Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
18
19 #include "perf_event.h"
20
21 /*
22  * Intel PerfMon, used on Core and later.
23  */
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25 {
26         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
27         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
28         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
29         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
30         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
31         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
32         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
33         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
34 };
35
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 {
38         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44         EVENT_CONSTRAINT_END
45 };
46
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48 {
49         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62         EVENT_CONSTRAINT_END
63 };
64
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66 {
67         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78         EVENT_CONSTRAINT_END
79 };
80
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82 {
83         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84         EVENT_EXTRA_END
85 };
86
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88 {
89         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96         EVENT_CONSTRAINT_END
97 };
98
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 {
101         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
107         EVENT_CONSTRAINT_END
108 };
109
110 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
111 {
112         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
113         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
114         EVENT_EXTRA_END
115 };
116
117 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
118 {
119         EVENT_CONSTRAINT_END
120 };
121
122 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
123 {
124         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
125         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
126         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
127         EVENT_CONSTRAINT_END
128 };
129
130 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
131         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
132         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
133         EVENT_EXTRA_END
134 };
135
136 static u64 intel_pmu_event_map(int hw_event)
137 {
138         return intel_perfmon_event_map[hw_event];
139 }
140
141 static __initconst const u64 snb_hw_cache_event_ids
142                                 [PERF_COUNT_HW_CACHE_MAX]
143                                 [PERF_COUNT_HW_CACHE_OP_MAX]
144                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
145 {
146  [ C(L1D) ] = {
147         [ C(OP_READ) ] = {
148                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
149                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
150         },
151         [ C(OP_WRITE) ] = {
152                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
153                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
154         },
155         [ C(OP_PREFETCH) ] = {
156                 [ C(RESULT_ACCESS) ] = 0x0,
157                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
158         },
159  },
160  [ C(L1I ) ] = {
161         [ C(OP_READ) ] = {
162                 [ C(RESULT_ACCESS) ] = 0x0,
163                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
164         },
165         [ C(OP_WRITE) ] = {
166                 [ C(RESULT_ACCESS) ] = -1,
167                 [ C(RESULT_MISS)   ] = -1,
168         },
169         [ C(OP_PREFETCH) ] = {
170                 [ C(RESULT_ACCESS) ] = 0x0,
171                 [ C(RESULT_MISS)   ] = 0x0,
172         },
173  },
174  [ C(LL  ) ] = {
175         [ C(OP_READ) ] = {
176                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
177                 [ C(RESULT_ACCESS) ] = 0x01b7,
178                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
179                 [ C(RESULT_MISS)   ] = 0x01b7,
180         },
181         [ C(OP_WRITE) ] = {
182                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
183                 [ C(RESULT_ACCESS) ] = 0x01b7,
184                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
185                 [ C(RESULT_MISS)   ] = 0x01b7,
186         },
187         [ C(OP_PREFETCH) ] = {
188                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
189                 [ C(RESULT_ACCESS) ] = 0x01b7,
190                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
191                 [ C(RESULT_MISS)   ] = 0x01b7,
192         },
193  },
194  [ C(DTLB) ] = {
195         [ C(OP_READ) ] = {
196                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
197                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
198         },
199         [ C(OP_WRITE) ] = {
200                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
201                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
202         },
203         [ C(OP_PREFETCH) ] = {
204                 [ C(RESULT_ACCESS) ] = 0x0,
205                 [ C(RESULT_MISS)   ] = 0x0,
206         },
207  },
208  [ C(ITLB) ] = {
209         [ C(OP_READ) ] = {
210                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
211                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
212         },
213         [ C(OP_WRITE) ] = {
214                 [ C(RESULT_ACCESS) ] = -1,
215                 [ C(RESULT_MISS)   ] = -1,
216         },
217         [ C(OP_PREFETCH) ] = {
218                 [ C(RESULT_ACCESS) ] = -1,
219                 [ C(RESULT_MISS)   ] = -1,
220         },
221  },
222  [ C(BPU ) ] = {
223         [ C(OP_READ) ] = {
224                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
225                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
226         },
227         [ C(OP_WRITE) ] = {
228                 [ C(RESULT_ACCESS) ] = -1,
229                 [ C(RESULT_MISS)   ] = -1,
230         },
231         [ C(OP_PREFETCH) ] = {
232                 [ C(RESULT_ACCESS) ] = -1,
233                 [ C(RESULT_MISS)   ] = -1,
234         },
235  },
236  [ C(NODE) ] = {
237         [ C(OP_READ) ] = {
238                 [ C(RESULT_ACCESS) ] = -1,
239                 [ C(RESULT_MISS)   ] = -1,
240         },
241         [ C(OP_WRITE) ] = {
242                 [ C(RESULT_ACCESS) ] = -1,
243                 [ C(RESULT_MISS)   ] = -1,
244         },
245         [ C(OP_PREFETCH) ] = {
246                 [ C(RESULT_ACCESS) ] = -1,
247                 [ C(RESULT_MISS)   ] = -1,
248         },
249  },
250
251 };
252
253 static __initconst const u64 westmere_hw_cache_event_ids
254                                 [PERF_COUNT_HW_CACHE_MAX]
255                                 [PERF_COUNT_HW_CACHE_OP_MAX]
256                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
257 {
258  [ C(L1D) ] = {
259         [ C(OP_READ) ] = {
260                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
261                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
262         },
263         [ C(OP_WRITE) ] = {
264                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
265                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
266         },
267         [ C(OP_PREFETCH) ] = {
268                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
269                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
270         },
271  },
272  [ C(L1I ) ] = {
273         [ C(OP_READ) ] = {
274                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
275                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
276         },
277         [ C(OP_WRITE) ] = {
278                 [ C(RESULT_ACCESS) ] = -1,
279                 [ C(RESULT_MISS)   ] = -1,
280         },
281         [ C(OP_PREFETCH) ] = {
282                 [ C(RESULT_ACCESS) ] = 0x0,
283                 [ C(RESULT_MISS)   ] = 0x0,
284         },
285  },
286  [ C(LL  ) ] = {
287         [ C(OP_READ) ] = {
288                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
289                 [ C(RESULT_ACCESS) ] = 0x01b7,
290                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
291                 [ C(RESULT_MISS)   ] = 0x01b7,
292         },
293         /*
294          * Use RFO, not WRITEBACK, because a write miss would typically occur
295          * on RFO.
296          */
297         [ C(OP_WRITE) ] = {
298                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
299                 [ C(RESULT_ACCESS) ] = 0x01b7,
300                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
301                 [ C(RESULT_MISS)   ] = 0x01b7,
302         },
303         [ C(OP_PREFETCH) ] = {
304                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
305                 [ C(RESULT_ACCESS) ] = 0x01b7,
306                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
307                 [ C(RESULT_MISS)   ] = 0x01b7,
308         },
309  },
310  [ C(DTLB) ] = {
311         [ C(OP_READ) ] = {
312                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
313                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
314         },
315         [ C(OP_WRITE) ] = {
316                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
317                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
318         },
319         [ C(OP_PREFETCH) ] = {
320                 [ C(RESULT_ACCESS) ] = 0x0,
321                 [ C(RESULT_MISS)   ] = 0x0,
322         },
323  },
324  [ C(ITLB) ] = {
325         [ C(OP_READ) ] = {
326                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
327                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
328         },
329         [ C(OP_WRITE) ] = {
330                 [ C(RESULT_ACCESS) ] = -1,
331                 [ C(RESULT_MISS)   ] = -1,
332         },
333         [ C(OP_PREFETCH) ] = {
334                 [ C(RESULT_ACCESS) ] = -1,
335                 [ C(RESULT_MISS)   ] = -1,
336         },
337  },
338  [ C(BPU ) ] = {
339         [ C(OP_READ) ] = {
340                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
341                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
342         },
343         [ C(OP_WRITE) ] = {
344                 [ C(RESULT_ACCESS) ] = -1,
345                 [ C(RESULT_MISS)   ] = -1,
346         },
347         [ C(OP_PREFETCH) ] = {
348                 [ C(RESULT_ACCESS) ] = -1,
349                 [ C(RESULT_MISS)   ] = -1,
350         },
351  },
352  [ C(NODE) ] = {
353         [ C(OP_READ) ] = {
354                 [ C(RESULT_ACCESS) ] = 0x01b7,
355                 [ C(RESULT_MISS)   ] = 0x01b7,
356         },
357         [ C(OP_WRITE) ] = {
358                 [ C(RESULT_ACCESS) ] = 0x01b7,
359                 [ C(RESULT_MISS)   ] = 0x01b7,
360         },
361         [ C(OP_PREFETCH) ] = {
362                 [ C(RESULT_ACCESS) ] = 0x01b7,
363                 [ C(RESULT_MISS)   ] = 0x01b7,
364         },
365  },
366 };
367
368 /*
369  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
370  * See IA32 SDM Vol 3B 30.6.1.3
371  */
372
373 #define NHM_DMND_DATA_RD        (1 << 0)
374 #define NHM_DMND_RFO            (1 << 1)
375 #define NHM_DMND_IFETCH         (1 << 2)
376 #define NHM_DMND_WB             (1 << 3)
377 #define NHM_PF_DATA_RD          (1 << 4)
378 #define NHM_PF_DATA_RFO         (1 << 5)
379 #define NHM_PF_IFETCH           (1 << 6)
380 #define NHM_OFFCORE_OTHER       (1 << 7)
381 #define NHM_UNCORE_HIT          (1 << 8)
382 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
383 #define NHM_OTHER_CORE_HITM     (1 << 10)
384                                 /* reserved */
385 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
386 #define NHM_REMOTE_DRAM         (1 << 13)
387 #define NHM_LOCAL_DRAM          (1 << 14)
388 #define NHM_NON_DRAM            (1 << 15)
389
390 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
391 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
392
393 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
394 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
395 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
396
397 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
398 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
399 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
400
401 static __initconst const u64 nehalem_hw_cache_extra_regs
402                                 [PERF_COUNT_HW_CACHE_MAX]
403                                 [PERF_COUNT_HW_CACHE_OP_MAX]
404                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
405 {
406  [ C(LL  ) ] = {
407         [ C(OP_READ) ] = {
408                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
409                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
410         },
411         [ C(OP_WRITE) ] = {
412                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
413                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
414         },
415         [ C(OP_PREFETCH) ] = {
416                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
417                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
418         },
419  },
420  [ C(NODE) ] = {
421         [ C(OP_READ) ] = {
422                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
423                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
424         },
425         [ C(OP_WRITE) ] = {
426                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
427                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
428         },
429         [ C(OP_PREFETCH) ] = {
430                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
431                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
432         },
433  },
434 };
435
436 static __initconst const u64 nehalem_hw_cache_event_ids
437                                 [PERF_COUNT_HW_CACHE_MAX]
438                                 [PERF_COUNT_HW_CACHE_OP_MAX]
439                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
440 {
441  [ C(L1D) ] = {
442         [ C(OP_READ) ] = {
443                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
444                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
445         },
446         [ C(OP_WRITE) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
448                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
449         },
450         [ C(OP_PREFETCH) ] = {
451                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
452                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
453         },
454  },
455  [ C(L1I ) ] = {
456         [ C(OP_READ) ] = {
457                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
458                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
459         },
460         [ C(OP_WRITE) ] = {
461                 [ C(RESULT_ACCESS) ] = -1,
462                 [ C(RESULT_MISS)   ] = -1,
463         },
464         [ C(OP_PREFETCH) ] = {
465                 [ C(RESULT_ACCESS) ] = 0x0,
466                 [ C(RESULT_MISS)   ] = 0x0,
467         },
468  },
469  [ C(LL  ) ] = {
470         [ C(OP_READ) ] = {
471                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
472                 [ C(RESULT_ACCESS) ] = 0x01b7,
473                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
474                 [ C(RESULT_MISS)   ] = 0x01b7,
475         },
476         /*
477          * Use RFO, not WRITEBACK, because a write miss would typically occur
478          * on RFO.
479          */
480         [ C(OP_WRITE) ] = {
481                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
482                 [ C(RESULT_ACCESS) ] = 0x01b7,
483                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
484                 [ C(RESULT_MISS)   ] = 0x01b7,
485         },
486         [ C(OP_PREFETCH) ] = {
487                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
488                 [ C(RESULT_ACCESS) ] = 0x01b7,
489                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
490                 [ C(RESULT_MISS)   ] = 0x01b7,
491         },
492  },
493  [ C(DTLB) ] = {
494         [ C(OP_READ) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
496                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
497         },
498         [ C(OP_WRITE) ] = {
499                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
500                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
501         },
502         [ C(OP_PREFETCH) ] = {
503                 [ C(RESULT_ACCESS) ] = 0x0,
504                 [ C(RESULT_MISS)   ] = 0x0,
505         },
506  },
507  [ C(ITLB) ] = {
508         [ C(OP_READ) ] = {
509                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
510                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
511         },
512         [ C(OP_WRITE) ] = {
513                 [ C(RESULT_ACCESS) ] = -1,
514                 [ C(RESULT_MISS)   ] = -1,
515         },
516         [ C(OP_PREFETCH) ] = {
517                 [ C(RESULT_ACCESS) ] = -1,
518                 [ C(RESULT_MISS)   ] = -1,
519         },
520  },
521  [ C(BPU ) ] = {
522         [ C(OP_READ) ] = {
523                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
524                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
525         },
526         [ C(OP_WRITE) ] = {
527                 [ C(RESULT_ACCESS) ] = -1,
528                 [ C(RESULT_MISS)   ] = -1,
529         },
530         [ C(OP_PREFETCH) ] = {
531                 [ C(RESULT_ACCESS) ] = -1,
532                 [ C(RESULT_MISS)   ] = -1,
533         },
534  },
535  [ C(NODE) ] = {
536         [ C(OP_READ) ] = {
537                 [ C(RESULT_ACCESS) ] = 0x01b7,
538                 [ C(RESULT_MISS)   ] = 0x01b7,
539         },
540         [ C(OP_WRITE) ] = {
541                 [ C(RESULT_ACCESS) ] = 0x01b7,
542                 [ C(RESULT_MISS)   ] = 0x01b7,
543         },
544         [ C(OP_PREFETCH) ] = {
545                 [ C(RESULT_ACCESS) ] = 0x01b7,
546                 [ C(RESULT_MISS)   ] = 0x01b7,
547         },
548  },
549 };
550
551 static __initconst const u64 core2_hw_cache_event_ids
552                                 [PERF_COUNT_HW_CACHE_MAX]
553                                 [PERF_COUNT_HW_CACHE_OP_MAX]
554                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
555 {
556  [ C(L1D) ] = {
557         [ C(OP_READ) ] = {
558                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
559                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
560         },
561         [ C(OP_WRITE) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
563                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
564         },
565         [ C(OP_PREFETCH) ] = {
566                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
567                 [ C(RESULT_MISS)   ] = 0,
568         },
569  },
570  [ C(L1I ) ] = {
571         [ C(OP_READ) ] = {
572                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
573                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
574         },
575         [ C(OP_WRITE) ] = {
576                 [ C(RESULT_ACCESS) ] = -1,
577                 [ C(RESULT_MISS)   ] = -1,
578         },
579         [ C(OP_PREFETCH) ] = {
580                 [ C(RESULT_ACCESS) ] = 0,
581                 [ C(RESULT_MISS)   ] = 0,
582         },
583  },
584  [ C(LL  ) ] = {
585         [ C(OP_READ) ] = {
586                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
587                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
588         },
589         [ C(OP_WRITE) ] = {
590                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
591                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
592         },
593         [ C(OP_PREFETCH) ] = {
594                 [ C(RESULT_ACCESS) ] = 0,
595                 [ C(RESULT_MISS)   ] = 0,
596         },
597  },
598  [ C(DTLB) ] = {
599         [ C(OP_READ) ] = {
600                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
601                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
602         },
603         [ C(OP_WRITE) ] = {
604                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
605                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
606         },
607         [ C(OP_PREFETCH) ] = {
608                 [ C(RESULT_ACCESS) ] = 0,
609                 [ C(RESULT_MISS)   ] = 0,
610         },
611  },
612  [ C(ITLB) ] = {
613         [ C(OP_READ) ] = {
614                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
615                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
616         },
617         [ C(OP_WRITE) ] = {
618                 [ C(RESULT_ACCESS) ] = -1,
619                 [ C(RESULT_MISS)   ] = -1,
620         },
621         [ C(OP_PREFETCH) ] = {
622                 [ C(RESULT_ACCESS) ] = -1,
623                 [ C(RESULT_MISS)   ] = -1,
624         },
625  },
626  [ C(BPU ) ] = {
627         [ C(OP_READ) ] = {
628                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
629                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
630         },
631         [ C(OP_WRITE) ] = {
632                 [ C(RESULT_ACCESS) ] = -1,
633                 [ C(RESULT_MISS)   ] = -1,
634         },
635         [ C(OP_PREFETCH) ] = {
636                 [ C(RESULT_ACCESS) ] = -1,
637                 [ C(RESULT_MISS)   ] = -1,
638         },
639  },
640 };
641
642 static __initconst const u64 atom_hw_cache_event_ids
643                                 [PERF_COUNT_HW_CACHE_MAX]
644                                 [PERF_COUNT_HW_CACHE_OP_MAX]
645                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
646 {
647  [ C(L1D) ] = {
648         [ C(OP_READ) ] = {
649                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
650                 [ C(RESULT_MISS)   ] = 0,
651         },
652         [ C(OP_WRITE) ] = {
653                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
654                 [ C(RESULT_MISS)   ] = 0,
655         },
656         [ C(OP_PREFETCH) ] = {
657                 [ C(RESULT_ACCESS) ] = 0x0,
658                 [ C(RESULT_MISS)   ] = 0,
659         },
660  },
661  [ C(L1I ) ] = {
662         [ C(OP_READ) ] = {
663                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
664                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
665         },
666         [ C(OP_WRITE) ] = {
667                 [ C(RESULT_ACCESS) ] = -1,
668                 [ C(RESULT_MISS)   ] = -1,
669         },
670         [ C(OP_PREFETCH) ] = {
671                 [ C(RESULT_ACCESS) ] = 0,
672                 [ C(RESULT_MISS)   ] = 0,
673         },
674  },
675  [ C(LL  ) ] = {
676         [ C(OP_READ) ] = {
677                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
678                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
679         },
680         [ C(OP_WRITE) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
682                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
683         },
684         [ C(OP_PREFETCH) ] = {
685                 [ C(RESULT_ACCESS) ] = 0,
686                 [ C(RESULT_MISS)   ] = 0,
687         },
688  },
689  [ C(DTLB) ] = {
690         [ C(OP_READ) ] = {
691                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
692                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
693         },
694         [ C(OP_WRITE) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
696                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
697         },
698         [ C(OP_PREFETCH) ] = {
699                 [ C(RESULT_ACCESS) ] = 0,
700                 [ C(RESULT_MISS)   ] = 0,
701         },
702  },
703  [ C(ITLB) ] = {
704         [ C(OP_READ) ] = {
705                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
706                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
707         },
708         [ C(OP_WRITE) ] = {
709                 [ C(RESULT_ACCESS) ] = -1,
710                 [ C(RESULT_MISS)   ] = -1,
711         },
712         [ C(OP_PREFETCH) ] = {
713                 [ C(RESULT_ACCESS) ] = -1,
714                 [ C(RESULT_MISS)   ] = -1,
715         },
716  },
717  [ C(BPU ) ] = {
718         [ C(OP_READ) ] = {
719                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
720                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
721         },
722         [ C(OP_WRITE) ] = {
723                 [ C(RESULT_ACCESS) ] = -1,
724                 [ C(RESULT_MISS)   ] = -1,
725         },
726         [ C(OP_PREFETCH) ] = {
727                 [ C(RESULT_ACCESS) ] = -1,
728                 [ C(RESULT_MISS)   ] = -1,
729         },
730  },
731 };
732
733 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
734 {
735         /* user explicitly requested branch sampling */
736         if (has_branch_stack(event))
737                 return true;
738
739         /* implicit branch sampling to correct PEBS skid */
740         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
741                 return true;
742
743         return false;
744 }
745
746 static void intel_pmu_disable_all(void)
747 {
748         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
749
750         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
751
752         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
753                 intel_pmu_disable_bts();
754
755         intel_pmu_pebs_disable_all();
756         intel_pmu_lbr_disable_all();
757 }
758
759 static void intel_pmu_enable_all(int added)
760 {
761         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
762
763         intel_pmu_pebs_enable_all();
764         intel_pmu_lbr_enable_all();
765         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
766                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
767
768         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
769                 struct perf_event *event =
770                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
771
772                 if (WARN_ON_ONCE(!event))
773                         return;
774
775                 intel_pmu_enable_bts(event->hw.config);
776         }
777 }
778
779 /*
780  * Workaround for:
781  *   Intel Errata AAK100 (model 26)
782  *   Intel Errata AAP53  (model 30)
783  *   Intel Errata BD53   (model 44)
784  *
785  * The official story:
786  *   These chips need to be 'reset' when adding counters by programming the
787  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
788  *   in sequence on the same PMC or on different PMCs.
789  *
790  * In practise it appears some of these events do in fact count, and
791  * we need to programm all 4 events.
792  */
793 static void intel_pmu_nhm_workaround(void)
794 {
795         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
796         static const unsigned long nhm_magic[4] = {
797                 0x4300B5,
798                 0x4300D2,
799                 0x4300B1,
800                 0x4300B1
801         };
802         struct perf_event *event;
803         int i;
804
805         /*
806          * The Errata requires below steps:
807          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
808          * 2) Configure 4 PERFEVTSELx with the magic events and clear
809          *    the corresponding PMCx;
810          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
811          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
812          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
813          */
814
815         /*
816          * The real steps we choose are a little different from above.
817          * A) To reduce MSR operations, we don't run step 1) as they
818          *    are already cleared before this function is called;
819          * B) Call x86_perf_event_update to save PMCx before configuring
820          *    PERFEVTSELx with magic number;
821          * C) With step 5), we do clear only when the PERFEVTSELx is
822          *    not used currently.
823          * D) Call x86_perf_event_set_period to restore PMCx;
824          */
825
826         /* We always operate 4 pairs of PERF Counters */
827         for (i = 0; i < 4; i++) {
828                 event = cpuc->events[i];
829                 if (event)
830                         x86_perf_event_update(event);
831         }
832
833         for (i = 0; i < 4; i++) {
834                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
835                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
836         }
837
838         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
839         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
840
841         for (i = 0; i < 4; i++) {
842                 event = cpuc->events[i];
843
844                 if (event) {
845                         x86_perf_event_set_period(event);
846                         __x86_pmu_enable_event(&event->hw,
847                                         ARCH_PERFMON_EVENTSEL_ENABLE);
848                 } else
849                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
850         }
851 }
852
853 static void intel_pmu_nhm_enable_all(int added)
854 {
855         if (added)
856                 intel_pmu_nhm_workaround();
857         intel_pmu_enable_all(added);
858 }
859
860 static inline u64 intel_pmu_get_status(void)
861 {
862         u64 status;
863
864         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
865
866         return status;
867 }
868
869 static inline void intel_pmu_ack_status(u64 ack)
870 {
871         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
872 }
873
874 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
875 {
876         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
877         u64 ctrl_val, mask;
878
879         mask = 0xfULL << (idx * 4);
880
881         rdmsrl(hwc->config_base, ctrl_val);
882         ctrl_val &= ~mask;
883         wrmsrl(hwc->config_base, ctrl_val);
884 }
885
886 static void intel_pmu_disable_event(struct perf_event *event)
887 {
888         struct hw_perf_event *hwc = &event->hw;
889         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
890
891         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
892                 intel_pmu_disable_bts();
893                 intel_pmu_drain_bts_buffer();
894                 return;
895         }
896
897         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
898         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
899
900         /*
901          * must disable before any actual event
902          * because any event may be combined with LBR
903          */
904         if (intel_pmu_needs_lbr_smpl(event))
905                 intel_pmu_lbr_disable(event);
906
907         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
908                 intel_pmu_disable_fixed(hwc);
909                 return;
910         }
911
912         x86_pmu_disable_event(event);
913
914         if (unlikely(event->attr.precise_ip))
915                 intel_pmu_pebs_disable(event);
916 }
917
918 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
919 {
920         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
921         u64 ctrl_val, bits, mask;
922
923         /*
924          * Enable IRQ generation (0x8),
925          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
926          * if requested:
927          */
928         bits = 0x8ULL;
929         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
930                 bits |= 0x2;
931         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
932                 bits |= 0x1;
933
934         /*
935          * ANY bit is supported in v3 and up
936          */
937         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
938                 bits |= 0x4;
939
940         bits <<= (idx * 4);
941         mask = 0xfULL << (idx * 4);
942
943         rdmsrl(hwc->config_base, ctrl_val);
944         ctrl_val &= ~mask;
945         ctrl_val |= bits;
946         wrmsrl(hwc->config_base, ctrl_val);
947 }
948
949 static void intel_pmu_enable_event(struct perf_event *event)
950 {
951         struct hw_perf_event *hwc = &event->hw;
952         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
953
954         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
955                 if (!__this_cpu_read(cpu_hw_events.enabled))
956                         return;
957
958                 intel_pmu_enable_bts(hwc->config);
959                 return;
960         }
961         /*
962          * must enabled before any actual event
963          * because any event may be combined with LBR
964          */
965         if (intel_pmu_needs_lbr_smpl(event))
966                 intel_pmu_lbr_enable(event);
967
968         if (event->attr.exclude_host)
969                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
970         if (event->attr.exclude_guest)
971                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
972
973         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
974                 intel_pmu_enable_fixed(hwc);
975                 return;
976         }
977
978         if (unlikely(event->attr.precise_ip))
979                 intel_pmu_pebs_enable(event);
980
981         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
982 }
983
984 /*
985  * Save and restart an expired event. Called by NMI contexts,
986  * so it has to be careful about preempting normal event ops:
987  */
988 int intel_pmu_save_and_restart(struct perf_event *event)
989 {
990         x86_perf_event_update(event);
991         return x86_perf_event_set_period(event);
992 }
993
994 static void intel_pmu_reset(void)
995 {
996         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
997         unsigned long flags;
998         int idx;
999
1000         if (!x86_pmu.num_counters)
1001                 return;
1002
1003         local_irq_save(flags);
1004
1005         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1006
1007         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1008                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1009                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1010         }
1011         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1012                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1013
1014         if (ds)
1015                 ds->bts_index = ds->bts_buffer_base;
1016
1017         local_irq_restore(flags);
1018 }
1019
1020 /*
1021  * This handler is triggered by the local APIC, so the APIC IRQ handling
1022  * rules apply:
1023  */
1024 static int intel_pmu_handle_irq(struct pt_regs *regs)
1025 {
1026         struct perf_sample_data data;
1027         struct cpu_hw_events *cpuc;
1028         int bit, loops;
1029         u64 status;
1030         int handled;
1031
1032         cpuc = &__get_cpu_var(cpu_hw_events);
1033
1034         /*
1035          * Some chipsets need to unmask the LVTPC in a particular spot
1036          * inside the nmi handler.  As a result, the unmasking was pushed
1037          * into all the nmi handlers.
1038          *
1039          * This handler doesn't seem to have any issues with the unmasking
1040          * so it was left at the top.
1041          */
1042         apic_write(APIC_LVTPC, APIC_DM_NMI);
1043
1044         intel_pmu_disable_all();
1045         handled = intel_pmu_drain_bts_buffer();
1046         status = intel_pmu_get_status();
1047         if (!status) {
1048                 intel_pmu_enable_all(0);
1049                 return handled;
1050         }
1051
1052         loops = 0;
1053 again:
1054         intel_pmu_ack_status(status);
1055         if (++loops > 100) {
1056                 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1057                 perf_event_print_debug();
1058                 intel_pmu_reset();
1059                 goto done;
1060         }
1061
1062         inc_irq_stat(apic_perf_irqs);
1063
1064         intel_pmu_lbr_read();
1065
1066         /*
1067          * PEBS overflow sets bit 62 in the global status register
1068          */
1069         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1070                 handled++;
1071                 x86_pmu.drain_pebs(regs);
1072         }
1073
1074         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1075                 struct perf_event *event = cpuc->events[bit];
1076
1077                 handled++;
1078
1079                 if (!test_bit(bit, cpuc->active_mask))
1080                         continue;
1081
1082                 if (!intel_pmu_save_and_restart(event))
1083                         continue;
1084
1085                 perf_sample_data_init(&data, 0, event->hw.last_period);
1086
1087                 if (has_branch_stack(event))
1088                         data.br_stack = &cpuc->lbr_stack;
1089
1090                 if (perf_event_overflow(event, &data, regs))
1091                         x86_pmu_stop(event, 0);
1092         }
1093
1094         /*
1095          * Repeat if there is more work to be done:
1096          */
1097         status = intel_pmu_get_status();
1098         if (status)
1099                 goto again;
1100
1101 done:
1102         intel_pmu_enable_all(0);
1103         return handled;
1104 }
1105
1106 static struct event_constraint *
1107 intel_bts_constraints(struct perf_event *event)
1108 {
1109         struct hw_perf_event *hwc = &event->hw;
1110         unsigned int hw_event, bts_event;
1111
1112         if (event->attr.freq)
1113                 return NULL;
1114
1115         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1116         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1117
1118         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1119                 return &bts_constraint;
1120
1121         return NULL;
1122 }
1123
1124 static int intel_alt_er(int idx)
1125 {
1126         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1127                 return idx;
1128
1129         if (idx == EXTRA_REG_RSP_0)
1130                 return EXTRA_REG_RSP_1;
1131
1132         if (idx == EXTRA_REG_RSP_1)
1133                 return EXTRA_REG_RSP_0;
1134
1135         return idx;
1136 }
1137
1138 static void intel_fixup_er(struct perf_event *event, int idx)
1139 {
1140         event->hw.extra_reg.idx = idx;
1141
1142         if (idx == EXTRA_REG_RSP_0) {
1143                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1144                 event->hw.config |= 0x01b7;
1145                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1146         } else if (idx == EXTRA_REG_RSP_1) {
1147                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1148                 event->hw.config |= 0x01bb;
1149                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1150         }
1151 }
1152
1153 /*
1154  * manage allocation of shared extra msr for certain events
1155  *
1156  * sharing can be:
1157  * per-cpu: to be shared between the various events on a single PMU
1158  * per-core: per-cpu + shared by HT threads
1159  */
1160 static struct event_constraint *
1161 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1162                                    struct perf_event *event,
1163                                    struct hw_perf_event_extra *reg)
1164 {
1165         struct event_constraint *c = &emptyconstraint;
1166         struct er_account *era;
1167         unsigned long flags;
1168         int idx = reg->idx;
1169
1170         /*
1171          * reg->alloc can be set due to existing state, so for fake cpuc we
1172          * need to ignore this, otherwise we might fail to allocate proper fake
1173          * state for this extra reg constraint. Also see the comment below.
1174          */
1175         if (reg->alloc && !cpuc->is_fake)
1176                 return NULL; /* call x86_get_event_constraint() */
1177
1178 again:
1179         era = &cpuc->shared_regs->regs[idx];
1180         /*
1181          * we use spin_lock_irqsave() to avoid lockdep issues when
1182          * passing a fake cpuc
1183          */
1184         raw_spin_lock_irqsave(&era->lock, flags);
1185
1186         if (!atomic_read(&era->ref) || era->config == reg->config) {
1187
1188                 /*
1189                  * If its a fake cpuc -- as per validate_{group,event}() we
1190                  * shouldn't touch event state and we can avoid doing so
1191                  * since both will only call get_event_constraints() once
1192                  * on each event, this avoids the need for reg->alloc.
1193                  *
1194                  * Not doing the ER fixup will only result in era->reg being
1195                  * wrong, but since we won't actually try and program hardware
1196                  * this isn't a problem either.
1197                  */
1198                 if (!cpuc->is_fake) {
1199                         if (idx != reg->idx)
1200                                 intel_fixup_er(event, idx);
1201
1202                         /*
1203                          * x86_schedule_events() can call get_event_constraints()
1204                          * multiple times on events in the case of incremental
1205                          * scheduling(). reg->alloc ensures we only do the ER
1206                          * allocation once.
1207                          */
1208                         reg->alloc = 1;
1209                 }
1210
1211                 /* lock in msr value */
1212                 era->config = reg->config;
1213                 era->reg = reg->reg;
1214
1215                 /* one more user */
1216                 atomic_inc(&era->ref);
1217
1218                 /*
1219                  * need to call x86_get_event_constraint()
1220                  * to check if associated event has constraints
1221                  */
1222                 c = NULL;
1223         } else {
1224                 idx = intel_alt_er(idx);
1225                 if (idx != reg->idx) {
1226                         raw_spin_unlock_irqrestore(&era->lock, flags);
1227                         goto again;
1228                 }
1229         }
1230         raw_spin_unlock_irqrestore(&era->lock, flags);
1231
1232         return c;
1233 }
1234
1235 static void
1236 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1237                                    struct hw_perf_event_extra *reg)
1238 {
1239         struct er_account *era;
1240
1241         /*
1242          * Only put constraint if extra reg was actually allocated. Also takes
1243          * care of event which do not use an extra shared reg.
1244          *
1245          * Also, if this is a fake cpuc we shouldn't touch any event state
1246          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1247          * either since it'll be thrown out.
1248          */
1249         if (!reg->alloc || cpuc->is_fake)
1250                 return;
1251
1252         era = &cpuc->shared_regs->regs[reg->idx];
1253
1254         /* one fewer user */
1255         atomic_dec(&era->ref);
1256
1257         /* allocate again next time */
1258         reg->alloc = 0;
1259 }
1260
1261 static struct event_constraint *
1262 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1263                               struct perf_event *event)
1264 {
1265         struct event_constraint *c = NULL, *d;
1266         struct hw_perf_event_extra *xreg, *breg;
1267
1268         xreg = &event->hw.extra_reg;
1269         if (xreg->idx != EXTRA_REG_NONE) {
1270                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1271                 if (c == &emptyconstraint)
1272                         return c;
1273         }
1274         breg = &event->hw.branch_reg;
1275         if (breg->idx != EXTRA_REG_NONE) {
1276                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1277                 if (d == &emptyconstraint) {
1278                         __intel_shared_reg_put_constraints(cpuc, xreg);
1279                         c = d;
1280                 }
1281         }
1282         return c;
1283 }
1284
1285 struct event_constraint *
1286 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1287 {
1288         struct event_constraint *c;
1289
1290         if (x86_pmu.event_constraints) {
1291                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1292                         if ((event->hw.config & c->cmask) == c->code)
1293                                 return c;
1294                 }
1295         }
1296
1297         return &unconstrained;
1298 }
1299
1300 static struct event_constraint *
1301 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1302 {
1303         struct event_constraint *c;
1304
1305         c = intel_bts_constraints(event);
1306         if (c)
1307                 return c;
1308
1309         c = intel_pebs_constraints(event);
1310         if (c)
1311                 return c;
1312
1313         c = intel_shared_regs_constraints(cpuc, event);
1314         if (c)
1315                 return c;
1316
1317         return x86_get_event_constraints(cpuc, event);
1318 }
1319
1320 static void
1321 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1322                                         struct perf_event *event)
1323 {
1324         struct hw_perf_event_extra *reg;
1325
1326         reg = &event->hw.extra_reg;
1327         if (reg->idx != EXTRA_REG_NONE)
1328                 __intel_shared_reg_put_constraints(cpuc, reg);
1329
1330         reg = &event->hw.branch_reg;
1331         if (reg->idx != EXTRA_REG_NONE)
1332                 __intel_shared_reg_put_constraints(cpuc, reg);
1333 }
1334
1335 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1336                                         struct perf_event *event)
1337 {
1338         intel_put_shared_regs_event_constraints(cpuc, event);
1339 }
1340
1341 static void intel_pebs_aliases_core2(struct perf_event *event)
1342 {
1343         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1344                 /*
1345                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1346                  * (0x003c) so that we can use it with PEBS.
1347                  *
1348                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1349                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1350                  * (0x00c0), which is a PEBS capable event, to get the same
1351                  * count.
1352                  *
1353                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1354                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1355                  * larger than the maximum number of instructions that can be
1356                  * retired per cycle (4) and then inverting the condition, we
1357                  * count all cycles that retire 16 or less instructions, which
1358                  * is every cycle.
1359                  *
1360                  * Thereby we gain a PEBS capable cycle counter.
1361                  */
1362                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1363
1364                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1365                 event->hw.config = alt_config;
1366         }
1367 }
1368
1369 static void intel_pebs_aliases_snb(struct perf_event *event)
1370 {
1371         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1372                 /*
1373                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1374                  * (0x003c) so that we can use it with PEBS.
1375                  *
1376                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1377                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1378                  * (0x01c2), which is a PEBS capable event, to get the same
1379                  * count.
1380                  *
1381                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1382                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1383                  * larger than the maximum number of micro-ops that can be
1384                  * retired per cycle (4) and then inverting the condition, we
1385                  * count all cycles that retire 16 or less micro-ops, which
1386                  * is every cycle.
1387                  *
1388                  * Thereby we gain a PEBS capable cycle counter.
1389                  */
1390                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1391
1392                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1393                 event->hw.config = alt_config;
1394         }
1395 }
1396
1397 static int intel_pmu_hw_config(struct perf_event *event)
1398 {
1399         int ret = x86_pmu_hw_config(event);
1400
1401         if (ret)
1402                 return ret;
1403
1404         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1405                 x86_pmu.pebs_aliases(event);
1406
1407         if (intel_pmu_needs_lbr_smpl(event)) {
1408                 ret = intel_pmu_setup_lbr_filter(event);
1409                 if (ret)
1410                         return ret;
1411         }
1412
1413         if (event->attr.type != PERF_TYPE_RAW)
1414                 return 0;
1415
1416         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1417                 return 0;
1418
1419         if (x86_pmu.version < 3)
1420                 return -EINVAL;
1421
1422         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1423                 return -EACCES;
1424
1425         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1426
1427         return 0;
1428 }
1429
1430 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1431 {
1432         if (x86_pmu.guest_get_msrs)
1433                 return x86_pmu.guest_get_msrs(nr);
1434         *nr = 0;
1435         return NULL;
1436 }
1437 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1438
1439 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1440 {
1441         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1442         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1443
1444         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1445         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1446         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1447
1448         *nr = 1;
1449         return arr;
1450 }
1451
1452 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1453 {
1454         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1455         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1456         int idx;
1457
1458         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1459                 struct perf_event *event = cpuc->events[idx];
1460
1461                 arr[idx].msr = x86_pmu_config_addr(idx);
1462                 arr[idx].host = arr[idx].guest = 0;
1463
1464                 if (!test_bit(idx, cpuc->active_mask))
1465                         continue;
1466
1467                 arr[idx].host = arr[idx].guest =
1468                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1469
1470                 if (event->attr.exclude_host)
1471                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1472                 else if (event->attr.exclude_guest)
1473                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1474         }
1475
1476         *nr = x86_pmu.num_counters;
1477         return arr;
1478 }
1479
1480 static void core_pmu_enable_event(struct perf_event *event)
1481 {
1482         if (!event->attr.exclude_host)
1483                 x86_pmu_enable_event(event);
1484 }
1485
1486 static void core_pmu_enable_all(int added)
1487 {
1488         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1489         int idx;
1490
1491         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1492                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1493
1494                 if (!test_bit(idx, cpuc->active_mask) ||
1495                                 cpuc->events[idx]->attr.exclude_host)
1496                         continue;
1497
1498                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1499         }
1500 }
1501
1502 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1503 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1504 PMU_FORMAT_ATTR(edge,   "config:18"     );
1505 PMU_FORMAT_ATTR(pc,     "config:19"     );
1506 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1507 PMU_FORMAT_ATTR(inv,    "config:23"     );
1508 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1509
1510 static struct attribute *intel_arch_formats_attr[] = {
1511         &format_attr_event.attr,
1512         &format_attr_umask.attr,
1513         &format_attr_edge.attr,
1514         &format_attr_pc.attr,
1515         &format_attr_inv.attr,
1516         &format_attr_cmask.attr,
1517         NULL,
1518 };
1519
1520 static __initconst const struct x86_pmu core_pmu = {
1521         .name                   = "core",
1522         .handle_irq             = x86_pmu_handle_irq,
1523         .disable_all            = x86_pmu_disable_all,
1524         .enable_all             = core_pmu_enable_all,
1525         .enable                 = core_pmu_enable_event,
1526         .disable                = x86_pmu_disable_event,
1527         .hw_config              = x86_pmu_hw_config,
1528         .schedule_events        = x86_schedule_events,
1529         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1530         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1531         .event_map              = intel_pmu_event_map,
1532         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1533         .apic                   = 1,
1534         /*
1535          * Intel PMCs cannot be accessed sanely above 32 bit width,
1536          * so we install an artificial 1<<31 period regardless of
1537          * the generic event period:
1538          */
1539         .max_period             = (1ULL << 31) - 1,
1540         .get_event_constraints  = intel_get_event_constraints,
1541         .put_event_constraints  = intel_put_event_constraints,
1542         .event_constraints      = intel_core_event_constraints,
1543         .guest_get_msrs         = core_guest_get_msrs,
1544         .format_attrs           = intel_arch_formats_attr,
1545 };
1546
1547 struct intel_shared_regs *allocate_shared_regs(int cpu)
1548 {
1549         struct intel_shared_regs *regs;
1550         int i;
1551
1552         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1553                             GFP_KERNEL, cpu_to_node(cpu));
1554         if (regs) {
1555                 /*
1556                  * initialize the locks to keep lockdep happy
1557                  */
1558                 for (i = 0; i < EXTRA_REG_MAX; i++)
1559                         raw_spin_lock_init(&regs->regs[i].lock);
1560
1561                 regs->core_id = -1;
1562         }
1563         return regs;
1564 }
1565
1566 static int intel_pmu_cpu_prepare(int cpu)
1567 {
1568         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1569
1570         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1571                 return NOTIFY_OK;
1572
1573         cpuc->shared_regs = allocate_shared_regs(cpu);
1574         if (!cpuc->shared_regs)
1575                 return NOTIFY_BAD;
1576
1577         return NOTIFY_OK;
1578 }
1579
1580 static void intel_pmu_cpu_starting(int cpu)
1581 {
1582         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1583         int core_id = topology_core_id(cpu);
1584         int i;
1585
1586         init_debug_store_on_cpu(cpu);
1587         /*
1588          * Deal with CPUs that don't clear their LBRs on power-up.
1589          */
1590         intel_pmu_lbr_reset();
1591
1592         cpuc->lbr_sel = NULL;
1593
1594         if (!cpuc->shared_regs)
1595                 return;
1596
1597         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1598                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1599                         struct intel_shared_regs *pc;
1600
1601                         pc = per_cpu(cpu_hw_events, i).shared_regs;
1602                         if (pc && pc->core_id == core_id) {
1603                                 cpuc->kfree_on_online = cpuc->shared_regs;
1604                                 cpuc->shared_regs = pc;
1605                                 break;
1606                         }
1607                 }
1608                 cpuc->shared_regs->core_id = core_id;
1609                 cpuc->shared_regs->refcnt++;
1610         }
1611
1612         if (x86_pmu.lbr_sel_map)
1613                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1614 }
1615
1616 static void intel_pmu_cpu_dying(int cpu)
1617 {
1618         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1619         struct intel_shared_regs *pc;
1620
1621         pc = cpuc->shared_regs;
1622         if (pc) {
1623                 if (pc->core_id == -1 || --pc->refcnt == 0)
1624                         kfree(pc);
1625                 cpuc->shared_regs = NULL;
1626         }
1627
1628         fini_debug_store_on_cpu(cpu);
1629 }
1630
1631 static void intel_pmu_flush_branch_stack(void)
1632 {
1633         /*
1634          * Intel LBR does not tag entries with the
1635          * PID of the current task, then we need to
1636          * flush it on ctxsw
1637          * For now, we simply reset it
1638          */
1639         if (x86_pmu.lbr_nr)
1640                 intel_pmu_lbr_reset();
1641 }
1642
1643 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1644
1645 static struct attribute *intel_arch3_formats_attr[] = {
1646         &format_attr_event.attr,
1647         &format_attr_umask.attr,
1648         &format_attr_edge.attr,
1649         &format_attr_pc.attr,
1650         &format_attr_any.attr,
1651         &format_attr_inv.attr,
1652         &format_attr_cmask.attr,
1653
1654         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1655         NULL,
1656 };
1657
1658 static __initconst const struct x86_pmu intel_pmu = {
1659         .name                   = "Intel",
1660         .handle_irq             = intel_pmu_handle_irq,
1661         .disable_all            = intel_pmu_disable_all,
1662         .enable_all             = intel_pmu_enable_all,
1663         .enable                 = intel_pmu_enable_event,
1664         .disable                = intel_pmu_disable_event,
1665         .hw_config              = intel_pmu_hw_config,
1666         .schedule_events        = x86_schedule_events,
1667         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1668         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1669         .event_map              = intel_pmu_event_map,
1670         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1671         .apic                   = 1,
1672         /*
1673          * Intel PMCs cannot be accessed sanely above 32 bit width,
1674          * so we install an artificial 1<<31 period regardless of
1675          * the generic event period:
1676          */
1677         .max_period             = (1ULL << 31) - 1,
1678         .get_event_constraints  = intel_get_event_constraints,
1679         .put_event_constraints  = intel_put_event_constraints,
1680         .pebs_aliases           = intel_pebs_aliases_core2,
1681
1682         .format_attrs           = intel_arch3_formats_attr,
1683
1684         .cpu_prepare            = intel_pmu_cpu_prepare,
1685         .cpu_starting           = intel_pmu_cpu_starting,
1686         .cpu_dying              = intel_pmu_cpu_dying,
1687         .guest_get_msrs         = intel_guest_get_msrs,
1688         .flush_branch_stack     = intel_pmu_flush_branch_stack,
1689 };
1690
1691 static __init void intel_clovertown_quirk(void)
1692 {
1693         /*
1694          * PEBS is unreliable due to:
1695          *
1696          *   AJ67  - PEBS may experience CPL leaks
1697          *   AJ68  - PEBS PMI may be delayed by one event
1698          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1699          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1700          *
1701          * AJ67 could be worked around by restricting the OS/USR flags.
1702          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1703          *
1704          * AJ106 could possibly be worked around by not allowing LBR
1705          *       usage from PEBS, including the fixup.
1706          * AJ68  could possibly be worked around by always programming
1707          *       a pebs_event_reset[0] value and coping with the lost events.
1708          *
1709          * But taken together it might just make sense to not enable PEBS on
1710          * these chips.
1711          */
1712         pr_warn("PEBS disabled due to CPU errata\n");
1713         x86_pmu.pebs = 0;
1714         x86_pmu.pebs_constraints = NULL;
1715 }
1716
1717 static int intel_snb_pebs_broken(int cpu)
1718 {
1719         u32 rev = UINT_MAX; /* default to broken for unknown models */
1720
1721         switch (cpu_data(cpu).x86_model) {
1722         case 42: /* SNB */
1723                 rev = 0x28;
1724                 break;
1725
1726         case 45: /* SNB-EP */
1727                 switch (cpu_data(cpu).x86_mask) {
1728                 case 6: rev = 0x618; break;
1729                 case 7: rev = 0x70c; break;
1730                 }
1731         }
1732
1733         return (cpu_data(cpu).microcode < rev);
1734 }
1735
1736 static void intel_snb_check_microcode(void)
1737 {
1738         int pebs_broken = 0;
1739         int cpu;
1740
1741         get_online_cpus();
1742         for_each_online_cpu(cpu) {
1743                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1744                         break;
1745         }
1746         put_online_cpus();
1747
1748         if (pebs_broken == x86_pmu.pebs_broken)
1749                 return;
1750
1751         /*
1752          * Serialized by the microcode lock..
1753          */
1754         if (x86_pmu.pebs_broken) {
1755                 pr_info("PEBS enabled due to microcode update\n");
1756                 x86_pmu.pebs_broken = 0;
1757         } else {
1758                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1759                 x86_pmu.pebs_broken = 1;
1760         }
1761 }
1762
1763 static __init void intel_sandybridge_quirk(void)
1764 {
1765         x86_pmu.check_microcode = intel_snb_check_microcode;
1766         intel_snb_check_microcode();
1767 }
1768
1769 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1770         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1771         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1772         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1773         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1774         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1775         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1776         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1777 };
1778
1779 static __init void intel_arch_events_quirk(void)
1780 {
1781         int bit;
1782
1783         /* disable event that reported as not presend by cpuid */
1784         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1785                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1786                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1787                         intel_arch_events_map[bit].name);
1788         }
1789 }
1790
1791 static __init void intel_nehalem_quirk(void)
1792 {
1793         union cpuid10_ebx ebx;
1794
1795         ebx.full = x86_pmu.events_maskl;
1796         if (ebx.split.no_branch_misses_retired) {
1797                 /*
1798                  * Erratum AAJ80 detected, we work it around by using
1799                  * the BR_MISP_EXEC.ANY event. This will over-count
1800                  * branch-misses, but it's still much better than the
1801                  * architectural event which is often completely bogus:
1802                  */
1803                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1804                 ebx.split.no_branch_misses_retired = 0;
1805                 x86_pmu.events_maskl = ebx.full;
1806                 pr_info("CPU erratum AAJ80 worked around\n");
1807         }
1808 }
1809
1810 __init int intel_pmu_init(void)
1811 {
1812         union cpuid10_edx edx;
1813         union cpuid10_eax eax;
1814         union cpuid10_ebx ebx;
1815         struct event_constraint *c;
1816         unsigned int unused;
1817         int version;
1818
1819         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1820                 switch (boot_cpu_data.x86) {
1821                 case 0x6:
1822                         return p6_pmu_init();
1823                 case 0xf:
1824                         return p4_pmu_init();
1825                 }
1826                 return -ENODEV;
1827         }
1828
1829         /*
1830          * Check whether the Architectural PerfMon supports
1831          * Branch Misses Retired hw_event or not.
1832          */
1833         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1834         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1835                 return -ENODEV;
1836
1837         version = eax.split.version_id;
1838         if (version < 2)
1839                 x86_pmu = core_pmu;
1840         else
1841                 x86_pmu = intel_pmu;
1842
1843         x86_pmu.version                 = version;
1844         x86_pmu.num_counters            = eax.split.num_counters;
1845         x86_pmu.cntval_bits             = eax.split.bit_width;
1846         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
1847
1848         x86_pmu.events_maskl            = ebx.full;
1849         x86_pmu.events_mask_len         = eax.split.mask_length;
1850
1851         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1852
1853         /*
1854          * Quirk: v2 perfmon does not report fixed-purpose events, so
1855          * assume at least 3 events:
1856          */
1857         if (version > 1)
1858                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1859
1860         /*
1861          * v2 and above have a perf capabilities MSR
1862          */
1863         if (version > 1) {
1864                 u64 capabilities;
1865
1866                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1867                 x86_pmu.intel_cap.capabilities = capabilities;
1868         }
1869
1870         intel_ds_init();
1871
1872         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1873
1874         /*
1875          * Install the hw-cache-events table:
1876          */
1877         switch (boot_cpu_data.x86_model) {
1878         case 14: /* 65 nm core solo/duo, "Yonah" */
1879                 pr_cont("Core events, ");
1880                 break;
1881
1882         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1883                 x86_add_quirk(intel_clovertown_quirk);
1884         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1885         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1886         case 29: /* six-core 45 nm xeon "Dunnington" */
1887                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1888                        sizeof(hw_cache_event_ids));
1889
1890                 intel_pmu_lbr_init_core();
1891
1892                 x86_pmu.event_constraints = intel_core2_event_constraints;
1893                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1894                 pr_cont("Core2 events, ");
1895                 break;
1896
1897         case 26: /* 45 nm nehalem, "Bloomfield" */
1898         case 30: /* 45 nm nehalem, "Lynnfield" */
1899         case 46: /* 45 nm nehalem-ex, "Beckton" */
1900                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1901                        sizeof(hw_cache_event_ids));
1902                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1903                        sizeof(hw_cache_extra_regs));
1904
1905                 intel_pmu_lbr_init_nhm();
1906
1907                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1908                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1909                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1910                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1911
1912                 /* UOPS_ISSUED.STALLED_CYCLES */
1913                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1914                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1915                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1916                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1917                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1918
1919                 x86_add_quirk(intel_nehalem_quirk);
1920
1921                 pr_cont("Nehalem events, ");
1922                 break;
1923
1924         case 28: /* Atom */
1925                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1926                        sizeof(hw_cache_event_ids));
1927
1928                 intel_pmu_lbr_init_atom();
1929
1930                 x86_pmu.event_constraints = intel_gen_event_constraints;
1931                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1932                 pr_cont("Atom events, ");
1933                 break;
1934
1935         case 37: /* 32 nm nehalem, "Clarkdale" */
1936         case 44: /* 32 nm nehalem, "Gulftown" */
1937         case 47: /* 32 nm Xeon E7 */
1938                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1939                        sizeof(hw_cache_event_ids));
1940                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1941                        sizeof(hw_cache_extra_regs));
1942
1943                 intel_pmu_lbr_init_nhm();
1944
1945                 x86_pmu.event_constraints = intel_westmere_event_constraints;
1946                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1947                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1948                 x86_pmu.extra_regs = intel_westmere_extra_regs;
1949                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1950
1951                 /* UOPS_ISSUED.STALLED_CYCLES */
1952                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1953                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1954                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1955                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1956                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1957
1958                 pr_cont("Westmere events, ");
1959                 break;
1960
1961         case 42: /* SandyBridge */
1962         case 45: /* SandyBridge, "Romely-EP" */
1963                 x86_add_quirk(intel_sandybridge_quirk);
1964         case 58: /* IvyBridge */
1965                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1966                        sizeof(hw_cache_event_ids));
1967
1968                 intel_pmu_lbr_init_snb();
1969
1970                 x86_pmu.event_constraints = intel_snb_event_constraints;
1971                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1972                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
1973                 x86_pmu.extra_regs = intel_snb_extra_regs;
1974                 /* all extra regs are per-cpu when HT is on */
1975                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1976                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1977
1978                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1979                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1980                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1981                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1982                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1983                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
1984
1985                 pr_cont("SandyBridge events, ");
1986                 break;
1987
1988         default:
1989                 switch (x86_pmu.version) {
1990                 case 1:
1991                         x86_pmu.event_constraints = intel_v1_event_constraints;
1992                         pr_cont("generic architected perfmon v1, ");
1993                         break;
1994                 default:
1995                         /*
1996                          * default constraints for v2 and up
1997                          */
1998                         x86_pmu.event_constraints = intel_gen_event_constraints;
1999                         pr_cont("generic architected perfmon, ");
2000                         break;
2001                 }
2002         }
2003
2004         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2005                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2006                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2007                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2008         }
2009         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2010
2011         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2012                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2013                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2014                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2015         }
2016
2017         x86_pmu.intel_ctrl |=
2018                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2019
2020         if (x86_pmu.event_constraints) {
2021                 /*
2022                  * event on fixed counter2 (REF_CYCLES) only works on this
2023                  * counter, so do not extend mask to generic counters
2024                  */
2025                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2026                         if (c->cmask != X86_RAW_EVENT_MASK
2027                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2028                                 continue;
2029                         }
2030
2031                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2032                         c->weight += x86_pmu.num_counters;
2033                 }
2034         }
2035
2036         return 0;
2037 }