Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #include <linux/stddef.h>
9 #include <linux/types.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13
14 #include <asm/hardirq.h>
15 #include <asm/apic.h>
16
17 #include "perf_event.h"
18
19 /*
20  * Intel PerfMon, used on Core and later.
21  */
22 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
23 {
24         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
25         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
26         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
27         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
28         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
29         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
30         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
31         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
32 };
33
34 static struct event_constraint intel_core_event_constraints[] __read_mostly =
35 {
36         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
37         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
38         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
39         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
40         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
41         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
42         EVENT_CONSTRAINT_END
43 };
44
45 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
46 {
47         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
48         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
49         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
50         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
51         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
52         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
53         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
54         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
55         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
56         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
57         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
58         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
59         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
60         EVENT_CONSTRAINT_END
61 };
62
63 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
64 {
65         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
66         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
67         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
68         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
69         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
70         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
71         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
72         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
73         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
74         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
75         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
76         EVENT_CONSTRAINT_END
77 };
78
79 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
80 {
81         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
82         EVENT_EXTRA_END
83 };
84
85 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
86 {
87         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
88         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
89         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
90         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
91         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
92         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
93         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
94         EVENT_CONSTRAINT_END
95 };
96
97 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
98 {
99         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
100         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
103         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
104         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
105         EVENT_CONSTRAINT_END
106 };
107
108 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
109 {
110         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
111         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
112         EVENT_EXTRA_END
113 };
114
115 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
116 {
117         EVENT_CONSTRAINT_END
118 };
119
120 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
121 {
122         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
123         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
124         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
125         EVENT_CONSTRAINT_END
126 };
127
128 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
129         INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
130         INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
131         EVENT_EXTRA_END
132 };
133
134 static u64 intel_pmu_event_map(int hw_event)
135 {
136         return intel_perfmon_event_map[hw_event];
137 }
138
139 static __initconst const u64 snb_hw_cache_event_ids
140                                 [PERF_COUNT_HW_CACHE_MAX]
141                                 [PERF_COUNT_HW_CACHE_OP_MAX]
142                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
143 {
144  [ C(L1D) ] = {
145         [ C(OP_READ) ] = {
146                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
147                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
148         },
149         [ C(OP_WRITE) ] = {
150                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
151                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
152         },
153         [ C(OP_PREFETCH) ] = {
154                 [ C(RESULT_ACCESS) ] = 0x0,
155                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
156         },
157  },
158  [ C(L1I ) ] = {
159         [ C(OP_READ) ] = {
160                 [ C(RESULT_ACCESS) ] = 0x0,
161                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
162         },
163         [ C(OP_WRITE) ] = {
164                 [ C(RESULT_ACCESS) ] = -1,
165                 [ C(RESULT_MISS)   ] = -1,
166         },
167         [ C(OP_PREFETCH) ] = {
168                 [ C(RESULT_ACCESS) ] = 0x0,
169                 [ C(RESULT_MISS)   ] = 0x0,
170         },
171  },
172  [ C(LL  ) ] = {
173         [ C(OP_READ) ] = {
174                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
175                 [ C(RESULT_ACCESS) ] = 0x01b7,
176                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
177                 [ C(RESULT_MISS)   ] = 0x01b7,
178         },
179         [ C(OP_WRITE) ] = {
180                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
181                 [ C(RESULT_ACCESS) ] = 0x01b7,
182                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
183                 [ C(RESULT_MISS)   ] = 0x01b7,
184         },
185         [ C(OP_PREFETCH) ] = {
186                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
187                 [ C(RESULT_ACCESS) ] = 0x01b7,
188                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
189                 [ C(RESULT_MISS)   ] = 0x01b7,
190         },
191  },
192  [ C(DTLB) ] = {
193         [ C(OP_READ) ] = {
194                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
195                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
196         },
197         [ C(OP_WRITE) ] = {
198                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
199                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
200         },
201         [ C(OP_PREFETCH) ] = {
202                 [ C(RESULT_ACCESS) ] = 0x0,
203                 [ C(RESULT_MISS)   ] = 0x0,
204         },
205  },
206  [ C(ITLB) ] = {
207         [ C(OP_READ) ] = {
208                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
209                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
210         },
211         [ C(OP_WRITE) ] = {
212                 [ C(RESULT_ACCESS) ] = -1,
213                 [ C(RESULT_MISS)   ] = -1,
214         },
215         [ C(OP_PREFETCH) ] = {
216                 [ C(RESULT_ACCESS) ] = -1,
217                 [ C(RESULT_MISS)   ] = -1,
218         },
219  },
220  [ C(BPU ) ] = {
221         [ C(OP_READ) ] = {
222                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
223                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
224         },
225         [ C(OP_WRITE) ] = {
226                 [ C(RESULT_ACCESS) ] = -1,
227                 [ C(RESULT_MISS)   ] = -1,
228         },
229         [ C(OP_PREFETCH) ] = {
230                 [ C(RESULT_ACCESS) ] = -1,
231                 [ C(RESULT_MISS)   ] = -1,
232         },
233  },
234  [ C(NODE) ] = {
235         [ C(OP_READ) ] = {
236                 [ C(RESULT_ACCESS) ] = -1,
237                 [ C(RESULT_MISS)   ] = -1,
238         },
239         [ C(OP_WRITE) ] = {
240                 [ C(RESULT_ACCESS) ] = -1,
241                 [ C(RESULT_MISS)   ] = -1,
242         },
243         [ C(OP_PREFETCH) ] = {
244                 [ C(RESULT_ACCESS) ] = -1,
245                 [ C(RESULT_MISS)   ] = -1,
246         },
247  },
248
249 };
250
251 static __initconst const u64 westmere_hw_cache_event_ids
252                                 [PERF_COUNT_HW_CACHE_MAX]
253                                 [PERF_COUNT_HW_CACHE_OP_MAX]
254                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
255 {
256  [ C(L1D) ] = {
257         [ C(OP_READ) ] = {
258                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
259                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
260         },
261         [ C(OP_WRITE) ] = {
262                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
263                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
264         },
265         [ C(OP_PREFETCH) ] = {
266                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
267                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
268         },
269  },
270  [ C(L1I ) ] = {
271         [ C(OP_READ) ] = {
272                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
273                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
274         },
275         [ C(OP_WRITE) ] = {
276                 [ C(RESULT_ACCESS) ] = -1,
277                 [ C(RESULT_MISS)   ] = -1,
278         },
279         [ C(OP_PREFETCH) ] = {
280                 [ C(RESULT_ACCESS) ] = 0x0,
281                 [ C(RESULT_MISS)   ] = 0x0,
282         },
283  },
284  [ C(LL  ) ] = {
285         [ C(OP_READ) ] = {
286                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
287                 [ C(RESULT_ACCESS) ] = 0x01b7,
288                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
289                 [ C(RESULT_MISS)   ] = 0x01b7,
290         },
291         /*
292          * Use RFO, not WRITEBACK, because a write miss would typically occur
293          * on RFO.
294          */
295         [ C(OP_WRITE) ] = {
296                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
297                 [ C(RESULT_ACCESS) ] = 0x01b7,
298                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
299                 [ C(RESULT_MISS)   ] = 0x01b7,
300         },
301         [ C(OP_PREFETCH) ] = {
302                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
303                 [ C(RESULT_ACCESS) ] = 0x01b7,
304                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
305                 [ C(RESULT_MISS)   ] = 0x01b7,
306         },
307  },
308  [ C(DTLB) ] = {
309         [ C(OP_READ) ] = {
310                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
311                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
312         },
313         [ C(OP_WRITE) ] = {
314                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
315                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
316         },
317         [ C(OP_PREFETCH) ] = {
318                 [ C(RESULT_ACCESS) ] = 0x0,
319                 [ C(RESULT_MISS)   ] = 0x0,
320         },
321  },
322  [ C(ITLB) ] = {
323         [ C(OP_READ) ] = {
324                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
325                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
326         },
327         [ C(OP_WRITE) ] = {
328                 [ C(RESULT_ACCESS) ] = -1,
329                 [ C(RESULT_MISS)   ] = -1,
330         },
331         [ C(OP_PREFETCH) ] = {
332                 [ C(RESULT_ACCESS) ] = -1,
333                 [ C(RESULT_MISS)   ] = -1,
334         },
335  },
336  [ C(BPU ) ] = {
337         [ C(OP_READ) ] = {
338                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
339                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
340         },
341         [ C(OP_WRITE) ] = {
342                 [ C(RESULT_ACCESS) ] = -1,
343                 [ C(RESULT_MISS)   ] = -1,
344         },
345         [ C(OP_PREFETCH) ] = {
346                 [ C(RESULT_ACCESS) ] = -1,
347                 [ C(RESULT_MISS)   ] = -1,
348         },
349  },
350  [ C(NODE) ] = {
351         [ C(OP_READ) ] = {
352                 [ C(RESULT_ACCESS) ] = 0x01b7,
353                 [ C(RESULT_MISS)   ] = 0x01b7,
354         },
355         [ C(OP_WRITE) ] = {
356                 [ C(RESULT_ACCESS) ] = 0x01b7,
357                 [ C(RESULT_MISS)   ] = 0x01b7,
358         },
359         [ C(OP_PREFETCH) ] = {
360                 [ C(RESULT_ACCESS) ] = 0x01b7,
361                 [ C(RESULT_MISS)   ] = 0x01b7,
362         },
363  },
364 };
365
366 /*
367  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
368  * See IA32 SDM Vol 3B 30.6.1.3
369  */
370
371 #define NHM_DMND_DATA_RD        (1 << 0)
372 #define NHM_DMND_RFO            (1 << 1)
373 #define NHM_DMND_IFETCH         (1 << 2)
374 #define NHM_DMND_WB             (1 << 3)
375 #define NHM_PF_DATA_RD          (1 << 4)
376 #define NHM_PF_DATA_RFO         (1 << 5)
377 #define NHM_PF_IFETCH           (1 << 6)
378 #define NHM_OFFCORE_OTHER       (1 << 7)
379 #define NHM_UNCORE_HIT          (1 << 8)
380 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
381 #define NHM_OTHER_CORE_HITM     (1 << 10)
382                                 /* reserved */
383 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
384 #define NHM_REMOTE_DRAM         (1 << 13)
385 #define NHM_LOCAL_DRAM          (1 << 14)
386 #define NHM_NON_DRAM            (1 << 15)
387
388 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
389 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
390
391 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
392 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
393 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
394
395 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
396 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
397 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
398
399 static __initconst const u64 nehalem_hw_cache_extra_regs
400                                 [PERF_COUNT_HW_CACHE_MAX]
401                                 [PERF_COUNT_HW_CACHE_OP_MAX]
402                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
403 {
404  [ C(LL  ) ] = {
405         [ C(OP_READ) ] = {
406                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
407                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
408         },
409         [ C(OP_WRITE) ] = {
410                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
411                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
412         },
413         [ C(OP_PREFETCH) ] = {
414                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
415                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
416         },
417  },
418  [ C(NODE) ] = {
419         [ C(OP_READ) ] = {
420                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
421                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
422         },
423         [ C(OP_WRITE) ] = {
424                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
425                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
426         },
427         [ C(OP_PREFETCH) ] = {
428                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
429                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
430         },
431  },
432 };
433
434 static __initconst const u64 nehalem_hw_cache_event_ids
435                                 [PERF_COUNT_HW_CACHE_MAX]
436                                 [PERF_COUNT_HW_CACHE_OP_MAX]
437                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
438 {
439  [ C(L1D) ] = {
440         [ C(OP_READ) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
442                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
443         },
444         [ C(OP_WRITE) ] = {
445                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
446                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
447         },
448         [ C(OP_PREFETCH) ] = {
449                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
450                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
451         },
452  },
453  [ C(L1I ) ] = {
454         [ C(OP_READ) ] = {
455                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
456                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
457         },
458         [ C(OP_WRITE) ] = {
459                 [ C(RESULT_ACCESS) ] = -1,
460                 [ C(RESULT_MISS)   ] = -1,
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = 0x0,
464                 [ C(RESULT_MISS)   ] = 0x0,
465         },
466  },
467  [ C(LL  ) ] = {
468         [ C(OP_READ) ] = {
469                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
470                 [ C(RESULT_ACCESS) ] = 0x01b7,
471                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
472                 [ C(RESULT_MISS)   ] = 0x01b7,
473         },
474         /*
475          * Use RFO, not WRITEBACK, because a write miss would typically occur
476          * on RFO.
477          */
478         [ C(OP_WRITE) ] = {
479                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
480                 [ C(RESULT_ACCESS) ] = 0x01b7,
481                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
482                 [ C(RESULT_MISS)   ] = 0x01b7,
483         },
484         [ C(OP_PREFETCH) ] = {
485                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
486                 [ C(RESULT_ACCESS) ] = 0x01b7,
487                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
488                 [ C(RESULT_MISS)   ] = 0x01b7,
489         },
490  },
491  [ C(DTLB) ] = {
492         [ C(OP_READ) ] = {
493                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
494                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
495         },
496         [ C(OP_WRITE) ] = {
497                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
498                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
499         },
500         [ C(OP_PREFETCH) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x0,
502                 [ C(RESULT_MISS)   ] = 0x0,
503         },
504  },
505  [ C(ITLB) ] = {
506         [ C(OP_READ) ] = {
507                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
508                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
509         },
510         [ C(OP_WRITE) ] = {
511                 [ C(RESULT_ACCESS) ] = -1,
512                 [ C(RESULT_MISS)   ] = -1,
513         },
514         [ C(OP_PREFETCH) ] = {
515                 [ C(RESULT_ACCESS) ] = -1,
516                 [ C(RESULT_MISS)   ] = -1,
517         },
518  },
519  [ C(BPU ) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
522                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
523         },
524         [ C(OP_WRITE) ] = {
525                 [ C(RESULT_ACCESS) ] = -1,
526                 [ C(RESULT_MISS)   ] = -1,
527         },
528         [ C(OP_PREFETCH) ] = {
529                 [ C(RESULT_ACCESS) ] = -1,
530                 [ C(RESULT_MISS)   ] = -1,
531         },
532  },
533  [ C(NODE) ] = {
534         [ C(OP_READ) ] = {
535                 [ C(RESULT_ACCESS) ] = 0x01b7,
536                 [ C(RESULT_MISS)   ] = 0x01b7,
537         },
538         [ C(OP_WRITE) ] = {
539                 [ C(RESULT_ACCESS) ] = 0x01b7,
540                 [ C(RESULT_MISS)   ] = 0x01b7,
541         },
542         [ C(OP_PREFETCH) ] = {
543                 [ C(RESULT_ACCESS) ] = 0x01b7,
544                 [ C(RESULT_MISS)   ] = 0x01b7,
545         },
546  },
547 };
548
549 static __initconst const u64 core2_hw_cache_event_ids
550                                 [PERF_COUNT_HW_CACHE_MAX]
551                                 [PERF_COUNT_HW_CACHE_OP_MAX]
552                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
553 {
554  [ C(L1D) ] = {
555         [ C(OP_READ) ] = {
556                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
557                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
558         },
559         [ C(OP_WRITE) ] = {
560                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
561                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
562         },
563         [ C(OP_PREFETCH) ] = {
564                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
565                 [ C(RESULT_MISS)   ] = 0,
566         },
567  },
568  [ C(L1I ) ] = {
569         [ C(OP_READ) ] = {
570                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
571                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
572         },
573         [ C(OP_WRITE) ] = {
574                 [ C(RESULT_ACCESS) ] = -1,
575                 [ C(RESULT_MISS)   ] = -1,
576         },
577         [ C(OP_PREFETCH) ] = {
578                 [ C(RESULT_ACCESS) ] = 0,
579                 [ C(RESULT_MISS)   ] = 0,
580         },
581  },
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
585                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
589                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = 0,
593                 [ C(RESULT_MISS)   ] = 0,
594         },
595  },
596  [ C(DTLB) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
599                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
603                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = 0,
607                 [ C(RESULT_MISS)   ] = 0,
608         },
609  },
610  [ C(ITLB) ] = {
611         [ C(OP_READ) ] = {
612                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
613                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
614         },
615         [ C(OP_WRITE) ] = {
616                 [ C(RESULT_ACCESS) ] = -1,
617                 [ C(RESULT_MISS)   ] = -1,
618         },
619         [ C(OP_PREFETCH) ] = {
620                 [ C(RESULT_ACCESS) ] = -1,
621                 [ C(RESULT_MISS)   ] = -1,
622         },
623  },
624  [ C(BPU ) ] = {
625         [ C(OP_READ) ] = {
626                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
627                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
628         },
629         [ C(OP_WRITE) ] = {
630                 [ C(RESULT_ACCESS) ] = -1,
631                 [ C(RESULT_MISS)   ] = -1,
632         },
633         [ C(OP_PREFETCH) ] = {
634                 [ C(RESULT_ACCESS) ] = -1,
635                 [ C(RESULT_MISS)   ] = -1,
636         },
637  },
638 };
639
640 static __initconst const u64 atom_hw_cache_event_ids
641                                 [PERF_COUNT_HW_CACHE_MAX]
642                                 [PERF_COUNT_HW_CACHE_OP_MAX]
643                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
644 {
645  [ C(L1D) ] = {
646         [ C(OP_READ) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
648                 [ C(RESULT_MISS)   ] = 0,
649         },
650         [ C(OP_WRITE) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
652                 [ C(RESULT_MISS)   ] = 0,
653         },
654         [ C(OP_PREFETCH) ] = {
655                 [ C(RESULT_ACCESS) ] = 0x0,
656                 [ C(RESULT_MISS)   ] = 0,
657         },
658  },
659  [ C(L1I ) ] = {
660         [ C(OP_READ) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
662                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
663         },
664         [ C(OP_WRITE) ] = {
665                 [ C(RESULT_ACCESS) ] = -1,
666                 [ C(RESULT_MISS)   ] = -1,
667         },
668         [ C(OP_PREFETCH) ] = {
669                 [ C(RESULT_ACCESS) ] = 0,
670                 [ C(RESULT_MISS)   ] = 0,
671         },
672  },
673  [ C(LL  ) ] = {
674         [ C(OP_READ) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
676                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
677         },
678         [ C(OP_WRITE) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
680                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
681         },
682         [ C(OP_PREFETCH) ] = {
683                 [ C(RESULT_ACCESS) ] = 0,
684                 [ C(RESULT_MISS)   ] = 0,
685         },
686  },
687  [ C(DTLB) ] = {
688         [ C(OP_READ) ] = {
689                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
690                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
691         },
692         [ C(OP_WRITE) ] = {
693                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
694                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
695         },
696         [ C(OP_PREFETCH) ] = {
697                 [ C(RESULT_ACCESS) ] = 0,
698                 [ C(RESULT_MISS)   ] = 0,
699         },
700  },
701  [ C(ITLB) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
704                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = -1,
708                 [ C(RESULT_MISS)   ] = -1,
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = -1,
712                 [ C(RESULT_MISS)   ] = -1,
713         },
714  },
715  [ C(BPU ) ] = {
716         [ C(OP_READ) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
718                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
719         },
720         [ C(OP_WRITE) ] = {
721                 [ C(RESULT_ACCESS) ] = -1,
722                 [ C(RESULT_MISS)   ] = -1,
723         },
724         [ C(OP_PREFETCH) ] = {
725                 [ C(RESULT_ACCESS) ] = -1,
726                 [ C(RESULT_MISS)   ] = -1,
727         },
728  },
729 };
730
731 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
732 {
733         /* user explicitly requested branch sampling */
734         if (has_branch_stack(event))
735                 return true;
736
737         /* implicit branch sampling to correct PEBS skid */
738         if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
739                 return true;
740
741         return false;
742 }
743
744 static void intel_pmu_disable_all(void)
745 {
746         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
747
748         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
749
750         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
751                 intel_pmu_disable_bts();
752
753         intel_pmu_pebs_disable_all();
754         intel_pmu_lbr_disable_all();
755 }
756
757 static void intel_pmu_enable_all(int added)
758 {
759         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
760
761         intel_pmu_pebs_enable_all();
762         intel_pmu_lbr_enable_all();
763         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
764                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
765
766         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
767                 struct perf_event *event =
768                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
769
770                 if (WARN_ON_ONCE(!event))
771                         return;
772
773                 intel_pmu_enable_bts(event->hw.config);
774         }
775 }
776
777 /*
778  * Workaround for:
779  *   Intel Errata AAK100 (model 26)
780  *   Intel Errata AAP53  (model 30)
781  *   Intel Errata BD53   (model 44)
782  *
783  * The official story:
784  *   These chips need to be 'reset' when adding counters by programming the
785  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
786  *   in sequence on the same PMC or on different PMCs.
787  *
788  * In practise it appears some of these events do in fact count, and
789  * we need to programm all 4 events.
790  */
791 static void intel_pmu_nhm_workaround(void)
792 {
793         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
794         static const unsigned long nhm_magic[4] = {
795                 0x4300B5,
796                 0x4300D2,
797                 0x4300B1,
798                 0x4300B1
799         };
800         struct perf_event *event;
801         int i;
802
803         /*
804          * The Errata requires below steps:
805          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
806          * 2) Configure 4 PERFEVTSELx with the magic events and clear
807          *    the corresponding PMCx;
808          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
809          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
810          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
811          */
812
813         /*
814          * The real steps we choose are a little different from above.
815          * A) To reduce MSR operations, we don't run step 1) as they
816          *    are already cleared before this function is called;
817          * B) Call x86_perf_event_update to save PMCx before configuring
818          *    PERFEVTSELx with magic number;
819          * C) With step 5), we do clear only when the PERFEVTSELx is
820          *    not used currently.
821          * D) Call x86_perf_event_set_period to restore PMCx;
822          */
823
824         /* We always operate 4 pairs of PERF Counters */
825         for (i = 0; i < 4; i++) {
826                 event = cpuc->events[i];
827                 if (event)
828                         x86_perf_event_update(event);
829         }
830
831         for (i = 0; i < 4; i++) {
832                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
833                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
834         }
835
836         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
837         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
838
839         for (i = 0; i < 4; i++) {
840                 event = cpuc->events[i];
841
842                 if (event) {
843                         x86_perf_event_set_period(event);
844                         __x86_pmu_enable_event(&event->hw,
845                                         ARCH_PERFMON_EVENTSEL_ENABLE);
846                 } else
847                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
848         }
849 }
850
851 static void intel_pmu_nhm_enable_all(int added)
852 {
853         if (added)
854                 intel_pmu_nhm_workaround();
855         intel_pmu_enable_all(added);
856 }
857
858 static inline u64 intel_pmu_get_status(void)
859 {
860         u64 status;
861
862         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
863
864         return status;
865 }
866
867 static inline void intel_pmu_ack_status(u64 ack)
868 {
869         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
870 }
871
872 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
873 {
874         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
875         u64 ctrl_val, mask;
876
877         mask = 0xfULL << (idx * 4);
878
879         rdmsrl(hwc->config_base, ctrl_val);
880         ctrl_val &= ~mask;
881         wrmsrl(hwc->config_base, ctrl_val);
882 }
883
884 static void intel_pmu_disable_event(struct perf_event *event)
885 {
886         struct hw_perf_event *hwc = &event->hw;
887         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
888
889         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
890                 intel_pmu_disable_bts();
891                 intel_pmu_drain_bts_buffer();
892                 return;
893         }
894
895         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
896         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
897
898         /*
899          * must disable before any actual event
900          * because any event may be combined with LBR
901          */
902         if (intel_pmu_needs_lbr_smpl(event))
903                 intel_pmu_lbr_disable(event);
904
905         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
906                 intel_pmu_disable_fixed(hwc);
907                 return;
908         }
909
910         x86_pmu_disable_event(event);
911
912         if (unlikely(event->attr.precise_ip))
913                 intel_pmu_pebs_disable(event);
914 }
915
916 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
917 {
918         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
919         u64 ctrl_val, bits, mask;
920
921         /*
922          * Enable IRQ generation (0x8),
923          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
924          * if requested:
925          */
926         bits = 0x8ULL;
927         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
928                 bits |= 0x2;
929         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
930                 bits |= 0x1;
931
932         /*
933          * ANY bit is supported in v3 and up
934          */
935         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
936                 bits |= 0x4;
937
938         bits <<= (idx * 4);
939         mask = 0xfULL << (idx * 4);
940
941         rdmsrl(hwc->config_base, ctrl_val);
942         ctrl_val &= ~mask;
943         ctrl_val |= bits;
944         wrmsrl(hwc->config_base, ctrl_val);
945 }
946
947 static void intel_pmu_enable_event(struct perf_event *event)
948 {
949         struct hw_perf_event *hwc = &event->hw;
950         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
951
952         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
953                 if (!__this_cpu_read(cpu_hw_events.enabled))
954                         return;
955
956                 intel_pmu_enable_bts(hwc->config);
957                 return;
958         }
959         /*
960          * must enabled before any actual event
961          * because any event may be combined with LBR
962          */
963         if (intel_pmu_needs_lbr_smpl(event))
964                 intel_pmu_lbr_enable(event);
965
966         if (event->attr.exclude_host)
967                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
968         if (event->attr.exclude_guest)
969                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
970
971         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
972                 intel_pmu_enable_fixed(hwc);
973                 return;
974         }
975
976         if (unlikely(event->attr.precise_ip))
977                 intel_pmu_pebs_enable(event);
978
979         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
980 }
981
982 /*
983  * Save and restart an expired event. Called by NMI contexts,
984  * so it has to be careful about preempting normal event ops:
985  */
986 int intel_pmu_save_and_restart(struct perf_event *event)
987 {
988         x86_perf_event_update(event);
989         return x86_perf_event_set_period(event);
990 }
991
992 static void intel_pmu_reset(void)
993 {
994         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
995         unsigned long flags;
996         int idx;
997
998         if (!x86_pmu.num_counters)
999                 return;
1000
1001         local_irq_save(flags);
1002
1003         printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1004
1005         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1006                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1007                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1008         }
1009         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1010                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1011
1012         if (ds)
1013                 ds->bts_index = ds->bts_buffer_base;
1014
1015         local_irq_restore(flags);
1016 }
1017
1018 /*
1019  * This handler is triggered by the local APIC, so the APIC IRQ handling
1020  * rules apply:
1021  */
1022 static int intel_pmu_handle_irq(struct pt_regs *regs)
1023 {
1024         struct perf_sample_data data;
1025         struct cpu_hw_events *cpuc;
1026         int bit, loops;
1027         u64 status;
1028         int handled;
1029
1030         cpuc = &__get_cpu_var(cpu_hw_events);
1031
1032         /*
1033          * Some chipsets need to unmask the LVTPC in a particular spot
1034          * inside the nmi handler.  As a result, the unmasking was pushed
1035          * into all the nmi handlers.
1036          *
1037          * This handler doesn't seem to have any issues with the unmasking
1038          * so it was left at the top.
1039          */
1040         apic_write(APIC_LVTPC, APIC_DM_NMI);
1041
1042         intel_pmu_disable_all();
1043         handled = intel_pmu_drain_bts_buffer();
1044         status = intel_pmu_get_status();
1045         if (!status) {
1046                 intel_pmu_enable_all(0);
1047                 return handled;
1048         }
1049
1050         loops = 0;
1051 again:
1052         intel_pmu_ack_status(status);
1053         if (++loops > 100) {
1054                 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1055                 perf_event_print_debug();
1056                 intel_pmu_reset();
1057                 goto done;
1058         }
1059
1060         inc_irq_stat(apic_perf_irqs);
1061
1062         intel_pmu_lbr_read();
1063
1064         /*
1065          * PEBS overflow sets bit 62 in the global status register
1066          */
1067         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1068                 handled++;
1069                 x86_pmu.drain_pebs(regs);
1070         }
1071
1072         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1073                 struct perf_event *event = cpuc->events[bit];
1074
1075                 handled++;
1076
1077                 if (!test_bit(bit, cpuc->active_mask))
1078                         continue;
1079
1080                 if (!intel_pmu_save_and_restart(event))
1081                         continue;
1082
1083                 perf_sample_data_init(&data, 0, event->hw.last_period);
1084
1085                 if (has_branch_stack(event))
1086                         data.br_stack = &cpuc->lbr_stack;
1087
1088                 if (perf_event_overflow(event, &data, regs))
1089                         x86_pmu_stop(event, 0);
1090         }
1091
1092         /*
1093          * Repeat if there is more work to be done:
1094          */
1095         status = intel_pmu_get_status();
1096         if (status)
1097                 goto again;
1098
1099 done:
1100         intel_pmu_enable_all(0);
1101         return handled;
1102 }
1103
1104 static struct event_constraint *
1105 intel_bts_constraints(struct perf_event *event)
1106 {
1107         struct hw_perf_event *hwc = &event->hw;
1108         unsigned int hw_event, bts_event;
1109
1110         if (event->attr.freq)
1111                 return NULL;
1112
1113         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1114         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1115
1116         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1117                 return &bts_constraint;
1118
1119         return NULL;
1120 }
1121
1122 static int intel_alt_er(int idx)
1123 {
1124         if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1125                 return idx;
1126
1127         if (idx == EXTRA_REG_RSP_0)
1128                 return EXTRA_REG_RSP_1;
1129
1130         if (idx == EXTRA_REG_RSP_1)
1131                 return EXTRA_REG_RSP_0;
1132
1133         return idx;
1134 }
1135
1136 static void intel_fixup_er(struct perf_event *event, int idx)
1137 {
1138         event->hw.extra_reg.idx = idx;
1139
1140         if (idx == EXTRA_REG_RSP_0) {
1141                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1142                 event->hw.config |= 0x01b7;
1143                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1144         } else if (idx == EXTRA_REG_RSP_1) {
1145                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1146                 event->hw.config |= 0x01bb;
1147                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1148         }
1149 }
1150
1151 /*
1152  * manage allocation of shared extra msr for certain events
1153  *
1154  * sharing can be:
1155  * per-cpu: to be shared between the various events on a single PMU
1156  * per-core: per-cpu + shared by HT threads
1157  */
1158 static struct event_constraint *
1159 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1160                                    struct perf_event *event,
1161                                    struct hw_perf_event_extra *reg)
1162 {
1163         struct event_constraint *c = &emptyconstraint;
1164         struct er_account *era;
1165         unsigned long flags;
1166         int idx = reg->idx;
1167
1168         /*
1169          * reg->alloc can be set due to existing state, so for fake cpuc we
1170          * need to ignore this, otherwise we might fail to allocate proper fake
1171          * state for this extra reg constraint. Also see the comment below.
1172          */
1173         if (reg->alloc && !cpuc->is_fake)
1174                 return NULL; /* call x86_get_event_constraint() */
1175
1176 again:
1177         era = &cpuc->shared_regs->regs[idx];
1178         /*
1179          * we use spin_lock_irqsave() to avoid lockdep issues when
1180          * passing a fake cpuc
1181          */
1182         raw_spin_lock_irqsave(&era->lock, flags);
1183
1184         if (!atomic_read(&era->ref) || era->config == reg->config) {
1185
1186                 /*
1187                  * If its a fake cpuc -- as per validate_{group,event}() we
1188                  * shouldn't touch event state and we can avoid doing so
1189                  * since both will only call get_event_constraints() once
1190                  * on each event, this avoids the need for reg->alloc.
1191                  *
1192                  * Not doing the ER fixup will only result in era->reg being
1193                  * wrong, but since we won't actually try and program hardware
1194                  * this isn't a problem either.
1195                  */
1196                 if (!cpuc->is_fake) {
1197                         if (idx != reg->idx)
1198                                 intel_fixup_er(event, idx);
1199
1200                         /*
1201                          * x86_schedule_events() can call get_event_constraints()
1202                          * multiple times on events in the case of incremental
1203                          * scheduling(). reg->alloc ensures we only do the ER
1204                          * allocation once.
1205                          */
1206                         reg->alloc = 1;
1207                 }
1208
1209                 /* lock in msr value */
1210                 era->config = reg->config;
1211                 era->reg = reg->reg;
1212
1213                 /* one more user */
1214                 atomic_inc(&era->ref);
1215
1216                 /*
1217                  * need to call x86_get_event_constraint()
1218                  * to check if associated event has constraints
1219                  */
1220                 c = NULL;
1221         } else {
1222                 idx = intel_alt_er(idx);
1223                 if (idx != reg->idx) {
1224                         raw_spin_unlock_irqrestore(&era->lock, flags);
1225                         goto again;
1226                 }
1227         }
1228         raw_spin_unlock_irqrestore(&era->lock, flags);
1229
1230         return c;
1231 }
1232
1233 static void
1234 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1235                                    struct hw_perf_event_extra *reg)
1236 {
1237         struct er_account *era;
1238
1239         /*
1240          * Only put constraint if extra reg was actually allocated. Also takes
1241          * care of event which do not use an extra shared reg.
1242          *
1243          * Also, if this is a fake cpuc we shouldn't touch any event state
1244          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1245          * either since it'll be thrown out.
1246          */
1247         if (!reg->alloc || cpuc->is_fake)
1248                 return;
1249
1250         era = &cpuc->shared_regs->regs[reg->idx];
1251
1252         /* one fewer user */
1253         atomic_dec(&era->ref);
1254
1255         /* allocate again next time */
1256         reg->alloc = 0;
1257 }
1258
1259 static struct event_constraint *
1260 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1261                               struct perf_event *event)
1262 {
1263         struct event_constraint *c = NULL, *d;
1264         struct hw_perf_event_extra *xreg, *breg;
1265
1266         xreg = &event->hw.extra_reg;
1267         if (xreg->idx != EXTRA_REG_NONE) {
1268                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1269                 if (c == &emptyconstraint)
1270                         return c;
1271         }
1272         breg = &event->hw.branch_reg;
1273         if (breg->idx != EXTRA_REG_NONE) {
1274                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1275                 if (d == &emptyconstraint) {
1276                         __intel_shared_reg_put_constraints(cpuc, xreg);
1277                         c = d;
1278                 }
1279         }
1280         return c;
1281 }
1282
1283 struct event_constraint *
1284 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1285 {
1286         struct event_constraint *c;
1287
1288         if (x86_pmu.event_constraints) {
1289                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1290                         if ((event->hw.config & c->cmask) == c->code)
1291                                 return c;
1292                 }
1293         }
1294
1295         return &unconstrained;
1296 }
1297
1298 static struct event_constraint *
1299 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1300 {
1301         struct event_constraint *c;
1302
1303         c = intel_bts_constraints(event);
1304         if (c)
1305                 return c;
1306
1307         c = intel_pebs_constraints(event);
1308         if (c)
1309                 return c;
1310
1311         c = intel_shared_regs_constraints(cpuc, event);
1312         if (c)
1313                 return c;
1314
1315         return x86_get_event_constraints(cpuc, event);
1316 }
1317
1318 static void
1319 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1320                                         struct perf_event *event)
1321 {
1322         struct hw_perf_event_extra *reg;
1323
1324         reg = &event->hw.extra_reg;
1325         if (reg->idx != EXTRA_REG_NONE)
1326                 __intel_shared_reg_put_constraints(cpuc, reg);
1327
1328         reg = &event->hw.branch_reg;
1329         if (reg->idx != EXTRA_REG_NONE)
1330                 __intel_shared_reg_put_constraints(cpuc, reg);
1331 }
1332
1333 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1334                                         struct perf_event *event)
1335 {
1336         intel_put_shared_regs_event_constraints(cpuc, event);
1337 }
1338
1339 static void intel_pebs_aliases_core2(struct perf_event *event)
1340 {
1341         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1342                 /*
1343                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1344                  * (0x003c) so that we can use it with PEBS.
1345                  *
1346                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1347                  * PEBS capable. However we can use INST_RETIRED.ANY_P
1348                  * (0x00c0), which is a PEBS capable event, to get the same
1349                  * count.
1350                  *
1351                  * INST_RETIRED.ANY_P counts the number of cycles that retires
1352                  * CNTMASK instructions. By setting CNTMASK to a value (16)
1353                  * larger than the maximum number of instructions that can be
1354                  * retired per cycle (4) and then inverting the condition, we
1355                  * count all cycles that retire 16 or less instructions, which
1356                  * is every cycle.
1357                  *
1358                  * Thereby we gain a PEBS capable cycle counter.
1359                  */
1360                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1361
1362                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1363                 event->hw.config = alt_config;
1364         }
1365 }
1366
1367 static void intel_pebs_aliases_snb(struct perf_event *event)
1368 {
1369         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1370                 /*
1371                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1372                  * (0x003c) so that we can use it with PEBS.
1373                  *
1374                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1375                  * PEBS capable. However we can use UOPS_RETIRED.ALL
1376                  * (0x01c2), which is a PEBS capable event, to get the same
1377                  * count.
1378                  *
1379                  * UOPS_RETIRED.ALL counts the number of cycles that retires
1380                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1381                  * larger than the maximum number of micro-ops that can be
1382                  * retired per cycle (4) and then inverting the condition, we
1383                  * count all cycles that retire 16 or less micro-ops, which
1384                  * is every cycle.
1385                  *
1386                  * Thereby we gain a PEBS capable cycle counter.
1387                  */
1388                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1389
1390                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1391                 event->hw.config = alt_config;
1392         }
1393 }
1394
1395 static int intel_pmu_hw_config(struct perf_event *event)
1396 {
1397         int ret = x86_pmu_hw_config(event);
1398
1399         if (ret)
1400                 return ret;
1401
1402         if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1403                 x86_pmu.pebs_aliases(event);
1404
1405         if (intel_pmu_needs_lbr_smpl(event)) {
1406                 ret = intel_pmu_setup_lbr_filter(event);
1407                 if (ret)
1408                         return ret;
1409         }
1410
1411         if (event->attr.type != PERF_TYPE_RAW)
1412                 return 0;
1413
1414         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1415                 return 0;
1416
1417         if (x86_pmu.version < 3)
1418                 return -EINVAL;
1419
1420         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1421                 return -EACCES;
1422
1423         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1424
1425         return 0;
1426 }
1427
1428 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1429 {
1430         if (x86_pmu.guest_get_msrs)
1431                 return x86_pmu.guest_get_msrs(nr);
1432         *nr = 0;
1433         return NULL;
1434 }
1435 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1436
1437 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1438 {
1439         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1440         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1441
1442         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1443         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1444         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1445
1446         *nr = 1;
1447         return arr;
1448 }
1449
1450 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1451 {
1452         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1453         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1454         int idx;
1455
1456         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1457                 struct perf_event *event = cpuc->events[idx];
1458
1459                 arr[idx].msr = x86_pmu_config_addr(idx);
1460                 arr[idx].host = arr[idx].guest = 0;
1461
1462                 if (!test_bit(idx, cpuc->active_mask))
1463                         continue;
1464
1465                 arr[idx].host = arr[idx].guest =
1466                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1467
1468                 if (event->attr.exclude_host)
1469                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1470                 else if (event->attr.exclude_guest)
1471                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1472         }
1473
1474         *nr = x86_pmu.num_counters;
1475         return arr;
1476 }
1477
1478 static void core_pmu_enable_event(struct perf_event *event)
1479 {
1480         if (!event->attr.exclude_host)
1481                 x86_pmu_enable_event(event);
1482 }
1483
1484 static void core_pmu_enable_all(int added)
1485 {
1486         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1487         int idx;
1488
1489         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1490                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1491
1492                 if (!test_bit(idx, cpuc->active_mask) ||
1493                                 cpuc->events[idx]->attr.exclude_host)
1494                         continue;
1495
1496                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1497         }
1498 }
1499
1500 PMU_FORMAT_ATTR(event,  "config:0-7"    );
1501 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
1502 PMU_FORMAT_ATTR(edge,   "config:18"     );
1503 PMU_FORMAT_ATTR(pc,     "config:19"     );
1504 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
1505 PMU_FORMAT_ATTR(inv,    "config:23"     );
1506 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
1507
1508 static struct attribute *intel_arch_formats_attr[] = {
1509         &format_attr_event.attr,
1510         &format_attr_umask.attr,
1511         &format_attr_edge.attr,
1512         &format_attr_pc.attr,
1513         &format_attr_inv.attr,
1514         &format_attr_cmask.attr,
1515         NULL,
1516 };
1517
1518 static __initconst const struct x86_pmu core_pmu = {
1519         .name                   = "core",
1520         .handle_irq             = x86_pmu_handle_irq,
1521         .disable_all            = x86_pmu_disable_all,
1522         .enable_all             = core_pmu_enable_all,
1523         .enable                 = core_pmu_enable_event,
1524         .disable                = x86_pmu_disable_event,
1525         .hw_config              = x86_pmu_hw_config,
1526         .schedule_events        = x86_schedule_events,
1527         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1528         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1529         .event_map              = intel_pmu_event_map,
1530         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1531         .apic                   = 1,
1532         /*
1533          * Intel PMCs cannot be accessed sanely above 32 bit width,
1534          * so we install an artificial 1<<31 period regardless of
1535          * the generic event period:
1536          */
1537         .max_period             = (1ULL << 31) - 1,
1538         .get_event_constraints  = intel_get_event_constraints,
1539         .put_event_constraints  = intel_put_event_constraints,
1540         .event_constraints      = intel_core_event_constraints,
1541         .guest_get_msrs         = core_guest_get_msrs,
1542         .format_attrs           = intel_arch_formats_attr,
1543 };
1544
1545 struct intel_shared_regs *allocate_shared_regs(int cpu)
1546 {
1547         struct intel_shared_regs *regs;
1548         int i;
1549
1550         regs = kzalloc_node(sizeof(struct intel_shared_regs),
1551                             GFP_KERNEL, cpu_to_node(cpu));
1552         if (regs) {
1553                 /*
1554                  * initialize the locks to keep lockdep happy
1555                  */
1556                 for (i = 0; i < EXTRA_REG_MAX; i++)
1557                         raw_spin_lock_init(&regs->regs[i].lock);
1558
1559                 regs->core_id = -1;
1560         }
1561         return regs;
1562 }
1563
1564 static int intel_pmu_cpu_prepare(int cpu)
1565 {
1566         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1567
1568         if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1569                 return NOTIFY_OK;
1570
1571         cpuc->shared_regs = allocate_shared_regs(cpu);
1572         if (!cpuc->shared_regs)
1573                 return NOTIFY_BAD;
1574
1575         return NOTIFY_OK;
1576 }
1577
1578 static void intel_pmu_cpu_starting(int cpu)
1579 {
1580         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1581         int core_id = topology_core_id(cpu);
1582         int i;
1583
1584         init_debug_store_on_cpu(cpu);
1585         /*
1586          * Deal with CPUs that don't clear their LBRs on power-up.
1587          */
1588         intel_pmu_lbr_reset();
1589
1590         cpuc->lbr_sel = NULL;
1591
1592         if (!cpuc->shared_regs)
1593                 return;
1594
1595         if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1596                 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1597                         struct intel_shared_regs *pc;
1598
1599                         pc = per_cpu(cpu_hw_events, i).shared_regs;
1600                         if (pc && pc->core_id == core_id) {
1601                                 cpuc->kfree_on_online = cpuc->shared_regs;
1602                                 cpuc->shared_regs = pc;
1603                                 break;
1604                         }
1605                 }
1606                 cpuc->shared_regs->core_id = core_id;
1607                 cpuc->shared_regs->refcnt++;
1608         }
1609
1610         if (x86_pmu.lbr_sel_map)
1611                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1612 }
1613
1614 static void intel_pmu_cpu_dying(int cpu)
1615 {
1616         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1617         struct intel_shared_regs *pc;
1618
1619         pc = cpuc->shared_regs;
1620         if (pc) {
1621                 if (pc->core_id == -1 || --pc->refcnt == 0)
1622                         kfree(pc);
1623                 cpuc->shared_regs = NULL;
1624         }
1625
1626         fini_debug_store_on_cpu(cpu);
1627 }
1628
1629 static void intel_pmu_flush_branch_stack(void)
1630 {
1631         /*
1632          * Intel LBR does not tag entries with the
1633          * PID of the current task, then we need to
1634          * flush it on ctxsw
1635          * For now, we simply reset it
1636          */
1637         if (x86_pmu.lbr_nr)
1638                 intel_pmu_lbr_reset();
1639 }
1640
1641 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1642
1643 static struct attribute *intel_arch3_formats_attr[] = {
1644         &format_attr_event.attr,
1645         &format_attr_umask.attr,
1646         &format_attr_edge.attr,
1647         &format_attr_pc.attr,
1648         &format_attr_any.attr,
1649         &format_attr_inv.attr,
1650         &format_attr_cmask.attr,
1651
1652         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1653         NULL,
1654 };
1655
1656 static __initconst const struct x86_pmu intel_pmu = {
1657         .name                   = "Intel",
1658         .handle_irq             = intel_pmu_handle_irq,
1659         .disable_all            = intel_pmu_disable_all,
1660         .enable_all             = intel_pmu_enable_all,
1661         .enable                 = intel_pmu_enable_event,
1662         .disable                = intel_pmu_disable_event,
1663         .hw_config              = intel_pmu_hw_config,
1664         .schedule_events        = x86_schedule_events,
1665         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
1666         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
1667         .event_map              = intel_pmu_event_map,
1668         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
1669         .apic                   = 1,
1670         /*
1671          * Intel PMCs cannot be accessed sanely above 32 bit width,
1672          * so we install an artificial 1<<31 period regardless of
1673          * the generic event period:
1674          */
1675         .max_period             = (1ULL << 31) - 1,
1676         .get_event_constraints  = intel_get_event_constraints,
1677         .put_event_constraints  = intel_put_event_constraints,
1678         .pebs_aliases           = intel_pebs_aliases_core2,
1679
1680         .format_attrs           = intel_arch3_formats_attr,
1681
1682         .cpu_prepare            = intel_pmu_cpu_prepare,
1683         .cpu_starting           = intel_pmu_cpu_starting,
1684         .cpu_dying              = intel_pmu_cpu_dying,
1685         .guest_get_msrs         = intel_guest_get_msrs,
1686         .flush_branch_stack     = intel_pmu_flush_branch_stack,
1687 };
1688
1689 static __init void intel_clovertown_quirk(void)
1690 {
1691         /*
1692          * PEBS is unreliable due to:
1693          *
1694          *   AJ67  - PEBS may experience CPL leaks
1695          *   AJ68  - PEBS PMI may be delayed by one event
1696          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1697          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1698          *
1699          * AJ67 could be worked around by restricting the OS/USR flags.
1700          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1701          *
1702          * AJ106 could possibly be worked around by not allowing LBR
1703          *       usage from PEBS, including the fixup.
1704          * AJ68  could possibly be worked around by always programming
1705          *       a pebs_event_reset[0] value and coping with the lost events.
1706          *
1707          * But taken together it might just make sense to not enable PEBS on
1708          * these chips.
1709          */
1710         printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1711         x86_pmu.pebs = 0;
1712         x86_pmu.pebs_constraints = NULL;
1713 }
1714
1715 static int intel_snb_pebs_broken(int cpu)
1716 {
1717         u32 rev = UINT_MAX; /* default to broken for unknown models */
1718
1719         switch (cpu_data(cpu).x86_model) {
1720         case 42: /* SNB */
1721                 rev = 0x28;
1722                 break;
1723
1724         case 45: /* SNB-EP */
1725                 switch (cpu_data(cpu).x86_mask) {
1726                 case 6: rev = 0x618; break;
1727                 case 7: rev = 0x70c; break;
1728                 }
1729         }
1730
1731         return (cpu_data(cpu).microcode < rev);
1732 }
1733
1734 static void intel_snb_check_microcode(void)
1735 {
1736         int pebs_broken = 0;
1737         int cpu;
1738
1739         get_online_cpus();
1740         for_each_online_cpu(cpu) {
1741                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1742                         break;
1743         }
1744         put_online_cpus();
1745
1746         if (pebs_broken == x86_pmu.pebs_broken)
1747                 return;
1748
1749         /*
1750          * Serialized by the microcode lock..
1751          */
1752         if (x86_pmu.pebs_broken) {
1753                 pr_info("PEBS enabled due to microcode update\n");
1754                 x86_pmu.pebs_broken = 0;
1755         } else {
1756                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1757                 x86_pmu.pebs_broken = 1;
1758         }
1759 }
1760
1761 static __init void intel_sandybridge_quirk(void)
1762 {
1763         x86_pmu.check_microcode = intel_snb_check_microcode;
1764         intel_snb_check_microcode();
1765 }
1766
1767 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1768         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1769         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1770         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1771         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1772         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1773         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1774         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1775 };
1776
1777 static __init void intel_arch_events_quirk(void)
1778 {
1779         int bit;
1780
1781         /* disable event that reported as not presend by cpuid */
1782         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1783                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1784                 printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
1785                                 intel_arch_events_map[bit].name);
1786         }
1787 }
1788
1789 static __init void intel_nehalem_quirk(void)
1790 {
1791         union cpuid10_ebx ebx;
1792
1793         ebx.full = x86_pmu.events_maskl;
1794         if (ebx.split.no_branch_misses_retired) {
1795                 /*
1796                  * Erratum AAJ80 detected, we work it around by using
1797                  * the BR_MISP_EXEC.ANY event. This will over-count
1798                  * branch-misses, but it's still much better than the
1799                  * architectural event which is often completely bogus:
1800                  */
1801                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1802                 ebx.split.no_branch_misses_retired = 0;
1803                 x86_pmu.events_maskl = ebx.full;
1804                 printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
1805         }
1806 }
1807
1808 __init int intel_pmu_init(void)
1809 {
1810         union cpuid10_edx edx;
1811         union cpuid10_eax eax;
1812         union cpuid10_ebx ebx;
1813         struct event_constraint *c;
1814         unsigned int unused;
1815         int version;
1816
1817         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1818                 switch (boot_cpu_data.x86) {
1819                 case 0x6:
1820                         return p6_pmu_init();
1821                 case 0xf:
1822                         return p4_pmu_init();
1823                 }
1824                 return -ENODEV;
1825         }
1826
1827         /*
1828          * Check whether the Architectural PerfMon supports
1829          * Branch Misses Retired hw_event or not.
1830          */
1831         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1832         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1833                 return -ENODEV;
1834
1835         version = eax.split.version_id;
1836         if (version < 2)
1837                 x86_pmu = core_pmu;
1838         else
1839                 x86_pmu = intel_pmu;
1840
1841         x86_pmu.version                 = version;
1842         x86_pmu.num_counters            = eax.split.num_counters;
1843         x86_pmu.cntval_bits             = eax.split.bit_width;
1844         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
1845
1846         x86_pmu.events_maskl            = ebx.full;
1847         x86_pmu.events_mask_len         = eax.split.mask_length;
1848
1849         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1850
1851         /*
1852          * Quirk: v2 perfmon does not report fixed-purpose events, so
1853          * assume at least 3 events:
1854          */
1855         if (version > 1)
1856                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1857
1858         /*
1859          * v2 and above have a perf capabilities MSR
1860          */
1861         if (version > 1) {
1862                 u64 capabilities;
1863
1864                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1865                 x86_pmu.intel_cap.capabilities = capabilities;
1866         }
1867
1868         intel_ds_init();
1869
1870         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1871
1872         /*
1873          * Install the hw-cache-events table:
1874          */
1875         switch (boot_cpu_data.x86_model) {
1876         case 14: /* 65 nm core solo/duo, "Yonah" */
1877                 pr_cont("Core events, ");
1878                 break;
1879
1880         case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1881                 x86_add_quirk(intel_clovertown_quirk);
1882         case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1883         case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1884         case 29: /* six-core 45 nm xeon "Dunnington" */
1885                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1886                        sizeof(hw_cache_event_ids));
1887
1888                 intel_pmu_lbr_init_core();
1889
1890                 x86_pmu.event_constraints = intel_core2_event_constraints;
1891                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1892                 pr_cont("Core2 events, ");
1893                 break;
1894
1895         case 26: /* 45 nm nehalem, "Bloomfield" */
1896         case 30: /* 45 nm nehalem, "Lynnfield" */
1897         case 46: /* 45 nm nehalem-ex, "Beckton" */
1898                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1899                        sizeof(hw_cache_event_ids));
1900                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1901                        sizeof(hw_cache_extra_regs));
1902
1903                 intel_pmu_lbr_init_nhm();
1904
1905                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1906                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1907                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1908                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1909
1910                 /* UOPS_ISSUED.STALLED_CYCLES */
1911                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1912                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1913                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1914                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1915                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1916
1917                 x86_add_quirk(intel_nehalem_quirk);
1918
1919                 pr_cont("Nehalem events, ");
1920                 break;
1921
1922         case 28: /* Atom */
1923                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1924                        sizeof(hw_cache_event_ids));
1925
1926                 intel_pmu_lbr_init_atom();
1927
1928                 x86_pmu.event_constraints = intel_gen_event_constraints;
1929                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1930                 pr_cont("Atom events, ");
1931                 break;
1932
1933         case 37: /* 32 nm nehalem, "Clarkdale" */
1934         case 44: /* 32 nm nehalem, "Gulftown" */
1935         case 47: /* 32 nm Xeon E7 */
1936                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1937                        sizeof(hw_cache_event_ids));
1938                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1939                        sizeof(hw_cache_extra_regs));
1940
1941                 intel_pmu_lbr_init_nhm();
1942
1943                 x86_pmu.event_constraints = intel_westmere_event_constraints;
1944                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1945                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1946                 x86_pmu.extra_regs = intel_westmere_extra_regs;
1947                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1948
1949                 /* UOPS_ISSUED.STALLED_CYCLES */
1950                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1951                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1952                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1953                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1954                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1955
1956                 pr_cont("Westmere events, ");
1957                 break;
1958
1959         case 42: /* SandyBridge */
1960         case 45: /* SandyBridge, "Romely-EP" */
1961                 x86_add_quirk(intel_sandybridge_quirk);
1962         case 58: /* IvyBridge */
1963                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1964                        sizeof(hw_cache_event_ids));
1965
1966                 intel_pmu_lbr_init_snb();
1967
1968                 x86_pmu.event_constraints = intel_snb_event_constraints;
1969                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1970                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
1971                 x86_pmu.extra_regs = intel_snb_extra_regs;
1972                 /* all extra regs are per-cpu when HT is on */
1973                 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1974                 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1975
1976                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1977                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1978                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1979                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1980                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1981                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
1982
1983                 pr_cont("SandyBridge events, ");
1984                 break;
1985
1986         default:
1987                 switch (x86_pmu.version) {
1988                 case 1:
1989                         x86_pmu.event_constraints = intel_v1_event_constraints;
1990                         pr_cont("generic architected perfmon v1, ");
1991                         break;
1992                 default:
1993                         /*
1994                          * default constraints for v2 and up
1995                          */
1996                         x86_pmu.event_constraints = intel_gen_event_constraints;
1997                         pr_cont("generic architected perfmon, ");
1998                         break;
1999                 }
2000         }
2001
2002         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2003                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2004                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2005                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2006         }
2007         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2008
2009         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2010                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2011                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2012                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2013         }
2014
2015         x86_pmu.intel_ctrl |=
2016                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2017
2018         if (x86_pmu.event_constraints) {
2019                 /*
2020                  * event on fixed counter2 (REF_CYCLES) only works on this
2021                  * counter, so do not extend mask to generic counters
2022                  */
2023                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2024                         if (c->cmask != X86_RAW_EVENT_MASK
2025                             || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2026                                 continue;
2027                         }
2028
2029                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2030                         c->weight += x86_pmu.num_counters;
2031                 }
2032         }
2033
2034         return 0;
2035 }