powerpc: Decode the pte-lp-encoding bits correctly.
[linux.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/tlbflush.h>
47 #include <asm/io.h>
48 #include <asm/eeh.h>
49 #include <asm/tlb.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/spu.h>
54 #include <asm/udbg.h>
55 #include <asm/code-patching.h>
56 #include <asm/fadump.h>
57 #include <asm/firmware.h>
58 #include <asm/tm.h>
59
60 #ifdef DEBUG
61 #define DBG(fmt...) udbg_printf(fmt)
62 #else
63 #define DBG(fmt...)
64 #endif
65
66 #ifdef DEBUG_LOW
67 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG_LOW(fmt...)
70 #endif
71
72 #define KB (1024)
73 #define MB (1024*KB)
74 #define GB (1024L*MB)
75
76 /*
77  * Note:  pte   --> Linux PTE
78  *        HPTE  --> PowerPC Hashed Page Table Entry
79  *
80  * Execution context:
81  *   htab_initialize is called with the MMU off (of course), but
82  *   the kernel has been copied down to zero so it can directly
83  *   reference global data.  At this point it is very difficult
84  *   to print debug info.
85  *
86  */
87
88 #ifdef CONFIG_U3_DART
89 extern unsigned long dart_tablebase;
90 #endif /* CONFIG_U3_DART */
91
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94
95 struct hash_pte *htab_address;
96 unsigned long htab_size_bytes;
97 unsigned long htab_hash_mask;
98 EXPORT_SYMBOL_GPL(htab_hash_mask);
99 int mmu_linear_psize = MMU_PAGE_4K;
100 int mmu_virtual_psize = MMU_PAGE_4K;
101 int mmu_vmalloc_psize = MMU_PAGE_4K;
102 #ifdef CONFIG_SPARSEMEM_VMEMMAP
103 int mmu_vmemmap_psize = MMU_PAGE_4K;
104 #endif
105 int mmu_io_psize = MMU_PAGE_4K;
106 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
107 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
108 u16 mmu_slb_size = 64;
109 EXPORT_SYMBOL_GPL(mmu_slb_size);
110 #ifdef CONFIG_PPC_64K_PAGES
111 int mmu_ci_restrictions;
112 #endif
113 #ifdef CONFIG_DEBUG_PAGEALLOC
114 static u8 *linear_map_hash_slots;
115 static unsigned long linear_map_hash_count;
116 static DEFINE_SPINLOCK(linear_map_hash_lock);
117 #endif /* CONFIG_DEBUG_PAGEALLOC */
118
119 /* There are definitions of page sizes arrays to be used when none
120  * is provided by the firmware.
121  */
122
123 /* Pre-POWER4 CPUs (4k pages only)
124  */
125 static struct mmu_psize_def mmu_psize_defaults_old[] = {
126         [MMU_PAGE_4K] = {
127                 .shift  = 12,
128                 .sllp   = 0,
129                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
130                 .avpnm  = 0,
131                 .tlbiel = 0,
132         },
133 };
134
135 /* POWER4, GPUL, POWER5
136  *
137  * Support for 16Mb large pages
138  */
139 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
140         [MMU_PAGE_4K] = {
141                 .shift  = 12,
142                 .sllp   = 0,
143                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144                 .avpnm  = 0,
145                 .tlbiel = 1,
146         },
147         [MMU_PAGE_16M] = {
148                 .shift  = 24,
149                 .sllp   = SLB_VSID_L,
150                 .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
151                             [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
152                 .avpnm  = 0x1UL,
153                 .tlbiel = 0,
154         },
155 };
156
157 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
158 {
159         unsigned long rflags = pteflags & 0x1fa;
160
161         /* _PAGE_EXEC -> NOEXEC */
162         if ((pteflags & _PAGE_EXEC) == 0)
163                 rflags |= HPTE_R_N;
164
165         /* PP bits. PAGE_USER is already PP bit 0x2, so we only
166          * need to add in 0x1 if it's a read-only user page
167          */
168         if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
169                                          (pteflags & _PAGE_DIRTY)))
170                 rflags |= 1;
171
172         /* Always add C */
173         return rflags | HPTE_R_C;
174 }
175
176 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
177                       unsigned long pstart, unsigned long prot,
178                       int psize, int ssize)
179 {
180         unsigned long vaddr, paddr;
181         unsigned int step, shift;
182         int ret = 0;
183
184         shift = mmu_psize_defs[psize].shift;
185         step = 1 << shift;
186
187         prot = htab_convert_pte_flags(prot);
188
189         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
190             vstart, vend, pstart, prot, psize, ssize);
191
192         for (vaddr = vstart, paddr = pstart; vaddr < vend;
193              vaddr += step, paddr += step) {
194                 unsigned long hash, hpteg;
195                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
196                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
197                 unsigned long tprot = prot;
198
199                 /*
200                  * If we hit a bad address return error.
201                  */
202                 if (!vsid)
203                         return -1;
204                 /* Make kernel text executable */
205                 if (overlaps_kernel_text(vaddr, vaddr + step))
206                         tprot &= ~HPTE_R_N;
207
208                 hash = hpt_hash(vpn, shift, ssize);
209                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
210
211                 BUG_ON(!ppc_md.hpte_insert);
212                 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
213                                          HPTE_V_BOLTED, psize, psize, ssize);
214
215                 if (ret < 0)
216                         break;
217 #ifdef CONFIG_DEBUG_PAGEALLOC
218                 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
219                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
220 #endif /* CONFIG_DEBUG_PAGEALLOC */
221         }
222         return ret < 0 ? ret : 0;
223 }
224
225 #ifdef CONFIG_MEMORY_HOTPLUG
226 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
227                       int psize, int ssize)
228 {
229         unsigned long vaddr;
230         unsigned int step, shift;
231
232         shift = mmu_psize_defs[psize].shift;
233         step = 1 << shift;
234
235         if (!ppc_md.hpte_removebolted) {
236                 printk(KERN_WARNING "Platform doesn't implement "
237                                 "hpte_removebolted\n");
238                 return -EINVAL;
239         }
240
241         for (vaddr = vstart; vaddr < vend; vaddr += step)
242                 ppc_md.hpte_removebolted(vaddr, psize, ssize);
243
244         return 0;
245 }
246 #endif /* CONFIG_MEMORY_HOTPLUG */
247
248 static int __init htab_dt_scan_seg_sizes(unsigned long node,
249                                          const char *uname, int depth,
250                                          void *data)
251 {
252         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
253         u32 *prop;
254         unsigned long size = 0;
255
256         /* We are scanning "cpu" nodes only */
257         if (type == NULL || strcmp(type, "cpu") != 0)
258                 return 0;
259
260         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
261                                           &size);
262         if (prop == NULL)
263                 return 0;
264         for (; size >= 4; size -= 4, ++prop) {
265                 if (prop[0] == 40) {
266                         DBG("1T segment support detected\n");
267                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
268                         return 1;
269                 }
270         }
271         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
272         return 0;
273 }
274
275 static void __init htab_init_seg_sizes(void)
276 {
277         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
278 }
279
280 static int __init get_idx_from_shift(unsigned int shift)
281 {
282         int idx = -1;
283
284         switch (shift) {
285         case 0xc:
286                 idx = MMU_PAGE_4K;
287                 break;
288         case 0x10:
289                 idx = MMU_PAGE_64K;
290                 break;
291         case 0x14:
292                 idx = MMU_PAGE_1M;
293                 break;
294         case 0x18:
295                 idx = MMU_PAGE_16M;
296                 break;
297         case 0x22:
298                 idx = MMU_PAGE_16G;
299                 break;
300         }
301         return idx;
302 }
303
304 static int __init htab_dt_scan_page_sizes(unsigned long node,
305                                           const char *uname, int depth,
306                                           void *data)
307 {
308         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
309         u32 *prop;
310         unsigned long size = 0;
311
312         /* We are scanning "cpu" nodes only */
313         if (type == NULL || strcmp(type, "cpu") != 0)
314                 return 0;
315
316         prop = (u32 *)of_get_flat_dt_prop(node,
317                                           "ibm,segment-page-sizes", &size);
318         if (prop != NULL) {
319                 DBG("Page sizes from device-tree:\n");
320                 size /= 4;
321                 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
322                 while(size > 0) {
323                         unsigned int base_shift = prop[0];
324                         unsigned int slbenc = prop[1];
325                         unsigned int lpnum = prop[2];
326                         struct mmu_psize_def *def;
327                         int idx, base_idx;
328
329                         size -= 3; prop += 3;
330                         base_idx = get_idx_from_shift(base_shift);
331                         if (base_idx < 0) {
332                                 /*
333                                  * skip the pte encoding also
334                                  */
335                                 prop += lpnum * 2; size -= lpnum * 2;
336                                 continue;
337                         }
338                         def = &mmu_psize_defs[base_idx];
339                         if (base_idx == MMU_PAGE_16M)
340                                 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
341
342                         def->shift = base_shift;
343                         if (base_shift <= 23)
344                                 def->avpnm = 0;
345                         else
346                                 def->avpnm = (1 << (base_shift - 23)) - 1;
347                         def->sllp = slbenc;
348                         /*
349                          * We don't know for sure what's up with tlbiel, so
350                          * for now we only set it for 4K and 64K pages
351                          */
352                         if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
353                                 def->tlbiel = 1;
354                         else
355                                 def->tlbiel = 0;
356
357                         while (size > 0 && lpnum) {
358                                 unsigned int shift = prop[0];
359                                 int penc  = prop[1];
360
361                                 prop += 2; size -= 2;
362                                 lpnum--;
363
364                                 idx = get_idx_from_shift(shift);
365                                 if (idx < 0)
366                                         continue;
367
368                                 if (penc == -1)
369                                         pr_err("Invalid penc for base_shift=%d "
370                                                "shift=%d\n", base_shift, shift);
371
372                                 def->penc[idx] = penc;
373                                 DBG(" %d: shift=%02x, sllp=%04lx, "
374                                     "avpnm=%08lx, tlbiel=%d, penc=%d\n",
375                                     idx, shift, def->sllp, def->avpnm,
376                                     def->tlbiel, def->penc[idx]);
377                         }
378                 }
379                 return 1;
380         }
381         return 0;
382 }
383
384 #ifdef CONFIG_HUGETLB_PAGE
385 /* Scan for 16G memory blocks that have been set aside for huge pages
386  * and reserve those blocks for 16G huge pages.
387  */
388 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
389                                         const char *uname, int depth,
390                                         void *data) {
391         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
392         unsigned long *addr_prop;
393         u32 *page_count_prop;
394         unsigned int expected_pages;
395         long unsigned int phys_addr;
396         long unsigned int block_size;
397
398         /* We are scanning "memory" nodes only */
399         if (type == NULL || strcmp(type, "memory") != 0)
400                 return 0;
401
402         /* This property is the log base 2 of the number of virtual pages that
403          * will represent this memory block. */
404         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
405         if (page_count_prop == NULL)
406                 return 0;
407         expected_pages = (1 << page_count_prop[0]);
408         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
409         if (addr_prop == NULL)
410                 return 0;
411         phys_addr = addr_prop[0];
412         block_size = addr_prop[1];
413         if (block_size != (16 * GB))
414                 return 0;
415         printk(KERN_INFO "Huge page(16GB) memory: "
416                         "addr = 0x%lX size = 0x%lX pages = %d\n",
417                         phys_addr, block_size, expected_pages);
418         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
419                 memblock_reserve(phys_addr, block_size * expected_pages);
420                 add_gpage(phys_addr, block_size, expected_pages);
421         }
422         return 0;
423 }
424 #endif /* CONFIG_HUGETLB_PAGE */
425
426 static void mmu_psize_set_default_penc(void)
427 {
428         int bpsize, apsize;
429         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
430                 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
431                         mmu_psize_defs[bpsize].penc[apsize] = -1;
432 }
433
434 static void __init htab_init_page_sizes(void)
435 {
436         int rc;
437
438         /* se the invalid penc to -1 */
439         mmu_psize_set_default_penc();
440
441         /* Default to 4K pages only */
442         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
443                sizeof(mmu_psize_defaults_old));
444
445         /*
446          * Try to find the available page sizes in the device-tree
447          */
448         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
449         if (rc != 0)  /* Found */
450                 goto found;
451
452         /*
453          * Not in the device-tree, let's fallback on known size
454          * list for 16M capable GP & GR
455          */
456         if (mmu_has_feature(MMU_FTR_16M_PAGE))
457                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
458                        sizeof(mmu_psize_defaults_gp));
459  found:
460 #ifndef CONFIG_DEBUG_PAGEALLOC
461         /*
462          * Pick a size for the linear mapping. Currently, we only support
463          * 16M, 1M and 4K which is the default
464          */
465         if (mmu_psize_defs[MMU_PAGE_16M].shift)
466                 mmu_linear_psize = MMU_PAGE_16M;
467         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
468                 mmu_linear_psize = MMU_PAGE_1M;
469 #endif /* CONFIG_DEBUG_PAGEALLOC */
470
471 #ifdef CONFIG_PPC_64K_PAGES
472         /*
473          * Pick a size for the ordinary pages. Default is 4K, we support
474          * 64K for user mappings and vmalloc if supported by the processor.
475          * We only use 64k for ioremap if the processor
476          * (and firmware) support cache-inhibited large pages.
477          * If not, we use 4k and set mmu_ci_restrictions so that
478          * hash_page knows to switch processes that use cache-inhibited
479          * mappings to 4k pages.
480          */
481         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
482                 mmu_virtual_psize = MMU_PAGE_64K;
483                 mmu_vmalloc_psize = MMU_PAGE_64K;
484                 if (mmu_linear_psize == MMU_PAGE_4K)
485                         mmu_linear_psize = MMU_PAGE_64K;
486                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
487                         /*
488                          * Don't use 64k pages for ioremap on pSeries, since
489                          * that would stop us accessing the HEA ethernet.
490                          */
491                         if (!machine_is(pseries))
492                                 mmu_io_psize = MMU_PAGE_64K;
493                 } else
494                         mmu_ci_restrictions = 1;
495         }
496 #endif /* CONFIG_PPC_64K_PAGES */
497
498 #ifdef CONFIG_SPARSEMEM_VMEMMAP
499         /* We try to use 16M pages for vmemmap if that is supported
500          * and we have at least 1G of RAM at boot
501          */
502         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
503             memblock_phys_mem_size() >= 0x40000000)
504                 mmu_vmemmap_psize = MMU_PAGE_16M;
505         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
506                 mmu_vmemmap_psize = MMU_PAGE_64K;
507         else
508                 mmu_vmemmap_psize = MMU_PAGE_4K;
509 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
510
511         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
512                "virtual = %d, io = %d"
513 #ifdef CONFIG_SPARSEMEM_VMEMMAP
514                ", vmemmap = %d"
515 #endif
516                "\n",
517                mmu_psize_defs[mmu_linear_psize].shift,
518                mmu_psize_defs[mmu_virtual_psize].shift,
519                mmu_psize_defs[mmu_io_psize].shift
520 #ifdef CONFIG_SPARSEMEM_VMEMMAP
521                ,mmu_psize_defs[mmu_vmemmap_psize].shift
522 #endif
523                );
524
525 #ifdef CONFIG_HUGETLB_PAGE
526         /* Reserve 16G huge page memory sections for huge pages */
527         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
528 #endif /* CONFIG_HUGETLB_PAGE */
529 }
530
531 static int __init htab_dt_scan_pftsize(unsigned long node,
532                                        const char *uname, int depth,
533                                        void *data)
534 {
535         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
536         u32 *prop;
537
538         /* We are scanning "cpu" nodes only */
539         if (type == NULL || strcmp(type, "cpu") != 0)
540                 return 0;
541
542         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
543         if (prop != NULL) {
544                 /* pft_size[0] is the NUMA CEC cookie */
545                 ppc64_pft_size = prop[1];
546                 return 1;
547         }
548         return 0;
549 }
550
551 static unsigned long __init htab_get_table_size(void)
552 {
553         unsigned long mem_size, rnd_mem_size, pteg_count, psize;
554
555         /* If hash size isn't already provided by the platform, we try to
556          * retrieve it from the device-tree. If it's not there neither, we
557          * calculate it now based on the total RAM size
558          */
559         if (ppc64_pft_size == 0)
560                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
561         if (ppc64_pft_size)
562                 return 1UL << ppc64_pft_size;
563
564         /* round mem_size up to next power of 2 */
565         mem_size = memblock_phys_mem_size();
566         rnd_mem_size = 1UL << __ilog2(mem_size);
567         if (rnd_mem_size < mem_size)
568                 rnd_mem_size <<= 1;
569
570         /* # pages / 2 */
571         psize = mmu_psize_defs[mmu_virtual_psize].shift;
572         pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
573
574         return pteg_count << 7;
575 }
576
577 #ifdef CONFIG_MEMORY_HOTPLUG
578 int create_section_mapping(unsigned long start, unsigned long end)
579 {
580         return htab_bolt_mapping(start, end, __pa(start),
581                                  pgprot_val(PAGE_KERNEL), mmu_linear_psize,
582                                  mmu_kernel_ssize);
583 }
584
585 int remove_section_mapping(unsigned long start, unsigned long end)
586 {
587         return htab_remove_mapping(start, end, mmu_linear_psize,
588                         mmu_kernel_ssize);
589 }
590 #endif /* CONFIG_MEMORY_HOTPLUG */
591
592 #define FUNCTION_TEXT(A)        ((*(unsigned long *)(A)))
593
594 static void __init htab_finish_init(void)
595 {
596         extern unsigned int *htab_call_hpte_insert1;
597         extern unsigned int *htab_call_hpte_insert2;
598         extern unsigned int *htab_call_hpte_remove;
599         extern unsigned int *htab_call_hpte_updatepp;
600
601 #ifdef CONFIG_PPC_HAS_HASH_64K
602         extern unsigned int *ht64_call_hpte_insert1;
603         extern unsigned int *ht64_call_hpte_insert2;
604         extern unsigned int *ht64_call_hpte_remove;
605         extern unsigned int *ht64_call_hpte_updatepp;
606
607         patch_branch(ht64_call_hpte_insert1,
608                 FUNCTION_TEXT(ppc_md.hpte_insert),
609                 BRANCH_SET_LINK);
610         patch_branch(ht64_call_hpte_insert2,
611                 FUNCTION_TEXT(ppc_md.hpte_insert),
612                 BRANCH_SET_LINK);
613         patch_branch(ht64_call_hpte_remove,
614                 FUNCTION_TEXT(ppc_md.hpte_remove),
615                 BRANCH_SET_LINK);
616         patch_branch(ht64_call_hpte_updatepp,
617                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
618                 BRANCH_SET_LINK);
619
620 #endif /* CONFIG_PPC_HAS_HASH_64K */
621
622         patch_branch(htab_call_hpte_insert1,
623                 FUNCTION_TEXT(ppc_md.hpte_insert),
624                 BRANCH_SET_LINK);
625         patch_branch(htab_call_hpte_insert2,
626                 FUNCTION_TEXT(ppc_md.hpte_insert),
627                 BRANCH_SET_LINK);
628         patch_branch(htab_call_hpte_remove,
629                 FUNCTION_TEXT(ppc_md.hpte_remove),
630                 BRANCH_SET_LINK);
631         patch_branch(htab_call_hpte_updatepp,
632                 FUNCTION_TEXT(ppc_md.hpte_updatepp),
633                 BRANCH_SET_LINK);
634 }
635
636 static void __init htab_initialize(void)
637 {
638         unsigned long table;
639         unsigned long pteg_count;
640         unsigned long prot;
641         unsigned long base = 0, size = 0, limit;
642         struct memblock_region *reg;
643
644         DBG(" -> htab_initialize()\n");
645
646         /* Initialize segment sizes */
647         htab_init_seg_sizes();
648
649         /* Initialize page sizes */
650         htab_init_page_sizes();
651
652         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
653                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
654                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
655                 printk(KERN_INFO "Using 1TB segments\n");
656         }
657
658         /*
659          * Calculate the required size of the htab.  We want the number of
660          * PTEGs to equal one half the number of real pages.
661          */ 
662         htab_size_bytes = htab_get_table_size();
663         pteg_count = htab_size_bytes >> 7;
664
665         htab_hash_mask = pteg_count - 1;
666
667         if (firmware_has_feature(FW_FEATURE_LPAR)) {
668                 /* Using a hypervisor which owns the htab */
669                 htab_address = NULL;
670                 _SDR1 = 0; 
671 #ifdef CONFIG_FA_DUMP
672                 /*
673                  * If firmware assisted dump is active firmware preserves
674                  * the contents of htab along with entire partition memory.
675                  * Clear the htab if firmware assisted dump is active so
676                  * that we dont end up using old mappings.
677                  */
678                 if (is_fadump_active() && ppc_md.hpte_clear_all)
679                         ppc_md.hpte_clear_all();
680 #endif
681         } else {
682                 /* Find storage for the HPT.  Must be contiguous in
683                  * the absolute address space. On cell we want it to be
684                  * in the first 2 Gig so we can use it for IOMMU hacks.
685                  */
686                 if (machine_is(cell))
687                         limit = 0x80000000;
688                 else
689                         limit = MEMBLOCK_ALLOC_ANYWHERE;
690
691                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
692
693                 DBG("Hash table allocated at %lx, size: %lx\n", table,
694                     htab_size_bytes);
695
696                 htab_address = __va(table);
697
698                 /* htab absolute addr + encoded htabsize */
699                 _SDR1 = table + __ilog2(pteg_count) - 11;
700
701                 /* Initialize the HPT with no entries */
702                 memset((void *)table, 0, htab_size_bytes);
703
704                 /* Set SDR1 */
705                 mtspr(SPRN_SDR1, _SDR1);
706         }
707
708         prot = pgprot_val(PAGE_KERNEL);
709
710 #ifdef CONFIG_DEBUG_PAGEALLOC
711         linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
712         linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
713                                                     1, ppc64_rma_size));
714         memset(linear_map_hash_slots, 0, linear_map_hash_count);
715 #endif /* CONFIG_DEBUG_PAGEALLOC */
716
717         /* On U3 based machines, we need to reserve the DART area and
718          * _NOT_ map it to avoid cache paradoxes as it's remapped non
719          * cacheable later on
720          */
721
722         /* create bolted the linear mapping in the hash table */
723         for_each_memblock(memory, reg) {
724                 base = (unsigned long)__va(reg->base);
725                 size = reg->size;
726
727                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
728                     base, size, prot);
729
730 #ifdef CONFIG_U3_DART
731                 /* Do not map the DART space. Fortunately, it will be aligned
732                  * in such a way that it will not cross two memblock regions and
733                  * will fit within a single 16Mb page.
734                  * The DART space is assumed to be a full 16Mb region even if
735                  * we only use 2Mb of that space. We will use more of it later
736                  * for AGP GART. We have to use a full 16Mb large page.
737                  */
738                 DBG("DART base: %lx\n", dart_tablebase);
739
740                 if (dart_tablebase != 0 && dart_tablebase >= base
741                     && dart_tablebase < (base + size)) {
742                         unsigned long dart_table_end = dart_tablebase + 16 * MB;
743                         if (base != dart_tablebase)
744                                 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
745                                                         __pa(base), prot,
746                                                         mmu_linear_psize,
747                                                         mmu_kernel_ssize));
748                         if ((base + size) > dart_table_end)
749                                 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
750                                                         base + size,
751                                                         __pa(dart_table_end),
752                                                          prot,
753                                                          mmu_linear_psize,
754                                                          mmu_kernel_ssize));
755                         continue;
756                 }
757 #endif /* CONFIG_U3_DART */
758                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
759                                 prot, mmu_linear_psize, mmu_kernel_ssize));
760         }
761         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
762
763         /*
764          * If we have a memory_limit and we've allocated TCEs then we need to
765          * explicitly map the TCE area at the top of RAM. We also cope with the
766          * case that the TCEs start below memory_limit.
767          * tce_alloc_start/end are 16MB aligned so the mapping should work
768          * for either 4K or 16MB pages.
769          */
770         if (tce_alloc_start) {
771                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
772                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
773
774                 if (base + size >= tce_alloc_start)
775                         tce_alloc_start = base + size + 1;
776
777                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
778                                          __pa(tce_alloc_start), prot,
779                                          mmu_linear_psize, mmu_kernel_ssize));
780         }
781
782         htab_finish_init();
783
784         DBG(" <- htab_initialize()\n");
785 }
786 #undef KB
787 #undef MB
788
789 void __init early_init_mmu(void)
790 {
791         /* Setup initial STAB address in the PACA */
792         get_paca()->stab_real = __pa((u64)&initial_stab);
793         get_paca()->stab_addr = (u64)&initial_stab;
794
795         /* Initialize the MMU Hash table and create the linear mapping
796          * of memory. Has to be done before stab/slb initialization as
797          * this is currently where the page size encoding is obtained
798          */
799         htab_initialize();
800
801         /* Initialize stab / SLB management */
802         if (mmu_has_feature(MMU_FTR_SLB))
803                 slb_initialize();
804         else
805                 stab_initialize(get_paca()->stab_real);
806 }
807
808 #ifdef CONFIG_SMP
809 void __cpuinit early_init_mmu_secondary(void)
810 {
811         /* Initialize hash table for that CPU */
812         if (!firmware_has_feature(FW_FEATURE_LPAR))
813                 mtspr(SPRN_SDR1, _SDR1);
814
815         /* Initialize STAB/SLB. We use a virtual address as it works
816          * in real mode on pSeries.
817          */
818         if (mmu_has_feature(MMU_FTR_SLB))
819                 slb_initialize();
820         else
821                 stab_initialize(get_paca()->stab_addr);
822 }
823 #endif /* CONFIG_SMP */
824
825 /*
826  * Called by asm hashtable.S for doing lazy icache flush
827  */
828 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
829 {
830         struct page *page;
831
832         if (!pfn_valid(pte_pfn(pte)))
833                 return pp;
834
835         page = pte_page(pte);
836
837         /* page is dirty */
838         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
839                 if (trap == 0x400) {
840                         flush_dcache_icache_page(page);
841                         set_bit(PG_arch_1, &page->flags);
842                 } else
843                         pp |= HPTE_R_N;
844         }
845         return pp;
846 }
847
848 #ifdef CONFIG_PPC_MM_SLICES
849 unsigned int get_paca_psize(unsigned long addr)
850 {
851         u64 lpsizes;
852         unsigned char *hpsizes;
853         unsigned long index, mask_index;
854
855         if (addr < SLICE_LOW_TOP) {
856                 lpsizes = get_paca()->context.low_slices_psize;
857                 index = GET_LOW_SLICE_INDEX(addr);
858                 return (lpsizes >> (index * 4)) & 0xF;
859         }
860         hpsizes = get_paca()->context.high_slices_psize;
861         index = GET_HIGH_SLICE_INDEX(addr);
862         mask_index = index & 0x1;
863         return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
864 }
865
866 #else
867 unsigned int get_paca_psize(unsigned long addr)
868 {
869         return get_paca()->context.user_psize;
870 }
871 #endif
872
873 /*
874  * Demote a segment to using 4k pages.
875  * For now this makes the whole process use 4k pages.
876  */
877 #ifdef CONFIG_PPC_64K_PAGES
878 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
879 {
880         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
881                 return;
882         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
883 #ifdef CONFIG_SPU_BASE
884         spu_flush_all_slbs(mm);
885 #endif
886         if (get_paca_psize(addr) != MMU_PAGE_4K) {
887                 get_paca()->context = mm->context;
888                 slb_flush_and_rebolt();
889         }
890 }
891 #endif /* CONFIG_PPC_64K_PAGES */
892
893 #ifdef CONFIG_PPC_SUBPAGE_PROT
894 /*
895  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
896  * Userspace sets the subpage permissions using the subpage_prot system call.
897  *
898  * Result is 0: full permissions, _PAGE_RW: read-only,
899  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
900  */
901 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
902 {
903         struct subpage_prot_table *spt = &mm->context.spt;
904         u32 spp = 0;
905         u32 **sbpm, *sbpp;
906
907         if (ea >= spt->maxaddr)
908                 return 0;
909         if (ea < 0x100000000) {
910                 /* addresses below 4GB use spt->low_prot */
911                 sbpm = spt->low_prot;
912         } else {
913                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
914                 if (!sbpm)
915                         return 0;
916         }
917         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
918         if (!sbpp)
919                 return 0;
920         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
921
922         /* extract 2-bit bitfield for this 4k subpage */
923         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
924
925         /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
926         spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
927         return spp;
928 }
929
930 #else /* CONFIG_PPC_SUBPAGE_PROT */
931 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
932 {
933         return 0;
934 }
935 #endif
936
937 void hash_failure_debug(unsigned long ea, unsigned long access,
938                         unsigned long vsid, unsigned long trap,
939                         int ssize, int psize, unsigned long pte)
940 {
941         if (!printk_ratelimit())
942                 return;
943         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
944                 ea, access, current->comm);
945         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
946                 trap, vsid, ssize, psize, pte);
947 }
948
949 /* Result code is:
950  *  0 - handled
951  *  1 - normal page fault
952  * -1 - critical hash insertion error
953  * -2 - access not permitted by subpage protection mechanism
954  */
955 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
956 {
957         pgd_t *pgdir;
958         unsigned long vsid;
959         struct mm_struct *mm;
960         pte_t *ptep;
961         unsigned hugeshift;
962         const struct cpumask *tmp;
963         int rc, user_region = 0, local = 0;
964         int psize, ssize;
965
966         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
967                 ea, access, trap);
968
969         /* Get region & vsid */
970         switch (REGION_ID(ea)) {
971         case USER_REGION_ID:
972                 user_region = 1;
973                 mm = current->mm;
974                 if (! mm) {
975                         DBG_LOW(" user region with no mm !\n");
976                         return 1;
977                 }
978                 psize = get_slice_psize(mm, ea);
979                 ssize = user_segment_size(ea);
980                 vsid = get_vsid(mm->context.id, ea, ssize);
981                 break;
982         case VMALLOC_REGION_ID:
983                 mm = &init_mm;
984                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
985                 if (ea < VMALLOC_END)
986                         psize = mmu_vmalloc_psize;
987                 else
988                         psize = mmu_io_psize;
989                 ssize = mmu_kernel_ssize;
990                 break;
991         default:
992                 /* Not a valid range
993                  * Send the problem up to do_page_fault 
994                  */
995                 return 1;
996         }
997         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
998
999         /* Bad address. */
1000         if (!vsid) {
1001                 DBG_LOW("Bad address!\n");
1002                 return 1;
1003         }
1004         /* Get pgdir */
1005         pgdir = mm->pgd;
1006         if (pgdir == NULL)
1007                 return 1;
1008
1009         /* Check CPU locality */
1010         tmp = cpumask_of(smp_processor_id());
1011         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1012                 local = 1;
1013
1014 #ifndef CONFIG_PPC_64K_PAGES
1015         /* If we use 4K pages and our psize is not 4K, then we might
1016          * be hitting a special driver mapping, and need to align the
1017          * address before we fetch the PTE.
1018          *
1019          * It could also be a hugepage mapping, in which case this is
1020          * not necessary, but it's not harmful, either.
1021          */
1022         if (psize != MMU_PAGE_4K)
1023                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1024 #endif /* CONFIG_PPC_64K_PAGES */
1025
1026         /* Get PTE and page size from page tables */
1027         ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1028         if (ptep == NULL || !pte_present(*ptep)) {
1029                 DBG_LOW(" no PTE !\n");
1030                 return 1;
1031         }
1032
1033         /* Add _PAGE_PRESENT to the required access perm */
1034         access |= _PAGE_PRESENT;
1035
1036         /* Pre-check access permissions (will be re-checked atomically
1037          * in __hash_page_XX but this pre-check is a fast path
1038          */
1039         if (access & ~pte_val(*ptep)) {
1040                 DBG_LOW(" no access !\n");
1041                 return 1;
1042         }
1043
1044 #ifdef CONFIG_HUGETLB_PAGE
1045         if (hugeshift)
1046                 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1047                                         ssize, hugeshift, psize);
1048 #endif /* CONFIG_HUGETLB_PAGE */
1049
1050 #ifndef CONFIG_PPC_64K_PAGES
1051         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1052 #else
1053         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1054                 pte_val(*(ptep + PTRS_PER_PTE)));
1055 #endif
1056         /* Do actual hashing */
1057 #ifdef CONFIG_PPC_64K_PAGES
1058         /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1059         if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1060                 demote_segment_4k(mm, ea);
1061                 psize = MMU_PAGE_4K;
1062         }
1063
1064         /* If this PTE is non-cacheable and we have restrictions on
1065          * using non cacheable large pages, then we switch to 4k
1066          */
1067         if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1068             (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1069                 if (user_region) {
1070                         demote_segment_4k(mm, ea);
1071                         psize = MMU_PAGE_4K;
1072                 } else if (ea < VMALLOC_END) {
1073                         /*
1074                          * some driver did a non-cacheable mapping
1075                          * in vmalloc space, so switch vmalloc
1076                          * to 4k pages
1077                          */
1078                         printk(KERN_ALERT "Reducing vmalloc segment "
1079                                "to 4kB pages because of "
1080                                "non-cacheable mapping\n");
1081                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1082 #ifdef CONFIG_SPU_BASE
1083                         spu_flush_all_slbs(mm);
1084 #endif
1085                 }
1086         }
1087         if (user_region) {
1088                 if (psize != get_paca_psize(ea)) {
1089                         get_paca()->context = mm->context;
1090                         slb_flush_and_rebolt();
1091                 }
1092         } else if (get_paca()->vmalloc_sllp !=
1093                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1094                 get_paca()->vmalloc_sllp =
1095                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1096                 slb_vmalloc_update();
1097         }
1098 #endif /* CONFIG_PPC_64K_PAGES */
1099
1100 #ifdef CONFIG_PPC_HAS_HASH_64K
1101         if (psize == MMU_PAGE_64K)
1102                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1103         else
1104 #endif /* CONFIG_PPC_HAS_HASH_64K */
1105         {
1106                 int spp = subpage_protection(mm, ea);
1107                 if (access & spp)
1108                         rc = -2;
1109                 else
1110                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1111                                             local, ssize, spp);
1112         }
1113
1114         /* Dump some info in case of hash insertion failure, they should
1115          * never happen so it is really useful to know if/when they do
1116          */
1117         if (rc == -1)
1118                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1119                                    pte_val(*ptep));
1120 #ifndef CONFIG_PPC_64K_PAGES
1121         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1122 #else
1123         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1124                 pte_val(*(ptep + PTRS_PER_PTE)));
1125 #endif
1126         DBG_LOW(" -> rc=%d\n", rc);
1127         return rc;
1128 }
1129 EXPORT_SYMBOL_GPL(hash_page);
1130
1131 void hash_preload(struct mm_struct *mm, unsigned long ea,
1132                   unsigned long access, unsigned long trap)
1133 {
1134         unsigned long vsid;
1135         pgd_t *pgdir;
1136         pte_t *ptep;
1137         unsigned long flags;
1138         int rc, ssize, local = 0;
1139
1140         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1141
1142 #ifdef CONFIG_PPC_MM_SLICES
1143         /* We only prefault standard pages for now */
1144         if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1145                 return;
1146 #endif
1147
1148         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1149                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1150
1151         /* Get Linux PTE if available */
1152         pgdir = mm->pgd;
1153         if (pgdir == NULL)
1154                 return;
1155         ptep = find_linux_pte(pgdir, ea);
1156         if (!ptep)
1157                 return;
1158
1159 #ifdef CONFIG_PPC_64K_PAGES
1160         /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1161          * a 64K kernel), then we don't preload, hash_page() will take
1162          * care of it once we actually try to access the page.
1163          * That way we don't have to duplicate all of the logic for segment
1164          * page size demotion here
1165          */
1166         if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1167                 return;
1168 #endif /* CONFIG_PPC_64K_PAGES */
1169
1170         /* Get VSID */
1171         ssize = user_segment_size(ea);
1172         vsid = get_vsid(mm->context.id, ea, ssize);
1173         if (!vsid)
1174                 return;
1175
1176         /* Hash doesn't like irqs */
1177         local_irq_save(flags);
1178
1179         /* Is that local to this CPU ? */
1180         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1181                 local = 1;
1182
1183         /* Hash it in */
1184 #ifdef CONFIG_PPC_HAS_HASH_64K
1185         if (mm->context.user_psize == MMU_PAGE_64K)
1186                 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1187         else
1188 #endif /* CONFIG_PPC_HAS_HASH_64K */
1189                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1190                                     subpage_protection(mm, ea));
1191
1192         /* Dump some info in case of hash insertion failure, they should
1193          * never happen so it is really useful to know if/when they do
1194          */
1195         if (rc == -1)
1196                 hash_failure_debug(ea, access, vsid, trap, ssize,
1197                                    mm->context.user_psize, pte_val(*ptep));
1198
1199         local_irq_restore(flags);
1200 }
1201
1202 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1203  *          do not forget to update the assembly call site !
1204  */
1205 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1206                      int local)
1207 {
1208         unsigned long hash, index, shift, hidx, slot;
1209
1210         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1211         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1212                 hash = hpt_hash(vpn, shift, ssize);
1213                 hidx = __rpte_to_hidx(pte, index);
1214                 if (hidx & _PTEIDX_SECONDARY)
1215                         hash = ~hash;
1216                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1217                 slot += hidx & _PTEIDX_GROUP_IX;
1218                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1219                 ppc_md.hpte_invalidate(slot, vpn, psize, ssize, local);
1220         } pte_iterate_hashed_end();
1221
1222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1223         /* Transactions are not aborted by tlbiel, only tlbie.
1224          * Without, syncing a page back to a block device w/ PIO could pick up
1225          * transactional data (bad!) so we force an abort here.  Before the
1226          * sync the page will be made read-only, which will flush_hash_page.
1227          * BIG ISSUE here: if the kernel uses a page from userspace without
1228          * unmapping it first, it may see the speculated version.
1229          */
1230         if (local && cpu_has_feature(CPU_FTR_TM) &&
1231             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1232                 tm_enable();
1233                 tm_abort(TM_CAUSE_TLBI);
1234         }
1235 #endif
1236 }
1237
1238 void flush_hash_range(unsigned long number, int local)
1239 {
1240         if (ppc_md.flush_hash_range)
1241                 ppc_md.flush_hash_range(number, local);
1242         else {
1243                 int i;
1244                 struct ppc64_tlb_batch *batch =
1245                         &__get_cpu_var(ppc64_tlb_batch);
1246
1247                 for (i = 0; i < number; i++)
1248                         flush_hash_page(batch->vpn[i], batch->pte[i],
1249                                         batch->psize, batch->ssize, local);
1250         }
1251 }
1252
1253 /*
1254  * low_hash_fault is called when we the low level hash code failed
1255  * to instert a PTE due to an hypervisor error
1256  */
1257 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1258 {
1259         if (user_mode(regs)) {
1260 #ifdef CONFIG_PPC_SUBPAGE_PROT
1261                 if (rc == -2)
1262                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1263                 else
1264 #endif
1265                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1266         } else
1267                 bad_page_fault(regs, address, SIGBUS);
1268 }
1269
1270 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1271                            unsigned long pa, unsigned long rflags,
1272                            unsigned long vflags, int psize, int ssize)
1273 {
1274         unsigned long hpte_group;
1275         long slot;
1276
1277 repeat:
1278         hpte_group = ((hash & htab_hash_mask) *
1279                        HPTES_PER_GROUP) & ~0x7UL;
1280
1281         /* Insert into the hash table, primary slot */
1282         slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1283                                   psize, psize, ssize);
1284
1285         /* Primary is full, try the secondary */
1286         if (unlikely(slot == -1)) {
1287                 hpte_group = ((~hash & htab_hash_mask) *
1288                               HPTES_PER_GROUP) & ~0x7UL;
1289                 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1290                                           vflags | HPTE_V_SECONDARY,
1291                                           psize, psize, ssize);
1292                 if (slot == -1) {
1293                         if (mftb() & 0x1)
1294                                 hpte_group = ((hash & htab_hash_mask) *
1295                                               HPTES_PER_GROUP)&~0x7UL;
1296
1297                         ppc_md.hpte_remove(hpte_group);
1298                         goto repeat;
1299                 }
1300         }
1301
1302         return slot;
1303 }
1304
1305 #ifdef CONFIG_DEBUG_PAGEALLOC
1306 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1307 {
1308         unsigned long hash;
1309         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1310         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1311         unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1312         long ret;
1313
1314         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1315
1316         /* Don't create HPTE entries for bad address */
1317         if (!vsid)
1318                 return;
1319
1320         ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1321                                     HPTE_V_BOLTED,
1322                                     mmu_linear_psize, mmu_kernel_ssize);
1323
1324         BUG_ON (ret < 0);
1325         spin_lock(&linear_map_hash_lock);
1326         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1327         linear_map_hash_slots[lmi] = ret | 0x80;
1328         spin_unlock(&linear_map_hash_lock);
1329 }
1330
1331 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1332 {
1333         unsigned long hash, hidx, slot;
1334         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1335         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1336
1337         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1338         spin_lock(&linear_map_hash_lock);
1339         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1340         hidx = linear_map_hash_slots[lmi] & 0x7f;
1341         linear_map_hash_slots[lmi] = 0;
1342         spin_unlock(&linear_map_hash_lock);
1343         if (hidx & _PTEIDX_SECONDARY)
1344                 hash = ~hash;
1345         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1346         slot += hidx & _PTEIDX_GROUP_IX;
1347         ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_kernel_ssize, 0);
1348 }
1349
1350 void kernel_map_pages(struct page *page, int numpages, int enable)
1351 {
1352         unsigned long flags, vaddr, lmi;
1353         int i;
1354
1355         local_irq_save(flags);
1356         for (i = 0; i < numpages; i++, page++) {
1357                 vaddr = (unsigned long)page_address(page);
1358                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1359                 if (lmi >= linear_map_hash_count)
1360                         continue;
1361                 if (enable)
1362                         kernel_map_linear_page(vaddr, lmi);
1363                 else
1364                         kernel_unmap_linear_page(vaddr, lmi);
1365         }
1366         local_irq_restore(flags);
1367 }
1368 #endif /* CONFIG_DEBUG_PAGEALLOC */
1369
1370 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1371                                 phys_addr_t first_memblock_size)
1372 {
1373         /* We don't currently support the first MEMBLOCK not mapping 0
1374          * physical on those processors
1375          */
1376         BUG_ON(first_memblock_base != 0);
1377
1378         /* On LPAR systems, the first entry is our RMA region,
1379          * non-LPAR 64-bit hash MMU systems don't have a limitation
1380          * on real mode access, but using the first entry works well
1381          * enough. We also clamp it to 1G to avoid some funky things
1382          * such as RTAS bugs etc...
1383          */
1384         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1385
1386         /* Finally limit subsequent allocations */
1387         memblock_set_current_limit(ppc64_rma_size);
1388 }