spi: efm32: use $vendor,$device scheme for compatible string
[linux.git] / drivers / firewire / core-device.c
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49         ci->p = p + 1;
50         ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56         *key = *ci->p >> 24;
57         *value = *ci->p & 0xffffff;
58
59         return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65         struct fw_csr_iterator ci;
66         int last_key = 0, key, value;
67
68         fw_csr_iterator_init(&ci, directory);
69         while (fw_csr_iterator_next(&ci, &key, &value)) {
70                 if (last_key == search_key &&
71                     key == (CSR_DESCRIPTOR | CSR_LEAF))
72                         return ci.p - 1 + value;
73
74                 last_key = key;
75         }
76
77         return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82         unsigned int quadlets, i;
83         char c;
84
85         if (!size || !buf)
86                 return -EINVAL;
87
88         quadlets = min(block[0] >> 16, 256U);
89         if (quadlets < 2)
90                 return -ENODATA;
91
92         if (block[1] != 0 || block[2] != 0)
93                 /* unknown language/character set */
94                 return -ENODATA;
95
96         block += 3;
97         quadlets -= 2;
98         for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99                 c = block[i / 4] >> (24 - 8 * (i % 4));
100                 if (c == '\0')
101                         break;
102                 buf[i] = c;
103         }
104         buf[i] = '\0';
105
106         return i;
107 }
108
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:  e.g. root directory or unit directory
112  * @key:        the key of the preceding directory entry
113  * @buf:        where to put the string
114  * @size:       size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf after
117  * the immediate entry with @key.  The string is zero-terminated.
118  * Returns strlen(buf) or a negative error code.
119  */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122         const u32 *leaf = search_leaf(directory, key);
123         if (!leaf)
124                 return -ENOENT;
125
126         return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129
130 static void get_ids(const u32 *directory, int *id)
131 {
132         struct fw_csr_iterator ci;
133         int key, value;
134
135         fw_csr_iterator_init(&ci, directory);
136         while (fw_csr_iterator_next(&ci, &key, &value)) {
137                 switch (key) {
138                 case CSR_VENDOR:        id[0] = value; break;
139                 case CSR_MODEL:         id[1] = value; break;
140                 case CSR_SPECIFIER_ID:  id[2] = value; break;
141                 case CSR_VERSION:       id[3] = value; break;
142                 }
143         }
144 }
145
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148         get_ids(&fw_parent_device(unit)->config_rom[5], id);
149         get_ids(unit->directory, id);
150 }
151
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154         int match = 0;
155
156         if (id[0] == id_table->vendor_id)
157                 match |= IEEE1394_MATCH_VENDOR_ID;
158         if (id[1] == id_table->model_id)
159                 match |= IEEE1394_MATCH_MODEL_ID;
160         if (id[2] == id_table->specifier_id)
161                 match |= IEEE1394_MATCH_SPECIFIER_ID;
162         if (id[3] == id_table->version)
163                 match |= IEEE1394_MATCH_VERSION;
164
165         return (match & id_table->match_flags) == id_table->match_flags;
166 }
167
168 static const struct ieee1394_device_id *unit_match(struct device *dev,
169                                                    struct device_driver *drv)
170 {
171         const struct ieee1394_device_id *id_table =
172                         container_of(drv, struct fw_driver, driver)->id_table;
173         int id[] = {0, 0, 0, 0};
174
175         get_modalias_ids(fw_unit(dev), id);
176
177         for (; id_table->match_flags != 0; id_table++)
178                 if (match_ids(id_table, id))
179                         return id_table;
180
181         return NULL;
182 }
183
184 static bool is_fw_unit(struct device *dev);
185
186 static int fw_unit_match(struct device *dev, struct device_driver *drv)
187 {
188         /* We only allow binding to fw_units. */
189         return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
190 }
191
192 static int fw_unit_probe(struct device *dev)
193 {
194         struct fw_driver *driver =
195                         container_of(dev->driver, struct fw_driver, driver);
196
197         return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
198 }
199
200 static int fw_unit_remove(struct device *dev)
201 {
202         struct fw_driver *driver =
203                         container_of(dev->driver, struct fw_driver, driver);
204
205         return driver->remove(fw_unit(dev)), 0;
206 }
207
208 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
209 {
210         int id[] = {0, 0, 0, 0};
211
212         get_modalias_ids(unit, id);
213
214         return snprintf(buffer, buffer_size,
215                         "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
216                         id[0], id[1], id[2], id[3]);
217 }
218
219 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
220 {
221         struct fw_unit *unit = fw_unit(dev);
222         char modalias[64];
223
224         get_modalias(unit, modalias, sizeof(modalias));
225
226         if (add_uevent_var(env, "MODALIAS=%s", modalias))
227                 return -ENOMEM;
228
229         return 0;
230 }
231
232 struct bus_type fw_bus_type = {
233         .name = "firewire",
234         .match = fw_unit_match,
235         .probe = fw_unit_probe,
236         .remove = fw_unit_remove,
237 };
238 EXPORT_SYMBOL(fw_bus_type);
239
240 int fw_device_enable_phys_dma(struct fw_device *device)
241 {
242         int generation = device->generation;
243
244         /* device->node_id, accessed below, must not be older than generation */
245         smp_rmb();
246
247         return device->card->driver->enable_phys_dma(device->card,
248                                                      device->node_id,
249                                                      generation);
250 }
251 EXPORT_SYMBOL(fw_device_enable_phys_dma);
252
253 struct config_rom_attribute {
254         struct device_attribute attr;
255         u32 key;
256 };
257
258 static ssize_t show_immediate(struct device *dev,
259                               struct device_attribute *dattr, char *buf)
260 {
261         struct config_rom_attribute *attr =
262                 container_of(dattr, struct config_rom_attribute, attr);
263         struct fw_csr_iterator ci;
264         const u32 *dir;
265         int key, value, ret = -ENOENT;
266
267         down_read(&fw_device_rwsem);
268
269         if (is_fw_unit(dev))
270                 dir = fw_unit(dev)->directory;
271         else
272                 dir = fw_device(dev)->config_rom + 5;
273
274         fw_csr_iterator_init(&ci, dir);
275         while (fw_csr_iterator_next(&ci, &key, &value))
276                 if (attr->key == key) {
277                         ret = snprintf(buf, buf ? PAGE_SIZE : 0,
278                                        "0x%06x\n", value);
279                         break;
280                 }
281
282         up_read(&fw_device_rwsem);
283
284         return ret;
285 }
286
287 #define IMMEDIATE_ATTR(name, key)                               \
288         { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
289
290 static ssize_t show_text_leaf(struct device *dev,
291                               struct device_attribute *dattr, char *buf)
292 {
293         struct config_rom_attribute *attr =
294                 container_of(dattr, struct config_rom_attribute, attr);
295         const u32 *dir;
296         size_t bufsize;
297         char dummy_buf[2];
298         int ret;
299
300         down_read(&fw_device_rwsem);
301
302         if (is_fw_unit(dev))
303                 dir = fw_unit(dev)->directory;
304         else
305                 dir = fw_device(dev)->config_rom + 5;
306
307         if (buf) {
308                 bufsize = PAGE_SIZE - 1;
309         } else {
310                 buf = dummy_buf;
311                 bufsize = 1;
312         }
313
314         ret = fw_csr_string(dir, attr->key, buf, bufsize);
315
316         if (ret >= 0) {
317                 /* Strip trailing whitespace and add newline. */
318                 while (ret > 0 && isspace(buf[ret - 1]))
319                         ret--;
320                 strcpy(buf + ret, "\n");
321                 ret++;
322         }
323
324         up_read(&fw_device_rwsem);
325
326         return ret;
327 }
328
329 #define TEXT_LEAF_ATTR(name, key)                               \
330         { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
331
332 static struct config_rom_attribute config_rom_attributes[] = {
333         IMMEDIATE_ATTR(vendor, CSR_VENDOR),
334         IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
335         IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
336         IMMEDIATE_ATTR(version, CSR_VERSION),
337         IMMEDIATE_ATTR(model, CSR_MODEL),
338         TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
339         TEXT_LEAF_ATTR(model_name, CSR_MODEL),
340         TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
341 };
342
343 static void init_fw_attribute_group(struct device *dev,
344                                     struct device_attribute *attrs,
345                                     struct fw_attribute_group *group)
346 {
347         struct device_attribute *attr;
348         int i, j;
349
350         for (j = 0; attrs[j].attr.name != NULL; j++)
351                 group->attrs[j] = &attrs[j].attr;
352
353         for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
354                 attr = &config_rom_attributes[i].attr;
355                 if (attr->show(dev, attr, NULL) < 0)
356                         continue;
357                 group->attrs[j++] = &attr->attr;
358         }
359
360         group->attrs[j] = NULL;
361         group->groups[0] = &group->group;
362         group->groups[1] = NULL;
363         group->group.attrs = group->attrs;
364         dev->groups = (const struct attribute_group **) group->groups;
365 }
366
367 static ssize_t modalias_show(struct device *dev,
368                              struct device_attribute *attr, char *buf)
369 {
370         struct fw_unit *unit = fw_unit(dev);
371         int length;
372
373         length = get_modalias(unit, buf, PAGE_SIZE);
374         strcpy(buf + length, "\n");
375
376         return length + 1;
377 }
378
379 static ssize_t rom_index_show(struct device *dev,
380                               struct device_attribute *attr, char *buf)
381 {
382         struct fw_device *device = fw_device(dev->parent);
383         struct fw_unit *unit = fw_unit(dev);
384
385         return snprintf(buf, PAGE_SIZE, "%d\n",
386                         (int)(unit->directory - device->config_rom));
387 }
388
389 static struct device_attribute fw_unit_attributes[] = {
390         __ATTR_RO(modalias),
391         __ATTR_RO(rom_index),
392         __ATTR_NULL,
393 };
394
395 static ssize_t config_rom_show(struct device *dev,
396                                struct device_attribute *attr, char *buf)
397 {
398         struct fw_device *device = fw_device(dev);
399         size_t length;
400
401         down_read(&fw_device_rwsem);
402         length = device->config_rom_length * 4;
403         memcpy(buf, device->config_rom, length);
404         up_read(&fw_device_rwsem);
405
406         return length;
407 }
408
409 static ssize_t guid_show(struct device *dev,
410                          struct device_attribute *attr, char *buf)
411 {
412         struct fw_device *device = fw_device(dev);
413         int ret;
414
415         down_read(&fw_device_rwsem);
416         ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
417                        device->config_rom[3], device->config_rom[4]);
418         up_read(&fw_device_rwsem);
419
420         return ret;
421 }
422
423 static ssize_t is_local_show(struct device *dev,
424                              struct device_attribute *attr, char *buf)
425 {
426         struct fw_device *device = fw_device(dev);
427
428         return sprintf(buf, "%u\n", device->is_local);
429 }
430
431 static int units_sprintf(char *buf, const u32 *directory)
432 {
433         struct fw_csr_iterator ci;
434         int key, value;
435         int specifier_id = 0;
436         int version = 0;
437
438         fw_csr_iterator_init(&ci, directory);
439         while (fw_csr_iterator_next(&ci, &key, &value)) {
440                 switch (key) {
441                 case CSR_SPECIFIER_ID:
442                         specifier_id = value;
443                         break;
444                 case CSR_VERSION:
445                         version = value;
446                         break;
447                 }
448         }
449
450         return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
451 }
452
453 static ssize_t units_show(struct device *dev,
454                           struct device_attribute *attr, char *buf)
455 {
456         struct fw_device *device = fw_device(dev);
457         struct fw_csr_iterator ci;
458         int key, value, i = 0;
459
460         down_read(&fw_device_rwsem);
461         fw_csr_iterator_init(&ci, &device->config_rom[5]);
462         while (fw_csr_iterator_next(&ci, &key, &value)) {
463                 if (key != (CSR_UNIT | CSR_DIRECTORY))
464                         continue;
465                 i += units_sprintf(&buf[i], ci.p + value - 1);
466                 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
467                         break;
468         }
469         up_read(&fw_device_rwsem);
470
471         if (i)
472                 buf[i - 1] = '\n';
473
474         return i;
475 }
476
477 static struct device_attribute fw_device_attributes[] = {
478         __ATTR_RO(config_rom),
479         __ATTR_RO(guid),
480         __ATTR_RO(is_local),
481         __ATTR_RO(units),
482         __ATTR_NULL,
483 };
484
485 static int read_rom(struct fw_device *device,
486                     int generation, int index, u32 *data)
487 {
488         u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
489         int i, rcode;
490
491         /* device->node_id, accessed below, must not be older than generation */
492         smp_rmb();
493
494         for (i = 10; i < 100; i += 10) {
495                 rcode = fw_run_transaction(device->card,
496                                 TCODE_READ_QUADLET_REQUEST, device->node_id,
497                                 generation, device->max_speed, offset, data, 4);
498                 if (rcode != RCODE_BUSY)
499                         break;
500                 msleep(i);
501         }
502         be32_to_cpus(data);
503
504         return rcode;
505 }
506
507 #define MAX_CONFIG_ROM_SIZE 256
508
509 /*
510  * Read the bus info block, perform a speed probe, and read all of the rest of
511  * the config ROM.  We do all this with a cached bus generation.  If the bus
512  * generation changes under us, read_config_rom will fail and get retried.
513  * It's better to start all over in this case because the node from which we
514  * are reading the ROM may have changed the ROM during the reset.
515  * Returns either a result code or a negative error code.
516  */
517 static int read_config_rom(struct fw_device *device, int generation)
518 {
519         struct fw_card *card = device->card;
520         const u32 *old_rom, *new_rom;
521         u32 *rom, *stack;
522         u32 sp, key;
523         int i, end, length, ret;
524
525         rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
526                       sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
527         if (rom == NULL)
528                 return -ENOMEM;
529
530         stack = &rom[MAX_CONFIG_ROM_SIZE];
531         memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
532
533         device->max_speed = SCODE_100;
534
535         /* First read the bus info block. */
536         for (i = 0; i < 5; i++) {
537                 ret = read_rom(device, generation, i, &rom[i]);
538                 if (ret != RCODE_COMPLETE)
539                         goto out;
540                 /*
541                  * As per IEEE1212 7.2, during initialization, devices can
542                  * reply with a 0 for the first quadlet of the config
543                  * rom to indicate that they are booting (for example,
544                  * if the firmware is on the disk of a external
545                  * harddisk).  In that case we just fail, and the
546                  * retry mechanism will try again later.
547                  */
548                 if (i == 0 && rom[i] == 0) {
549                         ret = RCODE_BUSY;
550                         goto out;
551                 }
552         }
553
554         device->max_speed = device->node->max_speed;
555
556         /*
557          * Determine the speed of
558          *   - devices with link speed less than PHY speed,
559          *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
560          *   - all devices if there are 1394b repeaters.
561          * Note, we cannot use the bus info block's link_spd as starting point
562          * because some buggy firmwares set it lower than necessary and because
563          * 1394-1995 nodes do not have the field.
564          */
565         if ((rom[2] & 0x7) < device->max_speed ||
566             device->max_speed == SCODE_BETA ||
567             card->beta_repeaters_present) {
568                 u32 dummy;
569
570                 /* for S1600 and S3200 */
571                 if (device->max_speed == SCODE_BETA)
572                         device->max_speed = card->link_speed;
573
574                 while (device->max_speed > SCODE_100) {
575                         if (read_rom(device, generation, 0, &dummy) ==
576                             RCODE_COMPLETE)
577                                 break;
578                         device->max_speed--;
579                 }
580         }
581
582         /*
583          * Now parse the config rom.  The config rom is a recursive
584          * directory structure so we parse it using a stack of
585          * references to the blocks that make up the structure.  We
586          * push a reference to the root directory on the stack to
587          * start things off.
588          */
589         length = i;
590         sp = 0;
591         stack[sp++] = 0xc0000005;
592         while (sp > 0) {
593                 /*
594                  * Pop the next block reference of the stack.  The
595                  * lower 24 bits is the offset into the config rom,
596                  * the upper 8 bits are the type of the reference the
597                  * block.
598                  */
599                 key = stack[--sp];
600                 i = key & 0xffffff;
601                 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
602                         ret = -ENXIO;
603                         goto out;
604                 }
605
606                 /* Read header quadlet for the block to get the length. */
607                 ret = read_rom(device, generation, i, &rom[i]);
608                 if (ret != RCODE_COMPLETE)
609                         goto out;
610                 end = i + (rom[i] >> 16) + 1;
611                 if (end > MAX_CONFIG_ROM_SIZE) {
612                         /*
613                          * This block extends outside the config ROM which is
614                          * a firmware bug.  Ignore this whole block, i.e.
615                          * simply set a fake block length of 0.
616                          */
617                         fw_err(card, "skipped invalid ROM block %x at %llx\n",
618                                rom[i],
619                                i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
620                         rom[i] = 0;
621                         end = i;
622                 }
623                 i++;
624
625                 /*
626                  * Now read in the block.  If this is a directory
627                  * block, check the entries as we read them to see if
628                  * it references another block, and push it in that case.
629                  */
630                 for (; i < end; i++) {
631                         ret = read_rom(device, generation, i, &rom[i]);
632                         if (ret != RCODE_COMPLETE)
633                                 goto out;
634
635                         if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
636                                 continue;
637                         /*
638                          * Offset points outside the ROM.  May be a firmware
639                          * bug or an Extended ROM entry (IEEE 1212-2001 clause
640                          * 7.7.18).  Simply overwrite this pointer here by a
641                          * fake immediate entry so that later iterators over
642                          * the ROM don't have to check offsets all the time.
643                          */
644                         if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
645                                 fw_err(card,
646                                        "skipped unsupported ROM entry %x at %llx\n",
647                                        rom[i],
648                                        i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
649                                 rom[i] = 0;
650                                 continue;
651                         }
652                         stack[sp++] = i + rom[i];
653                 }
654                 if (length < i)
655                         length = i;
656         }
657
658         old_rom = device->config_rom;
659         new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
660         if (new_rom == NULL) {
661                 ret = -ENOMEM;
662                 goto out;
663         }
664
665         down_write(&fw_device_rwsem);
666         device->config_rom = new_rom;
667         device->config_rom_length = length;
668         up_write(&fw_device_rwsem);
669
670         kfree(old_rom);
671         ret = RCODE_COMPLETE;
672         device->max_rec = rom[2] >> 12 & 0xf;
673         device->cmc     = rom[2] >> 30 & 1;
674         device->irmc    = rom[2] >> 31 & 1;
675  out:
676         kfree(rom);
677
678         return ret;
679 }
680
681 static void fw_unit_release(struct device *dev)
682 {
683         struct fw_unit *unit = fw_unit(dev);
684
685         fw_device_put(fw_parent_device(unit));
686         kfree(unit);
687 }
688
689 static struct device_type fw_unit_type = {
690         .uevent         = fw_unit_uevent,
691         .release        = fw_unit_release,
692 };
693
694 static bool is_fw_unit(struct device *dev)
695 {
696         return dev->type == &fw_unit_type;
697 }
698
699 static void create_units(struct fw_device *device)
700 {
701         struct fw_csr_iterator ci;
702         struct fw_unit *unit;
703         int key, value, i;
704
705         i = 0;
706         fw_csr_iterator_init(&ci, &device->config_rom[5]);
707         while (fw_csr_iterator_next(&ci, &key, &value)) {
708                 if (key != (CSR_UNIT | CSR_DIRECTORY))
709                         continue;
710
711                 /*
712                  * Get the address of the unit directory and try to
713                  * match the drivers id_tables against it.
714                  */
715                 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
716                 if (unit == NULL)
717                         continue;
718
719                 unit->directory = ci.p + value - 1;
720                 unit->device.bus = &fw_bus_type;
721                 unit->device.type = &fw_unit_type;
722                 unit->device.parent = &device->device;
723                 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
724
725                 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
726                                 ARRAY_SIZE(fw_unit_attributes) +
727                                 ARRAY_SIZE(config_rom_attributes));
728                 init_fw_attribute_group(&unit->device,
729                                         fw_unit_attributes,
730                                         &unit->attribute_group);
731
732                 if (device_register(&unit->device) < 0)
733                         goto skip_unit;
734
735                 fw_device_get(device);
736                 continue;
737
738         skip_unit:
739                 kfree(unit);
740         }
741 }
742
743 static int shutdown_unit(struct device *device, void *data)
744 {
745         device_unregister(device);
746
747         return 0;
748 }
749
750 /*
751  * fw_device_rwsem acts as dual purpose mutex:
752  *   - serializes accesses to fw_device_idr,
753  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
754  *     fw_unit.directory, unless those accesses happen at safe occasions
755  */
756 DECLARE_RWSEM(fw_device_rwsem);
757
758 DEFINE_IDR(fw_device_idr);
759 int fw_cdev_major;
760
761 struct fw_device *fw_device_get_by_devt(dev_t devt)
762 {
763         struct fw_device *device;
764
765         down_read(&fw_device_rwsem);
766         device = idr_find(&fw_device_idr, MINOR(devt));
767         if (device)
768                 fw_device_get(device);
769         up_read(&fw_device_rwsem);
770
771         return device;
772 }
773
774 struct workqueue_struct *fw_workqueue;
775 EXPORT_SYMBOL(fw_workqueue);
776
777 static void fw_schedule_device_work(struct fw_device *device,
778                                     unsigned long delay)
779 {
780         queue_delayed_work(fw_workqueue, &device->work, delay);
781 }
782
783 /*
784  * These defines control the retry behavior for reading the config
785  * rom.  It shouldn't be necessary to tweak these; if the device
786  * doesn't respond to a config rom read within 10 seconds, it's not
787  * going to respond at all.  As for the initial delay, a lot of
788  * devices will be able to respond within half a second after bus
789  * reset.  On the other hand, it's not really worth being more
790  * aggressive than that, since it scales pretty well; if 10 devices
791  * are plugged in, they're all getting read within one second.
792  */
793
794 #define MAX_RETRIES     10
795 #define RETRY_DELAY     (3 * HZ)
796 #define INITIAL_DELAY   (HZ / 2)
797 #define SHUTDOWN_DELAY  (2 * HZ)
798
799 static void fw_device_shutdown(struct work_struct *work)
800 {
801         struct fw_device *device =
802                 container_of(work, struct fw_device, work.work);
803         int minor = MINOR(device->device.devt);
804
805         if (time_before64(get_jiffies_64(),
806                           device->card->reset_jiffies + SHUTDOWN_DELAY)
807             && !list_empty(&device->card->link)) {
808                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
809                 return;
810         }
811
812         if (atomic_cmpxchg(&device->state,
813                            FW_DEVICE_GONE,
814                            FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
815                 return;
816
817         fw_device_cdev_remove(device);
818         device_for_each_child(&device->device, NULL, shutdown_unit);
819         device_unregister(&device->device);
820
821         down_write(&fw_device_rwsem);
822         idr_remove(&fw_device_idr, minor);
823         up_write(&fw_device_rwsem);
824
825         fw_device_put(device);
826 }
827
828 static void fw_device_release(struct device *dev)
829 {
830         struct fw_device *device = fw_device(dev);
831         struct fw_card *card = device->card;
832         unsigned long flags;
833
834         /*
835          * Take the card lock so we don't set this to NULL while a
836          * FW_NODE_UPDATED callback is being handled or while the
837          * bus manager work looks at this node.
838          */
839         spin_lock_irqsave(&card->lock, flags);
840         device->node->data = NULL;
841         spin_unlock_irqrestore(&card->lock, flags);
842
843         fw_node_put(device->node);
844         kfree(device->config_rom);
845         kfree(device);
846         fw_card_put(card);
847 }
848
849 static struct device_type fw_device_type = {
850         .release = fw_device_release,
851 };
852
853 static bool is_fw_device(struct device *dev)
854 {
855         return dev->type == &fw_device_type;
856 }
857
858 static int update_unit(struct device *dev, void *data)
859 {
860         struct fw_unit *unit = fw_unit(dev);
861         struct fw_driver *driver = (struct fw_driver *)dev->driver;
862
863         if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
864                 device_lock(dev);
865                 driver->update(unit);
866                 device_unlock(dev);
867         }
868
869         return 0;
870 }
871
872 static void fw_device_update(struct work_struct *work)
873 {
874         struct fw_device *device =
875                 container_of(work, struct fw_device, work.work);
876
877         fw_device_cdev_update(device);
878         device_for_each_child(&device->device, NULL, update_unit);
879 }
880
881 /*
882  * If a device was pending for deletion because its node went away but its
883  * bus info block and root directory header matches that of a newly discovered
884  * device, revive the existing fw_device.
885  * The newly allocated fw_device becomes obsolete instead.
886  */
887 static int lookup_existing_device(struct device *dev, void *data)
888 {
889         struct fw_device *old = fw_device(dev);
890         struct fw_device *new = data;
891         struct fw_card *card = new->card;
892         int match = 0;
893
894         if (!is_fw_device(dev))
895                 return 0;
896
897         down_read(&fw_device_rwsem); /* serialize config_rom access */
898         spin_lock_irq(&card->lock);  /* serialize node access */
899
900         if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
901             atomic_cmpxchg(&old->state,
902                            FW_DEVICE_GONE,
903                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
904                 struct fw_node *current_node = new->node;
905                 struct fw_node *obsolete_node = old->node;
906
907                 new->node = obsolete_node;
908                 new->node->data = new;
909                 old->node = current_node;
910                 old->node->data = old;
911
912                 old->max_speed = new->max_speed;
913                 old->node_id = current_node->node_id;
914                 smp_wmb();  /* update node_id before generation */
915                 old->generation = card->generation;
916                 old->config_rom_retries = 0;
917                 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
918
919                 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
920                 fw_schedule_device_work(old, 0);
921
922                 if (current_node == card->root_node)
923                         fw_schedule_bm_work(card, 0);
924
925                 match = 1;
926         }
927
928         spin_unlock_irq(&card->lock);
929         up_read(&fw_device_rwsem);
930
931         return match;
932 }
933
934 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
935
936 static void set_broadcast_channel(struct fw_device *device, int generation)
937 {
938         struct fw_card *card = device->card;
939         __be32 data;
940         int rcode;
941
942         if (!card->broadcast_channel_allocated)
943                 return;
944
945         /*
946          * The Broadcast_Channel Valid bit is required by nodes which want to
947          * transmit on this channel.  Such transmissions are practically
948          * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
949          * to be IRM capable and have a max_rec of 8 or more.  We use this fact
950          * to narrow down to which nodes we send Broadcast_Channel updates.
951          */
952         if (!device->irmc || device->max_rec < 8)
953                 return;
954
955         /*
956          * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
957          * Perform a read test first.
958          */
959         if (device->bc_implemented == BC_UNKNOWN) {
960                 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
961                                 device->node_id, generation, device->max_speed,
962                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
963                                 &data, 4);
964                 switch (rcode) {
965                 case RCODE_COMPLETE:
966                         if (data & cpu_to_be32(1 << 31)) {
967                                 device->bc_implemented = BC_IMPLEMENTED;
968                                 break;
969                         }
970                         /* else fall through to case address error */
971                 case RCODE_ADDRESS_ERROR:
972                         device->bc_implemented = BC_UNIMPLEMENTED;
973                 }
974         }
975
976         if (device->bc_implemented == BC_IMPLEMENTED) {
977                 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
978                                    BROADCAST_CHANNEL_VALID);
979                 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
980                                 device->node_id, generation, device->max_speed,
981                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
982                                 &data, 4);
983         }
984 }
985
986 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
987 {
988         if (is_fw_device(dev))
989                 set_broadcast_channel(fw_device(dev), (long)gen);
990
991         return 0;
992 }
993
994 static void fw_device_init(struct work_struct *work)
995 {
996         struct fw_device *device =
997                 container_of(work, struct fw_device, work.work);
998         struct fw_card *card = device->card;
999         struct device *revived_dev;
1000         int minor, ret;
1001
1002         /*
1003          * All failure paths here set node->data to NULL, so that we
1004          * don't try to do device_for_each_child() on a kfree()'d
1005          * device.
1006          */
1007
1008         ret = read_config_rom(device, device->generation);
1009         if (ret != RCODE_COMPLETE) {
1010                 if (device->config_rom_retries < MAX_RETRIES &&
1011                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1012                         device->config_rom_retries++;
1013                         fw_schedule_device_work(device, RETRY_DELAY);
1014                 } else {
1015                         if (device->node->link_on)
1016                                 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1017                                           device->node_id,
1018                                           fw_rcode_string(ret));
1019                         if (device->node == card->root_node)
1020                                 fw_schedule_bm_work(card, 0);
1021                         fw_device_release(&device->device);
1022                 }
1023                 return;
1024         }
1025
1026         revived_dev = device_find_child(card->device,
1027                                         device, lookup_existing_device);
1028         if (revived_dev) {
1029                 put_device(revived_dev);
1030                 fw_device_release(&device->device);
1031
1032                 return;
1033         }
1034
1035         device_initialize(&device->device);
1036
1037         fw_device_get(device);
1038         down_write(&fw_device_rwsem);
1039         minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1040                         GFP_KERNEL);
1041         up_write(&fw_device_rwsem);
1042
1043         if (minor < 0)
1044                 goto error;
1045
1046         device->device.bus = &fw_bus_type;
1047         device->device.type = &fw_device_type;
1048         device->device.parent = card->device;
1049         device->device.devt = MKDEV(fw_cdev_major, minor);
1050         dev_set_name(&device->device, "fw%d", minor);
1051
1052         BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1053                         ARRAY_SIZE(fw_device_attributes) +
1054                         ARRAY_SIZE(config_rom_attributes));
1055         init_fw_attribute_group(&device->device,
1056                                 fw_device_attributes,
1057                                 &device->attribute_group);
1058
1059         if (device_add(&device->device)) {
1060                 fw_err(card, "failed to add device\n");
1061                 goto error_with_cdev;
1062         }
1063
1064         create_units(device);
1065
1066         /*
1067          * Transition the device to running state.  If it got pulled
1068          * out from under us while we did the intialization work, we
1069          * have to shut down the device again here.  Normally, though,
1070          * fw_node_event will be responsible for shutting it down when
1071          * necessary.  We have to use the atomic cmpxchg here to avoid
1072          * racing with the FW_NODE_DESTROYED case in
1073          * fw_node_event().
1074          */
1075         if (atomic_cmpxchg(&device->state,
1076                            FW_DEVICE_INITIALIZING,
1077                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1078                 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1079                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1080         } else {
1081                 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1082                           dev_name(&device->device),
1083                           device->config_rom[3], device->config_rom[4],
1084                           1 << device->max_speed);
1085                 device->config_rom_retries = 0;
1086
1087                 set_broadcast_channel(device, device->generation);
1088
1089                 add_device_randomness(&device->config_rom[3], 8);
1090         }
1091
1092         /*
1093          * Reschedule the IRM work if we just finished reading the
1094          * root node config rom.  If this races with a bus reset we
1095          * just end up running the IRM work a couple of extra times -
1096          * pretty harmless.
1097          */
1098         if (device->node == card->root_node)
1099                 fw_schedule_bm_work(card, 0);
1100
1101         return;
1102
1103  error_with_cdev:
1104         down_write(&fw_device_rwsem);
1105         idr_remove(&fw_device_idr, minor);
1106         up_write(&fw_device_rwsem);
1107  error:
1108         fw_device_put(device);          /* fw_device_idr's reference */
1109
1110         put_device(&device->device);    /* our reference */
1111 }
1112
1113 /* Reread and compare bus info block and header of root directory */
1114 static int reread_config_rom(struct fw_device *device, int generation,
1115                              bool *changed)
1116 {
1117         u32 q;
1118         int i, rcode;
1119
1120         for (i = 0; i < 6; i++) {
1121                 rcode = read_rom(device, generation, i, &q);
1122                 if (rcode != RCODE_COMPLETE)
1123                         return rcode;
1124
1125                 if (i == 0 && q == 0)
1126                         /* inaccessible (see read_config_rom); retry later */
1127                         return RCODE_BUSY;
1128
1129                 if (q != device->config_rom[i]) {
1130                         *changed = true;
1131                         return RCODE_COMPLETE;
1132                 }
1133         }
1134
1135         *changed = false;
1136         return RCODE_COMPLETE;
1137 }
1138
1139 static void fw_device_refresh(struct work_struct *work)
1140 {
1141         struct fw_device *device =
1142                 container_of(work, struct fw_device, work.work);
1143         struct fw_card *card = device->card;
1144         int ret, node_id = device->node_id;
1145         bool changed;
1146
1147         ret = reread_config_rom(device, device->generation, &changed);
1148         if (ret != RCODE_COMPLETE)
1149                 goto failed_config_rom;
1150
1151         if (!changed) {
1152                 if (atomic_cmpxchg(&device->state,
1153                                    FW_DEVICE_INITIALIZING,
1154                                    FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1155                         goto gone;
1156
1157                 fw_device_update(work);
1158                 device->config_rom_retries = 0;
1159                 goto out;
1160         }
1161
1162         /*
1163          * Something changed.  We keep things simple and don't investigate
1164          * further.  We just destroy all previous units and create new ones.
1165          */
1166         device_for_each_child(&device->device, NULL, shutdown_unit);
1167
1168         ret = read_config_rom(device, device->generation);
1169         if (ret != RCODE_COMPLETE)
1170                 goto failed_config_rom;
1171
1172         fw_device_cdev_update(device);
1173         create_units(device);
1174
1175         /* Userspace may want to re-read attributes. */
1176         kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1177
1178         if (atomic_cmpxchg(&device->state,
1179                            FW_DEVICE_INITIALIZING,
1180                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1181                 goto gone;
1182
1183         fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1184         device->config_rom_retries = 0;
1185         goto out;
1186
1187  failed_config_rom:
1188         if (device->config_rom_retries < MAX_RETRIES &&
1189             atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1190                 device->config_rom_retries++;
1191                 fw_schedule_device_work(device, RETRY_DELAY);
1192                 return;
1193         }
1194
1195         fw_notice(card, "giving up on refresh of device %s: %s\n",
1196                   dev_name(&device->device), fw_rcode_string(ret));
1197  gone:
1198         atomic_set(&device->state, FW_DEVICE_GONE);
1199         PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1200         fw_schedule_device_work(device, SHUTDOWN_DELAY);
1201  out:
1202         if (node_id == card->root_node->node_id)
1203                 fw_schedule_bm_work(card, 0);
1204 }
1205
1206 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1207 {
1208         struct fw_device *device;
1209
1210         switch (event) {
1211         case FW_NODE_CREATED:
1212                 /*
1213                  * Attempt to scan the node, regardless whether its self ID has
1214                  * the L (link active) flag set or not.  Some broken devices
1215                  * send L=0 but have an up-and-running link; others send L=1
1216                  * without actually having a link.
1217                  */
1218  create:
1219                 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1220                 if (device == NULL)
1221                         break;
1222
1223                 /*
1224                  * Do minimal intialization of the device here, the
1225                  * rest will happen in fw_device_init().
1226                  *
1227                  * Attention:  A lot of things, even fw_device_get(),
1228                  * cannot be done before fw_device_init() finished!
1229                  * You can basically just check device->state and
1230                  * schedule work until then, but only while holding
1231                  * card->lock.
1232                  */
1233                 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1234                 device->card = fw_card_get(card);
1235                 device->node = fw_node_get(node);
1236                 device->node_id = node->node_id;
1237                 device->generation = card->generation;
1238                 device->is_local = node == card->local_node;
1239                 mutex_init(&device->client_list_mutex);
1240                 INIT_LIST_HEAD(&device->client_list);
1241
1242                 /*
1243                  * Set the node data to point back to this device so
1244                  * FW_NODE_UPDATED callbacks can update the node_id
1245                  * and generation for the device.
1246                  */
1247                 node->data = device;
1248
1249                 /*
1250                  * Many devices are slow to respond after bus resets,
1251                  * especially if they are bus powered and go through
1252                  * power-up after getting plugged in.  We schedule the
1253                  * first config rom scan half a second after bus reset.
1254                  */
1255                 INIT_DELAYED_WORK(&device->work, fw_device_init);
1256                 fw_schedule_device_work(device, INITIAL_DELAY);
1257                 break;
1258
1259         case FW_NODE_INITIATED_RESET:
1260         case FW_NODE_LINK_ON:
1261                 device = node->data;
1262                 if (device == NULL)
1263                         goto create;
1264
1265                 device->node_id = node->node_id;
1266                 smp_wmb();  /* update node_id before generation */
1267                 device->generation = card->generation;
1268                 if (atomic_cmpxchg(&device->state,
1269                             FW_DEVICE_RUNNING,
1270                             FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1271                         PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1272                         fw_schedule_device_work(device,
1273                                 device->is_local ? 0 : INITIAL_DELAY);
1274                 }
1275                 break;
1276
1277         case FW_NODE_UPDATED:
1278                 device = node->data;
1279                 if (device == NULL)
1280                         break;
1281
1282                 device->node_id = node->node_id;
1283                 smp_wmb();  /* update node_id before generation */
1284                 device->generation = card->generation;
1285                 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1286                         PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1287                         fw_schedule_device_work(device, 0);
1288                 }
1289                 break;
1290
1291         case FW_NODE_DESTROYED:
1292         case FW_NODE_LINK_OFF:
1293                 if (!node->data)
1294                         break;
1295
1296                 /*
1297                  * Destroy the device associated with the node.  There
1298                  * are two cases here: either the device is fully
1299                  * initialized (FW_DEVICE_RUNNING) or we're in the
1300                  * process of reading its config rom
1301                  * (FW_DEVICE_INITIALIZING).  If it is fully
1302                  * initialized we can reuse device->work to schedule a
1303                  * full fw_device_shutdown().  If not, there's work
1304                  * scheduled to read it's config rom, and we just put
1305                  * the device in shutdown state to have that code fail
1306                  * to create the device.
1307                  */
1308                 device = node->data;
1309                 if (atomic_xchg(&device->state,
1310                                 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1311                         PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1312                         fw_schedule_device_work(device,
1313                                 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1314                 }
1315                 break;
1316         }
1317 }