blackfin: bf537: fix typo "CONFIG_SND_SOC_ADV80X_MODULE"
[linux.git] / drivers / md / dm-cache-target.c
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #define DM_MSG_PREFIX "cache"
21
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23         "A percentage of time allocated for copying to and/or from cache");
24
25 /*----------------------------------------------------------------*/
26
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *            either direction
36  */
37
38 /*----------------------------------------------------------------*/
39
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42         return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47         size_t s = bitset_size_in_bytes(nr_entries);
48         return vzalloc(s);
49 }
50
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53         size_t s = bitset_size_in_bytes(nr_entries);
54         memset(bitset, 0, s);
55 }
56
57 static void free_bitset(unsigned long *bits)
58 {
59         vfree(bits);
60 }
61
62 /*----------------------------------------------------------------*/
63
64 /*
65  * There are a couple of places where we let a bio run, but want to do some
66  * work before calling its endio function.  We do this by temporarily
67  * changing the endio fn.
68  */
69 struct dm_hook_info {
70         bio_end_io_t *bi_end_io;
71         void *bi_private;
72 };
73
74 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75                         bio_end_io_t *bi_end_io, void *bi_private)
76 {
77         h->bi_end_io = bio->bi_end_io;
78         h->bi_private = bio->bi_private;
79
80         bio->bi_end_io = bi_end_io;
81         bio->bi_private = bi_private;
82 }
83
84 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85 {
86         bio->bi_end_io = h->bi_end_io;
87         bio->bi_private = h->bi_private;
88
89         /*
90          * Must bump bi_remaining to allow bio to complete with
91          * restored bi_end_io.
92          */
93         atomic_inc(&bio->bi_remaining);
94 }
95
96 /*----------------------------------------------------------------*/
97
98 #define PRISON_CELLS 1024
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102
103 /*
104  * The block size of the device holding cache data must be
105  * between 32KB and 1GB.
106  */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109
110 /*
111  * FIXME: the cache is read/write for the time being.
112  */
113 enum cache_metadata_mode {
114         CM_WRITE,               /* metadata may be changed */
115         CM_READ_ONLY,           /* metadata may not be changed */
116 };
117
118 enum cache_io_mode {
119         /*
120          * Data is written to cached blocks only.  These blocks are marked
121          * dirty.  If you lose the cache device you will lose data.
122          * Potential performance increase for both reads and writes.
123          */
124         CM_IO_WRITEBACK,
125
126         /*
127          * Data is written to both cache and origin.  Blocks are never
128          * dirty.  Potential performance benfit for reads only.
129          */
130         CM_IO_WRITETHROUGH,
131
132         /*
133          * A degraded mode useful for various cache coherency situations
134          * (eg, rolling back snapshots).  Reads and writes always go to the
135          * origin.  If a write goes to a cached oblock, then the cache
136          * block is invalidated.
137          */
138         CM_IO_PASSTHROUGH
139 };
140
141 struct cache_features {
142         enum cache_metadata_mode mode;
143         enum cache_io_mode io_mode;
144 };
145
146 struct cache_stats {
147         atomic_t read_hit;
148         atomic_t read_miss;
149         atomic_t write_hit;
150         atomic_t write_miss;
151         atomic_t demotion;
152         atomic_t promotion;
153         atomic_t copies_avoided;
154         atomic_t cache_cell_clash;
155         atomic_t commit_count;
156         atomic_t discard_count;
157 };
158
159 /*
160  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
161  * the one-past-the-end value.
162  */
163 struct cblock_range {
164         dm_cblock_t begin;
165         dm_cblock_t end;
166 };
167
168 struct invalidation_request {
169         struct list_head list;
170         struct cblock_range *cblocks;
171
172         atomic_t complete;
173         int err;
174
175         wait_queue_head_t result_wait;
176 };
177
178 struct cache {
179         struct dm_target *ti;
180         struct dm_target_callbacks callbacks;
181
182         struct dm_cache_metadata *cmd;
183
184         /*
185          * Metadata is written to this device.
186          */
187         struct dm_dev *metadata_dev;
188
189         /*
190          * The slower of the two data devices.  Typically a spindle.
191          */
192         struct dm_dev *origin_dev;
193
194         /*
195          * The faster of the two data devices.  Typically an SSD.
196          */
197         struct dm_dev *cache_dev;
198
199         /*
200          * Size of the origin device in _complete_ blocks and native sectors.
201          */
202         dm_oblock_t origin_blocks;
203         sector_t origin_sectors;
204
205         /*
206          * Size of the cache device in blocks.
207          */
208         dm_cblock_t cache_size;
209
210         /*
211          * Fields for converting from sectors to blocks.
212          */
213         uint32_t sectors_per_block;
214         int sectors_per_block_shift;
215
216         spinlock_t lock;
217         struct bio_list deferred_bios;
218         struct bio_list deferred_flush_bios;
219         struct bio_list deferred_writethrough_bios;
220         struct list_head quiesced_migrations;
221         struct list_head completed_migrations;
222         struct list_head need_commit_migrations;
223         sector_t migration_threshold;
224         wait_queue_head_t migration_wait;
225         atomic_t nr_migrations;
226
227         wait_queue_head_t quiescing_wait;
228         atomic_t quiescing;
229         atomic_t quiescing_ack;
230
231         /*
232          * cache_size entries, dirty if set
233          */
234         dm_cblock_t nr_dirty;
235         unsigned long *dirty_bitset;
236
237         /*
238          * origin_blocks entries, discarded if set.
239          */
240         dm_dblock_t discard_nr_blocks;
241         unsigned long *discard_bitset;
242         uint32_t discard_block_size; /* a power of 2 times sectors per block */
243
244         /*
245          * Rather than reconstructing the table line for the status we just
246          * save it and regurgitate.
247          */
248         unsigned nr_ctr_args;
249         const char **ctr_args;
250
251         struct dm_kcopyd_client *copier;
252         struct workqueue_struct *wq;
253         struct work_struct worker;
254
255         struct delayed_work waker;
256         unsigned long last_commit_jiffies;
257
258         struct dm_bio_prison *prison;
259         struct dm_deferred_set *all_io_ds;
260
261         mempool_t *migration_pool;
262         struct dm_cache_migration *next_migration;
263
264         struct dm_cache_policy *policy;
265         unsigned policy_nr_args;
266
267         bool need_tick_bio:1;
268         bool sized:1;
269         bool invalidate:1;
270         bool commit_requested:1;
271         bool loaded_mappings:1;
272         bool loaded_discards:1;
273
274         /*
275          * Cache features such as write-through.
276          */
277         struct cache_features features;
278
279         struct cache_stats stats;
280
281         /*
282          * Invalidation fields.
283          */
284         spinlock_t invalidation_lock;
285         struct list_head invalidation_requests;
286 };
287
288 struct per_bio_data {
289         bool tick:1;
290         unsigned req_nr:2;
291         struct dm_deferred_entry *all_io_entry;
292         struct dm_hook_info hook_info;
293
294         /*
295          * writethrough fields.  These MUST remain at the end of this
296          * structure and the 'cache' member must be the first as it
297          * is used to determine the offset of the writethrough fields.
298          */
299         struct cache *cache;
300         dm_cblock_t cblock;
301         struct dm_bio_details bio_details;
302 };
303
304 struct dm_cache_migration {
305         struct list_head list;
306         struct cache *cache;
307
308         unsigned long start_jiffies;
309         dm_oblock_t old_oblock;
310         dm_oblock_t new_oblock;
311         dm_cblock_t cblock;
312
313         bool err:1;
314         bool writeback:1;
315         bool demote:1;
316         bool promote:1;
317         bool requeue_holder:1;
318         bool invalidate:1;
319
320         struct dm_bio_prison_cell *old_ocell;
321         struct dm_bio_prison_cell *new_ocell;
322 };
323
324 /*
325  * Processing a bio in the worker thread may require these memory
326  * allocations.  We prealloc to avoid deadlocks (the same worker thread
327  * frees them back to the mempool).
328  */
329 struct prealloc {
330         struct dm_cache_migration *mg;
331         struct dm_bio_prison_cell *cell1;
332         struct dm_bio_prison_cell *cell2;
333 };
334
335 static void wake_worker(struct cache *cache)
336 {
337         queue_work(cache->wq, &cache->worker);
338 }
339
340 /*----------------------------------------------------------------*/
341
342 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
343 {
344         /* FIXME: change to use a local slab. */
345         return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
346 }
347
348 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
349 {
350         dm_bio_prison_free_cell(cache->prison, cell);
351 }
352
353 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
354 {
355         if (!p->mg) {
356                 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
357                 if (!p->mg)
358                         return -ENOMEM;
359         }
360
361         if (!p->cell1) {
362                 p->cell1 = alloc_prison_cell(cache);
363                 if (!p->cell1)
364                         return -ENOMEM;
365         }
366
367         if (!p->cell2) {
368                 p->cell2 = alloc_prison_cell(cache);
369                 if (!p->cell2)
370                         return -ENOMEM;
371         }
372
373         return 0;
374 }
375
376 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
377 {
378         if (p->cell2)
379                 free_prison_cell(cache, p->cell2);
380
381         if (p->cell1)
382                 free_prison_cell(cache, p->cell1);
383
384         if (p->mg)
385                 mempool_free(p->mg, cache->migration_pool);
386 }
387
388 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
389 {
390         struct dm_cache_migration *mg = p->mg;
391
392         BUG_ON(!mg);
393         p->mg = NULL;
394
395         return mg;
396 }
397
398 /*
399  * You must have a cell within the prealloc struct to return.  If not this
400  * function will BUG() rather than returning NULL.
401  */
402 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
403 {
404         struct dm_bio_prison_cell *r = NULL;
405
406         if (p->cell1) {
407                 r = p->cell1;
408                 p->cell1 = NULL;
409
410         } else if (p->cell2) {
411                 r = p->cell2;
412                 p->cell2 = NULL;
413         } else
414                 BUG();
415
416         return r;
417 }
418
419 /*
420  * You can't have more than two cells in a prealloc struct.  BUG() will be
421  * called if you try and overfill.
422  */
423 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
424 {
425         if (!p->cell2)
426                 p->cell2 = cell;
427
428         else if (!p->cell1)
429                 p->cell1 = cell;
430
431         else
432                 BUG();
433 }
434
435 /*----------------------------------------------------------------*/
436
437 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
438 {
439         key->virtual = 0;
440         key->dev = 0;
441         key->block = from_oblock(oblock);
442 }
443
444 /*
445  * The caller hands in a preallocated cell, and a free function for it.
446  * The cell will be freed if there's an error, or if it wasn't used because
447  * a cell with that key already exists.
448  */
449 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
450
451 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
452                       struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
453                       cell_free_fn free_fn, void *free_context,
454                       struct dm_bio_prison_cell **cell_result)
455 {
456         int r;
457         struct dm_cell_key key;
458
459         build_key(oblock, &key);
460         r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
461         if (r)
462                 free_fn(free_context, cell_prealloc);
463
464         return r;
465 }
466
467 static int get_cell(struct cache *cache,
468                     dm_oblock_t oblock,
469                     struct prealloc *structs,
470                     struct dm_bio_prison_cell **cell_result)
471 {
472         int r;
473         struct dm_cell_key key;
474         struct dm_bio_prison_cell *cell_prealloc;
475
476         cell_prealloc = prealloc_get_cell(structs);
477
478         build_key(oblock, &key);
479         r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
480         if (r)
481                 prealloc_put_cell(structs, cell_prealloc);
482
483         return r;
484 }
485
486 /*----------------------------------------------------------------*/
487
488 static bool is_dirty(struct cache *cache, dm_cblock_t b)
489 {
490         return test_bit(from_cblock(b), cache->dirty_bitset);
491 }
492
493 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
494 {
495         if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
496                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
497                 policy_set_dirty(cache->policy, oblock);
498         }
499 }
500
501 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
502 {
503         if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
504                 policy_clear_dirty(cache->policy, oblock);
505                 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
506                 if (!from_cblock(cache->nr_dirty))
507                         dm_table_event(cache->ti->table);
508         }
509 }
510
511 /*----------------------------------------------------------------*/
512
513 static bool block_size_is_power_of_two(struct cache *cache)
514 {
515         return cache->sectors_per_block_shift >= 0;
516 }
517
518 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
519 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
520 __always_inline
521 #endif
522 static dm_block_t block_div(dm_block_t b, uint32_t n)
523 {
524         do_div(b, n);
525
526         return b;
527 }
528
529 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
530 {
531         uint32_t discard_blocks = cache->discard_block_size;
532         dm_block_t b = from_oblock(oblock);
533
534         if (!block_size_is_power_of_two(cache))
535                 discard_blocks = discard_blocks / cache->sectors_per_block;
536         else
537                 discard_blocks >>= cache->sectors_per_block_shift;
538
539         b = block_div(b, discard_blocks);
540
541         return to_dblock(b);
542 }
543
544 static void set_discard(struct cache *cache, dm_dblock_t b)
545 {
546         unsigned long flags;
547
548         atomic_inc(&cache->stats.discard_count);
549
550         spin_lock_irqsave(&cache->lock, flags);
551         set_bit(from_dblock(b), cache->discard_bitset);
552         spin_unlock_irqrestore(&cache->lock, flags);
553 }
554
555 static void clear_discard(struct cache *cache, dm_dblock_t b)
556 {
557         unsigned long flags;
558
559         spin_lock_irqsave(&cache->lock, flags);
560         clear_bit(from_dblock(b), cache->discard_bitset);
561         spin_unlock_irqrestore(&cache->lock, flags);
562 }
563
564 static bool is_discarded(struct cache *cache, dm_dblock_t b)
565 {
566         int r;
567         unsigned long flags;
568
569         spin_lock_irqsave(&cache->lock, flags);
570         r = test_bit(from_dblock(b), cache->discard_bitset);
571         spin_unlock_irqrestore(&cache->lock, flags);
572
573         return r;
574 }
575
576 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
577 {
578         int r;
579         unsigned long flags;
580
581         spin_lock_irqsave(&cache->lock, flags);
582         r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
583                      cache->discard_bitset);
584         spin_unlock_irqrestore(&cache->lock, flags);
585
586         return r;
587 }
588
589 /*----------------------------------------------------------------*/
590
591 static void load_stats(struct cache *cache)
592 {
593         struct dm_cache_statistics stats;
594
595         dm_cache_metadata_get_stats(cache->cmd, &stats);
596         atomic_set(&cache->stats.read_hit, stats.read_hits);
597         atomic_set(&cache->stats.read_miss, stats.read_misses);
598         atomic_set(&cache->stats.write_hit, stats.write_hits);
599         atomic_set(&cache->stats.write_miss, stats.write_misses);
600 }
601
602 static void save_stats(struct cache *cache)
603 {
604         struct dm_cache_statistics stats;
605
606         stats.read_hits = atomic_read(&cache->stats.read_hit);
607         stats.read_misses = atomic_read(&cache->stats.read_miss);
608         stats.write_hits = atomic_read(&cache->stats.write_hit);
609         stats.write_misses = atomic_read(&cache->stats.write_miss);
610
611         dm_cache_metadata_set_stats(cache->cmd, &stats);
612 }
613
614 /*----------------------------------------------------------------
615  * Per bio data
616  *--------------------------------------------------------------*/
617
618 /*
619  * If using writeback, leave out struct per_bio_data's writethrough fields.
620  */
621 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
622 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
623
624 static bool writethrough_mode(struct cache_features *f)
625 {
626         return f->io_mode == CM_IO_WRITETHROUGH;
627 }
628
629 static bool writeback_mode(struct cache_features *f)
630 {
631         return f->io_mode == CM_IO_WRITEBACK;
632 }
633
634 static bool passthrough_mode(struct cache_features *f)
635 {
636         return f->io_mode == CM_IO_PASSTHROUGH;
637 }
638
639 static size_t get_per_bio_data_size(struct cache *cache)
640 {
641         return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
642 }
643
644 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
645 {
646         struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
647         BUG_ON(!pb);
648         return pb;
649 }
650
651 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
652 {
653         struct per_bio_data *pb = get_per_bio_data(bio, data_size);
654
655         pb->tick = false;
656         pb->req_nr = dm_bio_get_target_bio_nr(bio);
657         pb->all_io_entry = NULL;
658
659         return pb;
660 }
661
662 /*----------------------------------------------------------------
663  * Remapping
664  *--------------------------------------------------------------*/
665 static void remap_to_origin(struct cache *cache, struct bio *bio)
666 {
667         bio->bi_bdev = cache->origin_dev->bdev;
668 }
669
670 static void remap_to_cache(struct cache *cache, struct bio *bio,
671                            dm_cblock_t cblock)
672 {
673         sector_t bi_sector = bio->bi_iter.bi_sector;
674         sector_t block = from_cblock(cblock);
675
676         bio->bi_bdev = cache->cache_dev->bdev;
677         if (!block_size_is_power_of_two(cache))
678                 bio->bi_iter.bi_sector =
679                         (block * cache->sectors_per_block) +
680                         sector_div(bi_sector, cache->sectors_per_block);
681         else
682                 bio->bi_iter.bi_sector =
683                         (block << cache->sectors_per_block_shift) |
684                         (bi_sector & (cache->sectors_per_block - 1));
685 }
686
687 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
688 {
689         unsigned long flags;
690         size_t pb_data_size = get_per_bio_data_size(cache);
691         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
692
693         spin_lock_irqsave(&cache->lock, flags);
694         if (cache->need_tick_bio &&
695             !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
696                 pb->tick = true;
697                 cache->need_tick_bio = false;
698         }
699         spin_unlock_irqrestore(&cache->lock, flags);
700 }
701
702 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
703                                   dm_oblock_t oblock)
704 {
705         check_if_tick_bio_needed(cache, bio);
706         remap_to_origin(cache, bio);
707         if (bio_data_dir(bio) == WRITE)
708                 clear_discard(cache, oblock_to_dblock(cache, oblock));
709 }
710
711 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
712                                  dm_oblock_t oblock, dm_cblock_t cblock)
713 {
714         check_if_tick_bio_needed(cache, bio);
715         remap_to_cache(cache, bio, cblock);
716         if (bio_data_dir(bio) == WRITE) {
717                 set_dirty(cache, oblock, cblock);
718                 clear_discard(cache, oblock_to_dblock(cache, oblock));
719         }
720 }
721
722 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
723 {
724         sector_t block_nr = bio->bi_iter.bi_sector;
725
726         if (!block_size_is_power_of_two(cache))
727                 (void) sector_div(block_nr, cache->sectors_per_block);
728         else
729                 block_nr >>= cache->sectors_per_block_shift;
730
731         return to_oblock(block_nr);
732 }
733
734 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
735 {
736         return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
737 }
738
739 static void issue(struct cache *cache, struct bio *bio)
740 {
741         unsigned long flags;
742
743         if (!bio_triggers_commit(cache, bio)) {
744                 generic_make_request(bio);
745                 return;
746         }
747
748         /*
749          * Batch together any bios that trigger commits and then issue a
750          * single commit for them in do_worker().
751          */
752         spin_lock_irqsave(&cache->lock, flags);
753         cache->commit_requested = true;
754         bio_list_add(&cache->deferred_flush_bios, bio);
755         spin_unlock_irqrestore(&cache->lock, flags);
756 }
757
758 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
759 {
760         unsigned long flags;
761
762         spin_lock_irqsave(&cache->lock, flags);
763         bio_list_add(&cache->deferred_writethrough_bios, bio);
764         spin_unlock_irqrestore(&cache->lock, flags);
765
766         wake_worker(cache);
767 }
768
769 static void writethrough_endio(struct bio *bio, int err)
770 {
771         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
772
773         dm_unhook_bio(&pb->hook_info, bio);
774
775         if (err) {
776                 bio_endio(bio, err);
777                 return;
778         }
779
780         dm_bio_restore(&pb->bio_details, bio);
781         remap_to_cache(pb->cache, bio, pb->cblock);
782
783         /*
784          * We can't issue this bio directly, since we're in interrupt
785          * context.  So it gets put on a bio list for processing by the
786          * worker thread.
787          */
788         defer_writethrough_bio(pb->cache, bio);
789 }
790
791 /*
792  * When running in writethrough mode we need to send writes to clean blocks
793  * to both the cache and origin devices.  In future we'd like to clone the
794  * bio and send them in parallel, but for now we're doing them in
795  * series as this is easier.
796  */
797 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
798                                        dm_oblock_t oblock, dm_cblock_t cblock)
799 {
800         struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
801
802         pb->cache = cache;
803         pb->cblock = cblock;
804         dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
805         dm_bio_record(&pb->bio_details, bio);
806
807         remap_to_origin_clear_discard(pb->cache, bio, oblock);
808 }
809
810 /*----------------------------------------------------------------
811  * Migration processing
812  *
813  * Migration covers moving data from the origin device to the cache, or
814  * vice versa.
815  *--------------------------------------------------------------*/
816 static void free_migration(struct dm_cache_migration *mg)
817 {
818         mempool_free(mg, mg->cache->migration_pool);
819 }
820
821 static void inc_nr_migrations(struct cache *cache)
822 {
823         atomic_inc(&cache->nr_migrations);
824 }
825
826 static void dec_nr_migrations(struct cache *cache)
827 {
828         atomic_dec(&cache->nr_migrations);
829
830         /*
831          * Wake the worker in case we're suspending the target.
832          */
833         wake_up(&cache->migration_wait);
834 }
835
836 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
837                          bool holder)
838 {
839         (holder ? dm_cell_release : dm_cell_release_no_holder)
840                 (cache->prison, cell, &cache->deferred_bios);
841         free_prison_cell(cache, cell);
842 }
843
844 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
845                        bool holder)
846 {
847         unsigned long flags;
848
849         spin_lock_irqsave(&cache->lock, flags);
850         __cell_defer(cache, cell, holder);
851         spin_unlock_irqrestore(&cache->lock, flags);
852
853         wake_worker(cache);
854 }
855
856 static void cleanup_migration(struct dm_cache_migration *mg)
857 {
858         struct cache *cache = mg->cache;
859         free_migration(mg);
860         dec_nr_migrations(cache);
861 }
862
863 static void migration_failure(struct dm_cache_migration *mg)
864 {
865         struct cache *cache = mg->cache;
866
867         if (mg->writeback) {
868                 DMWARN_LIMIT("writeback failed; couldn't copy block");
869                 set_dirty(cache, mg->old_oblock, mg->cblock);
870                 cell_defer(cache, mg->old_ocell, false);
871
872         } else if (mg->demote) {
873                 DMWARN_LIMIT("demotion failed; couldn't copy block");
874                 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
875
876                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
877                 if (mg->promote)
878                         cell_defer(cache, mg->new_ocell, true);
879         } else {
880                 DMWARN_LIMIT("promotion failed; couldn't copy block");
881                 policy_remove_mapping(cache->policy, mg->new_oblock);
882                 cell_defer(cache, mg->new_ocell, true);
883         }
884
885         cleanup_migration(mg);
886 }
887
888 static void migration_success_pre_commit(struct dm_cache_migration *mg)
889 {
890         unsigned long flags;
891         struct cache *cache = mg->cache;
892
893         if (mg->writeback) {
894                 cell_defer(cache, mg->old_ocell, false);
895                 clear_dirty(cache, mg->old_oblock, mg->cblock);
896                 cleanup_migration(mg);
897                 return;
898
899         } else if (mg->demote) {
900                 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
901                         DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
902                         policy_force_mapping(cache->policy, mg->new_oblock,
903                                              mg->old_oblock);
904                         if (mg->promote)
905                                 cell_defer(cache, mg->new_ocell, true);
906                         cleanup_migration(mg);
907                         return;
908                 }
909         } else {
910                 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
911                         DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
912                         policy_remove_mapping(cache->policy, mg->new_oblock);
913                         cleanup_migration(mg);
914                         return;
915                 }
916         }
917
918         spin_lock_irqsave(&cache->lock, flags);
919         list_add_tail(&mg->list, &cache->need_commit_migrations);
920         cache->commit_requested = true;
921         spin_unlock_irqrestore(&cache->lock, flags);
922 }
923
924 static void migration_success_post_commit(struct dm_cache_migration *mg)
925 {
926         unsigned long flags;
927         struct cache *cache = mg->cache;
928
929         if (mg->writeback) {
930                 DMWARN("writeback unexpectedly triggered commit");
931                 return;
932
933         } else if (mg->demote) {
934                 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
935
936                 if (mg->promote) {
937                         mg->demote = false;
938
939                         spin_lock_irqsave(&cache->lock, flags);
940                         list_add_tail(&mg->list, &cache->quiesced_migrations);
941                         spin_unlock_irqrestore(&cache->lock, flags);
942
943                 } else {
944                         if (mg->invalidate)
945                                 policy_remove_mapping(cache->policy, mg->old_oblock);
946                         cleanup_migration(mg);
947                 }
948
949         } else {
950                 if (mg->requeue_holder)
951                         cell_defer(cache, mg->new_ocell, true);
952                 else {
953                         bio_endio(mg->new_ocell->holder, 0);
954                         cell_defer(cache, mg->new_ocell, false);
955                 }
956                 clear_dirty(cache, mg->new_oblock, mg->cblock);
957                 cleanup_migration(mg);
958         }
959 }
960
961 static void copy_complete(int read_err, unsigned long write_err, void *context)
962 {
963         unsigned long flags;
964         struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
965         struct cache *cache = mg->cache;
966
967         if (read_err || write_err)
968                 mg->err = true;
969
970         spin_lock_irqsave(&cache->lock, flags);
971         list_add_tail(&mg->list, &cache->completed_migrations);
972         spin_unlock_irqrestore(&cache->lock, flags);
973
974         wake_worker(cache);
975 }
976
977 static void issue_copy_real(struct dm_cache_migration *mg)
978 {
979         int r;
980         struct dm_io_region o_region, c_region;
981         struct cache *cache = mg->cache;
982         sector_t cblock = from_cblock(mg->cblock);
983
984         o_region.bdev = cache->origin_dev->bdev;
985         o_region.count = cache->sectors_per_block;
986
987         c_region.bdev = cache->cache_dev->bdev;
988         c_region.sector = cblock * cache->sectors_per_block;
989         c_region.count = cache->sectors_per_block;
990
991         if (mg->writeback || mg->demote) {
992                 /* demote */
993                 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
994                 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
995         } else {
996                 /* promote */
997                 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
998                 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
999         }
1000
1001         if (r < 0) {
1002                 DMERR_LIMIT("issuing migration failed");
1003                 migration_failure(mg);
1004         }
1005 }
1006
1007 static void overwrite_endio(struct bio *bio, int err)
1008 {
1009         struct dm_cache_migration *mg = bio->bi_private;
1010         struct cache *cache = mg->cache;
1011         size_t pb_data_size = get_per_bio_data_size(cache);
1012         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1013         unsigned long flags;
1014
1015         dm_unhook_bio(&pb->hook_info, bio);
1016
1017         if (err)
1018                 mg->err = true;
1019
1020         mg->requeue_holder = false;
1021
1022         spin_lock_irqsave(&cache->lock, flags);
1023         list_add_tail(&mg->list, &cache->completed_migrations);
1024         spin_unlock_irqrestore(&cache->lock, flags);
1025
1026         wake_worker(cache);
1027 }
1028
1029 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1030 {
1031         size_t pb_data_size = get_per_bio_data_size(mg->cache);
1032         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1033
1034         dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1035         remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1036         generic_make_request(bio);
1037 }
1038
1039 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1040 {
1041         return (bio_data_dir(bio) == WRITE) &&
1042                 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1043 }
1044
1045 static void avoid_copy(struct dm_cache_migration *mg)
1046 {
1047         atomic_inc(&mg->cache->stats.copies_avoided);
1048         migration_success_pre_commit(mg);
1049 }
1050
1051 static void issue_copy(struct dm_cache_migration *mg)
1052 {
1053         bool avoid;
1054         struct cache *cache = mg->cache;
1055
1056         if (mg->writeback || mg->demote)
1057                 avoid = !is_dirty(cache, mg->cblock) ||
1058                         is_discarded_oblock(cache, mg->old_oblock);
1059         else {
1060                 struct bio *bio = mg->new_ocell->holder;
1061
1062                 avoid = is_discarded_oblock(cache, mg->new_oblock);
1063
1064                 if (!avoid && bio_writes_complete_block(cache, bio)) {
1065                         issue_overwrite(mg, bio);
1066                         return;
1067                 }
1068         }
1069
1070         avoid ? avoid_copy(mg) : issue_copy_real(mg);
1071 }
1072
1073 static void complete_migration(struct dm_cache_migration *mg)
1074 {
1075         if (mg->err)
1076                 migration_failure(mg);
1077         else
1078                 migration_success_pre_commit(mg);
1079 }
1080
1081 static void process_migrations(struct cache *cache, struct list_head *head,
1082                                void (*fn)(struct dm_cache_migration *))
1083 {
1084         unsigned long flags;
1085         struct list_head list;
1086         struct dm_cache_migration *mg, *tmp;
1087
1088         INIT_LIST_HEAD(&list);
1089         spin_lock_irqsave(&cache->lock, flags);
1090         list_splice_init(head, &list);
1091         spin_unlock_irqrestore(&cache->lock, flags);
1092
1093         list_for_each_entry_safe(mg, tmp, &list, list)
1094                 fn(mg);
1095 }
1096
1097 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1098 {
1099         list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1100 }
1101
1102 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1103 {
1104         unsigned long flags;
1105         struct cache *cache = mg->cache;
1106
1107         spin_lock_irqsave(&cache->lock, flags);
1108         __queue_quiesced_migration(mg);
1109         spin_unlock_irqrestore(&cache->lock, flags);
1110
1111         wake_worker(cache);
1112 }
1113
1114 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1115 {
1116         unsigned long flags;
1117         struct dm_cache_migration *mg, *tmp;
1118
1119         spin_lock_irqsave(&cache->lock, flags);
1120         list_for_each_entry_safe(mg, tmp, work, list)
1121                 __queue_quiesced_migration(mg);
1122         spin_unlock_irqrestore(&cache->lock, flags);
1123
1124         wake_worker(cache);
1125 }
1126
1127 static void check_for_quiesced_migrations(struct cache *cache,
1128                                           struct per_bio_data *pb)
1129 {
1130         struct list_head work;
1131
1132         if (!pb->all_io_entry)
1133                 return;
1134
1135         INIT_LIST_HEAD(&work);
1136         if (pb->all_io_entry)
1137                 dm_deferred_entry_dec(pb->all_io_entry, &work);
1138
1139         if (!list_empty(&work))
1140                 queue_quiesced_migrations(cache, &work);
1141 }
1142
1143 static void quiesce_migration(struct dm_cache_migration *mg)
1144 {
1145         if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1146                 queue_quiesced_migration(mg);
1147 }
1148
1149 static void promote(struct cache *cache, struct prealloc *structs,
1150                     dm_oblock_t oblock, dm_cblock_t cblock,
1151                     struct dm_bio_prison_cell *cell)
1152 {
1153         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1154
1155         mg->err = false;
1156         mg->writeback = false;
1157         mg->demote = false;
1158         mg->promote = true;
1159         mg->requeue_holder = true;
1160         mg->invalidate = false;
1161         mg->cache = cache;
1162         mg->new_oblock = oblock;
1163         mg->cblock = cblock;
1164         mg->old_ocell = NULL;
1165         mg->new_ocell = cell;
1166         mg->start_jiffies = jiffies;
1167
1168         inc_nr_migrations(cache);
1169         quiesce_migration(mg);
1170 }
1171
1172 static void writeback(struct cache *cache, struct prealloc *structs,
1173                       dm_oblock_t oblock, dm_cblock_t cblock,
1174                       struct dm_bio_prison_cell *cell)
1175 {
1176         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1177
1178         mg->err = false;
1179         mg->writeback = true;
1180         mg->demote = false;
1181         mg->promote = false;
1182         mg->requeue_holder = true;
1183         mg->invalidate = false;
1184         mg->cache = cache;
1185         mg->old_oblock = oblock;
1186         mg->cblock = cblock;
1187         mg->old_ocell = cell;
1188         mg->new_ocell = NULL;
1189         mg->start_jiffies = jiffies;
1190
1191         inc_nr_migrations(cache);
1192         quiesce_migration(mg);
1193 }
1194
1195 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1196                                 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1197                                 dm_cblock_t cblock,
1198                                 struct dm_bio_prison_cell *old_ocell,
1199                                 struct dm_bio_prison_cell *new_ocell)
1200 {
1201         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1202
1203         mg->err = false;
1204         mg->writeback = false;
1205         mg->demote = true;
1206         mg->promote = true;
1207         mg->requeue_holder = true;
1208         mg->invalidate = false;
1209         mg->cache = cache;
1210         mg->old_oblock = old_oblock;
1211         mg->new_oblock = new_oblock;
1212         mg->cblock = cblock;
1213         mg->old_ocell = old_ocell;
1214         mg->new_ocell = new_ocell;
1215         mg->start_jiffies = jiffies;
1216
1217         inc_nr_migrations(cache);
1218         quiesce_migration(mg);
1219 }
1220
1221 /*
1222  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1223  * block are thrown away.
1224  */
1225 static void invalidate(struct cache *cache, struct prealloc *structs,
1226                        dm_oblock_t oblock, dm_cblock_t cblock,
1227                        struct dm_bio_prison_cell *cell)
1228 {
1229         struct dm_cache_migration *mg = prealloc_get_migration(structs);
1230
1231         mg->err = false;
1232         mg->writeback = false;
1233         mg->demote = true;
1234         mg->promote = false;
1235         mg->requeue_holder = true;
1236         mg->invalidate = true;
1237         mg->cache = cache;
1238         mg->old_oblock = oblock;
1239         mg->cblock = cblock;
1240         mg->old_ocell = cell;
1241         mg->new_ocell = NULL;
1242         mg->start_jiffies = jiffies;
1243
1244         inc_nr_migrations(cache);
1245         quiesce_migration(mg);
1246 }
1247
1248 /*----------------------------------------------------------------
1249  * bio processing
1250  *--------------------------------------------------------------*/
1251 static void defer_bio(struct cache *cache, struct bio *bio)
1252 {
1253         unsigned long flags;
1254
1255         spin_lock_irqsave(&cache->lock, flags);
1256         bio_list_add(&cache->deferred_bios, bio);
1257         spin_unlock_irqrestore(&cache->lock, flags);
1258
1259         wake_worker(cache);
1260 }
1261
1262 static void process_flush_bio(struct cache *cache, struct bio *bio)
1263 {
1264         size_t pb_data_size = get_per_bio_data_size(cache);
1265         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1266
1267         BUG_ON(bio->bi_iter.bi_size);
1268         if (!pb->req_nr)
1269                 remap_to_origin(cache, bio);
1270         else
1271                 remap_to_cache(cache, bio, 0);
1272
1273         issue(cache, bio);
1274 }
1275
1276 /*
1277  * People generally discard large parts of a device, eg, the whole device
1278  * when formatting.  Splitting these large discards up into cache block
1279  * sized ios and then quiescing (always neccessary for discard) takes too
1280  * long.
1281  *
1282  * We keep it simple, and allow any size of discard to come in, and just
1283  * mark off blocks on the discard bitset.  No passdown occurs!
1284  *
1285  * To implement passdown we need to change the bio_prison such that a cell
1286  * can have a key that spans many blocks.
1287  */
1288 static void process_discard_bio(struct cache *cache, struct bio *bio)
1289 {
1290         dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1291                                                   cache->discard_block_size);
1292         dm_block_t end_block = bio_end_sector(bio);
1293         dm_block_t b;
1294
1295         end_block = block_div(end_block, cache->discard_block_size);
1296
1297         for (b = start_block; b < end_block; b++)
1298                 set_discard(cache, to_dblock(b));
1299
1300         bio_endio(bio, 0);
1301 }
1302
1303 static bool spare_migration_bandwidth(struct cache *cache)
1304 {
1305         sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1306                 cache->sectors_per_block;
1307         return current_volume < cache->migration_threshold;
1308 }
1309
1310 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1311 {
1312         atomic_inc(bio_data_dir(bio) == READ ?
1313                    &cache->stats.read_hit : &cache->stats.write_hit);
1314 }
1315
1316 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1317 {
1318         atomic_inc(bio_data_dir(bio) == READ ?
1319                    &cache->stats.read_miss : &cache->stats.write_miss);
1320 }
1321
1322 static void issue_cache_bio(struct cache *cache, struct bio *bio,
1323                             struct per_bio_data *pb,
1324                             dm_oblock_t oblock, dm_cblock_t cblock)
1325 {
1326         pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1327         remap_to_cache_dirty(cache, bio, oblock, cblock);
1328         issue(cache, bio);
1329 }
1330
1331 static void process_bio(struct cache *cache, struct prealloc *structs,
1332                         struct bio *bio)
1333 {
1334         int r;
1335         bool release_cell = true;
1336         dm_oblock_t block = get_bio_block(cache, bio);
1337         struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1338         struct policy_result lookup_result;
1339         size_t pb_data_size = get_per_bio_data_size(cache);
1340         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1341         bool discarded_block = is_discarded_oblock(cache, block);
1342         bool passthrough = passthrough_mode(&cache->features);
1343         bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1344
1345         /*
1346          * Check to see if that block is currently migrating.
1347          */
1348         cell_prealloc = prealloc_get_cell(structs);
1349         r = bio_detain(cache, block, bio, cell_prealloc,
1350                        (cell_free_fn) prealloc_put_cell,
1351                        structs, &new_ocell);
1352         if (r > 0)
1353                 return;
1354
1355         r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1356                        bio, &lookup_result);
1357
1358         if (r == -EWOULDBLOCK)
1359                 /* migration has been denied */
1360                 lookup_result.op = POLICY_MISS;
1361
1362         switch (lookup_result.op) {
1363         case POLICY_HIT:
1364                 if (passthrough) {
1365                         inc_miss_counter(cache, bio);
1366
1367                         /*
1368                          * Passthrough always maps to the origin,
1369                          * invalidating any cache blocks that are written
1370                          * to.
1371                          */
1372
1373                         if (bio_data_dir(bio) == WRITE) {
1374                                 atomic_inc(&cache->stats.demotion);
1375                                 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1376                                 release_cell = false;
1377
1378                         } else {
1379                                 /* FIXME: factor out issue_origin() */
1380                                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1381                                 remap_to_origin_clear_discard(cache, bio, block);
1382                                 issue(cache, bio);
1383                         }
1384                 } else {
1385                         inc_hit_counter(cache, bio);
1386
1387                         if (bio_data_dir(bio) == WRITE &&
1388                             writethrough_mode(&cache->features) &&
1389                             !is_dirty(cache, lookup_result.cblock)) {
1390                                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1391                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1392                                 issue(cache, bio);
1393                         } else
1394                                 issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1395                 }
1396
1397                 break;
1398
1399         case POLICY_MISS:
1400                 inc_miss_counter(cache, bio);
1401                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1402                 remap_to_origin_clear_discard(cache, bio, block);
1403                 issue(cache, bio);
1404                 break;
1405
1406         case POLICY_NEW:
1407                 atomic_inc(&cache->stats.promotion);
1408                 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1409                 release_cell = false;
1410                 break;
1411
1412         case POLICY_REPLACE:
1413                 cell_prealloc = prealloc_get_cell(structs);
1414                 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1415                                (cell_free_fn) prealloc_put_cell,
1416                                structs, &old_ocell);
1417                 if (r > 0) {
1418                         /*
1419                          * We have to be careful to avoid lock inversion of
1420                          * the cells.  So we back off, and wait for the
1421                          * old_ocell to become free.
1422                          */
1423                         policy_force_mapping(cache->policy, block,
1424                                              lookup_result.old_oblock);
1425                         atomic_inc(&cache->stats.cache_cell_clash);
1426                         break;
1427                 }
1428                 atomic_inc(&cache->stats.demotion);
1429                 atomic_inc(&cache->stats.promotion);
1430
1431                 demote_then_promote(cache, structs, lookup_result.old_oblock,
1432                                     block, lookup_result.cblock,
1433                                     old_ocell, new_ocell);
1434                 release_cell = false;
1435                 break;
1436
1437         default:
1438                 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1439                             (unsigned) lookup_result.op);
1440                 bio_io_error(bio);
1441         }
1442
1443         if (release_cell)
1444                 cell_defer(cache, new_ocell, false);
1445 }
1446
1447 static int need_commit_due_to_time(struct cache *cache)
1448 {
1449         return jiffies < cache->last_commit_jiffies ||
1450                jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1451 }
1452
1453 static int commit_if_needed(struct cache *cache)
1454 {
1455         int r = 0;
1456
1457         if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1458             dm_cache_changed_this_transaction(cache->cmd)) {
1459                 atomic_inc(&cache->stats.commit_count);
1460                 cache->commit_requested = false;
1461                 r = dm_cache_commit(cache->cmd, false);
1462                 cache->last_commit_jiffies = jiffies;
1463         }
1464
1465         return r;
1466 }
1467
1468 static void process_deferred_bios(struct cache *cache)
1469 {
1470         unsigned long flags;
1471         struct bio_list bios;
1472         struct bio *bio;
1473         struct prealloc structs;
1474
1475         memset(&structs, 0, sizeof(structs));
1476         bio_list_init(&bios);
1477
1478         spin_lock_irqsave(&cache->lock, flags);
1479         bio_list_merge(&bios, &cache->deferred_bios);
1480         bio_list_init(&cache->deferred_bios);
1481         spin_unlock_irqrestore(&cache->lock, flags);
1482
1483         while (!bio_list_empty(&bios)) {
1484                 /*
1485                  * If we've got no free migration structs, and processing
1486                  * this bio might require one, we pause until there are some
1487                  * prepared mappings to process.
1488                  */
1489                 if (prealloc_data_structs(cache, &structs)) {
1490                         spin_lock_irqsave(&cache->lock, flags);
1491                         bio_list_merge(&cache->deferred_bios, &bios);
1492                         spin_unlock_irqrestore(&cache->lock, flags);
1493                         break;
1494                 }
1495
1496                 bio = bio_list_pop(&bios);
1497
1498                 if (bio->bi_rw & REQ_FLUSH)
1499                         process_flush_bio(cache, bio);
1500                 else if (bio->bi_rw & REQ_DISCARD)
1501                         process_discard_bio(cache, bio);
1502                 else
1503                         process_bio(cache, &structs, bio);
1504         }
1505
1506         prealloc_free_structs(cache, &structs);
1507 }
1508
1509 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1510 {
1511         unsigned long flags;
1512         struct bio_list bios;
1513         struct bio *bio;
1514
1515         bio_list_init(&bios);
1516
1517         spin_lock_irqsave(&cache->lock, flags);
1518         bio_list_merge(&bios, &cache->deferred_flush_bios);
1519         bio_list_init(&cache->deferred_flush_bios);
1520         spin_unlock_irqrestore(&cache->lock, flags);
1521
1522         while ((bio = bio_list_pop(&bios)))
1523                 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1524 }
1525
1526 static void process_deferred_writethrough_bios(struct cache *cache)
1527 {
1528         unsigned long flags;
1529         struct bio_list bios;
1530         struct bio *bio;
1531
1532         bio_list_init(&bios);
1533
1534         spin_lock_irqsave(&cache->lock, flags);
1535         bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1536         bio_list_init(&cache->deferred_writethrough_bios);
1537         spin_unlock_irqrestore(&cache->lock, flags);
1538
1539         while ((bio = bio_list_pop(&bios)))
1540                 generic_make_request(bio);
1541 }
1542
1543 static void writeback_some_dirty_blocks(struct cache *cache)
1544 {
1545         int r = 0;
1546         dm_oblock_t oblock;
1547         dm_cblock_t cblock;
1548         struct prealloc structs;
1549         struct dm_bio_prison_cell *old_ocell;
1550
1551         memset(&structs, 0, sizeof(structs));
1552
1553         while (spare_migration_bandwidth(cache)) {
1554                 if (prealloc_data_structs(cache, &structs))
1555                         break;
1556
1557                 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1558                 if (r)
1559                         break;
1560
1561                 r = get_cell(cache, oblock, &structs, &old_ocell);
1562                 if (r) {
1563                         policy_set_dirty(cache->policy, oblock);
1564                         break;
1565                 }
1566
1567                 writeback(cache, &structs, oblock, cblock, old_ocell);
1568         }
1569
1570         prealloc_free_structs(cache, &structs);
1571 }
1572
1573 /*----------------------------------------------------------------
1574  * Invalidations.
1575  * Dropping something from the cache *without* writing back.
1576  *--------------------------------------------------------------*/
1577
1578 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1579 {
1580         int r = 0;
1581         uint64_t begin = from_cblock(req->cblocks->begin);
1582         uint64_t end = from_cblock(req->cblocks->end);
1583
1584         while (begin != end) {
1585                 r = policy_remove_cblock(cache->policy, to_cblock(begin));
1586                 if (!r) {
1587                         r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1588                         if (r)
1589                                 break;
1590
1591                 } else if (r == -ENODATA) {
1592                         /* harmless, already unmapped */
1593                         r = 0;
1594
1595                 } else {
1596                         DMERR("policy_remove_cblock failed");
1597                         break;
1598                 }
1599
1600                 begin++;
1601         }
1602
1603         cache->commit_requested = true;
1604
1605         req->err = r;
1606         atomic_set(&req->complete, 1);
1607
1608         wake_up(&req->result_wait);
1609 }
1610
1611 static void process_invalidation_requests(struct cache *cache)
1612 {
1613         struct list_head list;
1614         struct invalidation_request *req, *tmp;
1615
1616         INIT_LIST_HEAD(&list);
1617         spin_lock(&cache->invalidation_lock);
1618         list_splice_init(&cache->invalidation_requests, &list);
1619         spin_unlock(&cache->invalidation_lock);
1620
1621         list_for_each_entry_safe (req, tmp, &list, list)
1622                 process_invalidation_request(cache, req);
1623 }
1624
1625 /*----------------------------------------------------------------
1626  * Main worker loop
1627  *--------------------------------------------------------------*/
1628 static bool is_quiescing(struct cache *cache)
1629 {
1630         return atomic_read(&cache->quiescing);
1631 }
1632
1633 static void ack_quiescing(struct cache *cache)
1634 {
1635         if (is_quiescing(cache)) {
1636                 atomic_inc(&cache->quiescing_ack);
1637                 wake_up(&cache->quiescing_wait);
1638         }
1639 }
1640
1641 static void wait_for_quiescing_ack(struct cache *cache)
1642 {
1643         wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1644 }
1645
1646 static void start_quiescing(struct cache *cache)
1647 {
1648         atomic_inc(&cache->quiescing);
1649         wait_for_quiescing_ack(cache);
1650 }
1651
1652 static void stop_quiescing(struct cache *cache)
1653 {
1654         atomic_set(&cache->quiescing, 0);
1655         atomic_set(&cache->quiescing_ack, 0);
1656 }
1657
1658 static void wait_for_migrations(struct cache *cache)
1659 {
1660         wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1661 }
1662
1663 static void stop_worker(struct cache *cache)
1664 {
1665         cancel_delayed_work(&cache->waker);
1666         flush_workqueue(cache->wq);
1667 }
1668
1669 static void requeue_deferred_io(struct cache *cache)
1670 {
1671         struct bio *bio;
1672         struct bio_list bios;
1673
1674         bio_list_init(&bios);
1675         bio_list_merge(&bios, &cache->deferred_bios);
1676         bio_list_init(&cache->deferred_bios);
1677
1678         while ((bio = bio_list_pop(&bios)))
1679                 bio_endio(bio, DM_ENDIO_REQUEUE);
1680 }
1681
1682 static int more_work(struct cache *cache)
1683 {
1684         if (is_quiescing(cache))
1685                 return !list_empty(&cache->quiesced_migrations) ||
1686                         !list_empty(&cache->completed_migrations) ||
1687                         !list_empty(&cache->need_commit_migrations);
1688         else
1689                 return !bio_list_empty(&cache->deferred_bios) ||
1690                         !bio_list_empty(&cache->deferred_flush_bios) ||
1691                         !bio_list_empty(&cache->deferred_writethrough_bios) ||
1692                         !list_empty(&cache->quiesced_migrations) ||
1693                         !list_empty(&cache->completed_migrations) ||
1694                         !list_empty(&cache->need_commit_migrations) ||
1695                         cache->invalidate;
1696 }
1697
1698 static void do_worker(struct work_struct *ws)
1699 {
1700         struct cache *cache = container_of(ws, struct cache, worker);
1701
1702         do {
1703                 if (!is_quiescing(cache)) {
1704                         writeback_some_dirty_blocks(cache);
1705                         process_deferred_writethrough_bios(cache);
1706                         process_deferred_bios(cache);
1707                         process_invalidation_requests(cache);
1708                 }
1709
1710                 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1711                 process_migrations(cache, &cache->completed_migrations, complete_migration);
1712
1713                 if (commit_if_needed(cache)) {
1714                         process_deferred_flush_bios(cache, false);
1715
1716                         /*
1717                          * FIXME: rollback metadata or just go into a
1718                          * failure mode and error everything
1719                          */
1720                 } else {
1721                         process_deferred_flush_bios(cache, true);
1722                         process_migrations(cache, &cache->need_commit_migrations,
1723                                            migration_success_post_commit);
1724                 }
1725
1726                 ack_quiescing(cache);
1727
1728         } while (more_work(cache));
1729 }
1730
1731 /*
1732  * We want to commit periodically so that not too much
1733  * unwritten metadata builds up.
1734  */
1735 static void do_waker(struct work_struct *ws)
1736 {
1737         struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1738         policy_tick(cache->policy);
1739         wake_worker(cache);
1740         queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1741 }
1742
1743 /*----------------------------------------------------------------*/
1744
1745 static int is_congested(struct dm_dev *dev, int bdi_bits)
1746 {
1747         struct request_queue *q = bdev_get_queue(dev->bdev);
1748         return bdi_congested(&q->backing_dev_info, bdi_bits);
1749 }
1750
1751 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1752 {
1753         struct cache *cache = container_of(cb, struct cache, callbacks);
1754
1755         return is_congested(cache->origin_dev, bdi_bits) ||
1756                 is_congested(cache->cache_dev, bdi_bits);
1757 }
1758
1759 /*----------------------------------------------------------------
1760  * Target methods
1761  *--------------------------------------------------------------*/
1762
1763 /*
1764  * This function gets called on the error paths of the constructor, so we
1765  * have to cope with a partially initialised struct.
1766  */
1767 static void destroy(struct cache *cache)
1768 {
1769         unsigned i;
1770
1771         if (cache->next_migration)
1772                 mempool_free(cache->next_migration, cache->migration_pool);
1773
1774         if (cache->migration_pool)
1775                 mempool_destroy(cache->migration_pool);
1776
1777         if (cache->all_io_ds)
1778                 dm_deferred_set_destroy(cache->all_io_ds);
1779
1780         if (cache->prison)
1781                 dm_bio_prison_destroy(cache->prison);
1782
1783         if (cache->wq)
1784                 destroy_workqueue(cache->wq);
1785
1786         if (cache->dirty_bitset)
1787                 free_bitset(cache->dirty_bitset);
1788
1789         if (cache->discard_bitset)
1790                 free_bitset(cache->discard_bitset);
1791
1792         if (cache->copier)
1793                 dm_kcopyd_client_destroy(cache->copier);
1794
1795         if (cache->cmd)
1796                 dm_cache_metadata_close(cache->cmd);
1797
1798         if (cache->metadata_dev)
1799                 dm_put_device(cache->ti, cache->metadata_dev);
1800
1801         if (cache->origin_dev)
1802                 dm_put_device(cache->ti, cache->origin_dev);
1803
1804         if (cache->cache_dev)
1805                 dm_put_device(cache->ti, cache->cache_dev);
1806
1807         if (cache->policy)
1808                 dm_cache_policy_destroy(cache->policy);
1809
1810         for (i = 0; i < cache->nr_ctr_args ; i++)
1811                 kfree(cache->ctr_args[i]);
1812         kfree(cache->ctr_args);
1813
1814         kfree(cache);
1815 }
1816
1817 static void cache_dtr(struct dm_target *ti)
1818 {
1819         struct cache *cache = ti->private;
1820
1821         destroy(cache);
1822 }
1823
1824 static sector_t get_dev_size(struct dm_dev *dev)
1825 {
1826         return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1827 }
1828
1829 /*----------------------------------------------------------------*/
1830
1831 /*
1832  * Construct a cache device mapping.
1833  *
1834  * cache <metadata dev> <cache dev> <origin dev> <block size>
1835  *       <#feature args> [<feature arg>]*
1836  *       <policy> <#policy args> [<policy arg>]*
1837  *
1838  * metadata dev    : fast device holding the persistent metadata
1839  * cache dev       : fast device holding cached data blocks
1840  * origin dev      : slow device holding original data blocks
1841  * block size      : cache unit size in sectors
1842  *
1843  * #feature args   : number of feature arguments passed
1844  * feature args    : writethrough.  (The default is writeback.)
1845  *
1846  * policy          : the replacement policy to use
1847  * #policy args    : an even number of policy arguments corresponding
1848  *                   to key/value pairs passed to the policy
1849  * policy args     : key/value pairs passed to the policy
1850  *                   E.g. 'sequential_threshold 1024'
1851  *                   See cache-policies.txt for details.
1852  *
1853  * Optional feature arguments are:
1854  *   writethrough  : write through caching that prohibits cache block
1855  *                   content from being different from origin block content.
1856  *                   Without this argument, the default behaviour is to write
1857  *                   back cache block contents later for performance reasons,
1858  *                   so they may differ from the corresponding origin blocks.
1859  */
1860 struct cache_args {
1861         struct dm_target *ti;
1862
1863         struct dm_dev *metadata_dev;
1864
1865         struct dm_dev *cache_dev;
1866         sector_t cache_sectors;
1867
1868         struct dm_dev *origin_dev;
1869         sector_t origin_sectors;
1870
1871         uint32_t block_size;
1872
1873         const char *policy_name;
1874         int policy_argc;
1875         const char **policy_argv;
1876
1877         struct cache_features features;
1878 };
1879
1880 static void destroy_cache_args(struct cache_args *ca)
1881 {
1882         if (ca->metadata_dev)
1883                 dm_put_device(ca->ti, ca->metadata_dev);
1884
1885         if (ca->cache_dev)
1886                 dm_put_device(ca->ti, ca->cache_dev);
1887
1888         if (ca->origin_dev)
1889                 dm_put_device(ca->ti, ca->origin_dev);
1890
1891         kfree(ca);
1892 }
1893
1894 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1895 {
1896         if (!as->argc) {
1897                 *error = "Insufficient args";
1898                 return false;
1899         }
1900
1901         return true;
1902 }
1903
1904 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1905                               char **error)
1906 {
1907         int r;
1908         sector_t metadata_dev_size;
1909         char b[BDEVNAME_SIZE];
1910
1911         if (!at_least_one_arg(as, error))
1912                 return -EINVAL;
1913
1914         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1915                           &ca->metadata_dev);
1916         if (r) {
1917                 *error = "Error opening metadata device";
1918                 return r;
1919         }
1920
1921         metadata_dev_size = get_dev_size(ca->metadata_dev);
1922         if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1923                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1924                        bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1925
1926         return 0;
1927 }
1928
1929 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1930                            char **error)
1931 {
1932         int r;
1933
1934         if (!at_least_one_arg(as, error))
1935                 return -EINVAL;
1936
1937         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1938                           &ca->cache_dev);
1939         if (r) {
1940                 *error = "Error opening cache device";
1941                 return r;
1942         }
1943         ca->cache_sectors = get_dev_size(ca->cache_dev);
1944
1945         return 0;
1946 }
1947
1948 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1949                             char **error)
1950 {
1951         int r;
1952
1953         if (!at_least_one_arg(as, error))
1954                 return -EINVAL;
1955
1956         r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1957                           &ca->origin_dev);
1958         if (r) {
1959                 *error = "Error opening origin device";
1960                 return r;
1961         }
1962
1963         ca->origin_sectors = get_dev_size(ca->origin_dev);
1964         if (ca->ti->len > ca->origin_sectors) {
1965                 *error = "Device size larger than cached device";
1966                 return -EINVAL;
1967         }
1968
1969         return 0;
1970 }
1971
1972 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1973                             char **error)
1974 {
1975         unsigned long block_size;
1976
1977         if (!at_least_one_arg(as, error))
1978                 return -EINVAL;
1979
1980         if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1981             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1982             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1983             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1984                 *error = "Invalid data block size";
1985                 return -EINVAL;
1986         }
1987
1988         if (block_size > ca->cache_sectors) {
1989                 *error = "Data block size is larger than the cache device";
1990                 return -EINVAL;
1991         }
1992
1993         ca->block_size = block_size;
1994
1995         return 0;
1996 }
1997
1998 static void init_features(struct cache_features *cf)
1999 {
2000         cf->mode = CM_WRITE;
2001         cf->io_mode = CM_IO_WRITEBACK;
2002 }
2003
2004 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2005                           char **error)
2006 {
2007         static struct dm_arg _args[] = {
2008                 {0, 1, "Invalid number of cache feature arguments"},
2009         };
2010
2011         int r;
2012         unsigned argc;
2013         const char *arg;
2014         struct cache_features *cf = &ca->features;
2015
2016         init_features(cf);
2017
2018         r = dm_read_arg_group(_args, as, &argc, error);
2019         if (r)
2020                 return -EINVAL;
2021
2022         while (argc--) {
2023                 arg = dm_shift_arg(as);
2024
2025                 if (!strcasecmp(arg, "writeback"))
2026                         cf->io_mode = CM_IO_WRITEBACK;
2027
2028                 else if (!strcasecmp(arg, "writethrough"))
2029                         cf->io_mode = CM_IO_WRITETHROUGH;
2030
2031                 else if (!strcasecmp(arg, "passthrough"))
2032                         cf->io_mode = CM_IO_PASSTHROUGH;
2033
2034                 else {
2035                         *error = "Unrecognised cache feature requested";
2036                         return -EINVAL;
2037                 }
2038         }
2039
2040         return 0;
2041 }
2042
2043 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2044                         char **error)
2045 {
2046         static struct dm_arg _args[] = {
2047                 {0, 1024, "Invalid number of policy arguments"},
2048         };
2049
2050         int r;
2051
2052         if (!at_least_one_arg(as, error))
2053                 return -EINVAL;
2054
2055         ca->policy_name = dm_shift_arg(as);
2056
2057         r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2058         if (r)
2059                 return -EINVAL;
2060
2061         ca->policy_argv = (const char **)as->argv;
2062         dm_consume_args(as, ca->policy_argc);
2063
2064         return 0;
2065 }
2066
2067 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2068                             char **error)
2069 {
2070         int r;
2071         struct dm_arg_set as;
2072
2073         as.argc = argc;
2074         as.argv = argv;
2075
2076         r = parse_metadata_dev(ca, &as, error);
2077         if (r)
2078                 return r;
2079
2080         r = parse_cache_dev(ca, &as, error);
2081         if (r)
2082                 return r;
2083
2084         r = parse_origin_dev(ca, &as, error);
2085         if (r)
2086                 return r;
2087
2088         r = parse_block_size(ca, &as, error);
2089         if (r)
2090                 return r;
2091
2092         r = parse_features(ca, &as, error);
2093         if (r)
2094                 return r;
2095
2096         r = parse_policy(ca, &as, error);
2097         if (r)
2098                 return r;
2099
2100         return 0;
2101 }
2102
2103 /*----------------------------------------------------------------*/
2104
2105 static struct kmem_cache *migration_cache;
2106
2107 #define NOT_CORE_OPTION 1
2108
2109 static int process_config_option(struct cache *cache, const char *key, const char *value)
2110 {
2111         unsigned long tmp;
2112
2113         if (!strcasecmp(key, "migration_threshold")) {
2114                 if (kstrtoul(value, 10, &tmp))
2115                         return -EINVAL;
2116
2117                 cache->migration_threshold = tmp;
2118                 return 0;
2119         }
2120
2121         return NOT_CORE_OPTION;
2122 }
2123
2124 static int set_config_value(struct cache *cache, const char *key, const char *value)
2125 {
2126         int r = process_config_option(cache, key, value);
2127
2128         if (r == NOT_CORE_OPTION)
2129                 r = policy_set_config_value(cache->policy, key, value);
2130
2131         if (r)
2132                 DMWARN("bad config value for %s: %s", key, value);
2133
2134         return r;
2135 }
2136
2137 static int set_config_values(struct cache *cache, int argc, const char **argv)
2138 {
2139         int r = 0;
2140
2141         if (argc & 1) {
2142                 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2143                 return -EINVAL;
2144         }
2145
2146         while (argc) {
2147                 r = set_config_value(cache, argv[0], argv[1]);
2148                 if (r)
2149                         break;
2150
2151                 argc -= 2;
2152                 argv += 2;
2153         }
2154
2155         return r;
2156 }
2157
2158 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2159                                char **error)
2160 {
2161         struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2162                                                            cache->cache_size,
2163                                                            cache->origin_sectors,
2164                                                            cache->sectors_per_block);
2165         if (IS_ERR(p)) {
2166                 *error = "Error creating cache's policy";
2167                 return PTR_ERR(p);
2168         }
2169         cache->policy = p;
2170
2171         return 0;
2172 }
2173
2174 /*
2175  * We want the discard block size to be a power of two, at least the size
2176  * of the cache block size, and have no more than 2^14 discard blocks
2177  * across the origin.
2178  */
2179 #define MAX_DISCARD_BLOCKS (1 << 14)
2180
2181 static bool too_many_discard_blocks(sector_t discard_block_size,
2182                                     sector_t origin_size)
2183 {
2184         (void) sector_div(origin_size, discard_block_size);
2185
2186         return origin_size > MAX_DISCARD_BLOCKS;
2187 }
2188
2189 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2190                                              sector_t origin_size)
2191 {
2192         sector_t discard_block_size;
2193
2194         discard_block_size = roundup_pow_of_two(cache_block_size);
2195
2196         if (origin_size)
2197                 while (too_many_discard_blocks(discard_block_size, origin_size))
2198                         discard_block_size *= 2;
2199
2200         return discard_block_size;
2201 }
2202
2203 #define DEFAULT_MIGRATION_THRESHOLD 2048
2204
2205 static int cache_create(struct cache_args *ca, struct cache **result)
2206 {
2207         int r = 0;
2208         char **error = &ca->ti->error;
2209         struct cache *cache;
2210         struct dm_target *ti = ca->ti;
2211         dm_block_t origin_blocks;
2212         struct dm_cache_metadata *cmd;
2213         bool may_format = ca->features.mode == CM_WRITE;
2214
2215         cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2216         if (!cache)
2217                 return -ENOMEM;
2218
2219         cache->ti = ca->ti;
2220         ti->private = cache;
2221         ti->num_flush_bios = 2;
2222         ti->flush_supported = true;
2223
2224         ti->num_discard_bios = 1;
2225         ti->discards_supported = true;
2226         ti->discard_zeroes_data_unsupported = true;
2227
2228         cache->features = ca->features;
2229         ti->per_bio_data_size = get_per_bio_data_size(cache);
2230
2231         cache->callbacks.congested_fn = cache_is_congested;
2232         dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2233
2234         cache->metadata_dev = ca->metadata_dev;
2235         cache->origin_dev = ca->origin_dev;
2236         cache->cache_dev = ca->cache_dev;
2237
2238         ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2239
2240         /* FIXME: factor out this whole section */
2241         origin_blocks = cache->origin_sectors = ca->origin_sectors;
2242         origin_blocks = block_div(origin_blocks, ca->block_size);
2243         cache->origin_blocks = to_oblock(origin_blocks);
2244
2245         cache->sectors_per_block = ca->block_size;
2246         if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2247                 r = -EINVAL;
2248                 goto bad;
2249         }
2250
2251         if (ca->block_size & (ca->block_size - 1)) {
2252                 dm_block_t cache_size = ca->cache_sectors;
2253
2254                 cache->sectors_per_block_shift = -1;
2255                 cache_size = block_div(cache_size, ca->block_size);
2256                 cache->cache_size = to_cblock(cache_size);
2257         } else {
2258                 cache->sectors_per_block_shift = __ffs(ca->block_size);
2259                 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2260         }
2261
2262         r = create_cache_policy(cache, ca, error);
2263         if (r)
2264                 goto bad;
2265
2266         cache->policy_nr_args = ca->policy_argc;
2267         cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2268
2269         r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2270         if (r) {
2271                 *error = "Error setting cache policy's config values";
2272                 goto bad;
2273         }
2274
2275         cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2276                                      ca->block_size, may_format,
2277                                      dm_cache_policy_get_hint_size(cache->policy));
2278         if (IS_ERR(cmd)) {
2279                 *error = "Error creating metadata object";
2280                 r = PTR_ERR(cmd);
2281                 goto bad;
2282         }
2283         cache->cmd = cmd;
2284
2285         if (passthrough_mode(&cache->features)) {
2286                 bool all_clean;
2287
2288                 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2289                 if (r) {
2290                         *error = "dm_cache_metadata_all_clean() failed";
2291                         goto bad;
2292                 }
2293
2294                 if (!all_clean) {
2295                         *error = "Cannot enter passthrough mode unless all blocks are clean";
2296                         r = -EINVAL;
2297                         goto bad;
2298                 }
2299         }
2300
2301         spin_lock_init(&cache->lock);
2302         bio_list_init(&cache->deferred_bios);
2303         bio_list_init(&cache->deferred_flush_bios);
2304         bio_list_init(&cache->deferred_writethrough_bios);
2305         INIT_LIST_HEAD(&cache->quiesced_migrations);
2306         INIT_LIST_HEAD(&cache->completed_migrations);
2307         INIT_LIST_HEAD(&cache->need_commit_migrations);
2308         atomic_set(&cache->nr_migrations, 0);
2309         init_waitqueue_head(&cache->migration_wait);
2310
2311         init_waitqueue_head(&cache->quiescing_wait);
2312         atomic_set(&cache->quiescing, 0);
2313         atomic_set(&cache->quiescing_ack, 0);
2314
2315         r = -ENOMEM;
2316         cache->nr_dirty = 0;
2317         cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2318         if (!cache->dirty_bitset) {
2319                 *error = "could not allocate dirty bitset";
2320                 goto bad;
2321         }
2322         clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2323
2324         cache->discard_block_size =
2325                 calculate_discard_block_size(cache->sectors_per_block,
2326                                              cache->origin_sectors);
2327         cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2328         cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2329         if (!cache->discard_bitset) {
2330                 *error = "could not allocate discard bitset";
2331                 goto bad;
2332         }
2333         clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2334
2335         cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2336         if (IS_ERR(cache->copier)) {
2337                 *error = "could not create kcopyd client";
2338                 r = PTR_ERR(cache->copier);
2339                 goto bad;
2340         }
2341
2342         cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2343         if (!cache->wq) {
2344                 *error = "could not create workqueue for metadata object";
2345                 goto bad;
2346         }
2347         INIT_WORK(&cache->worker, do_worker);
2348         INIT_DELAYED_WORK(&cache->waker, do_waker);
2349         cache->last_commit_jiffies = jiffies;
2350
2351         cache->prison = dm_bio_prison_create(PRISON_CELLS);
2352         if (!cache->prison) {
2353                 *error = "could not create bio prison";
2354                 goto bad;
2355         }
2356
2357         cache->all_io_ds = dm_deferred_set_create();
2358         if (!cache->all_io_ds) {
2359                 *error = "could not create all_io deferred set";
2360                 goto bad;
2361         }
2362
2363         cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2364                                                          migration_cache);
2365         if (!cache->migration_pool) {
2366                 *error = "Error creating cache's migration mempool";
2367                 goto bad;
2368         }
2369
2370         cache->next_migration = NULL;
2371
2372         cache->need_tick_bio = true;
2373         cache->sized = false;
2374         cache->invalidate = false;
2375         cache->commit_requested = false;
2376         cache->loaded_mappings = false;
2377         cache->loaded_discards = false;
2378
2379         load_stats(cache);
2380
2381         atomic_set(&cache->stats.demotion, 0);
2382         atomic_set(&cache->stats.promotion, 0);
2383         atomic_set(&cache->stats.copies_avoided, 0);
2384         atomic_set(&cache->stats.cache_cell_clash, 0);
2385         atomic_set(&cache->stats.commit_count, 0);
2386         atomic_set(&cache->stats.discard_count, 0);
2387
2388         spin_lock_init(&cache->invalidation_lock);
2389         INIT_LIST_HEAD(&cache->invalidation_requests);
2390
2391         *result = cache;
2392         return 0;
2393
2394 bad:
2395         destroy(cache);
2396         return r;
2397 }
2398
2399 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2400 {
2401         unsigned i;
2402         const char **copy;
2403
2404         copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2405         if (!copy)
2406                 return -ENOMEM;
2407         for (i = 0; i < argc; i++) {
2408                 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2409                 if (!copy[i]) {
2410                         while (i--)
2411                                 kfree(copy[i]);
2412                         kfree(copy);
2413                         return -ENOMEM;
2414                 }
2415         }
2416
2417         cache->nr_ctr_args = argc;
2418         cache->ctr_args = copy;
2419
2420         return 0;
2421 }
2422
2423 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2424 {
2425         int r = -EINVAL;
2426         struct cache_args *ca;
2427         struct cache *cache = NULL;
2428
2429         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2430         if (!ca) {
2431                 ti->error = "Error allocating memory for cache";
2432                 return -ENOMEM;
2433         }
2434         ca->ti = ti;
2435
2436         r = parse_cache_args(ca, argc, argv, &ti->error);
2437         if (r)
2438                 goto out;
2439
2440         r = cache_create(ca, &cache);
2441         if (r)
2442                 goto out;
2443
2444         r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2445         if (r) {
2446                 destroy(cache);
2447                 goto out;
2448         }
2449
2450         ti->private = cache;
2451
2452 out:
2453         destroy_cache_args(ca);
2454         return r;
2455 }
2456
2457 static int cache_map(struct dm_target *ti, struct bio *bio)
2458 {
2459         struct cache *cache = ti->private;
2460
2461         int r;
2462         dm_oblock_t block = get_bio_block(cache, bio);
2463         size_t pb_data_size = get_per_bio_data_size(cache);
2464         bool can_migrate = false;
2465         bool discarded_block;
2466         struct dm_bio_prison_cell *cell;
2467         struct policy_result lookup_result;
2468         struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2469
2470         if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2471                 /*
2472                  * This can only occur if the io goes to a partial block at
2473                  * the end of the origin device.  We don't cache these.
2474                  * Just remap to the origin and carry on.
2475                  */
2476                 remap_to_origin(cache, bio);
2477                 return DM_MAPIO_REMAPPED;
2478         }
2479
2480         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2481                 defer_bio(cache, bio);
2482                 return DM_MAPIO_SUBMITTED;
2483         }
2484
2485         /*
2486          * Check to see if that block is currently migrating.
2487          */
2488         cell = alloc_prison_cell(cache);
2489         if (!cell) {
2490                 defer_bio(cache, bio);
2491                 return DM_MAPIO_SUBMITTED;
2492         }
2493
2494         r = bio_detain(cache, block, bio, cell,
2495                        (cell_free_fn) free_prison_cell,
2496                        cache, &cell);
2497         if (r) {
2498                 if (r < 0)
2499                         defer_bio(cache, bio);
2500
2501                 return DM_MAPIO_SUBMITTED;
2502         }
2503
2504         discarded_block = is_discarded_oblock(cache, block);
2505
2506         r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2507                        bio, &lookup_result);
2508         if (r == -EWOULDBLOCK) {
2509                 cell_defer(cache, cell, true);
2510                 return DM_MAPIO_SUBMITTED;
2511
2512         } else if (r) {
2513                 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2514                 bio_io_error(bio);
2515                 return DM_MAPIO_SUBMITTED;
2516         }
2517
2518         r = DM_MAPIO_REMAPPED;
2519         switch (lookup_result.op) {
2520         case POLICY_HIT:
2521                 if (passthrough_mode(&cache->features)) {
2522                         if (bio_data_dir(bio) == WRITE) {
2523                                 /*
2524                                  * We need to invalidate this block, so
2525                                  * defer for the worker thread.
2526                                  */
2527                                 cell_defer(cache, cell, true);
2528                                 r = DM_MAPIO_SUBMITTED;
2529
2530                         } else {
2531                                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2532                                 inc_miss_counter(cache, bio);
2533                                 remap_to_origin_clear_discard(cache, bio, block);
2534
2535                                 cell_defer(cache, cell, false);
2536                         }
2537
2538                 } else {
2539                         inc_hit_counter(cache, bio);
2540
2541                         if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2542                             !is_dirty(cache, lookup_result.cblock))
2543                                 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2544                         else
2545                                 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2546
2547                         cell_defer(cache, cell, false);
2548                 }
2549                 break;
2550
2551         case POLICY_MISS:
2552                 inc_miss_counter(cache, bio);
2553                 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2554
2555                 if (pb->req_nr != 0) {
2556                         /*
2557                          * This is a duplicate writethrough io that is no
2558                          * longer needed because the block has been demoted.
2559                          */
2560                         bio_endio(bio, 0);
2561                         cell_defer(cache, cell, false);
2562                         return DM_MAPIO_SUBMITTED;
2563                 } else {
2564                         remap_to_origin_clear_discard(cache, bio, block);
2565                         cell_defer(cache, cell, false);
2566                 }
2567                 break;
2568
2569         default:
2570                 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2571                             (unsigned) lookup_result.op);
2572                 bio_io_error(bio);
2573                 r = DM_MAPIO_SUBMITTED;
2574         }
2575
2576         return r;
2577 }
2578
2579 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2580 {
2581         struct cache *cache = ti->private;
2582         unsigned long flags;
2583         size_t pb_data_size = get_per_bio_data_size(cache);
2584         struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2585
2586         if (pb->tick) {
2587                 policy_tick(cache->policy);
2588
2589                 spin_lock_irqsave(&cache->lock, flags);
2590                 cache->need_tick_bio = true;
2591                 spin_unlock_irqrestore(&cache->lock, flags);
2592         }
2593
2594         check_for_quiesced_migrations(cache, pb);
2595
2596         return 0;
2597 }
2598
2599 static int write_dirty_bitset(struct cache *cache)
2600 {
2601         unsigned i, r;
2602
2603         for (i = 0; i < from_cblock(cache->cache_size); i++) {
2604                 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2605                                        is_dirty(cache, to_cblock(i)));
2606                 if (r)
2607                         return r;
2608         }
2609
2610         return 0;
2611 }
2612
2613 static int write_discard_bitset(struct cache *cache)
2614 {
2615         unsigned i, r;
2616
2617         r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2618                                            cache->discard_nr_blocks);
2619         if (r) {
2620                 DMERR("could not resize on-disk discard bitset");
2621                 return r;
2622         }
2623
2624         for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2625                 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2626                                          is_discarded(cache, to_dblock(i)));
2627                 if (r)
2628                         return r;
2629         }
2630
2631         return 0;
2632 }
2633
2634 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2635                      uint32_t hint)
2636 {
2637         struct cache *cache = context;
2638         return dm_cache_save_hint(cache->cmd, cblock, hint);
2639 }
2640
2641 static int write_hints(struct cache *cache)
2642 {
2643         int r;
2644
2645         r = dm_cache_begin_hints(cache->cmd, cache->policy);
2646         if (r) {
2647                 DMERR("dm_cache_begin_hints failed");
2648                 return r;
2649         }
2650
2651         r = policy_walk_mappings(cache->policy, save_hint, cache);
2652         if (r)
2653                 DMERR("policy_walk_mappings failed");
2654
2655         return r;
2656 }
2657
2658 /*
2659  * returns true on success
2660  */
2661 static bool sync_metadata(struct cache *cache)
2662 {
2663         int r1, r2, r3, r4;
2664
2665         r1 = write_dirty_bitset(cache);
2666         if (r1)
2667                 DMERR("could not write dirty bitset");
2668
2669         r2 = write_discard_bitset(cache);
2670         if (r2)
2671                 DMERR("could not write discard bitset");
2672
2673         save_stats(cache);
2674
2675         r3 = write_hints(cache);
2676         if (r3)
2677                 DMERR("could not write hints");
2678
2679         /*
2680          * If writing the above metadata failed, we still commit, but don't
2681          * set the clean shutdown flag.  This will effectively force every
2682          * dirty bit to be set on reload.
2683          */
2684         r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2685         if (r4)
2686                 DMERR("could not write cache metadata.  Data loss may occur.");
2687
2688         return !r1 && !r2 && !r3 && !r4;
2689 }
2690
2691 static void cache_postsuspend(struct dm_target *ti)
2692 {
2693         struct cache *cache = ti->private;
2694
2695         start_quiescing(cache);
2696         wait_for_migrations(cache);
2697         stop_worker(cache);
2698         requeue_deferred_io(cache);
2699         stop_quiescing(cache);
2700
2701         (void) sync_metadata(cache);
2702 }
2703
2704 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2705                         bool dirty, uint32_t hint, bool hint_valid)
2706 {
2707         int r;
2708         struct cache *cache = context;
2709
2710         r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2711         if (r)
2712                 return r;
2713
2714         if (dirty)
2715                 set_dirty(cache, oblock, cblock);
2716         else
2717                 clear_dirty(cache, oblock, cblock);
2718
2719         return 0;
2720 }
2721
2722 static int load_discard(void *context, sector_t discard_block_size,
2723                         dm_dblock_t dblock, bool discard)
2724 {
2725         struct cache *cache = context;
2726
2727         /* FIXME: handle mis-matched block size */
2728
2729         if (discard)
2730                 set_discard(cache, dblock);
2731         else
2732                 clear_discard(cache, dblock);
2733
2734         return 0;
2735 }
2736
2737 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2738 {
2739         sector_t size = get_dev_size(cache->cache_dev);
2740         (void) sector_div(size, cache->sectors_per_block);
2741         return to_cblock(size);
2742 }
2743
2744 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2745 {
2746         if (from_cblock(new_size) > from_cblock(cache->cache_size))
2747                 return true;
2748
2749         /*
2750          * We can't drop a dirty block when shrinking the cache.
2751          */
2752         while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2753                 new_size = to_cblock(from_cblock(new_size) + 1);
2754                 if (is_dirty(cache, new_size)) {
2755                         DMERR("unable to shrink cache; cache block %llu is dirty",
2756                               (unsigned long long) from_cblock(new_size));
2757                         return false;
2758                 }
2759         }
2760
2761         return true;
2762 }
2763
2764 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2765 {
2766         int r;
2767
2768         r = dm_cache_resize(cache->cmd, new_size);
2769         if (r) {
2770                 DMERR("could not resize cache metadata");
2771                 return r;
2772         }
2773
2774         cache->cache_size = new_size;
2775
2776         return 0;
2777 }
2778
2779 static int cache_preresume(struct dm_target *ti)
2780 {
2781         int r = 0;
2782         struct cache *cache = ti->private;
2783         dm_cblock_t csize = get_cache_dev_size(cache);
2784
2785         /*
2786          * Check to see if the cache has resized.
2787          */
2788         if (!cache->sized) {
2789                 r = resize_cache_dev(cache, csize);
2790                 if (r)
2791                         return r;
2792
2793                 cache->sized = true;
2794
2795         } else if (csize != cache->cache_size) {
2796                 if (!can_resize(cache, csize))
2797                         return -EINVAL;
2798
2799                 r = resize_cache_dev(cache, csize);
2800                 if (r)
2801                         return r;
2802         }
2803
2804         if (!cache->loaded_mappings) {
2805                 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2806                                            load_mapping, cache);
2807                 if (r) {
2808                         DMERR("could not load cache mappings");
2809                         return r;
2810                 }
2811
2812                 cache->loaded_mappings = true;
2813         }
2814
2815         if (!cache->loaded_discards) {
2816                 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2817                 if (r) {
2818                         DMERR("could not load origin discards");
2819                         return r;
2820                 }
2821
2822                 cache->loaded_discards = true;
2823         }
2824
2825         return r;
2826 }
2827
2828 static void cache_resume(struct dm_target *ti)
2829 {
2830         struct cache *cache = ti->private;
2831
2832         cache->need_tick_bio = true;
2833         do_waker(&cache->waker.work);
2834 }
2835
2836 /*
2837  * Status format:
2838  *
2839  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2840  * <cache block size> <#used cache blocks>/<#total cache blocks>
2841  * <#read hits> <#read misses> <#write hits> <#write misses>
2842  * <#demotions> <#promotions> <#dirty>
2843  * <#features> <features>*
2844  * <#core args> <core args>
2845  * <policy name> <#policy args> <policy args>*
2846  */
2847 static void cache_status(struct dm_target *ti, status_type_t type,
2848                          unsigned status_flags, char *result, unsigned maxlen)
2849 {
2850         int r = 0;
2851         unsigned i;
2852         ssize_t sz = 0;
2853         dm_block_t nr_free_blocks_metadata = 0;
2854         dm_block_t nr_blocks_metadata = 0;
2855         char buf[BDEVNAME_SIZE];
2856         struct cache *cache = ti->private;
2857         dm_cblock_t residency;
2858
2859         switch (type) {
2860         case STATUSTYPE_INFO:
2861                 /* Commit to ensure statistics aren't out-of-date */
2862                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2863                         r = dm_cache_commit(cache->cmd, false);
2864                         if (r)
2865                                 DMERR("could not commit metadata for accurate status");
2866                 }
2867
2868                 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2869                                                            &nr_free_blocks_metadata);
2870                 if (r) {
2871                         DMERR("could not get metadata free block count");
2872                         goto err;
2873                 }
2874
2875                 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2876                 if (r) {
2877                         DMERR("could not get metadata device size");
2878                         goto err;
2879                 }
2880
2881                 residency = policy_residency(cache->policy);
2882
2883                 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %llu ",
2884                        (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2885                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2886                        (unsigned long long)nr_blocks_metadata,
2887                        cache->sectors_per_block,
2888                        (unsigned long long) from_cblock(residency),
2889                        (unsigned long long) from_cblock(cache->cache_size),
2890                        (unsigned) atomic_read(&cache->stats.read_hit),
2891                        (unsigned) atomic_read(&cache->stats.read_miss),
2892                        (unsigned) atomic_read(&cache->stats.write_hit),
2893                        (unsigned) atomic_read(&cache->stats.write_miss),
2894                        (unsigned) atomic_read(&cache->stats.demotion),
2895                        (unsigned) atomic_read(&cache->stats.promotion),
2896                        (unsigned long long) from_cblock(cache->nr_dirty));
2897
2898                 if (writethrough_mode(&cache->features))
2899                         DMEMIT("1 writethrough ");
2900
2901                 else if (passthrough_mode(&cache->features))
2902                         DMEMIT("1 passthrough ");
2903
2904                 else if (writeback_mode(&cache->features))
2905                         DMEMIT("1 writeback ");
2906
2907                 else {
2908                         DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2909                         goto err;
2910                 }
2911
2912                 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2913
2914                 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2915                 if (sz < maxlen) {
2916                         r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2917                         if (r)
2918                                 DMERR("policy_emit_config_values returned %d", r);
2919                 }
2920
2921                 break;
2922
2923         case STATUSTYPE_TABLE:
2924                 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2925                 DMEMIT("%s ", buf);
2926                 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2927                 DMEMIT("%s ", buf);
2928                 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2929                 DMEMIT("%s", buf);
2930
2931                 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2932                         DMEMIT(" %s", cache->ctr_args[i]);
2933                 if (cache->nr_ctr_args)
2934                         DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2935         }
2936
2937         return;
2938
2939 err:
2940         DMEMIT("Error");
2941 }
2942
2943 /*
2944  * A cache block range can take two forms:
2945  *
2946  * i) A single cblock, eg. '3456'
2947  * ii) A begin and end cblock with dots between, eg. 123-234
2948  */
2949 static int parse_cblock_range(struct cache *cache, const char *str,
2950                               struct cblock_range *result)
2951 {
2952         char dummy;
2953         uint64_t b, e;
2954         int r;
2955
2956         /*
2957          * Try and parse form (ii) first.
2958          */
2959         r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2960         if (r < 0)
2961                 return r;
2962
2963         if (r == 2) {
2964                 result->begin = to_cblock(b);
2965                 result->end = to_cblock(e);
2966                 return 0;
2967         }
2968
2969         /*
2970          * That didn't work, try form (i).
2971          */
2972         r = sscanf(str, "%llu%c", &b, &dummy);
2973         if (r < 0)
2974                 return r;
2975
2976         if (r == 1) {
2977                 result->begin = to_cblock(b);
2978                 result->end = to_cblock(from_cblock(result->begin) + 1u);
2979                 return 0;
2980         }
2981
2982         DMERR("invalid cblock range '%s'", str);
2983         return -EINVAL;
2984 }
2985
2986 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2987 {
2988         uint64_t b = from_cblock(range->begin);
2989         uint64_t e = from_cblock(range->end);
2990         uint64_t n = from_cblock(cache->cache_size);
2991
2992         if (b >= n) {
2993                 DMERR("begin cblock out of range: %llu >= %llu", b, n);
2994                 return -EINVAL;
2995         }
2996
2997         if (e > n) {
2998                 DMERR("end cblock out of range: %llu > %llu", e, n);
2999                 return -EINVAL;
3000         }
3001
3002         if (b >= e) {
3003                 DMERR("invalid cblock range: %llu >= %llu", b, e);
3004                 return -EINVAL;
3005         }
3006
3007         return 0;
3008 }
3009
3010 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3011 {
3012         struct invalidation_request req;
3013
3014         INIT_LIST_HEAD(&req.list);
3015         req.cblocks = range;
3016         atomic_set(&req.complete, 0);
3017         req.err = 0;
3018         init_waitqueue_head(&req.result_wait);
3019
3020         spin_lock(&cache->invalidation_lock);
3021         list_add(&req.list, &cache->invalidation_requests);
3022         spin_unlock(&cache->invalidation_lock);
3023         wake_worker(cache);
3024
3025         wait_event(req.result_wait, atomic_read(&req.complete));
3026         return req.err;
3027 }
3028
3029 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3030                                               const char **cblock_ranges)
3031 {
3032         int r = 0;
3033         unsigned i;
3034         struct cblock_range range;
3035
3036         if (!passthrough_mode(&cache->features)) {
3037                 DMERR("cache has to be in passthrough mode for invalidation");
3038                 return -EPERM;
3039         }
3040
3041         for (i = 0; i < count; i++) {
3042                 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3043                 if (r)
3044                         break;
3045
3046                 r = validate_cblock_range(cache, &range);
3047                 if (r)
3048                         break;
3049
3050                 /*
3051                  * Pass begin and end origin blocks to the worker and wake it.
3052                  */
3053                 r = request_invalidation(cache, &range);
3054                 if (r)
3055                         break;
3056         }
3057
3058         return r;
3059 }
3060
3061 /*
3062  * Supports
3063  *      "<key> <value>"
3064  * and
3065  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3066  *
3067  * The key migration_threshold is supported by the cache target core.
3068  */
3069 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3070 {
3071         struct cache *cache = ti->private;
3072
3073         if (!argc)
3074                 return -EINVAL;
3075
3076         if (!strcasecmp(argv[0], "invalidate_cblocks"))
3077                 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3078
3079         if (argc != 2)
3080                 return -EINVAL;
3081
3082         return set_config_value(cache, argv[0], argv[1]);
3083 }
3084
3085 static int cache_iterate_devices(struct dm_target *ti,
3086                                  iterate_devices_callout_fn fn, void *data)
3087 {
3088         int r = 0;
3089         struct cache *cache = ti->private;
3090
3091         r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3092         if (!r)
3093                 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3094
3095         return r;
3096 }
3097
3098 /*
3099  * We assume I/O is going to the origin (which is the volume
3100  * more likely to have restrictions e.g. by being striped).
3101  * (Looking up the exact location of the data would be expensive
3102  * and could always be out of date by the time the bio is submitted.)
3103  */
3104 static int cache_bvec_merge(struct dm_target *ti,
3105                             struct bvec_merge_data *bvm,
3106                             struct bio_vec *biovec, int max_size)
3107 {
3108         struct cache *cache = ti->private;
3109         struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3110
3111         if (!q->merge_bvec_fn)
3112                 return max_size;
3113
3114         bvm->bi_bdev = cache->origin_dev->bdev;
3115         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3116 }
3117
3118 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3119 {
3120         /*
3121          * FIXME: these limits may be incompatible with the cache device
3122          */
3123         limits->max_discard_sectors = cache->discard_block_size * 1024;
3124         limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3125 }
3126
3127 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3128 {
3129         struct cache *cache = ti->private;
3130         uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3131
3132         /*
3133          * If the system-determined stacked limits are compatible with the
3134          * cache's blocksize (io_opt is a factor) do not override them.
3135          */
3136         if (io_opt_sectors < cache->sectors_per_block ||
3137             do_div(io_opt_sectors, cache->sectors_per_block)) {
3138                 blk_limits_io_min(limits, 0);
3139                 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3140         }
3141         set_discard_limits(cache, limits);
3142 }
3143
3144 /*----------------------------------------------------------------*/
3145
3146 static struct target_type cache_target = {
3147         .name = "cache",
3148         .version = {1, 3, 0},
3149         .module = THIS_MODULE,
3150         .ctr = cache_ctr,
3151         .dtr = cache_dtr,
3152         .map = cache_map,
3153         .end_io = cache_end_io,
3154         .postsuspend = cache_postsuspend,
3155         .preresume = cache_preresume,
3156         .resume = cache_resume,
3157         .status = cache_status,
3158         .message = cache_message,
3159         .iterate_devices = cache_iterate_devices,
3160         .merge = cache_bvec_merge,
3161         .io_hints = cache_io_hints,
3162 };
3163
3164 static int __init dm_cache_init(void)
3165 {
3166         int r;
3167
3168         r = dm_register_target(&cache_target);
3169         if (r) {
3170                 DMERR("cache target registration failed: %d", r);
3171                 return r;
3172         }
3173
3174         migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3175         if (!migration_cache) {
3176                 dm_unregister_target(&cache_target);
3177                 return -ENOMEM;
3178         }
3179
3180         return 0;
3181 }
3182
3183 static void __exit dm_cache_exit(void)
3184 {
3185         dm_unregister_target(&cache_target);
3186         kmem_cache_destroy(migration_cache);
3187 }
3188
3189 module_init(dm_cache_init);
3190 module_exit(dm_cache_exit);
3191
3192 MODULE_DESCRIPTION(DM_NAME " cache target");
3193 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3194 MODULE_LICENSE("GPL");