_cache = NULL;
1938 }
1939
1940 static void raid5_end_read_request(struct bio * bi, int error)
1941 {
1942         struct stripe_head *sh = bi->bi_private;
1943         struct r5conf *conf = sh->raid_conf;
1944         int disks = sh->disks, i;
1945         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1946         char b[BDEVNAME_SIZE];
1947         struct md_rdev *rdev = NULL;
1948         sector_t s;
1949
1950         for (i=0 ; i<disks; i++)
1951                 if (bi == &sh->dev[i].req)
1952                         break;
1953
1954         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1955                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1956                 uptodate);
1957         if (i == disks) {
1958                 BUG();
1959                 return;
1960         }
1961         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1962                 /* If replacement finished while this request was outstanding,
1963                  * 'replacement' might be NULL already.
1964                  * In that case it moved down to 'rdev'.
1965                  * rdev is not removed until all requests are finished.
1966                  */
1967                 rdev = conf->disks[i].replacement;
1968         if (!rdev)
1969                 rdev = conf->disks[i].rdev;
1970
1971         if (use_new_offset(conf, sh))
1972                 s = sh->sector + rdev->new_data_offset;
1973         else
1974                 s = sh->sector + rdev->data_offset;
1975         if (uptodate) {
1976                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1977                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1978                         /* Note that this cannot happen on a
1979                          * replacement device.  We just fail those on
1980                          * any error
1981                          */
1982                         printk_ratelimited(
1983                                 KERN_INFO
1984                                 "md/raid:%s: read error corrected"
1985                                 " (%lu sectors at %llu on %s)\n",
1986                                 mdname(conf->mddev), STRIPE_SECTORS,
1987                                 (unsigned long long)s,
1988                                 bdevname(rdev->bdev, b));
1989                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1990                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1991                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1992                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1993                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1994
1995                 if (atomic_read(&rdev->read_errors))
1996                         atomic_set(&rdev->read_errors, 0);
1997         } else {
1998                 const char *bdn = bdevname(rdev->bdev, b);
1999                 int retry = 0;
2000                 int set_bad = 0;
2001
2002                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2003                 atomic_inc(&rdev->read_errors);
2004                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2005                         printk_ratelimited(
2006                                 KERN_WARNING
2007                                 "md/raid:%s: read error on replacement device "
2008                                 "(sector %llu on %s).\n",
2009                                 mdname(conf->mddev),
2010                                 (unsigned long long)s,
2011                                 bdn);
2012                 else if (conf->mddev->degraded >= conf->max_degraded) {
2013                         set_bad = 1;
2014                         printk_ratelimited(
2015                                 KERN_WARNING
2016                                 "md/raid:%s: read error not correctable "
2017                                 "(sector %llu on %s).\n",
2018                                 mdname(conf->mddev),
2019                                 (unsigned long long)s,
2020                                 bdn);
2021                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2022                         /* Oh, no!!! */
2023                         set_bad = 1;
2024                         printk_ratelimited(
2025                                 KERN_WARNING
2026                                 "md/raid:%s: read error NOT corrected!! "
2027                                 "(sector %llu on %s).\n",
2028                                 mdname(conf->mddev),
2029                                 (unsigned long long)s,
2030                                 bdn);
2031                 } else if (atomic_read(&rdev->read_errors)
2032                          > conf->max_nr_stripes)
2033                         printk(KERN_WARNING
2034                                "md/raid:%s: Too many read errors, failing device %s.\n",
2035                                mdname(conf->mddev), bdn);
2036                 else
2037                         retry = 1;
2038                 if (set_bad && test_bit(In_sync, &rdev->flags)
2039                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2040                         retry = 1;
2041                 if (retry)
2042                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2043                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2044                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2045                         } else
2046                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2047                 else {
2048                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2049                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2050                         if (!(set_bad
2051                               && test_bit(In_sync, &rdev->flags)
2052                               && rdev_set_badblocks(
2053                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2054                                 md_error(conf->mddev, rdev);
2055                 }
2056         }
2057         rdev_dec_pending(rdev, conf->mddev);
2058         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2059         set_bit(STRIPE_HANDLE, &sh->state);
2060         release_stripe(sh);
2061 }
2062
2063 static void raid5_end_write_request(struct bio *bi, int error)
2064 {
2065         struct stripe_head *sh = bi->bi_private;
2066         struct r5conf *conf = sh->raid_conf;
2067         int disks = sh->disks, i;
2068         struct md_rdev *uninitialized_var(rdev);
2069         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2070         sector_t first_bad;
2071         int bad_sectors;
2072         int replacement = 0;
2073
2074         for (i = 0 ; i < disks; i++) {
2075                 if (bi == &sh->dev[i].req) {
2076                         rdev = conf->disks[i].rdev;
2077                         break;
2078                 }
2079                 if (bi == &sh->dev[i].rreq) {
2080                         rdev = conf->disks[i].replacement;
2081                         if (rdev)
2082                                 replacement = 1;
2083                         else
2084                                 /* rdev was removed and 'replacement'
2085                                  * replaced it.  rdev is not removed
2086                                  * until all requests are finished.
2087                                  */
2088                                 rdev = conf->disks[i].rdev;
2089                         break;
2090                 }
2091         }
2092         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2093                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2094                 uptodate);
2095         if (i == disks) {
2096                 BUG();
2097                 return;
2098         }
2099
2100         if (replacement) {
2101                 if (!uptodate)
2102                         md_error(conf->mddev, rdev);
2103                 else if (is_badblock(rdev, sh->sector,
2104                                      STRIPE_SECTORS,
2105                                      &first_bad, &bad_sectors))
2106                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2107         } else {
2108                 if (!uptodate) {
2109                         set_bit(STRIPE_DEGRADED, &sh->state);
2110                         set_bit(WriteErrorSeen, &rdev->flags);
2111                         set_bit(R5_WriteError, &sh->dev[i].flags);
2112                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2113                                 set_bit(MD_RECOVERY_NEEDED,
2114                                         &rdev->mddev->recovery);
2115                 } else if (is_badblock(rdev, sh->sector,
2116                                        STRIPE_SECTORS,
2117                                        &first_bad, &bad_sectors)) {
2118                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2119                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2120                                 /* That was a successful write so make
2121                                  * sure it looks like we already did
2122                                  * a re-write.
2123                                  */
2124                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2125                 }
2126         }
2127         rdev_dec_pending(rdev, conf->mddev);
2128
2129         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2130                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2131         set_bit(STRIPE_HANDLE, &sh->state);
2132         release_stripe(sh);
2133 }
2134
2135 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2136         
2137 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2138 {
2139         struct r5dev *dev = &sh->dev[i];
2140
2141         bio_init(&dev->req);
2142         dev->req.bi_io_vec = &dev->vec;
2143         dev->req.bi_vcnt++;
2144         dev->req.bi_max_vecs++;
2145         dev->req.bi_private = sh;
2146         dev->vec.bv_page = dev->page;
2147
2148         bio_init(&dev->rreq);
2149         dev->rreq.bi_io_vec = &dev->rvec;
2150         dev->rreq.bi_vcnt++;
2151         dev->rreq.bi_max_vecs++;
2152         dev->rreq.bi_private = sh;
2153         dev->rvec.bv_page = dev->page;
2154
2155         dev->flags = 0;
2156         dev->sector = compute_blocknr(sh, i, previous);
2157 }
2158
2159 static void error(struct mddev *mddev, struct md_rdev *rdev)
2160 {
2161         char b[BDEVNAME_SIZE];
2162         struct r5conf *conf = mddev->private;
2163         unsigned long flags;
2164         pr_debug("raid456: error called\n");
2165
2166         spin_lock_irqsave(&conf->device_lock, flags);
2167         clear_bit(In_sync, &rdev->flags);
2168         mddev->degraded = calc_degraded(conf);
2169         spin_unlock_irqrestore(&conf->device_lock, flags);
2170         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2171
2172         set_bit(Blocked, &rdev->flags);
2173         set_bit(Faulty, &rdev->flags);
2174         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2175         printk(KERN_ALERT
2176                "md/raid:%s: Disk failure on %s, disabling device.\n"
2177                "md/raid:%s: Operation continuing on %d devices.\n",
2178                mdname(mddev),
2179                bdevname(rdev->bdev, b),
2180                mdname(mddev),
2181                conf->raid_disks - mddev->degraded);
2182 }
2183
2184 /*
2185  * Input: a 'big' sector number,
2186  * Output: index of the data and parity disk, and the sector # in them.
2187  */
2188 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2189                                      int previous, int *dd_idx,
2190                                      struct stripe_head *sh)
2191 {
2192         sector_t stripe, stripe2;
2193         sector_t chunk_number;
2194         unsigned int chunk_offset;
2195         int pd_idx, qd_idx;
2196         int ddf_layout = 0;
2197         sector_t new_sector;
2198         int algorithm = previous ? conf->prev_algo
2199                                  : conf->algorithm;
2200         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2201                                          : conf->chunk_sectors;
2202         int raid_disks = previous ? conf->previous_raid_disks
2203                                   : conf->raid_disks;
2204         int data_disks = raid_disks - conf->max_degraded;
2205
2206         /* First compute the information on this sector */
2207
2208         /*
2209          * Compute the chunk number and the sector offset inside the chunk
2210          */
2211         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2212         chunk_number = r_sector;
2213
2214         /*
2215          * Compute the stripe number
2216          */
2217         stripe = chunk_number;
2218         *dd_idx = sector_div(stripe, data_disks);
2219         stripe2 = stripe;
2220         /*
2221          * Select the parity disk based on the user selected algorithm.
2222          */
2223         pd_idx = qd_idx = -1;
2224         switch(conf->level) {
2225         case 4:
2226                 pd_idx = data_disks;
2227                 break;
2228         case 5:
2229                 switch (algorithm) {
2230                 case ALGORITHM_LEFT_ASYMMETRIC:
2231                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2232                         if (*dd_idx >= pd_idx)
2233                                 (*dd_idx)++;
2234                         break;
2235                 case ALGORITHM_RIGHT_ASYMMETRIC:
2236                         pd_idx = sector_div(stripe2, raid_disks);
2237                         if (*dd_idx >= pd_idx)
2238                                 (*dd_idx)++;
2239                         break;
2240                 case ALGORITHM_LEFT_SYMMETRIC:
2241                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2242                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2243                         break;
2244                 case ALGORITHM_RIGHT_SYMMETRIC:
2245                         pd_idx = sector_div(stripe2, raid_disks);
2246                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2247                         break;
2248                 case ALGORITHM_PARITY_0:
2249                         pd_idx = 0;
2250                         (*dd_idx)++;
2251                         break;
2252                 case ALGORITHM_PARITY_N:
2253                         pd_idx = data_disks;
2254                         break;
2255                 default:
2256                         BUG();
2257                 }
2258                 break;
2259         case 6:
2260
2261                 switch (algorithm) {
2262                 case ALGORITHM_LEFT_ASYMMETRIC:
2263                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2264                         qd_idx = pd_idx + 1;
2265                         if (pd_idx == raid_disks-1) {
2266                                 (*dd_idx)++;    /* Q D D D P */
2267                                 qd_idx = 0;
2268                         } else if (*dd_idx >= pd_idx)
2269                                 (*dd_idx) += 2; /* D D P Q D */
2270                         break;
2271                 case ALGORITHM_RIGHT_ASYMMETRIC:
2272                         pd_idx = sector_div(stripe2, raid_disks);
2273                         qd_idx = pd_idx + 1;
2274                         if (pd_idx == raid_disks-1) {
2275                                 (*dd_idx)++;    /* Q D D D P */
2276                                 qd_idx = 0;
2277                         } else if (*dd_idx >= pd_idx)
2278                                 (*dd_idx) += 2; /* D D P Q D */
2279                         break;
2280                 case ALGORITHM_LEFT_SYMMETRIC:
2281                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2282                         qd_idx = (pd_idx + 1) % raid_disks;
2283                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2284                         break;
2285                 case ALGORITHM_RIGHT_SYMMETRIC:
2286                         pd_idx = sector_div(stripe2, raid_disks);
2287                         qd_idx = (pd_idx + 1) % raid_disks;
2288                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289                         break;
2290
2291                 case ALGORITHM_PARITY_0:
2292                         pd_idx = 0;
2293                         qd_idx = 1;
2294                         (*dd_idx) += 2;
2295                         break;
2296                 case ALGORITHM_PARITY_N:
2297                         pd_idx = data_disks;
2298                         qd_idx = data_disks + 1;
2299                         break;
2300
2301                 case ALGORITHM_ROTATING_ZERO_RESTART:
2302                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2303                          * of blocks for computing Q is different.
2304                          */
2305                         pd_idx = sector_div(stripe2, raid_disks);
2306                         qd_idx = pd_idx + 1;
2307                         if (pd_idx == raid_disks-1) {
2308                                 (*dd_idx)++;    /* Q D D D P */
2309                                 qd_idx = 0;
2310                         } else if (*dd_idx >= pd_idx)
2311                                 (*dd_idx) += 2; /* D D P Q D */
2312                         ddf_layout = 1;
2313                         break;
2314
2315                 case ALGORITHM_ROTATING_N_RESTART:
2316                         /* Same a left_asymmetric, by first stripe is
2317                          * D D D P Q  rather than
2318                          * Q D D D P
2319                          */
2320                         stripe2 += 1;
2321                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2322                         qd_idx = pd_idx + 1;
2323                         if (pd_idx == raid_disks-1) {
2324                                 (*dd_idx)++;    /* Q D D D P */
2325                                 qd_idx = 0;
2326                         } else if (*dd_idx >= pd_idx)
2327                                 (*dd_idx) += 2; /* D D P Q D */
2328                         ddf_layout = 1;
2329                         break;
2330
2331                 case ALGORITHM_ROTATING_N_CONTINUE:
2332                         /* Same as left_symmetric but Q is before P */
2333                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2334                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2335                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2336                         ddf_layout = 1;
2337                         break;
2338
2339                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2340                         /* RAID5 left_asymmetric, with Q on last device */
2341                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2342                         if (*dd_idx >= pd_idx)
2343                                 (*dd_idx)++;
2344                         qd_idx = raid_disks - 1;
2345                         break;
2346
2347                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2348                         pd_idx = sector_div(stripe2, raid_disks-1);
2349                         if (*dd_idx >= pd_idx)
2350                                 (*dd_idx)++;
2351                         qd_idx = raid_disks - 1;
2352                         break;
2353
2354                 case ALGORITHM_LEFT_SYMMETRIC_6:
2355                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2356                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2357                         qd_idx = raid_disks - 1;
2358                         break;
2359
2360                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2361                         pd_idx = sector_div(stripe2, raid_disks-1);
2362                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2363                         qd_idx = raid_disks - 1;
2364                         break;
2365
2366                 case ALGORITHM_PARITY_0_6:
2367                         pd_idx = 0;
2368                         (*dd_idx)++;
2369                         qd_idx = raid_disks - 1;
2370                         break;
2371
2372                 default:
2373                         BUG();
2374                 }
2375                 break;
2376         }
2377
2378         if (sh) {
2379                 sh->pd_idx = pd_idx;
2380                 sh->qd_idx = qd_idx;
2381                 sh->ddf_layout = ddf_layout;
2382         }
2383         /*
2384          * Finally, compute the new sector number
2385          */
2386         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2387         return new_sector;
2388 }
2389
2390
2391 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2392 {
2393         struct r5conf *conf = sh->raid_conf;
2394         int raid_disks = sh->disks;
2395         int data_disks = raid_disks - conf->max_degraded;
2396         sector_t new_sector = sh->sector, check;
2397         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2398                                          : conf->chunk_sectors;
2399         int algorithm = previous ? conf->prev_algo
2400                                  : conf->algorithm;
2401         sector_t stripe;
2402         int chunk_offset;
2403         sector_t chunk_number;
2404         int dummy1, dd_idx = i;
2405         sector_t r_sector;
2406         struct stripe_head sh2;
2407
2408
2409         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2410         stripe = new_sector;
2411
2412         if (i == sh->pd_idx)
2413                 return 0;
2414         switch(conf->level) {
2415         case 4: break;
2416         case 5:
2417                 switch (algorithm) {
2418                 case ALGORITHM_LEFT_ASYMMETRIC:
2419                 case ALGORITHM_RIGHT_ASYMMETRIC:
2420                         if (i > sh->pd_idx)
2421                                 i--;
2422                         break;
2423                 case ALGORITHM_LEFT_SYMMETRIC:
2424                 case ALGORITHM_RIGHT_SYMMETRIC:
2425                         if (i < sh->pd_idx)
2426                                 i += raid_disks;
2427                         i -= (sh->pd_idx + 1);
2428                         break;
2429                 case ALGORITHM_PARITY_0:
2430                         i -= 1;
2431                         break;
2432                 case ALGORITHM_PARITY_N:
2433                         break;
2434                 default:
2435                         BUG();
2436                 }
2437                 break;
2438         case 6:
2439                 if (i == sh->qd_idx)
2440                         return 0; /* It is the Q disk */
2441                 switch (algorithm) {
2442                 case ALGORITHM_LEFT_ASYMMETRIC:
2443                 case ALGORITHM_RIGHT_ASYMMETRIC:
2444                 case ALGORITHM_ROTATING_ZERO_RESTART:
2445                 case ALGORITHM_ROTATING_N_RESTART:
2446                         if (sh->pd_idx == raid_disks-1)
2447                                 i--;    /* Q D D D P */
2448                         else if (i > sh->pd_idx)
2449                                 i -= 2; /* D D P Q D */
2450                         break;
2451                 case ALGORITHM_LEFT_SYMMETRIC:
2452                 case ALGORITHM_RIGHT_SYMMETRIC:
2453                         if (sh->pd_idx == raid_disks-1)
2454                                 i--; /* Q D D D P */
2455                         else {
2456                                 /* D D P Q D */
2457                                 if (i < sh->pd_idx)
2458                                         i += raid_disks;
2459                                 i -= (sh->pd_idx + 2);
2460                         }
2461                         break;
2462                 case ALGORITHM_PARITY_0:
2463                         i -= 2;
2464                         break;
2465                 case ALGORITHM_PARITY_N:
2466                         break;
2467                 case ALGORITHM_ROTATING_N_CONTINUE:
2468                         /* Like left_symmetric, but P is before Q */
2469                         if (sh->pd_idx == 0)
2470                                 i--;    /* P D D D Q */
2471                         else {
2472                                 /* D D Q P D */
2473                                 if (i < sh->pd_idx)
2474                                         i += raid_disks;
2475                                 i -= (sh->pd_idx + 1);
2476                         }
2477                         break;
2478                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2479                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2480                         if (i > sh->pd_idx)
2481                                 i--;
2482                         break;
2483                 case ALGORITHM_LEFT_SYMMETRIC_6:
2484                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2485                         if (i < sh->pd_idx)
2486                                 i += data_disks + 1;
2487                         i -= (sh->pd_idx + 1);
2488                         break;
2489                 case ALGORITHM_PARITY_0_6:
2490                         i -= 1;
2491                         break;
2492                 default:
2493                         BUG();
2494                 }
2495                 break;
2496         }
2497
2498         chunk_number = stripe * data_disks + i;
2499         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2500
2501         check = raid5_compute_sector(conf, r_sector,
2502                                      previous, &dummy1, &sh2);
2503         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2504                 || sh2.qd_idx != sh->qd_idx) {
2505                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2506                        mdname(conf->mddev));
2507                 return 0;
2508         }
2509         return r_sector;
2510 }
2511
2512
2513 static void
2514 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2515                          int rcw, int expand)
2516 {
2517         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2518         struct r5conf *conf = sh->raid_conf;
2519         int level = conf->level;
2520
2521         if (rcw) {
2522
2523                 for (i = disks; i--; ) {
2524                         struct r5dev *dev = &sh->dev[i];
2525
2526                         if (dev->towrite) {
2527                                 set_bit(R5_LOCKED, &dev->flags);
2528                                 set_bit(R5_Wantdrain, &dev->flags);
2529                                 if (!expand)
2530                                         clear_bit(R5_UPTODATE, &dev->flags);
2531                                 s->locked++;
2532                         }
2533                 }
2534                 /* if we are not expanding this is a proper write request, and
2535                  * there will be bios with new data to be drained into the
2536                  * stripe cache
2537                  */
2538                 if (!expand) {
2539                         if (!s->locked)
2540                                 /* False alarm, nothing to do */
2541                                 return;
2542                         sh->reconstruct_state = reconstruct_state_drain_run;
2543                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2544                 } else
2545                         sh->reconstruct_state = reconstruct_state_run;
2546
2547                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2548
2549                 if (s->locked + conf->max_degraded == disks)
2550                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2551                                 atomic_inc(&conf->pending_full_writes);
2552         } else {
2553                 BUG_ON(level == 6);
2554                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2555                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2556
2557                 for (i = disks; i--; ) {
2558                         struct r5dev *dev = &sh->dev[i];
2559                         if (i == pd_idx)
2560                                 continue;
2561
2562                         if (dev->towrite &&
2563                             (test_bit(R5_UPTODATE, &dev->flags) ||
2564                              test_bit(R5_Wantcompute, &dev->flags))) {
2565                                 set_bit(R5_Wantdrain, &dev->flags);
2566                                 set_bit(R5_LOCKED, &dev->flags);
2567                                 clear_bit(R5_UPTODATE, &dev->flags);
2568                                 s->locked++;
2569                         }
2570                 }
2571                 if (!s->locked)
2572                         /* False alarm - nothing to do */
2573                         return;
2574                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2575                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2576                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2577                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2578         }
2579
2580         /* keep the parity disk(s) locked while asynchronous operations
2581          * are in flight
2582          */
2583         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2584         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2585         s->locked++;
2586
2587         if (level == 6) {
2588                 int qd_idx = sh->qd_idx;
2589                 struct r5dev *dev = &sh->dev[qd_idx];
2590
2591                 set_bit(R5_LOCKED, &dev->flags);
2592                 clear_bit(R5_UPTODATE, &dev->flags);
2593                 s->locked++;
2594         }
2595
2596         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2597                 __func__, (unsigned long long)sh->sector,
2598                 s->locked, s->ops_request);
2599 }
2600
2601 /*
2602  * Each stripe/dev can have one or more bion attached.
2603  * toread/towrite point to the first in a chain.
2604  * The bi_next chain must be in order.
2605  */
2606 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2607 {
2608         struct bio **bip;
2609         struct r5conf *conf = sh->raid_conf;
2610         int firstwrite=0;
2611
2612         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2613                 (unsigned long long)bi->bi_iter.bi_sector,
2614                 (unsigned long long)sh->sector);
2615
2616         /*
2617          * If several bio share a stripe. The bio bi_phys_segments acts as a
2618          * reference count to avoid race. The reference count should already be
2619          * increased before this function is called (for example, in
2620          * make_request()), so other bio sharing this stripe will not free the
2621          * stripe. If a stripe is owned by one stripe, the stripe lock will
2622          * protect it.
2623          */
2624         spin_lock_irq(&sh->stripe_lock);
2625         if (forwrite) {
2626                 bip = &sh->dev[dd_idx].towrite;
2627                 if (*bip == NULL)
2628                         firstwrite = 1;
2629         } else
2630                 bip = &sh->dev[dd_idx].toread;
2631         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2632                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2633                         goto overlap;
2634                 bip = & (*bip)->bi_next;
2635         }
2636         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2637                 goto overlap;
2638
2639         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2640         if (*bip)
2641                 bi->bi_next = *bip;
2642         *bip = bi;
2643         raid5_inc_bi_active_stripes(bi);
2644
2645         if (forwrite) {
2646                 /* check if page is covered */
2647                 sector_t sector = sh->dev[dd_idx].sector;
2648                 for (bi=sh->dev[dd_idx].towrite;
2649                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2650                              bi && bi->bi_iter.bi_sector <= sector;
2651                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2652                         if (bio_end_sector(bi) >= sector)
2653                                 sector = bio_end_sector(bi);
2654                 }
2655                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2656                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2657         }
2658
2659         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2660                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2661                 (unsigned long long)sh->sector, dd_idx);
2662         spin_unlock_irq(&sh->stripe_lock);
2663
2664         if (conf->mddev->bitmap && firstwrite) {
2665                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2666                                   STRIPE_SECTORS, 0);
2667                 sh->bm_seq = conf->seq_flush+1;
2668                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2669         }
2670         return 1;
2671
2672  overlap:
2673         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2674         spin_unlock_irq(&sh->stripe_lock);
2675         return 0;
2676 }
2677
2678 static void end_reshape(struct r5conf *conf);
2679
2680 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2681                             struct stripe_head *sh)
2682 {
2683         int sectors_per_chunk =
2684                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2685         int dd_idx;
2686         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2687         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2688
2689         raid5_compute_sector(conf,
2690                              stripe * (disks - conf->max_degraded)
2691                              *sectors_per_chunk + chunk_offset,
2692                              previous,
2693                              &dd_idx, sh);
2694 }
2695
2696 static void
2697 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2698                                 struct stripe_head_state *s, int disks,
2699                                 struct bio **return_bi)
2700 {
2701         int i;
2702         for (i = disks; i--; ) {
2703                 struct bio *bi;
2704                 int bitmap_end = 0;
2705
2706                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2707                         struct md_rdev *rdev;
2708                         rcu_read_lock();
2709                         rdev = rcu_dereference(conf->disks[i].rdev);
2710                         if (rdev && test_bit(In_sync, &rdev->flags))
2711                                 atomic_inc(&rdev->nr_pending);
2712                         else
2713                                 rdev = NULL;
2714                         rcu_read_unlock();
2715                         if (rdev) {
2716                                 if (!rdev_set_badblocks(
2717                                             rdev,
2718                                             sh->sector,
2719                                             STRIPE_SECTORS, 0))
2720                                         md_error(conf->mddev, rdev);
2721                                 rdev_dec_pending(rdev, conf->mddev);
2722                         }
2723                 }
2724                 spin_lock_irq(&sh->stripe_lock);
2725                 /* fail all writes first */
2726                 bi = sh->dev[i].towrite;
2727                 sh->dev[i].towrite = NULL;
2728                 spin_unlock_irq(&sh->stripe_lock);
2729                 if (bi)
2730                         bitmap_end = 1;
2731
2732                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2733                         wake_up(&conf->wait_for_overlap);
2734
2735                 while (bi && bi->bi_iter.bi_sector <
2736                         sh->dev[i].sector + STRIPE_SECTORS) {
2737                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2738                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2739                         if (!raid5_dec_bi_active_stripes(bi)) {
2740                                 md_write_end(conf->mddev);
2741                                 bi->bi_next = *return_bi;
2742                                 *return_bi = bi;
2743                         }
2744                         bi = nextbi;
2745                 }
2746                 if (bitmap_end)
2747                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2748                                 STRIPE_SECTORS, 0, 0);
2749                 bitmap_end = 0;
2750                 /* and fail all 'written' */
2751                 bi = sh->dev[i].written;
2752                 sh->dev[i].written = NULL;
2753                 if (bi) bitmap_end = 1;
2754                 while (bi && bi->bi_iter.bi_sector <
2755                        sh->dev[i].sector + STRIPE_SECTORS) {
2756                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2757                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2758                         if (!raid5_dec_bi_active_stripes(bi)) {
2759                                 md_write_end(conf->mddev);
2760                                 bi->bi_next = *return_bi;
2761                                 *return_bi = bi;
2762                         }
2763                         bi = bi2;
2764                 }
2765
2766                 /* fail any reads if this device is non-operational and
2767                  * the data has not reached the cache yet.
2768                  */
2769                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2770                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2771                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2772                         spin_lock_irq(&sh->stripe_lock);
2773                         bi = sh->dev[i].toread;
2774                         sh->dev[i].toread = NULL;
2775                         spin_unlock_irq(&sh->stripe_lock);
2776                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2777                                 wake_up(&conf->wait_for_overlap);
2778                         while (bi && bi->bi_iter.bi_sector <
2779                                sh->dev[i].sector + STRIPE_SECTORS) {
2780                                 struct bio *nextbi =
2781                                         r5_next_bio(bi, sh->dev[i].sector);
2782                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2783                                 if (!raid5_dec_bi_active_stripes(bi)) {
2784                                         bi->bi_next = *return_bi;
2785                                         *return_bi = bi;
2786                                 }
2787                                 bi = nextbi;
2788                         }
2789                 }
2790                 if (bitmap_end)
2791                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2792                                         STRIPE_SECTORS, 0, 0);
2793                 /* If we were in the middle of a write the parity block might
2794                  * still be locked - so just clear all R5_LOCKED flags
2795                  */
2796                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2797         }
2798
2799         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2800                 if (atomic_dec_and_test(&conf->pending_full_writes))
2801                         md_wakeup_thread(conf->mddev->thread);
2802 }
2803
2804 static void
2805 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2806                    struct stripe_head_state *s)
2807 {
2808         int abort = 0;
2809         int i;
2810
2811         clear_bit(STRIPE_SYNCING, &sh->state);
2812         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2813                 wake_up(&conf->wait_for_overlap);
2814         s->syncing = 0;
2815         s->replacing = 0;
2816         /* There is nothing more to do for sync/check/repair.
2817          * Don't even need to abort as that is handled elsewhere
2818          * if needed, and not always wanted e.g. if there is a known
2819          * bad block here.
2820          * For recover/replace we need to record a bad block on all
2821          * non-sync devices, or abort the recovery
2822          */
2823         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2824                 /* During recovery devices cannot be removed, so
2825                  * locking and refcounting of rdevs is not needed
2826                  */
2827                 for (i = 0; i < conf->raid_disks; i++) {
2828                         struct md_rdev *rdev = conf->disks[i].rdev;
2829                         if (rdev
2830                             && !test_bit(Faulty, &rdev->flags)
2831                             && !test_bit(In_sync, &rdev->flags)
2832                             && !rdev_set_badblocks(rdev, sh->sector,
2833                                                    STRIPE_SECTORS, 0))
2834                                 abort = 1;
2835                         rdev = conf->disks[i].replacement;
2836                         if (rdev
2837                             && !test_bit(Faulty, &rdev->flags)
2838                             && !test_bit(In_sync, &rdev->flags)
2839                             && !rdev_set_badblocks(rdev, sh->sector,
2840                                                    STRIPE_SECTORS, 0))
2841                                 abort = 1;
2842                 }
2843                 if (abort)
2844                         conf->recovery_disabled =
2845                                 conf->mddev->recovery_disabled;
2846         }
2847         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2848 }
2849
2850 static int want_replace(struct stripe_head *sh, int disk_idx)
2851 {
2852         struct md_rdev *rdev;
2853         int rv = 0;
2854         /* Doing recovery so rcu locking not required */
2855         rdev = sh->raid_conf->disks[disk_idx].replacement;
2856         if (rdev
2857             && !test_bit(Faulty, &rdev->flags)
2858             && !test_bit(In_sync, &rdev->flags)
2859             && (rdev->recovery_offset <= sh->sector
2860                 || rdev->mddev->recovery_cp <= sh->sector))
2861                 rv = 1;
2862
2863         return rv;
2864 }
2865
2866 /* fetch_block - checks the given member device to see if its data needs
2867  * to be read or computed to satisfy a request.
2868  *
2869  * Returns 1 when no more member devices need to be checked, otherwise returns
2870  * 0 to tell the loop in handle_stripe_fill to continue
2871  */
2872 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2873                        int disk_idx, int disks)
2874 {
2875         struct r5dev *dev = &sh->dev[disk_idx];
2876         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2877                                   &sh->dev[s->failed_num[1]] };
2878
2879         /* is the data in this block needed, and can we get it? */
2880         if (!test_bit(R5_LOCKED, &dev->flags) &&
2881             !test_bit(R5_UPTODATE, &dev->flags) &&
2882             (dev->toread ||
2883              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2884              s->syncing || s->expanding ||
2885              (s->replacing && want_replace(sh, disk_idx)) ||
2886              (s->failed >= 1 && fdev[0]->toread) ||
2887              (s->failed >= 2 && fdev[1]->toread) ||
2888              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2889               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2890              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2891                 /* we would like to get this block, possibly by computing it,
2892                  * otherwise read it if the backing disk is insync
2893                  */
2894                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2895                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2896                 if ((s->uptodate == disks - 1) &&
2897                     (s->failed && (disk_idx == s->failed_num[0] ||
2898                                    disk_idx == s->failed_num[1]))) {
2899                         /* have disk failed, and we're requested to fetch it;
2900                          * do compute it
2901                          */
2902                         pr_debug("Computing stripe %llu block %d\n",
2903                                (unsigned long long)sh->sector, disk_idx);
2904                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2905                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2906                         set_bit(R5_Wantcompute, &dev->flags);
2907                         sh->ops.target = disk_idx;
2908                         sh->ops.target2 = -1; /* no 2nd target */
2909                         s->req_compute = 1;
2910                         /* Careful: from this point on 'uptodate' is in the eye
2911                          * of raid_run_ops which services 'compute' operations
2912                          * before writes. R5_Wantcompute flags a block that will
2913                          * be R5_UPTODATE by the time it is needed for a
2914                          * subsequent operation.
2915                          */
2916                         s->uptodate++;
2917                         return 1;
2918                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2919                         /* Computing 2-failure is *very* expensive; only
2920                          * do it if failed >= 2
2921                          */
2922                         int other;
2923                         for (other = disks; other--; ) {
2924                                 if (other == disk_idx)
2925                                         continue;
2926                                 if (!test_bit(R5_UPTODATE,
2927                                       &sh->dev[other].flags))
2928                                         break;
2929                         }
2930                         BUG_ON(other < 0);
2931                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2932                                (unsigned long long)sh->sector,
2933                                disk_idx, other);
2934                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2935                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2936                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2937                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2938                         sh->ops.target = disk_idx;
2939                         sh->ops.target2 = other;
2940                         s->uptodate += 2;
2941                         s->req_compute = 1;
2942                         return 1;
2943                 } else if (test_bit(R5_Insync, &dev->flags)) {
2944                         set_bit(R5_LOCKED, &dev->flags);
2945                         set_bit(R5_Wantread, &dev->flags);
2946                         s->locked++;
2947                         pr_debug("Reading block %d (sync=%d)\n",
2948                                 disk_idx, s->syncing);
2949                 }
2950         }
2951
2952         return 0;
2953 }
2954
2955 /**
2956  * handle_stripe_fill - read or compute data to satisfy pending requests.
2957  */
2958 static void handle_stripe_fill(struct stripe_head *sh,
2959                                struct stripe_head_state *s,
2960                                int disks)
2961 {
2962         int i;
2963
2964         /* look for blocks to read/compute, skip this if a compute
2965          * is already in flight, or if the stripe contents are in the
2966          * midst of changing due to a write
2967          */
2968         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2969             !sh->reconstruct_state)
2970                 for (i = disks; i--; )
2971                         if (fetch_block(sh, s, i, disks))
2972                                 break;
2973         set_bit(STRIPE_HANDLE, &sh->state);
2974 }
2975
2976
2977 /* handle_stripe_clean_event
2978  * any written block on an uptodate or failed drive can be returned.
2979  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2980  * never LOCKED, so we don't need to test 'failed' directly.
2981  */
2982 static void handle_stripe_clean_event(struct r5conf *conf,
2983         struct stripe_head *sh, int disks, struct bio **return_bi)
2984 {
2985         int i;
2986         struct r5dev *dev;
2987         int discard_pending = 0;
2988
2989         for (i = disks; i--; )
2990                 if (sh->dev[i].written) {
2991                         dev = &sh->dev[i];
2992                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2993                             (test_bit(R5_UPTODATE, &dev->flags) ||
2994                              test_bit(R5_Discard, &dev->flags))) {
2995                                 /* We can return any write requests */
2996                                 struct bio *wbi, *wbi2;
2997                                 pr_debug("Return write for disc %d\n", i);
2998                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2999                                         clear_bit(R5_UPTODATE, &dev->flags);
3000                                 wbi = dev->written;
3001                                 dev->written = NULL;
3002                                 while (wbi && wbi->bi_iter.bi_sector <
3003                                         dev->sector + STRIPE_SECTORS) {
3004                                         wbi2 = r5_next_bio(wbi, dev->sector);
3005                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3006                                                 md_write_end(conf->mddev);
3007                                                 wbi->bi_next = *return_bi;
3008                                                 *return_bi = wbi;
3009                                         }
3010                                         wbi = wbi2;
3011                                 }
3012                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3013                                                 STRIPE_SECTORS,
3014                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3015                                                 0);
3016                         } else if (test_bit(R5_Discard, &dev->flags))
3017                                 discard_pending = 1;
3018                 }
3019         if (!discard_pending &&
3020             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3021                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3022                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3023                 if (sh->qd_idx >= 0) {
3024                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3025                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3026                 }
3027                 /* now that discard is done we can proceed with any sync */
3028                 clear_bit(STRIPE_DISCARD, &sh->state);
3029                 /*
3030                  * SCSI discard will change some bio fields and the stripe has
3031                  * no updated data, so remove it from hash list and the stripe
3032                  * will be reinitialized
3033                  */
3034                 spin_lock_irq(&conf->device_lock);
3035                 remove_hash(sh);
3036                 spin_unlock_irq(&conf->device_lock);
3037                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3038                         set_bit(STRIPE_HANDLE, &sh->state);
3039
3040         }
3041
3042         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3043                 if (atomic_dec_and_test(&conf->pending_full_writes))
3044                         md_wakeup_thread(conf->mddev->thread);
3045 }
3046
3047 static void handle_stripe_dirtying(struct r5conf *conf,
3048                                    struct stripe_head *sh,
3049                                    struct stripe_head_state *s,
3050                                    int disks)
3051 {
3052         int rmw = 0, rcw = 0, i;
3053         sector_t recovery_cp = conf->mddev->recovery_cp;
3054
3055         /* RAID6 requires 'rcw' in current implementation.
3056          * Otherwise, check whether resync is now happening or should start.
3057          * If yes, then the array is dirty (after unclean shutdown or
3058          * initial creation), so parity in some stripes might be inconsistent.
3059          * In this case, we need to always do reconstruct-write, to ensure
3060          * that in case of drive failure or read-error correction, we
3061          * generate correct data from the parity.
3062          */
3063         if (conf->max_degraded == 2 ||
3064             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3065                 /* Calculate the real rcw later - for now make it
3066                  * look like rcw is cheaper
3067                  */
3068                 rcw = 1; rmw = 2;
3069                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3070                          conf->max_degraded, (unsigned long long)recovery_cp,
3071                          (unsigned long long)sh->sector);
3072         } else for (i = disks; i--; ) {
3073                 /* would I have to read this buffer for read_modify_write */
3074                 struct r5dev *dev = &sh->dev[i];
3075                 if ((dev->towrite || i == sh->pd_idx) &&
3076                     !test_bit(R5_LOCKED, &dev->flags) &&
3077                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3078                       test_bit(R5_Wantcompute, &dev->flags))) {
3079                         if (test_bit(R5_Insync, &dev->flags))
3080                                 rmw++;
3081                         else
3082                                 rmw += 2*disks;  /* cannot read it */
3083                 }
3084                 /* Would I have to read this buffer for reconstruct_write */
3085                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3086                     !test_bit(R5_LOCKED, &dev->flags) &&
3087                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3088                     test_bit(R5_Wantcompute, &dev->flags))) {
3089                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
3090                         else
3091                                 rcw += 2*disks;
3092                 }
3093         }
3094         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3095                 (unsigned long long)sh->sector, rmw, rcw);
3096         set_bit(STRIPE_HANDLE, &sh->state);
3097         if (rmw < rcw && rmw > 0) {
3098                 /* prefer read-modify-write, but need to get some data */
3099                 if (conf->mddev->queue)
3100                         blk_add_trace_msg(conf->mddev->queue,
3101                                           "raid5 rmw %llu %d",
3102                                           (unsigned long long)sh->sector, rmw);
3103                 for (i = disks; i--; ) {
3104                         struct r5dev *dev = &sh->dev[i];
3105                         if ((dev->towrite || i == sh->pd_idx) &&
3106                             !test_bit(R5_LOCKED, &dev->flags) &&
3107                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3108                             test_bit(R5_Wantcompute, &dev->flags)) &&
3109                             test_bit(R5_Insync, &dev->flags)) {
3110                                 if (
3111                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3112                                         pr_debug("Read_old block "
3113                                                  "%d for r-m-w\n", i);
3114                                         set_bit(R5_LOCKED, &dev->flags);
3115                                         set_bit(R5_Wantread, &dev->flags);
3116                                         s->locked++;
3117                                 } else {
3118                                         set_bit(STRIPE_DELAYED, &sh->state);
3119                                         set_bit(STRIPE_HANDLE, &sh->state);
3120                                 }
3121                         }
3122                 }
3123         }
3124         if (rcw <= rmw && rcw > 0) {
3125                 /* want reconstruct write, but need to get some data */
3126                 int qread =0;
3127                 rcw = 0;
3128                 for (i = disks; i--; ) {
3129                         struct r5dev *dev = &sh->dev[i];
3130                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3131                             i != sh->pd_idx && i != sh->qd_idx &&
3132                             !test_bit(R5_LOCKED, &dev->flags) &&
3133                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3134                               test_bit(R5_Wantcompute, &dev->flags))) {
3135                                 rcw++;
3136                                 if (!test_bit(R5_Insync, &dev->flags))
3137                                         continue; /* it's a failed drive */
3138                                 if (
3139                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3140                                         pr_debug("Read_old block "
3141                                                 "%d for Reconstruct\n", i);
3142                                         set_bit(R5_LOCKED, &dev->flags);
3143                                         set_bit(R5_Wantread, &dev->flags);
3144                                         s->locked++;
3145                                         qread++;
3146                                 } else {
3147                                         set_bit(STRIPE_DELAYED, &sh->state);
3148                                         set_bit(STRIPE_HANDLE, &sh->state);
3149                                 }
3150                         }
3151                 }
3152                 if (rcw && conf->mddev->queue)
3153                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3154                                           (unsigned long long)sh->sector,
3155                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3156         }
3157         /* now if nothing is locked, and if we have enough data,
3158          * we can start a write request
3159          */
3160         /* since handle_stripe can be called at any time we need to handle the
3161          * case where a compute block operation has been submitted and then a
3162          * subsequent call wants to start a write request.  raid_run_ops only
3163          * handles the case where compute block and reconstruct are requested
3164          * simultaneously.  If this is not the case then new writes need to be
3165          * held off until the compute completes.
3166          */
3167         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3168             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3169             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3170                 schedule_reconstruction(sh, s, rcw == 0, 0);
3171 }
3172
3173 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3174                                 struct stripe_head_state *s, int disks)
3175 {
3176         struct r5dev *dev = NULL;
3177
3178         set_bit(STRIPE_HANDLE, &sh->state);
3179
3180         switch (sh->check_state) {
3181         case check_state_idle:
3182                 /* start a new check operation if there are no failures */
3183                 if (s->failed == 0) {
3184                         BUG_ON(s->uptodate != disks);
3185                         sh->check_state = check_state_run;
3186                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3187                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3188                         s->uptodate--;
3189                         break;
3190                 }
3191                 dev = &sh->dev[s->failed_num[0]];
3192                 /* fall through */
3193         case check_state_compute_result:
3194                 sh->check_state = check_state_idle;
3195                 if (!dev)
3196                         dev = &sh->dev[sh->pd_idx];
3197
3198                 /* check that a write has not made the stripe insync */
3199                 if (test_bit(STRIPE_INSYNC, &sh->state))
3200                         break;
3201
3202                 /* either failed parity check, or recovery is happening */
3203                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3204                 BUG_ON(s->uptodate != disks);
3205
3206                 set_bit(R5_LOCKED, &dev->flags);
3207                 s->locked++;
3208                 set_bit(R5_Wantwrite, &dev->flags);
3209
3210                 clear_bit(STRIPE_DEGRADED, &sh->state);
3211                 set_bit(STRIPE_INSYNC, &sh->state);
3212                 break;
3213         case check_state_run:
3214                 break; /* we will be called again upon completion */
3215         case check_state_check_result:
3216                 sh->check_state = check_state_idle;
3217
3218                 /* if a failure occurred during the check operation, leave
3219                  * STRIPE_INSYNC not set and let the stripe be handled again
3220                  */
3221                 if (s->failed)
3222                         break;
3223
3224                 /* handle a successful check operation, if parity is correct
3225                  * we are done.  Otherwise update the mismatch count and repair
3226                  * parity if !MD_RECOVERY_CHECK
3227                  */
3228                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3229                         /* parity is correct (on disc,
3230                          * not in buffer any more)
3231                          */
3232                         set_bit(STRIPE_INSYNC, &sh->state);
3233                 else {
3234                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3235                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3236                                 /* don't try to repair!! */
3237                                 set_bit(STRIPE_INSYNC, &sh->state);
3238                         else {
3239                                 sh->check_state = check_state_compute_run;
3240                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3241                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3242                                 set_bit(R5_Wantcompute,
3243                                         &sh->dev[sh->pd_idx].flags);
3244                                 sh->ops.target = sh->pd_idx;
3245                                 sh->ops.target2 = -1;
3246                                 s->uptodate++;
3247                         }
3248                 }
3249                 break;
3250         case check_state_compute_run:
3251                 break;
3252         default:
3253                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3254                        __func__, sh->check_state,
3255                        (unsigned long long) sh->sector);
3256                 BUG();
3257         }
3258 }
3259
3260
3261 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3262                                   struct stripe_head_state *s,
3263                                   int disks)
3264 {
3265         int pd_idx = sh->pd_idx;
3266         int qd_idx = sh->qd_idx;
3267         struct r5dev *dev;
3268
3269         set_bit(STRIPE_HANDLE, &sh->state);
3270
3271         BUG_ON(s->failed > 2);
3272
3273         /* Want to check and possibly repair P and Q.
3274          * However there could be one 'failed' device, in which
3275          * case we can only check one of them, possibly using the
3276          * other to generate missing data
3277          */
3278
3279         switch (sh->check_state) {
3280         case check_state_idle:
3281                 /* start a new check operation if there are < 2 failures */
3282                 if (s->failed == s->q_failed) {
3283                         /* The only possible failed device holds Q, so it
3284                          * makes sense to check P (If anything else were failed,
3285                          * we would have used P to recreate it).
3286                          */
3287                         sh->check_state = check_state_run;
3288                 }
3289                 if (!s->q_failed && s->failed < 2) {
3290                         /* Q is not failed, and we didn't use it to generate
3291                          * anything, so it makes sense to check it
3292                          */
3293                         if (sh->check_state == check_state_run)
3294                                 sh->check_state = check_state_run_pq;
3295                         else
3296                                 sh->check_state = check_state_run_q;
3297                 }
3298
3299                 /* discard potentially stale zero_sum_result */
3300                 sh->ops.zero_sum_result = 0;
3301
3302                 if (sh->check_state == check_state_run) {
3303                         /* async_xor_zero_sum destroys the contents of P */
3304                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3305                         s->uptodate--;
3306                 }
3307                 if (sh->check_state >= check_state_run &&
3308                     sh->check_state <= check_state_run_pq) {
3309                         /* async_syndrome_zero_sum preserves P and Q, so
3310                          * no need to mark them !uptodate here
3311                          */
3312                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3313                         break;
3314                 }
3315
3316                 /* we have 2-disk failure */
3317                 BUG_ON(s->failed != 2);
3318                 /* fall through */
3319         case check_state_compute_result:
3320                 sh->check_state = check_state_idle;
3321
3322                 /* check that a write has not made the stripe insync */
3323                 if (test_bit(STRIPE_INSYNC, &sh->state))
3324                         break;
3325
3326                 /* now write out any block on a failed drive,
3327                  * or P or Q if they were recomputed
3328                  */
3329                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3330                 if (s->failed == 2) {
3331                         dev = &sh->dev[s->failed_num[1]];
3332                         s->locked++;
3333                         set_bit(R5_LOCKED, &dev->flags);
3334                         set_bit(R5_Wantwrite, &dev->flags);
3335                 }
3336                 if (s->failed >= 1) {
3337                         dev = &sh->dev[s->failed_num[0]];
3338                         s->locked++;
3339                         set_bit(R5_LOCKED, &dev->flags);
3340                         set_bit(R5_Wantwrite, &dev->flags);
3341                 }
3342                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3343                         dev = &sh->dev[pd_idx];
3344                         s->locked++;
3345                         set_bit(R5_LOCKED, &dev->flags);
3346                         set_bit(R5_Wantwrite, &dev->flags);
3347                 }
3348                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3349                         dev = &sh->dev[qd_idx];
3350                         s->locked++;
3351                         set_bit(R5_LOCKED, &dev->flags);
3352                         set_bit(R5_Wantwrite, &dev->flags);
3353                 }
3354                 clear_bit(STRIPE_DEGRADED, &sh->state);
3355
3356                 set_bit(STRIPE_INSYNC, &sh->state);
3357                 break;
3358         case check_state_run:
3359         case check_state_run_q:
3360         case check_state_run_pq:
3361                 break; /* we will be called again upon completion */
3362         case check_state_check_result:
3363                 sh->check_state = check_state_idle;
3364
3365                 /* handle a successful check operation, if parity is correct
3366                  * we are done.  Otherwise update the mismatch count and repair
3367                  * parity if !MD_RECOVERY_CHECK
3368                  */
3369                 if (sh->ops.zero_sum_result == 0) {
3370                         /* both parities are correct */
3371                         if (!s->failed)
3372                                 set_bit(STRIPE_INSYNC, &sh->state);
3373                         else {
3374                                 /* in contrast to the raid5 case we can validate
3375                                  * parity, but still have a failure to write
3376                                  * back
3377                                  */
3378                                 sh->check_state = check_state_compute_result;
3379                                 /* Returning at this point means that we may go
3380                                  * off and bring p and/or q uptodate again so
3381                                  * we make sure to check zero_sum_result again
3382                                  * to verify if p or q need writeback
3383                                  */
3384                         }
3385                 } else {
3386                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3387                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3388                                 /* don't try to repair!! */
3389                                 set_bit(STRIPE_INSYNC, &sh->state);
3390                         else {
3391                                 int *target = &sh->ops.target;
3392
3393                                 sh->ops.target = -1;
3394                                 sh->ops.target2 = -1;
3395                                 sh->check_state = check_state_compute_run;
3396                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3397                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3398                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3399                                         set_bit(R5_Wantcompute,
3400                                                 &sh->dev[pd_idx].flags);
3401                                         *target = pd_idx;
3402                                         target = &sh->ops.target2;
3403                                         s->uptodate++;
3404                                 }
3405                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3406                                         set_bit(R5_Wantcompute,
3407                                                 &sh->dev[qd_idx].flags);
3408                                         *target = qd_idx;
3409                                         s->uptodate++;
3410                                 }
3411                         }
3412                 }
3413                 break;
3414         case check_state_compute_run:
3415                 break;
3416         default:
3417                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3418                        __func__, sh->check_state,
3419                        (unsigned long long) sh->sector);
3420                 BUG();
3421         }
3422 }
3423
3424 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3425 {
3426         int i;
3427
3428         /* We have read all the blocks in this stripe and now we need to
3429          * copy some of them into a target stripe for expand.
3430          */
3431         struct dma_async_tx_descriptor *tx = NULL;
3432         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3433         for (i = 0; i < sh->disks; i++)
3434                 if (i != sh->pd_idx && i != sh->qd_idx) {
3435                         int dd_idx, j;
3436                         struct stripe_head *sh2;
3437                         struct async_submit_ctl submit;
3438
3439                         sector_t bn = compute_blocknr(sh, i, 1);
3440                         sector_t s = raid5_compute_sector(conf, bn, 0,
3441                                                           &dd_idx, NULL);
3442                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3443                         if (sh2 == NULL)
3444                                 /* so far only the early blocks of this stripe
3445                                  * have been requested.  When later blocks
3446                                  * get requested, we will try again
3447                                  */
3448                                 continue;
3449                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3450                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3451                                 /* must have already done this block */
3452                                 release_stripe(sh2);
3453                                 continue;
3454                         }
3455
3456                         /* place all the copies on one channel */
3457                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3458                         tx = async_memcpy(sh2->dev[dd_idx].page,
3459                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3460                                           &submit);
3461
3462                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3463                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3464                         for (j = 0; j < conf->raid_disks; j++)
3465                                 if (j != sh2->pd_idx &&
3466                                     j != sh2->qd_idx &&
3467                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3468                                         break;
3469                         if (j == conf->raid_disks) {
3470                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3471                                 set_bit(STRIPE_HANDLE, &sh2->state);
3472                         }
3473                         release_stripe(sh2);
3474
3475                 }
3476         /* done submitting copies, wait for them to complete */
3477         async_tx_quiesce(&tx);
3478 }
3479
3480 /*
3481  * handle_stripe - do things to a stripe.
3482  *
3483  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3484  * state of various bits to see what needs to be done.
3485  * Possible results:
3486  *    return some read requests which now have data
3487  *    return some write requests which are safely on storage
3488  *    schedule a read on some buffers
3489  *    schedule a write of some buffers
3490  *    return confirmation of parity correctness
3491  *
3492  */
3493
3494 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3495 {
3496         struct r5conf *conf = sh->raid_conf;
3497         int disks = sh->disks;
3498         struct r5dev *dev;
3499         int i;
3500         int do_recovery = 0;
3501
3502         memset(s, 0, sizeof(*s));
3503
3504         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3505         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3506         s->failed_num[0] = -1;
3507         s->failed_num[1] = -1;
3508
3509         /* Now to look around and see what can be done */
3510         rcu_read_lock();
3511         for (i=disks; i--; ) {
3512                 struct md_rdev *rdev;
3513                 sector_t first_bad;
3514                 int bad_sectors;
3515                 int is_bad = 0;
3516
3517                 dev = &sh->dev[i];
3518
3519                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3520                          i, dev->flags,
3521                          dev->toread, dev->towrite, dev->written);
3522                 /* maybe we can reply to a read
3523                  *
3524                  * new wantfill requests are only permitted while
3525                  * ops_complete_biofill is guaranteed to be inactive
3526                  */
3527                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3528                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3529                         set_bit(R5_Wantfill, &dev->flags);
3530
3531                 /* now count some things */
3532                 if (test_bit(R5_LOCKED, &dev->flags))
3533                         s->locked++;
3534                 if (test_bit(R5_UPTODATE, &dev->flags))
3535                         s->uptodate++;
3536                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3537                         s->compute++;
3538                         BUG_ON(s->compute > 2);
3539                 }
3540
3541                 if (test_bit(R5_Wantfill, &dev->flags))
3542                         s->to_fill++;
3543                 else if (dev->toread)
3544                         s->to_read++;
3545                 if (dev->towrite) {
3546                         s->to_write++;
3547                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3548                                 s->non_overwrite++;
3549                 }
3550                 if (dev->written)
3551                         s->written++;
3552                 /* Prefer to use the replacement for reads, but only
3553                  * if it is recovered enough and has no bad blocks.
3554                  */
3555                 rdev = rcu_dereference(conf->disks[i].replacement);
3556                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3557                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3558                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3559                                  &first_bad, &bad_sectors))
3560                         set_bit(R5_ReadRepl, &dev->flags);
3561                 else {
3562                         if (rdev)
3563                                 set_bit(R5_NeedReplace, &dev->flags);
3564                         rdev = rcu_dereference(conf->disks[i].rdev);
3565                         clear_bit(R5_ReadRepl, &dev->flags);
3566                 }
3567                 if (rdev && test_bit(Faulty, &rdev->flags))
3568                         rdev = NULL;
3569                 if (rdev) {
3570                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3571                                              &first_bad, &bad_sectors);
3572                         if (s->blocked_rdev == NULL
3573                             && (test_bit(Blocked, &rdev->flags)
3574                                 || is_bad < 0)) {
3575                                 if (is_bad < 0)
3576                                         set_bit(BlockedBadBlocks,
3577                                                 &rdev->flags);
3578                                 s->blocked_rdev = rdev;
3579                                 atomic_inc(&rdev->nr_pending);
3580                         }
3581                 }
3582                 clear_bit(R5_Insync, &dev->flags);
3583                 if (!rdev)
3584                         /* Not in-sync */;
3585                 else if (is_bad) {
3586                         /* also not in-sync */
3587                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3588                             test_bit(R5_UPTODATE, &dev->flags)) {
3589                                 /* treat as in-sync, but with a read error
3590                                  * which we can now try to correct
3591                                  */
3592                                 set_bit(R5_Insync, &dev->flags);
3593                                 set_bit(R5_ReadError, &dev->flags);
3594                         }
3595                 } else if (test_bit(In_sync, &rdev->flags))
3596                         set_bit(R5_Insync, &dev->flags);
3597                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3598                         /* in sync if before recovery_offset */
3599                         set_bit(R5_Insync, &dev->flags);
3600                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3601                          test_bit(R5_Expanded, &dev->flags))
3602                         /* If we've reshaped into here, we assume it is Insync.
3603                          * We will shortly update recovery_offset to make
3604                          * it official.
3605                          */
3606                         set_bit(R5_Insync, &dev->flags);
3607
3608                 if (test_bit(R5_WriteError, &dev->flags)) {
3609                         /* This flag does not apply to '.replacement'
3610                          * only to .rdev, so make sure to check that*/
3611                         struct md_rdev *rdev2 = rcu_dereference(
3612                                 conf->disks[i].rdev);
3613                         if (rdev2 == rdev)
3614                                 clear_bit(R5_Insync, &dev->flags);
3615                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3616                                 s->handle_bad_blocks = 1;
3617                                 atomic_inc(&rdev2->nr_pending);
3618                         } else
3619                                 clear_bit(R5_WriteError, &dev->flags);
3620                 }
3621                 if (test_bit(R5_MadeGood, &dev->flags)) {
3622                         /* This flag does not apply to '.replacement'
3623                          * only to .rdev, so make sure to check that*/
3624                         struct md_rdev *rdev2 = rcu_dereference(
3625                                 conf->disks[i].rdev);
3626                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3627                                 s->handle_bad_blocks = 1;
3628                                 atomic_inc(&rdev2->nr_pending);
3629                         } else
3630                                 clear_bit(R5_MadeGood, &dev->flags);
3631                 }
3632                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3633                         struct md_rdev *rdev2 = rcu_dereference(
3634                                 conf->disks[i].replacement);
3635                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3636                                 s->handle_bad_blocks = 1;
3637                                 atomic_inc(&rdev2->nr_pending);
3638                         } else
3639                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3640                 }
3641                 if (!test_bit(R5_Insync, &dev->flags)) {
3642                         /* The ReadError flag will just be confusing now */
3643                         clear_bit(R5_ReadError, &dev->flags);
3644                         clear_bit(R5_ReWrite, &dev->flags);
3645                 }
3646                 if (test_bit(R5_ReadError, &dev->flags))
3647                         clear_bit(R5_Insync, &dev->flags);
3648                 if (!test_bit(R5_Insync, &dev->flags)) {
3649                         if (s->failed < 2)
3650                                 s->failed_num[s->failed] = i;
3651                         s->failed++;
3652                         if (rdev && !test_bit(Faulty, &rdev->flags))
3653                                 do_recovery = 1;
3654                 }
3655         }
3656         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3657                 /* If there is a failed device being replaced,
3658                  *     we must be recovering.
3659                  * else if we are after recovery_cp, we must be syncing
3660                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3661                  * else we can only be replacing
3662                  * sync and recovery both need to read all devices, and so
3663                  * use the same flag.
3664                  */
3665                 if (do_recovery ||
3666                     sh->sector >= conf->mddev->recovery_cp ||
3667                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3668                         s->syncing = 1;
3669                 else
3670                         s->replacing = 1;
3671         }
3672         rcu_read_unlock();
3673 }
3674
3675 static void handle_stripe(struct stripe_head *sh)
3676 {
3677         struct stripe_head_state s;
3678         struct r5conf *conf = sh->raid_conf;
3679         int i;
3680         int prexor;
3681         int disks = sh->disks;
3682         struct r5dev *pdev, *qdev;
3683
3684         clear_bit(STRIPE_HANDLE, &sh->state);
3685         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3686                 /* already being handled, ensure it gets handled
3687                  * again when current action finishes */
3688                 set_bit(STRIPE_HANDLE, &sh->state);
3689                 return;
3690         }
3691
3692         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3693                 spin_lock(&sh->stripe_lock);
3694                 /* Cannot process 'sync' concurrently with 'discard' */
3695                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3696                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3697                         set_bit(STRIPE_SYNCING, &sh->state);
3698                         clear_bit(STRIPE_INSYNC, &sh->state);
3699                         clear_bit(STRIPE_REPLACED, &sh->state);
3700                 }
3701                 spin_unlock(&sh->stripe_lock);
3702         }
3703         clear_bit(STRIPE_DELAYED, &sh->state);
3704
3705         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3706                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3707                (unsigned long long)sh->sector, sh->state,
3708                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3709                sh->check_state, sh->reconstruct_state);
3710
3711         analyse_stripe(sh, &s);
3712
3713         if (s.handle_bad_blocks) {
3714                 set_bit(STRIPE_HANDLE, &sh->state);
3715                 goto finish;
3716         }
3717
3718         if (unlikely(s.blocked_rdev)) {
3719                 if (s.syncing || s.expanding || s.expanded ||
3720                     s.replacing || s.to_write || s.written) {
3721                         set_bit(STRIPE_HANDLE, &sh->state);
3722                         goto finish;
3723                 }
3724                 /* There is nothing for the blocked_rdev to block */
3725                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3726                 s.blocked_rdev = NULL;
3727         }
3728
3729         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3730                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3731                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3732         }
3733
3734         pr_debug("locked=%d uptodate=%d to_read=%d"
3735                " to_write=%d failed=%d failed_num=%d,%d\n",
3736                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3737                s.failed_num[0], s.failed_num[1]);
3738         /* check if the array has lost more than max_degraded devices and,
3739          * if so, some requests might need to be failed.
3740          */
3741         if (s.failed > conf->max_degraded) {
3742                 sh->check_state = 0;
3743                 sh->reconstruct_state = 0;
3744                 if (s.to_read+s.to_write+s.written)
3745                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3746                 if (s.syncing + s.replacing)
3747                         handle_failed_sync(conf, sh, &s);
3748         }
3749
3750         /* Now we check to see if any write operations have recently
3751          * completed
3752          */
3753         prexor = 0;
3754         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3755                 prexor = 1;
3756         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3757             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3758                 sh->reconstruct_state = reconstruct_state_idle;
3759
3760                 /* All the 'written' buffers and the parity block are ready to
3761                  * be written back to disk
3762                  */
3763                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3764                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3765                 BUG_ON(sh->qd_idx >= 0 &&
3766                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3767                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3768                 for (i = disks; i--; ) {
3769                         struct r5dev *dev = &sh->dev[i];
3770                         if (test_bit(R5_LOCKED, &dev->flags) &&
3771                                 (i == sh->pd_idx || i == sh->qd_idx ||
3772                                  dev->written)) {
3773                                 pr_debug("Writing block %d\n", i);
3774                                 set_bit(R5_Wantwrite, &dev->flags);
3775                                 if (prexor)
3776                                         continue;
3777                                 if (!test_bit(R5_Insync, &dev->flags) ||
3778                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3779                                      s.failed == 0))
3780                                         set_bit(STRIPE_INSYNC, &sh->state);
3781                         }
3782                 }
3783                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3784                         s.dec_preread_active = 1;
3785         }
3786
3787         /*
3788          * might be able to return some write requests if the parity blocks
3789          * are safe, or on a failed drive
3790          */
3791         pdev = &sh->dev[sh->pd_idx];
3792         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3793                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3794         qdev = &sh->dev[sh->qd_idx];
3795         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3796                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3797                 || conf->level < 6;
3798
3799         if (s.written &&
3800             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3801                              && !test_bit(R5_LOCKED, &pdev->flags)
3802                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3803                                  test_bit(R5_Discard, &pdev->flags))))) &&
3804             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3805                              && !test_bit(R5_LOCKED, &qdev->flags)
3806                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3807                                  test_bit(R5_Discard, &qdev->flags))))))
3808                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3809
3810         /* Now we might consider reading some blocks, either to check/generate
3811          * parity, or to satisfy requests
3812          * or to load a block that is being partially written.
3813          */
3814         if (s.to_read || s.non_overwrite
3815             || (conf->level == 6 && s.to_write && s.failed)
3816             || (s.syncing && (s.uptodate + s.compute < disks))
3817             || s.replacing
3818             || s.expanding)
3819                 handle_stripe_fill(sh, &s, disks);
3820
3821         /* Now to consider new write requests and what else, if anything
3822          * should be read.  We do not handle new writes when:
3823          * 1/ A 'write' operation (copy+xor) is already in flight.
3824          * 2/ A 'check' operation is in flight, as it may clobber the parity
3825          *    block.
3826          */
3827         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3828                 handle_stripe_dirtying(conf, sh, &s, disks);
3829
3830         /* maybe we need to check and possibly fix the parity for this stripe
3831          * Any reads will already have been scheduled, so we just see if enough
3832          * data is available.  The parity check is held off while parity
3833          * dependent operations are in flight.
3834          */
3835         if (sh->check_state ||
3836             (s.syncing && s.locked == 0 &&
3837              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3838              !test_bit(STRIPE_INSYNC, &sh->state))) {
3839                 if (conf->level == 6)
3840                         handle_parity_checks6(conf, sh, &s, disks);
3841                 else
3842                         handle_parity_checks5(conf, sh, &s, disks);
3843         }
3844
3845         if ((s.replacing || s.syncing) && s.locked == 0
3846             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3847             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3848                 /* Write out to replacement devices where possible */
3849                 for (i = 0; i < conf->raid_disks; i++)
3850                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3851                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3852                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3853                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3854                                 s.locked++;
3855                         }
3856                 if (s.replacing)
3857                         set_bit(STRIPE_INSYNC, &sh->state);
3858                 set_bit(STRIPE_REPLACED, &sh->state);
3859         }
3860         if ((s.syncing || s.replacing) && s.locked == 0 &&
3861             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3862             test_bit(STRIPE_INSYNC, &sh->state)) {
3863                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3864                 clear_bit(STRIPE_SYNCING, &sh->state);
3865                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3866                         wake_up(&conf->wait_for_overlap);
3867         }
3868
3869         /* If the failed drives are just a ReadError, then we might need
3870          * to progress the repair/check process
3871          */
3872         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3873                 for (i = 0; i < s.failed; i++) {
3874                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3875                         if (test_bit(R5_ReadError, &dev->flags)
3876                             && !test_bit(R5_LOCKED, &dev->flags)
3877                             && test_bit(R5_UPTODATE, &dev->flags)
3878                                 ) {
3879                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3880                                         set_bit(R5_Wantwrite, &dev->flags);
3881                                         set_bit(R5_ReWrite, &dev->flags);
3882                                         set_bit(R5_LOCKED, &dev->flags);
3883                                         s.locked++;
3884                                 } else {
3885                                         /* let's read it back */
3886                                         set_bit(R5_Wantread, &dev->flags);
3887                                         set_bit(R5_LOCKED, &dev->flags);
3888                                         s.locked++;
3889                                 }
3890                         }
3891                 }
3892
3893
3894         /* Finish reconstruct operations initiated by the expansion process */
3895         if (sh->reconstruct_state == reconstruct_state_result) {
3896                 struct stripe_head *sh_src
3897                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3898                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3899                         /* sh cannot be written until sh_src has been read.
3900                          * so arrange for sh to be delayed a little
3901                          */
3902                         set_bit(STRIPE_DELAYED, &sh->state);
3903                         set_bit(STRIPE_HANDLE, &sh->state);
3904                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3905                                               &sh_src->state))
3906                                 atomic_inc(&conf->preread_active_stripes);
3907                         release_stripe(sh_src);
3908                         goto finish;
3909                 }
3910                 if (sh_src)
3911                         release_stripe(sh_src);
3912
3913                 sh->reconstruct_state = reconstruct_state_idle;
3914                 clear_bit(STRIPE_EXPANDING, &sh->state);
3915                 for (i = conf->raid_disks; i--; ) {
3916                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3917                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3918                         s.locked++;
3919                 }
3920         }
3921
3922         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3923             !sh->reconstruct_state) {
3924                 /* Need to write out all blocks after computing parity */
3925                 sh->disks = conf->raid_disks;
3926                 stripe_set_idx(sh->sector, conf, 0, sh);
3927                 schedule_reconstruction(sh, &s, 1, 1);
3928         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3929                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3930                 atomic_dec(&conf->reshape_stripes);
3931                 wake_up(&conf->wait_for_overlap);
3932                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3933         }
3934
3935         if (s.expanding && s.locked == 0 &&
3936             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3937                 handle_stripe_expansion(conf, sh);
3938
3939 finish:
3940         /* wait for this device to become unblocked */
3941         if (unlikely(s.blocked_rdev)) {
3942                 if (conf->mddev->external)
3943                         md_wait_for_blocked_rdev(s.blocked_rdev,
3944                                                  conf->mddev);
3945                 else
3946                         /* Internal metadata will immediately
3947                          * be written by raid5d, so we don't
3948                          * need to wait here.
3949                          */
3950                         rdev_dec_pending(s.blocked_rdev,
3951                                          conf->mddev);
3952         }
3953
3954         if (s.handle_bad_blocks)
3955                 for (i = disks; i--; ) {
3956                         struct md_rdev *rdev;
3957                         struct r5dev *dev = &sh->dev[i];
3958                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3959                                 /* We own a safe reference to the rdev */
3960                                 rdev = conf->disks[i].rdev;
3961                                 if (!rdev_set_badblocks(rdev, sh->sector,
3962                                                         STRIPE_SECTORS, 0))
3963                                         md_error(conf->mddev, rdev);
3964                                 rdev_dec_pending(rdev, conf->mddev);
3965                         }
3966                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3967                                 rdev = conf->disks[i].rdev;
3968                                 rdev_clear_badblocks(rdev, sh->sector,
3969                                                      STRIPE_SECTORS, 0);
3970                                 rdev_dec_pending(rdev, conf->mddev);
3971                         }
3972                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3973                                 rdev = conf->disks[i].replacement;
3974                                 if (!rdev)
3975                                         /* rdev have been moved down */
3976                                         rdev = conf->disks[i].rdev;
3977                                 rdev_clear_badblocks(rdev, sh->sector,
3978                                                      STRIPE_SECTORS, 0);
3979                                 rdev_dec_pending(rdev, conf->mddev);
3980                         }
3981                 }
3982
3983         if (s.ops_request)
3984                 raid_run_ops(sh, s.ops_request);
3985
3986         ops_run_io(sh, &s);
3987
3988         if (s.dec_preread_active) {
3989                 /* We delay this until after ops_run_io so that if make_request
3990                  * is waiting on a flush, it won't continue until the writes
3991                  * have actually been submitted.
3992                  */
3993                 atomic_dec(&conf->preread_active_stripes);
3994                 if (atomic_read(&conf->preread_active_stripes) <
3995                     IO_THRESHOLD)
3996                         md_wakeup_thread(conf->mddev->thread);
3997         }
3998
3999         return_io(s.return_bi);
4000
4001         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4002 }
4003
4004 static void raid5_activate_delayed(struct r5conf *conf)
4005 {
4006         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4007                 while (!list_empty(&conf->delayed_list)) {
4008                         struct list_head *l = conf->delayed_list.next;
4009                         struct stripe_head *sh;
4010                         sh = list_entry(l, struct stripe_head, lru);
4011                         list_del_init(l);
4012                         clear_bit(STRIPE_DELAYED, &sh->state);
4013                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4014                                 atomic_inc(&conf->preread_active_stripes);
4015                         list_add_tail(&sh->lru, &conf->hold_list);
4016                         raid5_wakeup_stripe_thread(sh);
4017                 }
4018         }
4019 }
4020
4021 static void activate_bit_delay(struct r5conf *conf,
4022         struct list_head *temp_inactive_list)
4023 {
4024         /* device_lock is held */
4025         struct list_head head;
4026         list_add(&head, &conf->bitmap_list);
4027         list_del_init(&conf->bitmap_list);
4028         while (!list_empty(&head)) {
4029                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4030                 int hash;
4031                 list_del_init(&sh->lru);
4032                 atomic_inc(&sh->count);
4033                 hash = sh->hash_lock_index;
4034                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4035         }
4036 }
4037
4038 int md_raid5_congested(struct mddev *mddev, int bits)
4039 {
4040         struct r5conf *conf = mddev->private;
4041
4042         /* No difference between reads and writes.  Just check
4043          * how busy the stripe_cache is
4044          */
4045
4046         if (conf->inactive_blocked)
4047                 return 1;
4048         if (conf->quiesce)
4049                 return 1;
4050         if (atomic_read(&conf->empty_inactive_list_nr))
4051                 return 1;
4052
4053         return 0;
4054 }
4055 EXPORT_SYMBOL_GPL(md_raid5_congested);
4056
4057 static int raid5_congested(void *data, int bits)
4058 {
4059         struct mddev *mddev = data;
4060
4061         return mddev_congested(mddev, bits) ||
4062                 md_raid5_congested(mddev, bits);
4063 }
4064
4065 /* We want read requests to align with chunks where possible,
4066  * but write requests don't need to.
4067  */
4068 static int raid5_mergeable_bvec(struct request_queue *q,
4069                                 struct bvec_merge_data *bvm,
4070                                 struct bio_vec *biovec)
4071 {
4072         struct mddev *mddev = q->queuedata;
4073         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4074         int max;
4075         unsigned int chunk_sectors = mddev->chunk_sectors;
4076         unsigned int bio_sectors = bvm->bi_size >> 9;
4077
4078         if ((bvm->bi_rw & 1) == WRITE)
4079                 return biovec->bv_len; /* always allow writes to be mergeable */
4080
4081         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4082                 chunk_sectors = mddev->new_chunk_sectors;
4083         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4084         if (max < 0) max = 0;
4085         if (max <= biovec->bv_len && bio_sectors == 0)
4086                 return biovec->bv_len;
4087         else
4088                 return max;
4089 }
4090
4091
4092 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4093 {
4094         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4095         unsigned int chunk_sectors = mddev->chunk_sectors;
4096         unsigned int bio_sectors = bio_sectors(bio);
4097
4098         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4099                 chunk_sectors = mddev->new_chunk_sectors;
4100         return  chunk_sectors >=
4101                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4102 }
4103
4104 /*
4105  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4106  *  later sampled by raid5d.
4107  */
4108 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4109 {
4110         unsigned long flags;
4111
4112         spin_lock_irqsave(&conf->device_lock, flags);
4113
4114         bi->bi_next = conf->retry_read_aligned_list;
4115         conf->retry_read_aligned_list = bi;
4116
4117         spin_unlock_irqrestore(&conf->device_lock, flags);
4118         md_wakeup_thread(conf->mddev->thread);
4119 }
4120
4121
4122 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4123 {
4124         struct bio *bi;
4125
4126         bi = conf->retry_read_aligned;
4127         if (bi) {
4128                 conf->retry_read_aligned = NULL;
4129                 return bi;
4130         }
4131         bi = conf->retry_read_aligned_list;
4132         if(bi) {
4133                 conf->retry_read_aligned_list = bi->bi_next;
4134                 bi->bi_next = NULL;
4135                 /*
4136                  * this sets the active strip count to 1 and the processed
4137                  * strip count to zero (upper 8 bits)
4138                  */
4139                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4140         }
4141
4142         return bi;
4143 }
4144
4145
4146 /*
4147  *  The "raid5_align_endio" should check if the read succeeded and if it
4148  *  did, call bio_endio on the original bio (having bio_put the new bio
4149  *  first).
4150  *  If the read failed..
4151  */
4152 static void raid5_align_endio(struct bio *bi, int error)
4153 {
4154         struct bio* raid_bi  = bi->bi_private;
4155         struct mddev *mddev;
4156         struct r5conf *conf;
4157         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4158         struct md_rdev *rdev;
4159
4160         bio_put(bi);
4161
4162         rdev = (void*)raid_bi->bi_next;
4163         raid_bi->bi_next = NULL;
4164         mddev = rdev->mddev;
4165         conf = mddev->private;
4166
4167         rdev_dec_pending(rdev, conf->mddev);
4168
4169         if (!error && uptodate) {
4170                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4171                                          raid_bi, 0);
4172                 bio_endio(raid_bi, 0);
4173                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4174                         wake_up(&conf->wait_for_stripe);
4175                 return;
4176         }
4177
4178
4179         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4180
4181         add_bio_to_retry(raid_bi, conf);
4182 }
4183
4184 static int bio_fits_rdev(struct bio *bi)
4185 {
4186         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4187
4188         if (bio_sectors(bi) > queue_max_sectors(q))
4189                 return 0;
4190         blk_recount_segments(q, bi);
4191         if (bi->bi_phys_segments > queue_max_segments(q))
4192                 return 0;
4193
4194         if (q->merge_bvec_fn)
4195                 /* it's too hard to apply the merge_bvec_fn at this stage,
4196                  * just just give up
4197                  */
4198                 return 0;
4199
4200         return 1;
4201 }
4202
4203
4204 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4205 {
4206         struct r5conf *conf = mddev->private;
4207         int dd_idx;
4208         struct bio* align_bi;
4209         struct md_rdev *rdev;
4210         sector_t end_sector;
4211
4212         if (!in_chunk_boundary(mddev, raid_bio)) {
4213                 pr_debug("chunk_aligned_read : non aligned\n");
4214                 return 0;
4215         }
4216         /*
4217          * use bio_clone_mddev to make a copy of the bio
4218          */
4219         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4220         if (!align_bi)
4221                 return 0;
4222         /*
4223          *   set bi_end_io to a new function, and set bi_private to the
4224          *     original bio.
4225          */
4226         align_bi->bi_end_io  = raid5_align_endio;
4227         align_bi->bi_private = raid_bio;
4228         /*
4229          *      compute position
4230          */
4231         align_bi->bi_iter.bi_sector =
4232                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4233                                      0, &dd_idx, NULL);
4234
4235         end_sector = bio_end_sector(align_bi);
4236         rcu_read_lock();
4237         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4238         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4239             rdev->recovery_offset < end_sector) {
4240                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4241                 if (rdev &&
4242                     (test_bit(Faulty, &rdev->flags) ||
4243                     !(test_bit(In_sync, &rdev->flags) ||
4244                       rdev->recovery_offset >= end_sector)))
4245                         rdev = NULL;
4246         }
4247         if (rdev) {
4248                 sector_t first_bad;
4249                 int bad_sectors;
4250
4251                 atomic_inc(&rdev->nr_pending);
4252                 rcu_read_unlock();
4253                 raid_bio->bi_next = (void*)rdev;
4254                 align_bi->bi_bdev =  rdev->bdev;
4255                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4256
4257                 if (!bio_fits_rdev(align_bi) ||
4258                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4259                                 bio_sectors(align_bi),
4260                                 &first_bad, &bad_sectors)) {
4261                         /* too big in some way, or has a known bad block */
4262                         bio_put(align_bi);
4263                         rdev_dec_pending(rdev, mddev);
4264                         return 0;
4265                 }
4266
4267                 /* No reshape active, so we can trust rdev->data_offset */
4268                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4269
4270                 spin_lock_irq(&conf->device_lock);
4271                 wait_event_lock_irq(conf->wait_for_stripe,
4272                                     conf->quiesce == 0,
4273                                     conf->device_lock);
4274                 atomic_inc(&conf->active_aligned_reads);
4275                 spin_unlock_irq(&conf->device_lock);
4276
4277                 if (mddev->gendisk)
4278                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4279                                               align_bi, disk_devt(mddev->gendisk),
4280                                               raid_bio->bi_iter.bi_sector);
4281                 generic_make_request(align_bi);
4282                 return 1;
4283         } else {
4284                 rcu_read_unlock();
4285                 bio_put(align_bi);
4286                 return 0;
4287         }
4288 }
4289
4290 /* __get_priority_stripe - get the next stripe to process
4291  *
4292  * Full stripe writes are allowed to pass preread active stripes up until
4293  * the bypass_threshold is exceeded.  In general the bypass_count
4294  * increments when the handle_list is handled before the hold_list; however, it
4295  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4296  * stripe with in flight i/o.  The bypass_count will be reset when the
4297  * head of the hold_list has changed, i.e. the head was promoted to the
4298  * handle_list.
4299  */
4300 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4301 {
4302         struct stripe_head *sh = NULL, *tmp;
4303         struct list_head *handle_list = NULL;
4304         struct r5worker_group *wg = NULL;
4305
4306         if (conf->worker_cnt_per_group == 0) {
4307                 handle_list = &conf->handle_list;
4308         } else if (group != ANY_GROUP) {
4309                 handle_list = &conf->worker_groups[group].handle_list;
4310                 wg = &conf->worker_groups[group];
4311         } else {
4312                 int i;
4313                 for (i = 0; i < conf->group_cnt; i++) {
4314                         handle_list = &conf->worker_groups[i].handle_list;
4315                         wg = &conf->worker_groups[i];
4316                         if (!list_empty(handle_list))
4317                                 break;
4318                 }
4319         }
4320
4321         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4322                   __func__,
4323                   list_empty(handle_list) ? "empty" : "busy",
4324                   list_empty(&conf->hold_list) ? "empty" : "busy",
4325                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4326
4327         if (!list_empty(handle_list)) {
4328                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4329
4330                 if (list_empty(&conf->hold_list))
4331                         conf->bypass_count = 0;
4332                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4333                         if (conf->hold_list.next == conf->last_hold)
4334                                 conf->bypass_count++;
4335                         else {
4336                                 conf->last_hold = conf->hold_list.next;
4337                                 conf->bypass_count -= conf->bypass_threshold;
4338                                 if (conf->bypass_count < 0)
4339                                         conf->bypass_count = 0;
4340                         }
4341                 }
4342         } else if (!list_empty(&conf->hold_list) &&
4343                    ((conf->bypass_threshold &&
4344                      conf->bypass_count > conf->bypass_threshold) ||
4345                     atomic_read(&conf->pending_full_writes) == 0)) {
4346
4347                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4348                         if (conf->worker_cnt_per_group == 0 ||
4349                             group == ANY_GROUP ||
4350                             !cpu_online(tmp->cpu) ||
4351                             cpu_to_group(tmp->cpu) == group) {
4352                                 sh = tmp;
4353                                 break;
4354                         }
4355                 }
4356
4357                 if (sh) {
4358                         conf->bypass_count -= conf->bypass_threshold;
4359                         if (conf->bypass_count < 0)
4360                                 conf->bypass_count = 0;
4361                 }
4362                 wg = NULL;
4363         }
4364
4365         if (!sh)
4366                 return NULL;
4367
4368         if (wg) {
4369                 wg->stripes_cnt--;
4370                 sh->group = NULL;
4371         }
4372         list_del_init(&sh->lru);
4373         atomic_inc(&sh->count);
4374         BUG_ON(atomic_read(&sh->count) != 1);
4375         return sh;
4376 }
4377
4378 struct raid5_plug_cb {
4379         struct blk_plug_cb      cb;
4380         struct list_head        list;
4381         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4382 };
4383
4384 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4385 {
4386         struct raid5_plug_cb *cb = container_of(
4387                 blk_cb, struct raid5_plug_cb, cb);
4388         struct stripe_head *sh;
4389         struct mddev *mddev = cb->cb.data;
4390         struct r5conf *conf = mddev->private;
4391         int cnt = 0;
4392         int hash;
4393
4394         if (cb->list.next && !list_empty(&cb->list)) {
4395                 spin_lock_irq(&conf->device_lock);
4396                 while (!list_empty(&cb->list)) {
4397                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4398                         list_del_init(&sh->lru);
4399                         /*
4400                          * avoid race release_stripe_plug() sees
4401                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4402                          * is still in our list
4403                          */
4404                         smp_mb__before_clear_bit();
4405                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4406                         /*
4407                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4408                          * case, the count is always > 1 here
4409                          */
4410                         hash = sh->hash_lock_index;
4411                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4412                         cnt++;
4413                 }
4414                 spin_unlock_irq(&conf->device_lock);
4415         }
4416         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4417                                      NR_STRIPE_HASH_LOCKS);
4418         if (mddev->queue)
4419                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4420         kfree(cb);
4421 }
4422
4423 static void release_stripe_plug(struct mddev *mddev,
4424                                 struct stripe_head *sh)
4425 {
4426         struct blk_plug_cb *blk_cb = blk_check_plugged(
4427                 raid5_unplug, mddev,
4428                 sizeof(struct raid5_plug_cb));
4429         struct raid5_plug_cb *cb;
4430
4431         if (!blk_cb) {
4432                 release_stripe(sh);
4433                 return;
4434         }
4435
4436         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4437
4438         if (cb->list.next == NULL) {
4439                 int i;
4440                 INIT_LIST_HEAD(&cb->list);
4441                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4442                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4443         }
4444
4445         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4446                 list_add_tail(&sh->lru, &cb->list);
4447         else
4448                 release_stripe(sh);
4449 }
4450
4451 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4452 {
4453         struct r5conf *conf = mddev->private;
4454         sector_t logical_sector, last_sector;
4455         struct stripe_head *sh;
4456         int remaining;
4457         int stripe_sectors;
4458
4459         if (mddev->reshape_position != MaxSector)
4460                 /* Skip discard while reshape is happening */
4461                 return;
4462
4463         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4464         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4465
4466         bi->bi_next = NULL;
4467         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4468
4469         stripe_sectors = conf->chunk_sectors *
4470                 (conf->raid_disks - conf->max_degraded);
4471         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4472                                                stripe_sectors);
4473         sector_div(last_sector, stripe_sectors);
4474
4475         logical_sector *= conf->chunk_sectors;
4476         last_sector *= conf->chunk_sectors;
4477
4478         for (; logical_sector < last_sector;
4479              logical_sector += STRIPE_SECTORS) {
4480                 DEFINE_WAIT(w);
4481                 int d;
4482         again:
4483                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4484                 prepare_to_wait(&conf->wait_for_overlap, &w,
4485                                 TASK_UNINTERRUPTIBLE);
4486                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4487                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4488                         release_stripe(sh);
4489                         schedule();
4490                         goto again;
4491                 }
4492                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4493                 spin_lock_irq(&sh->stripe_lock);
4494                 for (d = 0; d < conf->raid_disks; d++) {
4495                         if (d == sh->pd_idx || d == sh->qd_idx)
4496                                 continue;
4497                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4498                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4499                                 spin_unlock_irq(&sh->stripe_lock);
4500                                 release_stripe(sh);
4501                                 schedule();
4502                                 goto again;
4503                         }
4504                 }
4505                 set_bit(STRIPE_DISCARD, &sh->state);
4506                 finish_wait(&conf->wait_for_overlap, &w);
4507                 for (d = 0; d < conf->raid_disks; d++) {
4508                         if (d == sh->pd_idx || d == sh->qd_idx)
4509                                 continue;
4510                         sh->dev[d].towrite = bi;
4511                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4512                         raid5_inc_bi_active_stripes(bi);
4513                 }
4514                 spin_unlock_irq(&sh->stripe_lock);
4515                 if (conf->mddev->bitmap) {
4516                         for (d = 0;
4517                              d < conf->raid_disks - conf->max_degraded;
4518                              d++)
4519                                 bitmap_startwrite(mddev->bitmap,
4520                                                   sh->sector,
4521                                                   STRIPE_SECTORS,
4522                                                   0);
4523                         sh->bm_seq = conf->seq_flush + 1;
4524                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4525                 }
4526
4527                 set_bit(STRIPE_HANDLE, &sh->state);
4528                 clear_bit(STRIPE_DELAYED, &sh->state);
4529                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4530                         atomic_inc(&conf->preread_active_stripes);
4531                 release_stripe_plug(mddev, sh);
4532         }
4533
4534         remaining = raid5_dec_bi_active_stripes(bi);
4535         if (remaining == 0) {
4536                 md_write_end(mddev);
4537                 bio_endio(bi, 0);
4538         }
4539 }
4540
4541 static void make_request(struct mddev *mddev, struct bio * bi)
4542 {
4543         struct r5conf *conf = mddev->private;
4544         int dd_idx;
4545         sector_t new_sector;
4546         sector_t logical_sector, last_sector;
4547         struct stripe_head *sh;
4548         const int rw = bio_data_dir(bi);
4549         int remaining;
4550         DEFINE_WAIT(w);
4551         bool do_prepare;
4552
4553         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4554                 md_flush_request(mddev, bi);
4555                 return;
4556         }
4557
4558         md_write_start(mddev, bi);
4559
4560         if (rw == READ &&
4561              mddev->reshape_position == MaxSector &&
4562              chunk_aligned_read(mddev,bi))
4563                 return;
4564
4565         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4566                 make_discard_request(mddev, bi);
4567                 return;
4568         }
4569
4570         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4571         last_sector = bio_end_sector(bi);
4572         bi->bi_next = NULL;
4573         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4574
4575         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4576         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4577                 int previous;
4578                 int seq;
4579
4580                 do_prepare = false;
4581         retry:
4582                 seq = read_seqcount_begin(&conf->gen_lock);
4583                 previous = 0;
4584                 if (do_prepare)
4585                         prepare_to_wait(&conf->wait_for_overlap, &w,
4586                                 TASK_UNINTERRUPTIBLE);
4587                 if (unlikely(conf->reshape_progress != MaxSector)) {
4588                         /* spinlock is needed as reshape_progress may be
4589                          * 64bit on a 32bit platform, and so it might be
4590                          * possible to see a half-updated value
4591                          * Of course reshape_progress could change after
4592                          * the lock is dropped, so once we get a reference
4593                          * to the stripe that we think it is, we will have
4594                          * to check again.
4595                          */
4596                         spin_lock_irq(&conf->device_lock);
4597                         if (mddev->reshape_backwards
4598                             ? logical_sector < conf->reshape_progress
4599                             : logical_sector >= conf->reshape_progress) {
4600                                 previous = 1;
4601                         } else {
4602                                 if (mddev->reshape_backwards
4603                                     ? logical_sector < conf->reshape_safe
4604                                     : logical_sector >= conf->reshape_safe) {
4605                                         spin_unlock_irq(&conf->device_lock);
4606                                         schedule();
4607                                         do_prepare = true;
4608                                         goto retry;
4609                                 }
4610                         }
4611                         spin_unlock_irq(&conf->device_lock);
4612                 }
4613
4614                 new_sector = raid5_compute_sector(conf, logical_sector,
4615                                                   previous,
4616                                                   &dd_idx, NULL);
4617                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4618                         (unsigned long long)new_sector,
4619                         (unsigned long long)logical_sector);
4620
4621                 sh = get_active_stripe(conf, new_sector, previous,
4622                                        (bi->bi_rw&RWA_MASK), 0);
4623                 if (sh) {
4624                         if (unlikely(previous)) {
4625                                 /* expansion might have moved on while waiting for a
4626                                  * stripe, so we must do the range check again.
4627                                  * Expansion could still move past after this
4628                                  * test, but as we are holding a reference to
4629                                  * 'sh', we know that if that happens,
4630                                  *  STRIPE_EXPANDING will get set and the expansion
4631                                  * won't proceed until we finish with the stripe.
4632                                  */
4633                                 int must_retry = 0;
4634                                 spin_lock_irq(&conf->device_lock);
4635                                 if (mddev->reshape_backwards
4636                                     ? logical_sector >= conf->reshape_progress
4637                                     : logical_sector < conf->reshape_progress)
4638                                         /* mismatch, need to try again */
4639                                         must_retry = 1;
4640                                 spin_unlock_irq(&conf->device_lock);
4641                                 if (must_retry) {
4642                                         release_stripe(sh);
4643                                         schedule();
4644                                         do_prepare = true;
4645                                         goto retry;
4646                                 }
4647                         }
4648                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4649                                 /* Might have got the wrong stripe_head
4650                                  * by accident
4651                                  */
4652                                 release_stripe(sh);
4653                                 goto retry;
4654                         }
4655
4656                         if (rw == WRITE &&
4657                             logical_sector >= mddev->suspend_lo &&
4658                             logical_sector < mddev->suspend_hi) {
4659                                 release_stripe(sh);
4660                                 /* As the suspend_* range is controlled by
4661                                  * userspace, we want an interruptible
4662                                  * wait.
4663                                  */
4664                                 flush_signals(current);
4665                                 prepare_to_wait(&conf->wait_for_overlap,
4666                                                 &w, TASK_INTERRUPTIBLE);
4667                                 if (logical_sector >= mddev->suspend_lo &&
4668                                     logical_sector < mddev->suspend_hi) {
4669                                         schedule();
4670                                         do_prepare = true;
4671                                 }
4672                                 goto retry;
4673                         }
4674
4675                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4676                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4677                                 /* Stripe is busy expanding or
4678                                  * add failed due to overlap.  Flush everything
4679                                  * and wait a while
4680                                  */
4681                                 md_wakeup_thread(mddev->thread);
4682                                 release_stripe(sh);
4683                                 schedule();
4684                                 do_prepare = true;
4685                                 goto retry;
4686                         }
4687                         set_bit(STRIPE_HANDLE, &sh->state);
4688                         clear_bit(STRIPE_DELAYED, &sh->state);
4689                         if ((bi->bi_rw & REQ_SYNC) &&
4690                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4691                                 atomic_inc(&conf->preread_active_stripes);
4692                         release_stripe_plug(mddev, sh);
4693                 } else {
4694                         /* cannot get stripe for read-ahead, just give-up */
4695                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4696                         break;
4697                 }
4698         }
4699         finish_wait(&conf->wait_for_overlap, &w);
4700
4701         remaining = raid5_dec_bi_active_stripes(bi);
4702         if (remaining == 0) {
4703
4704                 if ( rw == WRITE )
4705                         md_write_end(mddev);
4706
4707                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4708                                          bi, 0);
4709                 bio_endio(bi, 0);
4710         }
4711 }
4712
4713 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4714
4715 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4716 {
4717         /* reshaping is quite different to recovery/resync so it is
4718          * handled quite separately ... here.
4719          *
4720          * On each call to sync_request, we gather one chunk worth of
4721          * destination stripes and flag them as expanding.
4722          * Then we find all the source stripes and request reads.
4723          * As the reads complete, handle_stripe will copy the data
4724          * into the destination stripe and release that stripe.
4725          */
4726         struct r5conf *conf = mddev->private;
4727         struct stripe_head *sh;
4728         sector_t first_sector, last_sector;
4729         int raid_disks = conf->previous_raid_disks;
4730         int data_disks = raid_disks - conf->max_degraded;
4731         int new_data_disks = conf->raid_disks - conf->max_degraded;
4732         int i;
4733         int dd_idx;
4734         sector_t writepos, readpos, safepos;
4735         sector_t stripe_addr;
4736         int reshape_sectors;
4737         struct list_head stripes;
4738
4739         if (sector_nr == 0) {
4740                 /* If restarting in the middle, skip the initial sectors */
4741                 if (mddev->reshape_backwards &&
4742                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4743                         sector_nr = raid5_size(mddev, 0, 0)
4744                                 - conf->reshape_progress;
4745                 } else if (!mddev->reshape_backwards &&
4746                            conf->reshape_progress > 0)
4747                         sector_nr = conf->reshape_progress;
4748                 sector_div(sector_nr, new_data_disks);
4749                 if (sector_nr) {
4750                         mddev->curr_resync_completed = sector_nr;
4751                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4752                         *skipped = 1;
4753                         return sector_nr;
4754                 }
4755         }
4756
4757         /* We need to process a full chunk at a time.
4758          * If old and new chunk sizes differ, we need to process the
4759          * largest of these
4760          */
4761         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4762                 reshape_sectors = mddev->new_chunk_sectors;
4763         else
4764                 reshape_sectors = mddev->chunk_sectors;
4765
4766         /* We update the metadata at least every 10 seconds, or when
4767          * the data about to be copied would over-write the source of
4768          * the data at the front of the range.  i.e. one new_stripe
4769          * along from reshape_progress new_maps to after where
4770          * reshape_safe old_maps to
4771          */
4772         writepos = conf->reshape_progress;
4773         sector_div(writepos, new_data_disks);
4774         readpos = conf->reshape_progress;
4775         sector_div(readpos, data_disks);
4776         safepos = conf->reshape_safe;
4777         sector_div(safepos, data_disks);
4778         if (mddev->reshape_backwards) {
4779                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4780                 readpos += reshape_sectors;
4781                 safepos += reshape_sectors;
4782         } else {
4783                 writepos += reshape_sectors;
4784                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4785                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4786         }
4787
4788         /* Having calculated the 'writepos' possibly use it
4789          * to set 'stripe_addr' which is where we will write to.
4790          */
4791         if (mddev->reshape_backwards) {
4792                 BUG_ON(conf->reshape_progress == 0);
4793                 stripe_addr = writepos;
4794                 BUG_ON((mddev->dev_sectors &
4795                         ~((sector_t)reshape_sectors - 1))
4796                        - reshape_sectors - stripe_addr
4797                        != sector_nr);
4798         } else {
4799                 BUG_ON(writepos != sector_nr + reshape_sectors);
4800                 stripe_addr = sector_nr;
4801         }
4802
4803         /* 'writepos' is the most advanced device address we might write.
4804          * 'readpos' is the least advanced device address we might read.
4805          * 'safepos' is the least address recorded in the metadata as having
4806          *     been reshaped.
4807          * If there is a min_offset_diff, these are adjusted either by
4808          * increasing the safepos/readpos if diff is negative, or
4809          * increasing writepos if diff is positive.
4810          * If 'readpos' is then behind 'writepos', there is no way that we can
4811          * ensure safety in the face of a crash - that must be done by userspace
4812          * making a backup of the data.  So in that case there is no particular
4813          * rush to update metadata.
4814          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4815          * update the metadata to advance 'safepos' to match 'readpos' so that
4816          * we can be safe in the event of a crash.
4817          * So we insist on updating metadata if safepos is behind writepos and
4818          * readpos is beyond writepos.
4819          * In any case, update the metadata every 10 seconds.
4820          * Maybe that number should be configurable, but I'm not sure it is
4821          * worth it.... maybe it could be a multiple of safemode_delay???
4822          */
4823         if (conf->min_offset_diff < 0) {
4824                 safepos += -conf->min_offset_diff;
4825                 readpos += -conf->min_offset_diff;
4826         } else
4827                 writepos += conf->min_offset_diff;
4828
4829         if ((mddev->reshape_backwards
4830              ? (safepos > writepos && readpos < writepos)
4831              : (safepos < writepos && readpos > writepos)) ||
4832             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4833                 /* Cannot proceed until we've updated the superblock... */
4834                 wait_event(conf->wait_for_overlap,
4835                            atomic_read(&conf->reshape_stripes)==0
4836                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4837                 if (atomic_read(&conf->reshape_stripes) != 0)
4838                         return 0;
4839                 mddev->reshape_position = conf->reshape_progress;
4840                 mddev->curr_resync_completed = sector_nr;
4841                 conf->reshape_checkpoint = jiffies;
4842                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4843                 md_wakeup_thread(mddev->thread);
4844                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4845                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4846                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4847                         return 0;
4848                 spin_lock_irq(&conf->device_lock);
4849                 conf->reshape_safe = mddev->reshape_position;
4850                 spin_unlock_irq(&conf->device_lock);
4851                 wake_up(&conf->wait_for_overlap);
4852                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4853         }
4854
4855         INIT_LIST_HEAD(&stripes);
4856         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4857                 int j;
4858                 int skipped_disk = 0;
4859                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4860                 set_bit(STRIPE_EXPANDING, &sh->state);
4861                 atomic_inc(&conf->reshape_stripes);
4862                 /* If any of this stripe is beyond the end of the old
4863                  * array, then we need to zero those blocks
4864                  */
4865                 for (j=sh->disks; j--;) {
4866                         sector_t s;
4867                         if (j == sh->pd_idx)
4868                                 continue;
4869                         if (conf->level == 6 &&
4870                             j == sh->qd_idx)
4871                                 continue;
4872                         s = compute_blocknr(sh, j, 0);
4873                         if (s < raid5_size(mddev, 0, 0)) {
4874                                 skipped_disk = 1;
4875                                 continue;
4876                         }
4877                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4878                         set_bit(R5_Expanded, &sh->dev[j].flags);
4879                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4880                 }
4881                 if (!skipped_disk) {
4882                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4883                         set_bit(STRIPE_HANDLE, &sh->state);
4884                 }
4885                 list_add(&sh->lru, &stripes);
4886         }
4887         spin_lock_irq(&conf->device_lock);
4888         if (mddev->reshape_backwards)
4889                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4890         else
4891                 conf->reshape_progress += reshape_sectors * new_data_disks;
4892         spin_unlock_irq(&conf->device_lock);
4893         /* Ok, those stripe are ready. We can start scheduling
4894          * reads on the source stripes.
4895          * The source stripes are determined by mapping the first and last
4896          * block on the destination stripes.
4897          */
4898         first_sector =
4899                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4900                                      1, &dd_idx, NULL);
4901         last_sector =
4902                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4903                                             * new_data_disks - 1),
4904                                      1, &dd_idx, NULL);
4905         if (last_sector >= mddev->dev_sectors)
4906                 last_sector = mddev->dev_sectors - 1;
4907         while (first_sector <= last_sector) {
4908                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4909                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4910                 set_bit(STRIPE_HANDLE, &sh->state);
4911                 release_stripe(sh);
4912                 first_sector += STRIPE_SECTORS;
4913         }
4914         /* Now that the sources are clearly marked, we can release
4915          * the destination stripes
4916          */
4917         while (!list_empty(&stripes)) {
4918                 sh = list_entry(stripes.next, struct stripe_head, lru);
4919                 list_del_init(&sh->lru);
4920                 release_stripe(sh);
4921         }
4922         /* If this takes us to the resync_max point where we have to pause,
4923          * then we need to write out the superblock.
4924          */
4925         sector_nr += reshape_sectors;
4926         if ((sector_nr - mddev->curr_resync_completed) * 2
4927             >= mddev->resync_max - mddev->curr_resync_completed) {
4928                 /* Cannot proceed until we've updated the superblock... */
4929                 wait_event(conf->wait_for_overlap,
4930                            atomic_read(&conf->reshape_stripes) == 0
4931                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4932                 if (atomic_read(&conf->reshape_stripes) != 0)
4933                         goto ret;
4934                 mddev->reshape_position = conf->reshape_progress;
4935                 mddev->curr_resync_completed = sector_nr;
4936                 conf->reshape_checkpoint = jiffies;
4937                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4938                 md_wakeup_thread(mddev->thread);
4939                 wait_event(mddev->sb_wait,
4940                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4941                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4942                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4943                         goto ret;
4944                 spin_lock_irq(&conf->device_lock);
4945                 conf->reshape_safe = mddev->reshape_position;
4946                 spin_unlock_irq(&conf->device_lock);
4947                 wake_up(&conf->wait_for_overlap);
4948                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4949         }
4950 ret:
4951         return reshape_sectors;
4952 }
4953
4954 /* FIXME go_faster isn't used */
4955 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4956 {
4957         struct r5conf *conf = mddev->private;
4958         struct stripe_head *sh;
4959         sector_t max_sector = mddev->dev_sectors;
4960         sector_t sync_blocks;
4961         int still_degraded = 0;
4962         int i;
4963
4964         if (sector_nr >= max_sector) {
4965                 /* just being told to finish up .. nothing much to do */
4966
4967                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4968                         end_reshape(conf);
4969                         return 0;
4970                 }
4971
4972                 if (mddev->curr_resync < max_sector) /* aborted */
4973                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4974                                         &sync_blocks, 1);
4975                 else /* completed sync */
4976                         conf->fullsync = 0;
4977                 bitmap_close_sync(mddev->bitmap);
4978
4979                 return 0;
4980         }
4981
4982         /* Allow raid5_quiesce to complete */
4983         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4984
4985         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4986                 return reshape_request(mddev, sector_nr, skipped);
4987
4988         /* No need to check resync_max as we never do more than one
4989          * stripe, and as resync_max will always be on a chunk boundary,
4990          * if the check in md_do_sync didn't fire, there is no chance
4991          * of overstepping resync_max here
4992          */
4993
4994         /* if there is too many failed drives and we are trying
4995          * to resync, then assert that we are finished, because there is
4996          * nothing we can do.
4997          */
4998         if (mddev->degraded >= conf->max_degraded &&
4999             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5000                 sector_t rv = mddev->dev_sectors - sector_nr;
5001                 *skipped = 1;
5002                 return rv;
5003         }
5004         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5005             !conf->fullsync &&
5006             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5007             sync_blocks >= STRIPE_SECTORS) {
5008                 /* we can skip this block, and probably more */
5009                 sync_blocks /= STRIPE_SECTORS;
5010                 *skipped = 1;
5011                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5012         }
5013
5014         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5015
5016         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5017         if (sh == NULL) {
5018                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5019                 /* make sure we don't swamp the stripe cache if someone else
5020                  * is trying to get access
5021                  */
5022                 schedule_timeout_uninterruptible(1);
5023         }
5024         /* Need to check if array will still be degraded after recovery/resync
5025          * We don't need to check the 'failed' flag as when that gets set,
5026          * recovery aborts.
5027          */
5028         for (i = 0; i < conf->raid_disks; i++)
5029                 if (conf->disks[i].rdev == NULL)
5030                         still_degraded = 1;
5031
5032         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5033
5034         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5035
5036         handle_stripe(sh);
5037         release_stripe(sh);
5038
5039         return STRIPE_SECTORS;
5040 }
5041
5042 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5043 {
5044         /* We may not be able to submit a whole bio at once as there
5045          * may not be enough stripe_heads available.
5046          * We cannot pre-allocate enough stripe_heads as we may need
5047          * more than exist in the cache (if we allow ever large chunks).
5048          * So we do one stripe head at a time and record in
5049          * ->bi_hw_segments how many have been done.
5050          *
5051          * We *know* that this entire raid_bio is in one chunk, so
5052          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5053          */
5054         struct stripe_head *sh;
5055         int dd_idx;
5056         sector_t sector, logical_sector, last_sector;
5057         int scnt = 0;
5058         int remaining;
5059         int handled = 0;
5060
5061         logical_sector = raid_bio->bi_iter.bi_sector &
5062                 ~((sector_t)STRIPE_SECTORS-1);
5063         sector = raid5_compute_sector(conf, logical_sector,
5064                                       0, &dd_idx, NULL);
5065         last_sector = bio_end_sector(raid_bio);
5066
5067         for (; logical_sector < last_sector;
5068              logical_sector += STRIPE_SECTORS,
5069                      sector += STRIPE_SECTORS,
5070                      scnt++) {
5071
5072                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5073                         /* already done this stripe */
5074                         continue;
5075
5076                 sh = get_active_stripe(conf, sector, 0, 1, 0);
5077
5078                 if (!sh) {
5079                         /* failed to get a stripe - must wait */
5080                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5081                         conf->retry_read_aligned = raid_bio;
5082                         return handled;
5083                 }
5084
5085                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5086                         release_stripe(sh);
5087                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5088                         conf->retry_read_aligned = raid_bio;
5089                         return handled;
5090                 }
5091
5092                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5093                 handle_stripe(sh);
5094                 release_stripe(sh);
5095                 handled++;
5096         }
5097         remaining = raid5_dec_bi_active_stripes(raid_bio);
5098         if (remaining == 0) {
5099                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5100                                          raid_bio, 0);
5101                 bio_endio(raid_bio, 0);
5102         }
5103         if (atomic_dec_and_test(&conf->active_aligned_reads))
5104                 wake_up(&conf->wait_for_stripe);
5105         return handled;
5106 }
5107
5108 static int handle_active_stripes(struct r5conf *conf, int group,
5109                                  struct r5worker *worker,
5110                                  struct list_head *temp_inactive_list)
5111 {
5112         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5113         int i, batch_size = 0, hash;
5114         bool release_inactive = false;
5115
5116         while (batch_size < MAX_STRIPE_BATCH &&
5117                         (sh = __get_priority_stripe(conf, group)) != NULL)
5118                 batch[batch_size++] = sh;
5119
5120         if (batch_size == 0) {
5121                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5122                         if (!list_empty(temp_inactive_list + i))
5123                                 break;
5124                 if (i == NR_STRIPE_HASH_LOCKS)
5125                         return batch_size;
5126                 release_inactive = true;
5127         }
5128         spin_unlock_irq(&conf->device_lock);
5129
5130         release_inactive_stripe_list(conf, temp_inactive_list,
5131                                      NR_STRIPE_HASH_LOCKS);
5132
5133         if (release_inactive) {
5134                 spin_lock_irq(&conf->device_lock);
5135                 return 0;
5136         }
5137
5138         for (i = 0; i < batch_size; i++)
5139                 handle_stripe(batch[i]);
5140
5141         cond_resched();
5142
5143         spin_lock_irq(&conf->device_lock);
5144         for (i = 0; i < batch_size; i++) {
5145                 hash = batch[i]->hash_lock_index;
5146                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5147         }
5148         return batch_size;
5149 }
5150
5151 static void raid5_do_work(struct work_struct *work)
5152 {
5153         struct r5worker *worker = container_of(work, struct r5worker, work);
5154         struct r5worker_group *group = worker->group;
5155         struct r5conf *conf = group->conf;
5156         int group_id = group - conf->worker_groups;
5157         int handled;
5158         struct blk_plug plug;
5159
5160         pr_debug("+++ raid5worker active\n");
5161
5162         blk_start_plug(&plug);
5163         handled = 0;
5164         spin_lock_irq(&conf->device_lock);
5165         while (1) {
5166                 int batch_size, released;
5167
5168                 released = release_stripe_list(conf, worker->temp_inactive_list);
5169
5170                 batch_size = handle_active_stripes(conf, group_id, worker,
5171                                                    worker->temp_inactive_list);
5172                 worker->working = false;
5173                 if (!batch_size && !released)
5174                         break;
5175                 handled += batch_size;
5176         }
5177         pr_debug("%d stripes handled\n", handled);
5178
5179         spin_unlock_irq(&conf->device_lock);
5180         blk_finish_plug(&plug);
5181
5182         pr_debug("--- raid5worker inactive\n");
5183 }
5184
5185 /*
5186  * This is our raid5 kernel thread.
5187  *
5188  * We scan the hash table for stripes which can be handled now.
5189  * During the scan, completed stripes are saved for us by the interrupt
5190  * handler, so that they will not have to wait for our next wakeup.
5191  */
5192 static void raid5d(struct md_thread *thread)
5193 {
5194         struct mddev *mddev = thread->mddev;
5195         struct r5conf *conf = mddev->private;
5196         int handled;
5197         struct blk_plug plug;
5198
5199         pr_debug("+++ raid5d active\n");
5200
5201         md_check_recovery(mddev);
5202
5203         blk_start_plug(&plug);
5204         handled = 0;
5205         spin_lock_irq(&conf->device_lock);
5206         while (1) {
5207                 struct bio *bio;
5208                 int batch_size, released;
5209
5210                 released = release_stripe_list(conf, conf->temp_inactive_list);
5211
5212                 if (
5213                     !list_empty(&conf->bitmap_list)) {
5214                         /* Now is a good time to flush some bitmap updates */
5215                         conf->seq_flush++;
5216                         spin_unlock_irq(&conf->device_lock);
5217                         bitmap_unplug(mddev->bitmap);
5218                         spin_lock_irq(&conf->device_lock);
5219                         conf->seq_write = conf->seq_flush;
5220                         activate_bit_delay(conf, conf->temp_inactive_list);
5221                 }
5222                 raid5_activate_delayed(conf);
5223
5224                 while ((bio = remove_bio_from_retry(conf))) {
5225                         int ok;
5226                         spin_unlock_irq(&conf->device_lock);
5227                         ok = retry_aligned_read(conf, bio);
5228                         spin_lock_irq(&conf->device_lock);
5229                         if (!ok)
5230                                 break;
5231                         handled++;
5232                 }
5233
5234                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5235                                                    conf->temp_inactive_list);
5236                 if (!batch_size && !released)
5237                         break;
5238                 handled += batch_size;
5239
5240                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5241                         spin_unlock_irq(&conf->device_lock);
5242                         md_check_recovery(mddev);
5243                         spin_lock_irq(&conf->device_lock);
5244                 }
5245         }
5246         pr_debug("%d stripes handled\n", handled);
5247
5248         spin_unlock_irq(&conf->device_lock);
5249
5250         async_tx_issue_pending_all();
5251         blk_finish_plug(&plug);
5252
5253         pr_debug("--- raid5d inactive\n");
5254 }
5255
5256 static ssize_t
5257 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5258 {
5259         struct r5conf *conf = mddev->private;
5260         if (conf)
5261                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5262         else
5263                 return 0;
5264 }
5265
5266 int
5267 raid5_set_cache_size(struct mddev *mddev, int size)
5268 {
5269         struct r5conf *conf = mddev->private;
5270         int err;
5271         int hash;
5272
5273         if (size <= 16 || size > 32768)
5274                 return -EINVAL;
5275         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5276         while (size < conf->max_nr_stripes) {
5277                 if (drop_one_stripe(conf, hash))
5278                         conf->max_nr_stripes--;
5279                 else
5280                         break;
5281                 hash--;
5282                 if (hash < 0)
5283                         hash = NR_STRIPE_HASH_LOCKS - 1;
5284         }
5285         err = md_allow_write(mddev);
5286         if (err)
5287                 return err;
5288         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5289         while (size > conf->max_nr_stripes) {
5290                 if (grow_one_stripe(conf, hash))
5291                         conf->max_nr_stripes++;
5292                 else break;
5293                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5294         }
5295         return 0;
5296 }
5297 EXPORT_SYMBOL(raid5_set_cache_size);
5298
5299 static ssize_t
5300 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5301 {
5302         struct r5conf *conf = mddev->private;
5303         unsigned long new;
5304         int err;
5305
5306         if (len >= PAGE_SIZE)
5307                 return -EINVAL;
5308         if (!conf)
5309                 return -ENODEV;
5310
5311         if (kstrtoul(page, 10, &new))
5312                 return -EINVAL;
5313         err = raid5_set_cache_size(mddev, new);
5314         if (err)
5315                 return err;
5316         return len;
5317 }
5318
5319 static struct md_sysfs_entry
5320 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5321                                 raid5_show_stripe_cache_size,
5322                                 raid5_store_stripe_cache_size);
5323
5324 static ssize_t
5325 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5326 {
5327         struct r5conf *conf = mddev->private;
5328         if (conf)
5329                 return sprintf(page, "%d\n", conf->bypass_threshold);
5330         else
5331                 return 0;
5332 }
5333
5334 static ssize_t
5335 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5336 {
5337         struct r5conf *conf = mddev->private;
5338         unsigned long new;
5339         if (len >= PAGE_SIZE)
5340                 return -EINVAL;
5341         if (!conf)
5342                 return -ENODEV;
5343
5344         if (kstrtoul(page, 10, &new))
5345                 return -EINVAL;
5346         if (new > conf->max_nr_stripes)
5347                 return -EINVAL;
5348         conf->bypass_threshold = new;
5349         return len;
5350 }
5351
5352 static struct md_sysfs_entry
5353 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5354                                         S_IRUGO | S_IWUSR,
5355                                         raid5_show_preread_threshold,
5356                                         raid5_store_preread_threshold);
5357
5358 static ssize_t
5359 stripe_cache_active_show(struct mddev *mddev, char *page)
5360 {
5361         struct r5conf *conf = mddev->private;
5362         if (conf)
5363                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5364         else
5365                 return 0;
5366 }
5367
5368 static struct md_sysfs_entry
5369 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5370
5371 static ssize_t
5372 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5373 {
5374         struct r5conf *conf = mddev->private;
5375         if (conf)
5376                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5377         else
5378                 return 0;
5379 }
5380
5381 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5382                                int *group_cnt,
5383                                int *worker_cnt_per_group,
5384                                struct r5worker_group **worker_groups);
5385 static ssize_t
5386 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5387 {
5388         struct r5conf *conf = mddev->private;
5389         unsigned long new;
5390         int err;
5391         struct r5worker_group *new_groups, *old_groups;
5392         int group_cnt, worker_cnt_per_group;
5393
5394         if (len >= PAGE_SIZE)
5395                 return -EINVAL;
5396         if (!conf)
5397                 return -ENODEV;
5398
5399         if (kstrtoul(page, 10, &new))
5400                 return -EINVAL;
5401
5402         if (new == conf->worker_cnt_per_group)
5403                 return len;
5404
5405         mddev_suspend(mddev);
5406
5407         old_groups = conf->worker_groups;
5408         if (old_groups)
5409                 flush_workqueue(raid5_wq);
5410
5411         err = alloc_thread_groups(conf, new,
5412                                   &group_cnt, &worker_cnt_per_group,
5413                                   &new_groups);
5414         if (!err) {
5415                 spin_lock_irq(&conf->device_lock);
5416                 conf->group_cnt = group_cnt;
5417                 conf->worker_cnt_per_group = worker_cnt_per_group;
5418                 conf->worker_groups = new_groups;
5419                 spin_unlock_irq(&conf->device_lock);
5420
5421                 if (old_groups)
5422                         kfree(old_groups[0].workers);
5423                 kfree(old_groups);
5424         }
5425
5426         mddev_resume(mddev);
5427
5428         if (err)
5429                 return err;
5430         return len;
5431 }
5432
5433 static struct md_sysfs_entry
5434 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5435                                 raid5_show_group_thread_cnt,
5436                                 raid5_store_group_thread_cnt);
5437
5438 static struct attribute *raid5_attrs[] =  {
5439         &raid5_stripecache_size.attr,
5440         &raid5_stripecache_active.attr,
5441         &raid5_preread_bypass_threshold.attr,
5442         &raid5_group_thread_cnt.attr,
5443         NULL,
5444 };
5445 static struct attribute_group raid5_attrs_group = {
5446         .name = NULL,
5447         .attrs = raid5_attrs,
5448 };
5449
5450 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5451                                int *group_cnt,
5452                                int *worker_cnt_per_group,
5453                                struct r5worker_group **worker_groups)
5454 {
5455         int i, j, k;
5456         ssize_t size;
5457         struct r5worker *workers;
5458
5459         *worker_cnt_per_group = cnt;
5460         if (cnt == 0) {
5461                 *group_cnt = 0;
5462                 *worker_groups = NULL;
5463                 return 0;
5464         }
5465         *group_cnt = num_possible_nodes();
5466         size = sizeof(struct r5worker) * cnt;
5467         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5468         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5469                                 *group_cnt, GFP_NOIO);
5470         if (!*worker_groups || !workers) {
5471                 kfree(workers);
5472                 kfree(*worker_groups);
5473                 return -ENOMEM;
5474         }
5475
5476         for (i = 0; i < *group_cnt; i++) {
5477                 struct r5worker_group *group;
5478
5479                 group = &(*worker_groups)[i];
5480                 INIT_LIST_HEAD(&group->handle_list);
5481                 group->conf = conf;
5482                 group->workers = workers + i * cnt;
5483
5484                 for (j = 0; j < cnt; j++) {
5485                         struct r5worker *worker = group->workers + j;
5486                         worker->group = group;
5487                         INIT_WORK(&worker->work, raid5_do_work);
5488
5489                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5490                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5491                 }
5492         }
5493
5494         return 0;
5495 }
5496
5497 static void free_thread_groups(struct r5conf *conf)
5498 {
5499         if (conf->worker_groups)
5500                 kfree(conf->worker_groups[0].workers);
5501         kfree(conf->worker_groups);
5502         conf->worker_groups = NULL;
5503 }
5504
5505 static sector_t
5506 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5507 {
5508         struct r5conf *conf = mddev->private;
5509
5510         if (!sectors)
5511                 sectors = mddev->dev_sectors;
5512         if (!raid_disks)
5513                 /* size is defined by the smallest of previous and new size */
5514                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5515
5516         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5517         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5518         return sectors * (raid_disks - conf->max_degraded);
5519 }
5520
5521 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5522 {
5523         safe_put_page(percpu->spare_page);
5524         kfree(percpu->scribble);
5525         percpu->spare_page = NULL;
5526         percpu->scribble = NULL;
5527 }
5528
5529 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5530 {
5531         if (conf->level == 6 && !percpu->spare_page)
5532                 percpu->spare_page = alloc_page(GFP_KERNEL);
5533         if (!percpu->scribble)
5534                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5535
5536         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5537                 free_scratch_buffer(conf, percpu);
5538                 return -ENOMEM;
5539         }
5540
5541         return 0;
5542 }
5543
5544 static void raid5_free_percpu(struct r5conf *conf)
5545 {
5546         unsigned long cpu;
5547
5548         if (!conf->percpu)
5549                 return;
5550
5551 #ifdef CONFIG_HOTPLUG_CPU
5552         unregister_cpu_notifier(&conf->cpu_notify);
5553 #endif
5554
5555         get_online_cpus();
5556         for_each_possible_cpu(cpu)
5557                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5558         put_online_cpus();
5559
5560         free_percpu(conf->percpu);
5561 }
5562
5563 static void free_conf(struct r5conf *conf)
5564 {
5565         free_thread_groups(conf);
5566         shrink_stripes(conf);
5567         raid5_free_percpu(conf);
5568         kfree(conf->disks);
5569         kfree(conf->stripe_hashtbl);
5570         kfree(conf);
5571 }
5572
5573 #ifdef CONFIG_HOTPLUG_CPU
5574 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5575                               void *hcpu)
5576 {
5577         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5578         long cpu = (long)hcpu;
5579         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5580
5581         switch (action) {
5582         case CPU_UP_PREPARE:
5583         case CPU_UP_PREPARE_FROZEN:
5584                 if (alloc_scratch_buffer(conf, percpu)) {
5585                         pr_err("%s: failed memory allocation for cpu%ld\n",
5586                                __func__, cpu);
5587                         return notifier_from_errno(-ENOMEM);
5588                 }
5589                 break;
5590         case CPU_DEAD:
5591         case CPU_DEAD_FROZEN:
5592                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5593                 break;
5594         default:
5595                 break;
5596         }
5597         return NOTIFY_OK;
5598 }
5599 #endif
5600
5601 static int raid5_alloc_percpu(struct r5conf *conf)
5602 {
5603         unsigned long cpu;
5604         int err = 0;
5605
5606         conf->percpu = alloc_percpu(struct raid5_percpu);
5607         if (!conf->percpu)
5608                 return -ENOMEM;
5609
5610 #ifdef CONFIG_HOTPLUG_CPU
5611         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5612         conf->cpu_notify.priority = 0;
5613         err = register_cpu_notifier(&conf->cpu_notify);
5614         if (err)
5615                 return err;
5616 #endif
5617
5618         get_online_cpus();
5619         for_each_present_cpu(cpu) {
5620                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5621                 if (err) {
5622                         pr_err("%s: failed memory allocation for cpu%ld\n",
5623                                __func__, cpu);
5624                         break;
5625                 }
5626         }
5627         put_online_cpus();
5628
5629         return err;
5630 }
5631
5632 static struct r5conf *setup_conf(struct mddev *mddev)
5633 {
5634         struct r5conf *conf;
5635         int raid_disk, memory, max_disks;
5636         struct md_rdev *rdev;
5637         struct disk_info *disk;
5638         char pers_name[6];
5639         int i;
5640         int group_cnt, worker_cnt_per_group;
5641         struct r5worker_group *new_group;
5642
5643         if (mddev->new_level != 5
5644             && mddev->new_level != 4
5645             && mddev->new_level != 6) {
5646                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5647                        mdname(mddev), mddev->new_level);
5648                 return ERR_PTR(-EIO);
5649         }
5650         if ((mddev->new_level == 5
5651              && !algorithm_valid_raid5(mddev->new_layout)) ||
5652             (mddev->new_level == 6
5653              && !algorithm_valid_raid6(mddev->new_layout))) {
5654                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5655                        mdname(mddev), mddev->new_layout);
5656                 return ERR_PTR(-EIO);
5657         }
5658         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5659                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5660                        mdname(mddev), mddev->raid_disks);
5661                 return ERR_PTR(-EINVAL);
5662         }
5663
5664         if (!mddev->new_chunk_sectors ||
5665             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5666             !is_power_of_2(mddev->new_chunk_sectors)) {
5667                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5668                        mdname(mddev), mddev->new_chunk_sectors << 9);
5669                 return ERR_PTR(-EINVAL);
5670         }
5671
5672         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5673         if (conf == NULL)
5674                 goto abort;
5675         /* Don't enable multi-threading by default*/
5676         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5677                                  &new_group)) {
5678                 conf->group_cnt = group_cnt;
5679                 conf->worker_cnt_per_group = worker_cnt_per_group;
5680                 conf->worker_groups = new_group;
5681         } else
5682                 goto abort;
5683         spin_lock_init(&conf->device_lock);
5684         seqcount_init(&conf->gen_lock);
5685         init_waitqueue_head(&conf->wait_for_stripe);
5686         init_waitqueue_head(&conf->wait_for_overlap);
5687         INIT_LIST_HEAD(&conf->handle_list);
5688         INIT_LIST_HEAD(&conf->hold_list);
5689         INIT_LIST_HEAD(&conf->delayed_list);
5690         INIT_LIST_HEAD(&conf->bitmap_list);
5691         init_llist_head(&conf->released_stripes);
5692         atomic_set(&conf->active_stripes, 0);
5693         atomic_set(&conf->preread_active_stripes, 0);
5694         atomic_set(&conf->active_aligned_reads, 0);
5695         conf->bypass_threshold = BYPASS_THRESHOLD;
5696         conf->recovery_disabled = mddev->recovery_disabled - 1;
5697
5698         conf->raid_disks = mddev->raid_disks;
5699         if (mddev->reshape_position == MaxSector)
5700                 conf->previous_raid_disks = mddev->raid_disks;
5701         else
5702                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5703         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5704         conf->scribble_len = scribble_len(max_disks);
5705
5706         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5707                               GFP_KERNEL);
5708         if (!conf->disks)
5709                 goto abort;
5710
5711         conf->mddev = mddev;
5712
5713         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5714                 goto abort;
5715
5716         /* We init hash_locks[0] separately to that it can be used
5717          * as the reference lock in the spin_lock_nest_lock() call
5718          * in lock_all_device_hash_locks_irq in order to convince
5719          * lockdep that we know what we are doing.
5720          */
5721         spin_lock_init(conf->hash_locks);
5722         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5723                 spin_lock_init(conf->hash_locks + i);
5724
5725         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5726                 INIT_LIST_HEAD(conf->inactive_list + i);
5727
5728         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5729                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5730
5731         conf->level = mddev->new_level;
5732         if (raid5_alloc_percpu(conf) != 0)
5733                 goto abort;
5734
5735         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5736
5737         rdev_for_each(rdev, mddev) {
5738                 raid_disk = rdev->raid_disk;
5739                 if (raid_disk >= max_disks
5740                     || raid_disk < 0)
5741                         continue;
5742                 disk = conf->disks + raid_disk;
5743
5744                 if (test_bit(Replacement, &rdev->flags)) {
5745                         if (disk->replacement)
5746                                 goto abort;
5747                         disk->replacement = rdev;
5748                 } else {
5749                         if (disk->rdev)
5750                                 goto abort;
5751                         disk->rdev = rdev;
5752                 }
5753
5754                 if (test_bit(In_sync, &rdev->flags)) {
5755                         char b[BDEVNAME_SIZE];
5756                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5757                                " disk %d\n",
5758                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5759                 } else if (rdev->saved_raid_disk != raid_disk)
5760                         /* Cannot rely on bitmap to complete recovery */
5761                         conf->fullsync = 1;
5762         }
5763
5764         conf->chunk_sectors = mddev->new_chunk_sectors;
5765         conf->level = mddev->new_level;
5766         if (conf->level == 6)
5767                 conf->max_degraded = 2;
5768         else
5769                 conf->max_degraded = 1;
5770         conf->algorithm = mddev->new_layout;
5771         conf->reshape_progress = mddev->reshape_position;
5772         if (conf->reshape_progress != MaxSector) {
5773                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5774                 conf->prev_algo = mddev->layout;
5775         }
5776
5777         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5778                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5779         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5780         if (grow_stripes(conf, NR_STRIPES)) {
5781                 printk(KERN_ERR
5782                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5783                        mdname(mddev), memory);
5784                 goto abort;
5785         } else
5786                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5787                        mdname(mddev), memory);
5788
5789         sprintf(pers_name, "raid%d", mddev->new_level);
5790         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5791         if (!conf->thread) {
5792                 printk(KERN_ERR
5793                        "md/raid:%s: couldn't allocate thread.\n",
5794                        mdname(mddev));
5795                 goto abort;
5796         }
5797
5798         return conf;
5799
5800  abort:
5801         if (conf) {
5802                 free_conf(conf);
5803                 return ERR_PTR(-EIO);
5804         } else
5805                 return ERR_PTR(-ENOMEM);
5806 }
5807
5808
5809 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5810 {
5811         switch (algo) {
5812         case ALGORITHM_PARITY_0:
5813                 if (raid_disk < max_degraded)
5814                         return 1;
5815                 break;
5816         case ALGORITHM_PARITY_N:
5817                 if (raid_disk >= raid_disks - max_degraded)
5818                         return 1;
5819                 break;
5820         case ALGORITHM_PARITY_0_6:
5821                 if (raid_disk == 0 || 
5822                     raid_disk == raid_disks - 1)
5823                         return 1;
5824                 break;
5825         case ALGORITHM_LEFT_ASYMMETRIC_6:
5826         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5827         case ALGORITHM_LEFT_SYMMETRIC_6:
5828         case ALGORITHM_RIGHT_SYMMETRIC_6:
5829                 if (raid_disk == raid_disks - 1)
5830                         return 1;
5831         }
5832         return 0;
5833 }
5834
5835 static int run(struct mddev *mddev)
5836 {
5837         struct r5conf *conf;
5838         int working_disks = 0;
5839         int dirty_parity_disks = 0;
5840         struct md_rdev *rdev;
5841         sector_t reshape_offset = 0;
5842         int i;
5843         long long min_offset_diff = 0;
5844         int first = 1;
5845
5846         if (mddev->recovery_cp != MaxSector)
5847                 printk(KERN_NOTICE "md/raid:%s: not clean"
5848                        " -- starting background reconstruction\n",
5849                        mdname(mddev));
5850
5851         rdev_for_each(rdev, mddev) {
5852                 long long diff;
5853                 if (rdev->raid_disk < 0)
5854                         continue;
5855                 diff = (rdev->new_data_offset - rdev->data_offset);
5856                 if (first) {
5857                         min_offset_diff = diff;
5858                         first = 0;
5859                 } else if (mddev->reshape_backwards &&
5860                          diff < min_offset_diff)
5861                         min_offset_diff = diff;
5862                 else if (!mddev->reshape_backwards &&
5863                          diff > min_offset_diff)
5864                         min_offset_diff = diff;
5865         }
5866
5867         if (mddev->reshape_position != MaxSector) {
5868                 /* Check that we can continue the reshape.
5869                  * Difficulties arise if the stripe we would write to
5870                  * next is at or after the stripe we would read from next.
5871                  * For a reshape that changes the number of devices, this
5872                  * is only possible for a very short time, and mdadm makes
5873                  * sure that time appears to have past before assembling
5874                  * the array.  So we fail if that time hasn't passed.
5875                  * For a reshape that keeps the number of devices the same
5876                  * mdadm must be monitoring the reshape can keeping the
5877                  * critical areas read-only and backed up.  It will start
5878                  * the array in read-only mode, so we check for that.
5879                  */
5880                 sector_t here_new, here_old;
5881                 int old_disks;
5882                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5883
5884                 if (mddev->new_level != mddev->level) {
5885                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5886                                "required - aborting.\n",
5887                                mdname(mddev));
5888                         return -EINVAL;
5889                 }
5890                 old_disks = mddev->raid_disks - mddev->delta_disks;
5891                 /* reshape_position must be on a new-stripe boundary, and one
5892                  * further up in new geometry must map after here in old
5893                  * geometry.
5894                  */
5895                 here_new = mddev->reshape_position;
5896                 if (sector_div(here_new, mddev->new_chunk_sectors *
5897                                (mddev->raid_disks - max_degraded))) {
5898                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5899                                "on a stripe boundary\n", mdname(mddev));
5900                         return -EINVAL;
5901                 }
5902                 reshape_offset = here_new * mddev->new_chunk_sectors;
5903                 /* here_new is the stripe we will write to */
5904                 here_old = mddev->reshape_position;
5905                 sector_div(here_old, mddev->chunk_sectors *
5906                            (old_disks-max_degraded));
5907                 /* here_old is the first stripe that we might need to read
5908                  * from */
5909                 if (mddev->delta_disks == 0) {
5910                         if ((here_new * mddev->new_chunk_sectors !=
5911                              here_old * mddev->chunk_sectors)) {
5912                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5913                                        " confused - aborting\n", mdname(mddev));
5914                                 return -EINVAL;
5915                         }
5916                         /* We cannot be sure it is safe to start an in-place
5917                          * reshape.  It is only safe if user-space is monitoring
5918                          * and taking constant backups.
5919                          * mdadm always starts a situation like this in
5920                          * readonly mode so it can take control before
5921                          * allowing any writes.  So just check for that.
5922                          */
5923                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5924                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5925                                 /* not really in-place - so OK */;
5926                         else if (mddev->ro == 0) {
5927                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5928                                        "must be started in read-only mode "
5929                                        "- aborting\n",
5930                                        mdname(mddev));
5931                                 return -EINVAL;
5932                         }
5933                 } else if (mddev->reshape_backwards
5934                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5935                        here_old * mddev->chunk_sectors)
5936                     : (here_new * mddev->new_chunk_sectors >=
5937                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5938                         /* Reading from the same stripe as writing to - bad */
5939                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5940                                "auto-recovery - aborting.\n",
5941                                mdname(mddev));
5942                         return -EINVAL;
5943                 }
5944                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5945                        mdname(mddev));
5946                 /* OK, we should be able to continue; */
5947         } else {
5948                 BUG_ON(mddev->level != mddev->new_level);
5949                 BUG_ON(mddev->layout != mddev->new_layout);
5950                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5951                 BUG_ON(mddev->delta_disks != 0);
5952         }
5953
5954         if (mddev->private == NULL)
5955                 conf = setup_conf(mddev);
5956         else
5957                 conf = mddev->private;
5958
5959         if (IS_ERR(conf))
5960                 return PTR_ERR(conf);
5961
5962         conf->min_offset_diff = min_offset_diff;
5963         mddev->thread = conf->thread;
5964         conf->thread = NULL;
5965         mddev->private = conf;
5966
5967         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5968              i++) {
5969                 rdev = conf->disks[i].rdev;
5970                 if (!rdev && conf->disks[i].replacement) {
5971                         /* The replacement is all we have yet */
5972                         rdev = conf->disks[i].replacement;
5973                         conf->disks[i].replacement = NULL;
5974                         clear_bit(Replacement, &rdev->flags);
5975                         conf->disks[i].rdev = rdev;
5976                 }
5977                 if (!rdev)
5978                         continue;
5979                 if (conf->disks[i].replacement &&
5980                     conf->reshape_progress != MaxSector) {
5981                         /* replacements and reshape simply do not mix. */
5982                         printk(KERN_ERR "md: cannot handle concurrent "
5983                                "replacement and reshape.\n");
5984                         goto abort;
5985                 }
5986                 if (test_bit(In_sync, &rdev->flags)) {
5987                         working_disks++;
5988                         continue;
5989                 }
5990                 /* This disc is not fully in-sync.  However if it
5991                  * just stored parity (beyond the recovery_offset),
5992                  * when we don't need to be concerned about the
5993                  * array being dirty.
5994                  * When reshape goes 'backwards', we never have
5995                  * partially completed devices, so we only need
5996                  * to worry about reshape going forwards.
5997                  */
5998                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5999                 if (mddev->major_version == 0 &&
6000                     mddev->minor_version > 90)
6001                         rdev->recovery_offset = reshape_offset;
6002
6003                 if (rdev->recovery_offset < reshape_offset) {
6004                         /* We need to check old and new layout */
6005                         if (!only_parity(rdev->raid_disk,
6006                                          conf->algorithm,
6007                                          conf->raid_disks,
6008                                          conf->max_degraded))
6009                                 continue;
6010                 }
6011                 if (!only_parity(rdev->raid_disk,
6012                                  conf->prev_algo,
6013                                  conf->previous_raid_disks,
6014                                  conf->max_degraded))
6015                         continue;
6016                 dirty_parity_disks++;
6017         }
6018
6019         /*
6020          * 0 for a fully functional array, 1 or 2 for a degraded array.
6021          */
6022         mddev->degraded = calc_degraded(conf);
6023
6024         if (has_failed(conf)) {
6025                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6026                         " (%d/%d failed)\n",
6027                         mdname(mddev), mddev->degraded, conf->raid_disks);
6028                 goto abort;
6029         }
6030
6031         /* device size must be a multiple of chunk size */
6032         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6033         mddev->resync_max_sectors = mddev->dev_sectors;
6034
6035         if (mddev->degraded > dirty_parity_disks &&
6036             mddev->recovery_cp != MaxSector) {
6037                 if (mddev->ok_start_degraded)
6038                         printk(KERN_WARNING
6039                                "md/raid:%s: starting dirty degraded array"
6040                                " - data corruption possible.\n",
6041                                mdname(mddev));
6042                 else {
6043                         printk(KERN_ERR
6044                                "md/raid:%s: cannot start dirty degraded array.\n",
6045                                mdname(mddev));
6046                         goto abort;
6047                 }
6048         }
6049
6050         if (mddev->degraded == 0)
6051                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6052                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6053                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6054                        mddev->new_layout);
6055         else
6056                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6057                        " out of %d devices, algorithm %d\n",
6058                        mdname(mddev), conf->level,
6059                        mddev->raid_disks - mddev->degraded,
6060                        mddev->raid_disks, mddev->new_layout);
6061
6062         print_raid5_conf(conf);
6063
6064         if (conf->reshape_progress != MaxSector) {
6065                 conf->reshape_safe = conf->reshape_progress;
6066                 atomic_set(&conf->reshape_stripes, 0);
6067                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6068                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6069                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6070                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6071                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6072                                                         "reshape");
6073         }
6074
6075
6076         /* Ok, everything is just fine now */
6077         if (mddev->to_remove == &raid5_attrs_group)
6078                 mddev->to_remove = NULL;
6079         else if (mddev->kobj.sd &&
6080             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6081                 printk(KERN_WARNING
6082                        "raid5: failed to create sysfs attributes for %s\n",
6083                        mdname(mddev));
6084         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6085
6086         if (mddev->queue) {
6087                 int chunk_size;
6088                 bool discard_supported = true;
6089                 /* read-ahead size must cover two whole stripes, which
6090                  * is 2 * (datadisks) * chunksize where 'n' is the
6091                  * number of raid devices
6092                  */
6093                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6094                 int stripe = data_disks *
6095                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6096                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6097                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6098
6099                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6100
6101                 mddev->queue->backing_dev_info.congested_data = mddev;
6102                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6103
6104                 chunk_size = mddev->chunk_sectors << 9;
6105                 blk_queue_io_min(mddev->queue, chunk_size);
6106                 blk_queue_io_opt(mddev->queue, chunk_size *
6107                                  (conf->raid_disks - conf->max_degraded));
6108                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6109                 /*
6110                  * We can only discard a whole stripe. It doesn't make sense to
6111                  * discard data disk but write parity disk
6112                  */
6113                 stripe = stripe * PAGE_SIZE;
6114                 /* Round up to power of 2, as discard handling
6115                  * currently assumes that */
6116                 while ((stripe-1) & stripe)
6117                         stripe = (stripe | (stripe-1)) + 1;
6118                 mddev->queue->limits.discard_alignment = stripe;
6119                 mddev->queue->limits.discard_granularity = stripe;
6120                 /*
6121                  * unaligned part of discard request will be ignored, so can't
6122                  * guarantee discard_zerors_data
6123                  */
6124                 mddev->queue->limits.discard_zeroes_data = 0;
6125
6126                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6127
6128                 rdev_for_each(rdev, mddev) {
6129                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6130                                           rdev->data_offset << 9);
6131                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6132                                           rdev->new_data_offset << 9);
6133                         /*
6134                          * discard_zeroes_data is required, otherwise data
6135                          * could be lost. Consider a scenario: discard a stripe
6136                          * (the stripe could be inconsistent if
6137                          * discard_zeroes_data is 0); write one disk of the
6138                          * stripe (the stripe could be inconsistent again
6139                          * depending on which disks are used to calculate
6140                          * parity); the disk is broken; The stripe data of this
6141                          * disk is lost.
6142                          */
6143                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6144                             !bdev_get_queue(rdev->bdev)->
6145                                                 limits.discard_zeroes_data)
6146                                 discard_supported = false;
6147                 }
6148
6149                 if (discard_supported &&
6150                    mddev->queue->limits.max_discard_sectors >= stripe &&
6151                    mddev->queue->limits.discard_granularity >= stripe)
6152                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6153                                                 mddev->queue);
6154                 else
6155                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6156                                                 mddev->queue);
6157         }
6158
6159         return 0;
6160 abort:
6161         md_unregister_thread(&mddev->thread);
6162         print_raid5_conf(conf);
6163         free_conf(conf);
6164         mddev->private = NULL;
6165         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6166         return -EIO;
6167 }
6168
6169 static int stop(struct mddev *mddev)
6170 {
6171         struct r5conf *conf = mddev->private;
6172
6173         md_unregister_thread(&mddev->thread);
6174         if (mddev->queue)
6175                 mddev->queue->backing_dev_info.congested_fn = NULL;
6176         free_conf(conf);
6177         mddev->private = NULL;
6178         mddev->to_remove = &raid5_attrs_group;
6179         return 0;
6180 }
6181
6182 static void status(struct seq_file *seq, struct mddev *mddev)
6183 {
6184         struct r5conf *conf = mddev->private;
6185         int i;
6186
6187         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6188                 mddev->chunk_sectors / 2, mddev->layout);
6189         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6190         for (i = 0; i < conf->raid_disks; i++)
6191                 seq_printf (seq, "%s",
6192                                conf->disks[i].rdev &&
6193                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6194         seq_printf (seq, "]");
6195 }
6196
6197 static void print_raid5_conf (struct r5conf *conf)
6198 {
6199         int i;
6200         struct disk_info *tmp;
6201
6202         printk(KERN_DEBUG "RAID conf printout:\n");
6203         if (!conf) {
6204                 printk("(conf==NULL)\n");
6205                 return;
6206         }
6207         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6208                conf->raid_disks,
6209                conf->raid_disks - conf->mddev->degraded);
6210
6211         for (i = 0; i < conf->raid_disks; i++) {
6212                 char b[BDEVNAME_SIZE];
6213                 tmp = conf->disks + i;
6214                 if (tmp->rdev)
6215                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6216                                i, !test_bit(Faulty, &tmp->rdev->flags),
6217                                bdevname(tmp->rdev->bdev, b));
6218         }
6219 }
6220
6221 static int raid5_spare_active(struct mddev *mddev)
6222 {
6223         int i;
6224         struct r5conf *conf = mddev->private;
6225         struct disk_info *tmp;
6226         int count = 0;
6227         unsigned long flags;
6228
6229         for (i = 0; i < conf->raid_disks; i++) {
6230                 tmp = conf->disks + i;
6231                 if (tmp->replacement
6232                     && tmp->replacement->recovery_offset == MaxSector
6233                     && !test_bit(Faulty, &tmp->replacement->flags)
6234                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6235                         /* Replacement has just become active. */
6236                         if (!tmp->rdev
6237                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6238                                 count++;
6239                         if (tmp->rdev) {
6240                                 /* Replaced device not technically faulty,
6241                                  * but we need to be sure it gets removed
6242                                  * and never re-added.
6243                                  */
6244                                 set_bit(Faulty, &tmp->rdev->flags);
6245                                 sysfs_notify_dirent_safe(
6246                                         tmp->rdev->sysfs_state);
6247                         }
6248                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6249                 } else if (tmp->rdev
6250                     && tmp->rdev->recovery_offset == MaxSector
6251                     && !test_bit(Faulty, &tmp->rdev->flags)
6252                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6253                         count++;
6254                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6255                 }
6256         }
6257         spin_lock_irqsave(&conf->device_lock, flags);
6258         mddev->degraded = calc_degraded(conf);
6259         spin_unlock_irqrestore(&conf->device_lock, flags);
6260         print_raid5_conf(conf);
6261         return count;
6262 }
6263
6264 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6265 {
6266         struct r5conf *conf = mddev->private;
6267         int err = 0;
6268         int number = rdev->raid_disk;
6269         struct md_rdev **rdevp;
6270         struct disk_info *p = conf->disks + number;
6271
6272         print_raid5_conf(conf);
6273         if (rdev == p->rdev)
6274                 rdevp = &p->rdev;
6275         else if (rdev == p->replacement)
6276                 rdevp = &p->replacement;
6277         else
6278                 return 0;
6279
6280         if (number >= conf->raid_disks &&
6281             conf->reshape_progress == MaxSector)
6282                 clear_bit(In_sync, &rdev->flags);
6283
6284         if (test_bit(In_sync, &rdev->flags) ||
6285             atomic_read(&rdev->nr_pending)) {
6286                 err = -EBUSY;
6287                 goto abort;
6288         }
6289         /* Only remove non-faulty devices if recovery
6290          * isn't possible.
6291          */
6292         if (!test_bit(Faulty, &rdev->flags) &&
6293             mddev->recovery_disabled != conf->recovery_disabled &&
6294             !has_failed(conf) &&
6295             (!p->replacement || p->replacement == rdev) &&
6296             number < conf->raid_disks) {
6297                 err = -EBUSY;
6298                 goto abort;
6299         }
6300         *rdevp = NULL;
6301         synchronize_rcu();
6302         if (atomic_read(&rdev->nr_pending)) {
6303                 /* lost the race, try later */
6304                 err = -EBUSY;
6305                 *rdevp = rdev;
6306         } else if (p->replacement) {
6307                 /* We must have just cleared 'rdev' */
6308                 p->rdev = p->replacement;
6309                 clear_bit(Replacement, &p->replacement->flags);
6310                 smp_mb(); /* Make sure other CPUs may see both as identical
6311                            * but will never see neither - if they are careful
6312                            */
6313                 p->replacement = NULL;
6314                 clear_bit(WantReplacement, &rdev->flags);
6315         } else
6316                 /* We might have just removed the Replacement as faulty-
6317                  * clear the bit just in case
6318                  */
6319                 clear_bit(WantReplacement, &rdev->flags);
6320 abort:
6321
6322         print_raid5_conf(conf);
6323         return err;
6324 }
6325
6326 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6327 {
6328         struct r5conf *conf = mddev->private;
6329         int err = -EEXIST;
6330         int disk;
6331         struct disk_info *p;
6332         int first = 0;
6333         int last = conf->raid_disks - 1;
6334
6335         if (mddev->recovery_disabled == conf->recovery_disabled)
6336                 return -EBUSY;
6337
6338         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6339                 /* no point adding a device */
6340                 return -EINVAL;
6341
6342         if (rdev->raid_disk >= 0)
6343                 first = last = rdev->raid_disk;
6344
6345         /*
6346          * find the disk ... but prefer rdev->saved_raid_disk
6347          * if possible.
6348          */
6349         if (rdev->saved_raid_disk >= 0 &&
6350             rdev->saved_raid_disk >= first &&
6351             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6352                 first = rdev->saved_raid_disk;
6353
6354         for (disk = first; disk <= last; disk++) {
6355                 p = conf->disks + disk;
6356                 if (p->rdev == NULL) {
6357                         clear_bit(In_sync, &rdev->flags);
6358                         rdev->raid_disk = disk;
6359                         err = 0;
6360                         if (rdev->saved_raid_disk != disk)
6361                                 conf->fullsync = 1;
6362                         rcu_assign_pointer(p->rdev, rdev);
6363                         goto out;
6364                 }
6365         }
6366         for (disk = first; disk <= last; disk++) {
6367                 p = conf->disks + disk;
6368                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6369                     p->replacement == NULL) {
6370                         clear_bit(In_sync, &rdev->flags);
6371                         set_bit(Replacement, &rdev->flags);
6372                         rdev->raid_disk = disk;
6373                         err = 0;
6374                         conf->fullsync = 1;
6375                         rcu_assign_pointer(p->replacement, rdev);
6376                         break;
6377                 }
6378         }
6379 out:
6380         print_raid5_conf(conf);
6381         return err;
6382 }
6383
6384 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6385 {
6386         /* no resync is happening, and there is enough space
6387          * on all devices, so we can resize.
6388          * We need to make sure resync covers any new space.
6389          * If the array is shrinking we should possibly wait until
6390          * any io in the removed space completes, but it hardly seems
6391          * worth it.
6392          */
6393         sector_t newsize;
6394         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6395         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6396         if (mddev->external_size &&
6397             mddev->array_sectors > newsize)
6398                 return -EINVAL;
6399         if (mddev->bitmap) {
6400                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6401                 if (ret)
6402                         return ret;
6403         }
6404         md_set_array_sectors(mddev, newsize);
6405         set_capacity(mddev->gendisk, mddev->array_sectors);
6406         revalidate_disk(mddev->gendisk);
6407         if (sectors > mddev->dev_sectors &&
6408             mddev->recovery_cp > mddev->dev_sectors) {
6409                 mddev->recovery_cp = mddev->dev_sectors;
6410                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6411         }
6412         mddev->dev_sectors = sectors;
6413         mddev->resync_max_sectors = sectors;
6414         return 0;
6415 }
6416
6417 static int check_stripe_cache(struct mddev *mddev)
6418 {
6419         /* Can only proceed if there are plenty of stripe_heads.
6420          * We need a minimum of one full stripe,, and for sensible progress
6421          * it is best to have about 4 times that.
6422          * If we require 4 times, then the default 256 4K stripe_heads will
6423          * allow for chunk sizes up to 256K, which is probably OK.
6424          * If the chunk size is greater, user-space should request more
6425          * stripe_heads first.
6426          */
6427         struct r5conf *conf = mddev->private;
6428         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6429             > conf->max_nr_stripes ||
6430             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6431             > conf->max_nr_stripes) {
6432                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6433                        mdname(mddev),
6434                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6435                         / STRIPE_SIZE)*4);
6436                 return 0;
6437         }
6438         return 1;
6439 }
6440
6441 static int check_reshape(struct mddev *mddev)
6442 {
6443         struct r5conf *conf = mddev->private;
6444
6445         if (mddev->delta_disks == 0 &&
6446             mddev->new_layout == mddev->layout &&
6447             mddev->new_chunk_sectors == mddev->chunk_sectors)
6448                 return 0; /* nothing to do */
6449         if (has_failed(conf))
6450                 return -EINVAL;
6451         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6452                 /* We might be able to shrink, but the devices must
6453                  * be made bigger first.
6454                  * For raid6, 4 is the minimum size.
6455                  * Otherwise 2 is the minimum
6456                  */
6457                 int min = 2;
6458                 if (mddev->level == 6)
6459                         min = 4;
6460                 if (mddev->raid_disks + mddev->delta_disks < min)
6461                         return -EINVAL;
6462         }
6463
6464         if (!check_stripe_cache(mddev))
6465                 return -ENOSPC;
6466
6467         return resize_stripes(conf, (conf->previous_raid_disks
6468                                      + mddev->delta_disks));
6469 }
6470
6471 static int raid5_start_reshape(struct mddev *mddev)
6472 {
6473         struct r5conf *conf = mddev->private;
6474         struct md_rdev *rdev;
6475         int spares = 0;
6476         unsigned long flags;
6477
6478         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6479                 return -EBUSY;
6480
6481         if (!check_stripe_cache(mddev))
6482                 return -ENOSPC;
6483
6484         if (has_failed(conf))
6485                 return -EINVAL;
6486
6487         rdev_for_each(rdev, mddev) {
6488                 if (!test_bit(In_sync, &rdev->flags)
6489                     && !test_bit(Faulty, &rdev->flags))
6490                         spares++;
6491         }
6492
6493         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6494                 /* Not enough devices even to make a degraded array
6495                  * of that size
6496                  */
6497                 return -EINVAL;
6498
6499         /* Refuse to reduce size of the array.  Any reductions in
6500          * array size must be through explicit setting of array_size
6501          * attribute.
6502          */
6503         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6504             < mddev->array_sectors) {
6505                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6506                        "before number of disks\n", mdname(mddev));
6507                 return -EINVAL;
6508         }
6509
6510         atomic_set(&conf->reshape_stripes, 0);
6511         spin_lock_irq(&conf->device_lock);
6512         write_seqcount_begin(&conf->gen_lock);
6513         conf->previous_raid_disks = conf->raid_disks;
6514         conf->raid_disks += mddev->delta_disks;
6515         conf->prev_chunk_sectors = conf->chunk_sectors;
6516         conf->chunk_sectors = mddev->new_chunk_sectors;
6517         conf->prev_algo = conf->algorithm;
6518         conf->algorithm = mddev->new_layout;
6519         conf->generation++;
6520         /* Code that selects data_offset needs to see the generation update
6521          * if reshape_progress has been set - so a memory barrier needed.
6522          */
6523         smp_mb();
6524         if (mddev->reshape_backwards)
6525                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6526         else
6527                 conf->reshape_progress = 0;
6528         conf->reshape_safe = conf->reshape_progress;
6529         write_seqcount_end(&conf->gen_lock);
6530         spin_unlock_irq(&conf->device_lock);
6531
6532         /* Now make sure any requests that proceeded on the assumption
6533          * the reshape wasn't running - like Discard or Read - have
6534          * completed.
6535          */
6536         mddev_suspend(mddev);
6537         mddev_resume(mddev);
6538
6539         /* Add some new drives, as many as will fit.
6540          * We know there are enough to make the newly sized array work.
6541          * Don't add devices if we are reducing the number of
6542          * devices in the array.  This is because it is not possible
6543          * to correctly record the "partially reconstructed" state of
6544          * such devices during the reshape and confusion could result.
6545          */
6546         if (mddev->delta_disks >= 0) {
6547                 rdev_for_each(rdev, mddev)
6548                         if (rdev->raid_disk < 0 &&
6549                             !test_bit(Faulty, &rdev->flags)) {
6550                                 if (raid5_add_disk(mddev, rdev) == 0) {
6551                                         if (rdev->raid_disk
6552                                             >= conf->previous_raid_disks)
6553                                                 set_bit(In_sync, &rdev->flags);
6554                                         else
6555                                                 rdev->recovery_offset = 0;
6556
6557                                         if (sysfs_link_rdev(mddev, rdev))
6558                                                 /* Failure here is OK */;
6559                                 }
6560                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6561                                    && !test_bit(Faulty, &rdev->flags)) {
6562                                 /* This is a spare that was manually added */
6563                                 set_bit(In_sync, &rdev->flags);
6564                         }
6565
6566                 /* When a reshape changes the number of devices,
6567                  * ->degraded is measured against the larger of the
6568                  * pre and post number of devices.
6569                  */
6570                 spin_lock_irqsave(&conf->device_lock, flags);
6571                 mddev->degraded = calc_degraded(conf);
6572                 spin_unlock_irqrestore(&conf->device_lock, flags);
6573         }
6574         mddev->raid_disks = conf->raid_disks;
6575         mddev->reshape_position = conf->reshape_progress;
6576         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6577
6578         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6579         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6580         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6581         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6582         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6583                                                 "reshape");
6584         if (!mddev->sync_thread) {
6585                 mddev->recovery = 0;
6586                 spin_lock_irq(&conf->device_lock);
6587                 write_seqcount_begin(&conf->gen_lock);
6588                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6589                 mddev->new_chunk_sectors =
6590                         conf->chunk_sectors = conf->prev_chunk_sectors;
6591                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6592                 rdev_for_each(rdev, mddev)
6593                         rdev->new_data_offset = rdev->data_offset;
6594                 smp_wmb();
6595                 conf->generation --;
6596                 conf->reshape_progress = MaxSector;
6597                 mddev->reshape_position = MaxSector;
6598                 write_seqcount_end(&conf->gen_lock);
6599                 spin_unlock_irq(&conf->device_lock);
6600                 return -EAGAIN;
6601         }
6602         conf->reshape_checkpoint = jiffies;
6603         md_wakeup_thread(mddev->sync_thread);
6604         md_new_event(mddev);
6605         return 0;
6606 }
6607
6608 /* This is called from the reshape thread and should make any
6609  * changes needed in 'conf'
6610  */
6611 static void end_reshape(struct r5conf *conf)
6612 {
6613
6614         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6615                 struct md_rdev *rdev;
6616
6617                 spin_lock_irq(&conf->device_lock);
6618                 conf->previous_raid_disks = conf->raid_disks;
6619                 rdev_for_each(rdev, conf->mddev)
6620                         rdev->data_offset = rdev->new_data_offset;
6621                 smp_wmb();
6622                 conf->reshape_progress = MaxSector;
6623                 spin_unlock_irq(&conf->device_lock);
6624                 wake_up(&conf->wait_for_overlap);
6625
6626                 /* read-ahead size must cover two whole stripes, which is
6627                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6628                  */
6629                 if (conf->mddev->queue) {
6630                         int data_disks = conf->raid_disks - conf->max_degraded;
6631                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6632                                                    / PAGE_SIZE);
6633                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6634                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6635                 }
6636         }
6637 }
6638
6639 /* This is called from the raid5d thread with mddev_lock held.
6640  * It makes config changes to the device.
6641  */
6642 static void raid5_finish_reshape(struct mddev *mddev)
6643 {
6644         struct r5conf *conf = mddev->private;
6645
6646         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6647
6648                 if (mddev->delta_disks > 0) {
6649                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6650                         set_capacity(mddev->gendisk, mddev->array_sectors);
6651                         revalidate_disk(mddev->gendisk);
6652                 } else {
6653                         int d;
6654                         spin_lock_irq(&conf->device_lock);
6655                         mddev->degraded = calc_degraded(conf);
6656                         spin_unlock_irq(&conf->device_lock);
6657                         for (d = conf->raid_disks ;
6658                              d < conf->raid_disks - mddev->delta_disks;
6659                              d++) {
6660                                 struct md_rdev *rdev = conf->disks[d].rdev;
6661                                 if (rdev)
6662                                         clear_bit(In_sync, &rdev->flags);
6663                                 rdev = conf->disks[d].replacement;
6664                                 if (rdev)
6665                                         clear_bit(In_sync, &rdev->flags);
6666                         }
6667                 }
6668                 mddev->layout = conf->algorithm;
6669                 mddev->chunk_sectors = conf->chunk_sectors;
6670                 mddev->reshape_position = MaxSector;
6671                 mddev->delta_disks = 0;
6672                 mddev->reshape_backwards = 0;
6673         }
6674 }
6675
6676 static void raid5_quiesce(struct mddev *mddev, int state)
6677 {
6678         struct r5conf *conf = mddev->private;
6679
6680         switch(state) {
6681         case 2: /* resume for a suspend */
6682                 wake_up(&conf->wait_for_overlap);
6683                 break;
6684
6685         case 1: /* stop all writes */
6686                 lock_all_device_hash_locks_irq(conf);
6687                 /* '2' tells resync/reshape to pause so that all
6688                  * active stripes can drain
6689                  */
6690                 conf->quiesce = 2;
6691                 wait_event_cmd(conf->wait_for_stripe,
6692                                     atomic_read(&conf->active_stripes) == 0 &&
6693                                     atomic_read(&conf->active_aligned_reads) == 0,
6694                                     unlock_all_device_hash_locks_irq(conf),
6695                                     lock_all_device_hash_locks_irq(conf));
6696                 conf->quiesce = 1;
6697                 unlock_all_device_hash_locks_irq(conf);
6698                 /* allow reshape to continue */
6699                 wake_up(&conf->wait_for_overlap);
6700                 break;
6701
6702         case 0: /* re-enable writes */
6703                 lock_all_device_hash_locks_irq(conf);
6704                 conf->quiesce = 0;
6705                 wake_up(&conf->wait_for_stripe);
6706                 wake_up(&conf->wait_for_overlap);
6707                 unlock_all_device_hash_locks_irq(conf);
6708                 break;
6709         }
6710 }
6711
6712
6713 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6714 {
6715         struct r0conf *raid0_conf = mddev->private;
6716         sector_t sectors;
6717
6718         /* for raid0 takeover only one zone is supported */
6719         if (raid0_conf->nr_strip_zones > 1) {
6720                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6721                        mdname(mddev));
6722                 return ERR_PTR(-EINVAL);
6723         }
6724
6725         sectors = raid0_conf->strip_zone[0].zone_end;
6726         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6727         mddev->dev_sectors = sectors;
6728         mddev->new_level = level;
6729         mddev->new_layout = ALGORITHM_PARITY_N;
6730         mddev->new_chunk_sectors = mddev->chunk_sectors;
6731         mddev->raid_disks += 1;
6732         mddev->delta_disks = 1;
6733         /* make sure it will be not marked as dirty */
6734         mddev->recovery_cp = MaxSector;
6735
6736         return setup_conf(mddev);
6737 }
6738
6739
6740 static void *raid5_takeover_raid1(struct mddev *mddev)
6741 {
6742         int chunksect;
6743
6744         if (mddev->raid_disks != 2 ||
6745             mddev->degraded > 1)
6746                 return ERR_PTR(-EINVAL);
6747
6748         /* Should check if there are write-behind devices? */
6749
6750         chunksect = 64*2; /* 64K by default */
6751
6752         /* The array must be an exact multiple of chunksize */
6753         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6754                 chunksect >>= 1;
6755
6756         if ((chunksect<<9) < STRIPE_SIZE)
6757                 /* array size does not allow a suitable chunk size */
6758                 return ERR_PTR(-EINVAL);
6759
6760         mddev->new_level = 5;
6761         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6762         mddev->new_chunk_sectors = chunksect;
6763
6764         return setup_conf(mddev);
6765 }
6766
6767 static void *raid5_takeover_raid6(struct mddev *mddev)
6768 {
6769         int new_layout;
6770
6771         switch (mddev->layout) {
6772         case ALGORITHM_LEFT_ASYMMETRIC_6:
6773                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6774                 break;
6775         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6776                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6777                 break;
6778         case ALGORITHM_LEFT_SYMMETRIC_6:
6779                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6780                 break;
6781         case ALGORITHM_RIGHT_SYMMETRIC_6:
6782                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6783                 break;
6784         case ALGORITHM_PARITY_0_6:
6785                 new_layout = ALGORITHM_PARITY_0;
6786                 break;
6787         case ALGORITHM_PARITY_N:
6788                 new_layout = ALGORITHM_PARITY_N;
6789                 break;
6790         default:
6791                 return ERR_PTR(-EINVAL);
6792         }
6793         mddev->new_level = 5;
6794         mddev->new_layout = new_layout;
6795         mddev->delta_disks = -1;
6796         mddev->raid_disks -= 1;
6797         return setup_conf(mddev);
6798 }
6799
6800
6801 static int raid5_check_reshape(struct mddev *mddev)
6802 {
6803         /* For a 2-drive array, the layout and chunk size can be changed
6804          * immediately as not restriping is needed.
6805          * For larger arrays we record the new value - after validation
6806          * to be used by a reshape pass.
6807          */
6808         struct r5conf *conf = mddev->private;
6809         int new_chunk = mddev->new_chunk_sectors;
6810
6811         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6812                 return -EINVAL;
6813         if (new_chunk > 0) {
6814                 if (!is_power_of_2(new_chunk))
6815                         return -EINVAL;
6816                 if (new_chunk < (PAGE_SIZE>>9))
6817                         return -EINVAL;
6818                 if (mddev->array_sectors & (new_chunk-1))
6819                         /* not factor of array size */
6820                         return -EINVAL;
6821         }
6822
6823         /* They look valid */
6824
6825         if (mddev->raid_disks == 2) {
6826                 /* can make the change immediately */
6827                 if (mddev->new_layout >= 0) {
6828                         conf->algorithm = mddev->new_layout;
6829                         mddev->layout = mddev->new_layout;
6830                 }
6831                 if (new_chunk > 0) {
6832                         conf->chunk_sectors = new_chunk ;
6833                         mddev->chunk_sectors = new_chunk;
6834                 }
6835                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6836                 md_wakeup_thread(mddev->thread);
6837         }
6838         return check_reshape(mddev);
6839 }
6840
6841 static int raid6_check_reshape(struct mddev *mddev)
6842 {
6843         int new_chunk = mddev->new_chunk_sectors;
6844
6845         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6846                 return -EINVAL;
6847         if (new_chunk > 0) {
6848                 if (!is_power_of_2(new_chunk))
6849                         return -EINVAL;
6850                 if (new_chunk < (PAGE_SIZE >> 9))
6851                         return -EINVAL;
6852                 if (mddev->array_sectors & (new_chunk-1))
6853                         /* not factor of array size */
6854                         return -EINVAL;
6855         }
6856
6857         /* They look valid */
6858         return check_reshape(mddev);
6859 }
6860
6861 static void *raid5_takeover(struct mddev *mddev)
6862 {
6863         /* raid5 can take over:
6864          *  raid0 - if there is only one strip zone - make it a raid4 layout
6865          *  raid1 - if there are two drives.  We need to know the chunk size
6866          *  raid4 - trivial - just use a raid4 layout.
6867          *  raid6 - Providing it is a *_6 layout
6868          */
6869         if (mddev->level == 0)
6870                 return raid45_takeover_raid0(mddev, 5);
6871         if (mddev->level == 1)
6872                 return raid5_takeover_raid1(mddev);
6873         if (mddev->level == 4) {
6874                 mddev->new_layout = ALGORITHM_PARITY_N;
6875                 mddev->new_level = 5;
6876                 return setup_conf(mddev);
6877         }
6878         if (mddev->level == 6)
6879                 return raid5_takeover_raid6(mddev);
6880
6881         return ERR_PTR(-EINVAL);
6882 }
6883
6884 static void *raid4_takeover(struct mddev *mddev)
6885 {
6886         /* raid4 can take over:
6887          *  raid0 - if there is only one strip zone
6888          *  raid5 - if layout is right
6889          */
6890         if (mddev->level == 0)
6891                 return raid45_takeover_raid0(mddev, 4);
6892         if (mddev->level == 5 &&
6893             mddev->layout == ALGORITHM_PARITY_N) {
6894                 mddev->new_layout = 0;
6895                 mddev->new_level = 4;
6896                 return setup_conf(mddev);
6897         }
6898         return ERR_PTR(-EINVAL);
6899 }
6900
6901 static struct md_personality raid5_personality;
6902
6903 static void *raid6_takeover(struct mddev *mddev)
6904 {
6905         /* Currently can only take over a raid5.  We map the
6906          * personality to an equivalent raid6 personality
6907          * with the Q block at the end.
6908          */
6909         int new_layout;
6910
6911         if (mddev->pers != &raid5_personality)
6912                 return ERR_PTR(-EINVAL);
6913         if (mddev->degraded > 1)
6914                 return ERR_PTR(-EINVAL);
6915         if (mddev->raid_disks > 253)
6916                 return ERR_PTR(-EINVAL);
6917         if (mddev->raid_disks < 3)
6918                 return ERR_PTR(-EINVAL);
6919
6920         switch (mddev->layout) {
6921         case ALGORITHM_LEFT_ASYMMETRIC:
6922                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6923                 break;
6924         case ALGORITHM_RIGHT_ASYMMETRIC:
6925                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6926                 break;
6927         case ALGORITHM_LEFT_SYMMETRIC:
6928                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6929                 break;
6930         case ALGORITHM_RIGHT_SYMMETRIC:
6931                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6932                 break;
6933         case ALGORITHM_PARITY_0:
6934                 new_layout = ALGORITHM_PARITY_0_6;
6935                 break;
6936         case ALGORITHM_PARITY_N:
6937                 new_layout = ALGORITHM_PARITY_N;
6938                 break;
6939         default:
6940                 return ERR_PTR(-EINVAL);
6941         }
6942         mddev->new_level = 6;
6943         mddev->new_layout = new_layout;
6944         mddev->delta_disks = 1;
6945         mddev->raid_disks += 1;
6946         return setup_conf(mddev);
6947 }
6948
6949
6950 static struct md_personality raid6_personality =
6951 {
6952         .name           = "raid6",
6953         .level          = 6,
6954         .owner          = THIS_MODULE,
6955         .make_request   = make_request,
6956         .run            = run,
6957         .stop           = stop,
6958         .status         = status,
6959         .error_handler  = error,
6960         .hot_add_disk   = raid5_add_disk,
6961         .hot_remove_disk= raid5_remove_disk,
6962         .spare_active   = raid5_spare_active,
6963         .sync_request   = sync_request,
6964         .resize         = raid5_resize,
6965         .size           = raid5_size,
6966         .check_reshape  = raid6_check_reshape,
6967         .start_reshape  = raid5_start_reshape,
6968         .finish_reshape = raid5_finish_reshape,
6969         .quiesce        = raid5_quiesce,
6970         .takeover       = raid6_takeover,
6971 };
6972 static struct md_personality raid5_personality =
6973 {
6974         .name           = "raid5",
6975         .level          = 5,
6976         .owner          = THIS_MODULE,
6977         .make_request   = make_request,
6978         .run            = run,
6979         .stop           = stop,
6980         .status         = status,
6981         .error_handler  = error,
6982         .hot_add_disk   = raid5_add_disk,
6983         .hot_remove_disk= raid5_remove_disk,
6984         .spare_active   = raid5_spare_active,
6985         .sync_request   = sync_request,
6986         .resize         = raid5_resize,
6987         .size           = raid5_size,
6988         .check_reshape  = raid5_check_reshape,
6989         .start_reshape  = raid5_start_reshape,
6990         .finish_reshape = raid5_finish_reshape,
6991         .quiesce        = raid5_quiesce,
6992         .takeover       = raid5_takeover,
6993 };
6994
6995 static struct md_personality raid4_personality =
6996 {
6997         .name           = "raid4",
6998         .level          = 4,
6999         .owner          = THIS_MODULE,
7000         .make_request   = make_request,
7001         .run            = run,
7002         .stop           = stop,
7003         .status         = status,
7004         .error_handler  = error,
7005         .hot_add_disk   = raid5_add_disk,
7006         .hot_remove_disk= raid5_remove_disk,
7007         .spare_active   = raid5_spare_active,
7008         .sync_request   = sync_request,
7009         .resize         = raid5_resize,
7010         .size           = raid5_size,
7011         .check_reshape  = raid5_check_reshape,
7012         .start_reshape  = raid5_start_reshape,
7013         .finish_reshape = raid5_finish_reshape,
7014         .quiesce        = raid5_quiesce,
7015         .takeover       = raid4_takeover,
7016 };
7017
7018 static int __init raid5_init(void)
7019 {
7020         raid5_wq = alloc_workqueue("raid5wq",
7021                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7022         if (!raid5_wq)
7023                 return -ENOMEM;
7024         register_md_personality(&raid6_personality);
7025         register_md_personality(&raid5_personality);
7026         register_md_personality(&raid4_personality);
7027         return 0;
7028 }
7029
7030 static void raid5_exit(void)
7031 {
7032         unregister_md_personality(&raid6_personality);
7033         unregister_md_personality(&raid5_personality);
7034         unregister_md_personality(&raid4_personality);
7035         destroy_workqueue(raid5_wq);
7036 }
7037
7038 module_init(raid5_init);
7039 module_exit(raid5_exit);
7040 MODULE_LICENSE("GPL");
7041 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7042 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7043 MODULE_ALIAS("md-raid5");
7044 MODULE_ALIAS("md-raid4");
7045 MODULE_ALIAS("md-level-5");
7046 MODULE_ALIAS("md-level-4");
7047 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7048 MODULE_ALIAS("md-raid6");
7049 MODULE_ALIAS("md-level-6");
7050
7051 /* This used to be two separate modules, they were: */
7052 MODULE_ALIAS("raid5");
7053 MODULE_ALIAS("raid6");