45faa9a32a0190325908e5986daed62972bf4296
[linux.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82         /*
83          * If we are saving the current thread's registers, and the
84          * thread is in a transactional state, set the TIF_RESTORE_TM
85          * bit so that we know to restore the registers before
86          * returning to userspace.
87          */
88         if (tsk == current && tsk->thread.regs &&
89             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90             !test_thread_flag(TIF_RESTORE_TM)) {
91                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92                 set_thread_flag(TIF_RESTORE_TM);
93         }
94 }
95
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98         return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107
108 static int __init enable_strict_msr_control(char *str)
109 {
110         strict_msr_control = true;
111         pr_info("Enabling strict facility control\n");
112
113         return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119         unsigned long oldmsr = mfmsr();
120         unsigned long newmsr;
121
122         newmsr = oldmsr | bits;
123
124 #ifdef CONFIG_VSX
125         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126                 newmsr |= MSR_VSX;
127 #endif
128
129         if (oldmsr != newmsr)
130                 mtmsr_isync(newmsr);
131
132         return newmsr;
133 }
134
135 void __msr_check_and_clear(unsigned long bits)
136 {
137         unsigned long oldmsr = mfmsr();
138         unsigned long newmsr;
139
140         newmsr = oldmsr & ~bits;
141
142 #ifdef CONFIG_VSX
143         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144                 newmsr &= ~MSR_VSX;
145 #endif
146
147         if (oldmsr != newmsr)
148                 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161         if (cpu_has_feature(CPU_FTR_VSX))
162                 msr &= ~MSR_VSX;
163 #endif
164         tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169         check_if_tm_restore_required(tsk);
170
171         msr_check_and_set(MSR_FP);
172         __giveup_fpu(tsk);
173         msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 /*
185                  * We need to disable preemption here because if we didn't,
186                  * another process could get scheduled after the regs->msr
187                  * test but before we have finished saving the FP registers
188                  * to the thread_struct.  That process could take over the
189                  * FPU, and then when we get scheduled again we would store
190                  * bogus values for the remaining FP registers.
191                  */
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_FP) {
194                         /*
195                          * This should only ever be called for current or
196                          * for a stopped child process.  Since we save away
197                          * the FP register state on context switch,
198                          * there is something wrong if a stopped child appears
199                          * to still have its FP state in the CPU registers.
200                          */
201                         BUG_ON(tsk != current);
202                         giveup_fpu(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211         unsigned long cpumsr;
212
213         WARN_ON(preemptible());
214
215         cpumsr = msr_check_and_set(MSR_FP);
216
217         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218                 check_if_tm_restore_required(current);
219                 /*
220                  * If a thread has already been reclaimed then the
221                  * checkpointed registers are on the CPU but have definitely
222                  * been saved by the reclaim code. Don't need to and *cannot*
223                  * giveup as this would save  to the 'live' structure not the
224                  * checkpointed structure.
225                  */
226                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227                         return;
228                 __giveup_fpu(current);
229         }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232
233 static int restore_fp(struct task_struct *tsk) {
234         if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235                 load_fp_state(&current->thread.fp_state);
236                 current->thread.load_fp++;
237                 return 1;
238         }
239         return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250         unsigned long msr;
251
252         save_altivec(tsk);
253         msr = tsk->thread.regs->msr;
254         msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256         if (cpu_has_feature(CPU_FTR_VSX))
257                 msr &= ~MSR_VSX;
258 #endif
259         tsk->thread.regs->msr = msr;
260 }
261
262 void giveup_altivec(struct task_struct *tsk)
263 {
264         check_if_tm_restore_required(tsk);
265
266         msr_check_and_set(MSR_VEC);
267         __giveup_altivec(tsk);
268         msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271
272 void enable_kernel_altivec(void)
273 {
274         unsigned long cpumsr;
275
276         WARN_ON(preemptible());
277
278         cpumsr = msr_check_and_set(MSR_VEC);
279
280         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281                 check_if_tm_restore_required(current);
282                 /*
283                  * If a thread has already been reclaimed then the
284                  * checkpointed registers are on the CPU but have definitely
285                  * been saved by the reclaim code. Don't need to and *cannot*
286                  * giveup as this would save  to the 'live' structure not the
287                  * checkpointed structure.
288                  */
289                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290                         return;
291                 __giveup_altivec(current);
292         }
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302         if (tsk->thread.regs) {
303                 preempt_disable();
304                 if (tsk->thread.regs->msr & MSR_VEC) {
305                         BUG_ON(tsk != current);
306                         giveup_altivec(tsk);
307                 }
308                 preempt_enable();
309         }
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312
313 static int restore_altivec(struct task_struct *tsk)
314 {
315         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316                 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317                 load_vr_state(&tsk->thread.vr_state);
318                 tsk->thread.used_vr = 1;
319                 tsk->thread.load_vec++;
320
321                 return 1;
322         }
323         return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333         if (tsk->thread.regs->msr & MSR_FP)
334                 __giveup_fpu(tsk);
335         if (tsk->thread.regs->msr & MSR_VEC)
336                 __giveup_altivec(tsk);
337         tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342         check_if_tm_restore_required(tsk);
343
344         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345         __giveup_vsx(tsk);
346         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348
349 static void save_vsx(struct task_struct *tsk)
350 {
351         if (tsk->thread.regs->msr & MSR_FP)
352                 save_fpu(tsk);
353         if (tsk->thread.regs->msr & MSR_VEC)
354                 save_altivec(tsk);
355 }
356
357 void enable_kernel_vsx(void)
358 {
359         unsigned long cpumsr;
360
361         WARN_ON(preemptible());
362
363         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364
365         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366                 check_if_tm_restore_required(current);
367                 /*
368                  * If a thread has already been reclaimed then the
369                  * checkpointed registers are on the CPU but have definitely
370                  * been saved by the reclaim code. Don't need to and *cannot*
371                  * giveup as this would save  to the 'live' structure not the
372                  * checkpointed structure.
373                  */
374                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375                         return;
376                 if (current->thread.regs->msr & MSR_FP)
377                         __giveup_fpu(current);
378                 if (current->thread.regs->msr & MSR_VEC)
379                         __giveup_altivec(current);
380                 __giveup_vsx(current);
381         }
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387         if (tsk->thread.regs) {
388                 preempt_disable();
389                 if (tsk->thread.regs->msr & MSR_VSX) {
390                         BUG_ON(tsk != current);
391                         giveup_vsx(tsk);
392                 }
393                 preempt_enable();
394         }
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397
398 static int restore_vsx(struct task_struct *tsk)
399 {
400         if (cpu_has_feature(CPU_FTR_VSX)) {
401                 tsk->thread.used_vsr = 1;
402                 return 1;
403         }
404
405         return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415         check_if_tm_restore_required(tsk);
416
417         msr_check_and_set(MSR_SPE);
418         __giveup_spe(tsk);
419         msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422
423 void enable_kernel_spe(void)
424 {
425         WARN_ON(preemptible());
426
427         msr_check_and_set(MSR_SPE);
428
429         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430                 check_if_tm_restore_required(current);
431                 __giveup_spe(current);
432         }
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438         if (tsk->thread.regs) {
439                 preempt_disable();
440                 if (tsk->thread.regs->msr & MSR_SPE) {
441                         BUG_ON(tsk != current);
442                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443                         giveup_spe(tsk);
444                 }
445                 preempt_enable();
446         }
447 }
448 #endif /* CONFIG_SPE */
449
450 static unsigned long msr_all_available;
451
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455         msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458         if (cpu_has_feature(CPU_FTR_ALTIVEC))
459                 msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462         if (cpu_has_feature(CPU_FTR_VSX))
463                 msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466         if (cpu_has_feature(CPU_FTR_SPE))
467                 msr_all_available |= MSR_SPE;
468 #endif
469
470         return 0;
471 }
472 early_initcall(init_msr_all_available);
473
474 void giveup_all(struct task_struct *tsk)
475 {
476         unsigned long usermsr;
477
478         if (!tsk->thread.regs)
479                 return;
480
481         usermsr = tsk->thread.regs->msr;
482
483         if ((usermsr & msr_all_available) == 0)
484                 return;
485
486         msr_check_and_set(msr_all_available);
487         check_if_tm_restore_required(tsk);
488
489 #ifdef CONFIG_PPC_FPU
490         if (usermsr & MSR_FP)
491                 __giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494         if (usermsr & MSR_VEC)
495                 __giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498         if (usermsr & MSR_VSX)
499                 __giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502         if (usermsr & MSR_SPE)
503                 __giveup_spe(tsk);
504 #endif
505
506         msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509
510 void restore_math(struct pt_regs *regs)
511 {
512         unsigned long msr;
513
514         /*
515          * Syscall exit makes a similar initial check before branching
516          * to restore_math. Keep them in synch.
517          */
518         if (!msr_tm_active(regs->msr) &&
519                 !current->thread.load_fp && !loadvec(current->thread))
520                 return;
521
522         msr = regs->msr;
523         msr_check_and_set(msr_all_available);
524
525         /*
526          * Only reload if the bit is not set in the user MSR, the bit BEING set
527          * indicates that the registers are hot
528          */
529         if ((!(msr & MSR_FP)) && restore_fp(current))
530                 msr |= MSR_FP | current->thread.fpexc_mode;
531
532         if ((!(msr & MSR_VEC)) && restore_altivec(current))
533                 msr |= MSR_VEC;
534
535         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
536                         restore_vsx(current)) {
537                 msr |= MSR_VSX;
538         }
539
540         msr_check_and_clear(msr_all_available);
541
542         regs->msr = msr;
543 }
544
545 void save_all(struct task_struct *tsk)
546 {
547         unsigned long usermsr;
548
549         if (!tsk->thread.regs)
550                 return;
551
552         usermsr = tsk->thread.regs->msr;
553
554         if ((usermsr & msr_all_available) == 0)
555                 return;
556
557         msr_check_and_set(msr_all_available);
558
559         /*
560          * Saving the way the register space is in hardware, save_vsx boils
561          * down to a save_fpu() and save_altivec()
562          */
563         if (usermsr & MSR_VSX) {
564                 save_vsx(tsk);
565         } else {
566                 if (usermsr & MSR_FP)
567                         save_fpu(tsk);
568
569                 if (usermsr & MSR_VEC)
570                         save_altivec(tsk);
571         }
572
573         if (usermsr & MSR_SPE)
574                 __giveup_spe(tsk);
575
576         msr_check_and_clear(msr_all_available);
577 }
578
579 void flush_all_to_thread(struct task_struct *tsk)
580 {
581         if (tsk->thread.regs) {
582                 preempt_disable();
583                 BUG_ON(tsk != current);
584                 save_all(tsk);
585
586 #ifdef CONFIG_SPE
587                 if (tsk->thread.regs->msr & MSR_SPE)
588                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
589 #endif
590
591                 preempt_enable();
592         }
593 }
594 EXPORT_SYMBOL(flush_all_to_thread);
595
596 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
597 void do_send_trap(struct pt_regs *regs, unsigned long address,
598                   unsigned long error_code, int signal_code, int breakpt)
599 {
600         siginfo_t info;
601
602         current->thread.trap_nr = signal_code;
603         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
604                         11, SIGSEGV) == NOTIFY_STOP)
605                 return;
606
607         /* Deliver the signal to userspace */
608         info.si_signo = SIGTRAP;
609         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
610         info.si_code = signal_code;
611         info.si_addr = (void __user *)address;
612         force_sig_info(SIGTRAP, &info, current);
613 }
614 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
615 void do_break (struct pt_regs *regs, unsigned long address,
616                     unsigned long error_code)
617 {
618         siginfo_t info;
619
620         current->thread.trap_nr = TRAP_HWBKPT;
621         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
622                         11, SIGSEGV) == NOTIFY_STOP)
623                 return;
624
625         if (debugger_break_match(regs))
626                 return;
627
628         /* Clear the breakpoint */
629         hw_breakpoint_disable();
630
631         /* Deliver the signal to userspace */
632         info.si_signo = SIGTRAP;
633         info.si_errno = 0;
634         info.si_code = TRAP_HWBKPT;
635         info.si_addr = (void __user *)address;
636         force_sig_info(SIGTRAP, &info, current);
637 }
638 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
639
640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
641
642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
643 /*
644  * Set the debug registers back to their default "safe" values.
645  */
646 static void set_debug_reg_defaults(struct thread_struct *thread)
647 {
648         thread->debug.iac1 = thread->debug.iac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
650         thread->debug.iac3 = thread->debug.iac4 = 0;
651 #endif
652         thread->debug.dac1 = thread->debug.dac2 = 0;
653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
654         thread->debug.dvc1 = thread->debug.dvc2 = 0;
655 #endif
656         thread->debug.dbcr0 = 0;
657 #ifdef CONFIG_BOOKE
658         /*
659          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
660          */
661         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
662                         DBCR1_IAC3US | DBCR1_IAC4US;
663         /*
664          * Force Data Address Compare User/Supervisor bits to be User-only
665          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
666          */
667         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
668 #else
669         thread->debug.dbcr1 = 0;
670 #endif
671 }
672
673 static void prime_debug_regs(struct debug_reg *debug)
674 {
675         /*
676          * We could have inherited MSR_DE from userspace, since
677          * it doesn't get cleared on exception entry.  Make sure
678          * MSR_DE is clear before we enable any debug events.
679          */
680         mtmsr(mfmsr() & ~MSR_DE);
681
682         mtspr(SPRN_IAC1, debug->iac1);
683         mtspr(SPRN_IAC2, debug->iac2);
684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
685         mtspr(SPRN_IAC3, debug->iac3);
686         mtspr(SPRN_IAC4, debug->iac4);
687 #endif
688         mtspr(SPRN_DAC1, debug->dac1);
689         mtspr(SPRN_DAC2, debug->dac2);
690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
691         mtspr(SPRN_DVC1, debug->dvc1);
692         mtspr(SPRN_DVC2, debug->dvc2);
693 #endif
694         mtspr(SPRN_DBCR0, debug->dbcr0);
695         mtspr(SPRN_DBCR1, debug->dbcr1);
696 #ifdef CONFIG_BOOKE
697         mtspr(SPRN_DBCR2, debug->dbcr2);
698 #endif
699 }
700 /*
701  * Unless neither the old or new thread are making use of the
702  * debug registers, set the debug registers from the values
703  * stored in the new thread.
704  */
705 void switch_booke_debug_regs(struct debug_reg *new_debug)
706 {
707         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
708                 || (new_debug->dbcr0 & DBCR0_IDM))
709                         prime_debug_regs(new_debug);
710 }
711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
712 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
713 #ifndef CONFIG_HAVE_HW_BREAKPOINT
714 static void set_debug_reg_defaults(struct thread_struct *thread)
715 {
716         thread->hw_brk.address = 0;
717         thread->hw_brk.type = 0;
718         set_breakpoint(&thread->hw_brk);
719 }
720 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
721 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
722
723 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
724 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
725 {
726         mtspr(SPRN_DAC1, dabr);
727 #ifdef CONFIG_PPC_47x
728         isync();
729 #endif
730         return 0;
731 }
732 #elif defined(CONFIG_PPC_BOOK3S)
733 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
734 {
735         mtspr(SPRN_DABR, dabr);
736         if (cpu_has_feature(CPU_FTR_DABRX))
737                 mtspr(SPRN_DABRX, dabrx);
738         return 0;
739 }
740 #elif defined(CONFIG_PPC_8xx)
741 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
742 {
743         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
744         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
745         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
746
747         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
748                 lctrl1 |= 0xa0000;
749         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
750                 lctrl1 |= 0xf0000;
751         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
752                 lctrl2 = 0;
753
754         mtspr(SPRN_LCTRL2, 0);
755         mtspr(SPRN_CMPE, addr);
756         mtspr(SPRN_CMPF, addr + 4);
757         mtspr(SPRN_LCTRL1, lctrl1);
758         mtspr(SPRN_LCTRL2, lctrl2);
759
760         return 0;
761 }
762 #else
763 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
764 {
765         return -EINVAL;
766 }
767 #endif
768
769 static inline int set_dabr(struct arch_hw_breakpoint *brk)
770 {
771         unsigned long dabr, dabrx;
772
773         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
774         dabrx = ((brk->type >> 3) & 0x7);
775
776         if (ppc_md.set_dabr)
777                 return ppc_md.set_dabr(dabr, dabrx);
778
779         return __set_dabr(dabr, dabrx);
780 }
781
782 static inline int set_dawr(struct arch_hw_breakpoint *brk)
783 {
784         unsigned long dawr, dawrx, mrd;
785
786         dawr = brk->address;
787
788         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
789                                    << (63 - 58); //* read/write bits */
790         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
791                                    << (63 - 59); //* translate */
792         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
793                                    >> 3; //* PRIM bits */
794         /* dawr length is stored in field MDR bits 48:53.  Matches range in
795            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
796            0b111111=64DW.
797            brk->len is in bytes.
798            This aligns up to double word size, shifts and does the bias.
799         */
800         mrd = ((brk->len + 7) >> 3) - 1;
801         dawrx |= (mrd & 0x3f) << (63 - 53);
802
803         if (ppc_md.set_dawr)
804                 return ppc_md.set_dawr(dawr, dawrx);
805         mtspr(SPRN_DAWR, dawr);
806         mtspr(SPRN_DAWRX, dawrx);
807         return 0;
808 }
809
810 void __set_breakpoint(struct arch_hw_breakpoint *brk)
811 {
812         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
813
814         if (cpu_has_feature(CPU_FTR_DAWR))
815                 set_dawr(brk);
816         else
817                 set_dabr(brk);
818 }
819
820 void set_breakpoint(struct arch_hw_breakpoint *brk)
821 {
822         preempt_disable();
823         __set_breakpoint(brk);
824         preempt_enable();
825 }
826
827 #ifdef CONFIG_PPC64
828 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
829 #endif
830
831 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
832                               struct arch_hw_breakpoint *b)
833 {
834         if (a->address != b->address)
835                 return false;
836         if (a->type != b->type)
837                 return false;
838         if (a->len != b->len)
839                 return false;
840         return true;
841 }
842
843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
844
845 static inline bool tm_enabled(struct task_struct *tsk)
846 {
847         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
848 }
849
850 static void tm_reclaim_thread(struct thread_struct *thr,
851                               struct thread_info *ti, uint8_t cause)
852 {
853         /*
854          * Use the current MSR TM suspended bit to track if we have
855          * checkpointed state outstanding.
856          * On signal delivery, we'd normally reclaim the checkpointed
857          * state to obtain stack pointer (see:get_tm_stackpointer()).
858          * This will then directly return to userspace without going
859          * through __switch_to(). However, if the stack frame is bad,
860          * we need to exit this thread which calls __switch_to() which
861          * will again attempt to reclaim the already saved tm state.
862          * Hence we need to check that we've not already reclaimed
863          * this state.
864          * We do this using the current MSR, rather tracking it in
865          * some specific thread_struct bit, as it has the additional
866          * benefit of checking for a potential TM bad thing exception.
867          */
868         if (!MSR_TM_SUSPENDED(mfmsr()))
869                 return;
870
871         /*
872          * If we are in a transaction and FP is off then we can't have
873          * used FP inside that transaction. Hence the checkpointed
874          * state is the same as the live state. We need to copy the
875          * live state to the checkpointed state so that when the
876          * transaction is restored, the checkpointed state is correct
877          * and the aborted transaction sees the correct state. We use
878          * ckpt_regs.msr here as that's what tm_reclaim will use to
879          * determine if it's going to write the checkpointed state or
880          * not. So either this will write the checkpointed registers,
881          * or reclaim will. Similarly for VMX.
882          */
883         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
884                 memcpy(&thr->ckfp_state, &thr->fp_state,
885                        sizeof(struct thread_fp_state));
886         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
887                 memcpy(&thr->ckvr_state, &thr->vr_state,
888                        sizeof(struct thread_vr_state));
889
890         giveup_all(container_of(thr, struct task_struct, thread));
891
892         tm_reclaim(thr, thr->ckpt_regs.msr, cause);
893 }
894
895 void tm_reclaim_current(uint8_t cause)
896 {
897         tm_enable();
898         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
899 }
900
901 static inline void tm_reclaim_task(struct task_struct *tsk)
902 {
903         /* We have to work out if we're switching from/to a task that's in the
904          * middle of a transaction.
905          *
906          * In switching we need to maintain a 2nd register state as
907          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
908          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
909          * ckvr_state
910          *
911          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
912          */
913         struct thread_struct *thr = &tsk->thread;
914
915         if (!thr->regs)
916                 return;
917
918         if (!MSR_TM_ACTIVE(thr->regs->msr))
919                 goto out_and_saveregs;
920
921         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
922                  "ccr=%lx, msr=%lx, trap=%lx)\n",
923                  tsk->pid, thr->regs->nip,
924                  thr->regs->ccr, thr->regs->msr,
925                  thr->regs->trap);
926
927         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
928
929         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
930                  tsk->pid);
931
932 out_and_saveregs:
933         /* Always save the regs here, even if a transaction's not active.
934          * This context-switches a thread's TM info SPRs.  We do it here to
935          * be consistent with the restore path (in recheckpoint) which
936          * cannot happen later in _switch().
937          */
938         tm_save_sprs(thr);
939 }
940
941 extern void __tm_recheckpoint(struct thread_struct *thread,
942                               unsigned long orig_msr);
943
944 void tm_recheckpoint(struct thread_struct *thread,
945                      unsigned long orig_msr)
946 {
947         unsigned long flags;
948
949         if (!(thread->regs->msr & MSR_TM))
950                 return;
951
952         /* We really can't be interrupted here as the TEXASR registers can't
953          * change and later in the trecheckpoint code, we have a userspace R1.
954          * So let's hard disable over this region.
955          */
956         local_irq_save(flags);
957         hard_irq_disable();
958
959         /* The TM SPRs are restored here, so that TEXASR.FS can be set
960          * before the trecheckpoint and no explosion occurs.
961          */
962         tm_restore_sprs(thread);
963
964         __tm_recheckpoint(thread, orig_msr);
965
966         local_irq_restore(flags);
967 }
968
969 static inline void tm_recheckpoint_new_task(struct task_struct *new)
970 {
971         unsigned long msr;
972
973         if (!cpu_has_feature(CPU_FTR_TM))
974                 return;
975
976         /* Recheckpoint the registers of the thread we're about to switch to.
977          *
978          * If the task was using FP, we non-lazily reload both the original and
979          * the speculative FP register states.  This is because the kernel
980          * doesn't see if/when a TM rollback occurs, so if we take an FP
981          * unavailable later, we are unable to determine which set of FP regs
982          * need to be restored.
983          */
984         if (!tm_enabled(new))
985                 return;
986
987         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
988                 tm_restore_sprs(&new->thread);
989                 return;
990         }
991         msr = new->thread.ckpt_regs.msr;
992         /* Recheckpoint to restore original checkpointed register state. */
993         TM_DEBUG("*** tm_recheckpoint of pid %d "
994                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
995                  new->pid, new->thread.regs->msr, msr);
996
997         tm_recheckpoint(&new->thread, msr);
998
999         /*
1000          * The checkpointed state has been restored but the live state has
1001          * not, ensure all the math functionality is turned off to trigger
1002          * restore_math() to reload.
1003          */
1004         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1005
1006         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1007                  "(kernel msr 0x%lx)\n",
1008                  new->pid, mfmsr());
1009 }
1010
1011 static inline void __switch_to_tm(struct task_struct *prev,
1012                 struct task_struct *new)
1013 {
1014         if (cpu_has_feature(CPU_FTR_TM)) {
1015                 if (tm_enabled(prev) || tm_enabled(new))
1016                         tm_enable();
1017
1018                 if (tm_enabled(prev)) {
1019                         prev->thread.load_tm++;
1020                         tm_reclaim_task(prev);
1021                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1022                                 prev->thread.regs->msr &= ~MSR_TM;
1023                 }
1024
1025                 tm_recheckpoint_new_task(new);
1026         }
1027 }
1028
1029 /*
1030  * This is called if we are on the way out to userspace and the
1031  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1032  * FP and/or vector state and does so if necessary.
1033  * If userspace is inside a transaction (whether active or
1034  * suspended) and FP/VMX/VSX instructions have ever been enabled
1035  * inside that transaction, then we have to keep them enabled
1036  * and keep the FP/VMX/VSX state loaded while ever the transaction
1037  * continues.  The reason is that if we didn't, and subsequently
1038  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1039  * we don't know whether it's the same transaction, and thus we
1040  * don't know which of the checkpointed state and the transactional
1041  * state to use.
1042  */
1043 void restore_tm_state(struct pt_regs *regs)
1044 {
1045         unsigned long msr_diff;
1046
1047         /*
1048          * This is the only moment we should clear TIF_RESTORE_TM as
1049          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1050          * again, anything else could lead to an incorrect ckpt_msr being
1051          * saved and therefore incorrect signal contexts.
1052          */
1053         clear_thread_flag(TIF_RESTORE_TM);
1054         if (!MSR_TM_ACTIVE(regs->msr))
1055                 return;
1056
1057         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1058         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1059
1060         /* Ensure that restore_math() will restore */
1061         if (msr_diff & MSR_FP)
1062                 current->thread.load_fp = 1;
1063 #ifdef CONFIG_ALTIVEC
1064         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1065                 current->thread.load_vec = 1;
1066 #endif
1067         restore_math(regs);
1068
1069         regs->msr |= msr_diff;
1070 }
1071
1072 #else
1073 #define tm_recheckpoint_new_task(new)
1074 #define __switch_to_tm(prev, new)
1075 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1076
1077 static inline void save_sprs(struct thread_struct *t)
1078 {
1079 #ifdef CONFIG_ALTIVEC
1080         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1081                 t->vrsave = mfspr(SPRN_VRSAVE);
1082 #endif
1083 #ifdef CONFIG_PPC_BOOK3S_64
1084         if (cpu_has_feature(CPU_FTR_DSCR))
1085                 t->dscr = mfspr(SPRN_DSCR);
1086
1087         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1088                 t->bescr = mfspr(SPRN_BESCR);
1089                 t->ebbhr = mfspr(SPRN_EBBHR);
1090                 t->ebbrr = mfspr(SPRN_EBBRR);
1091
1092                 t->fscr = mfspr(SPRN_FSCR);
1093
1094                 /*
1095                  * Note that the TAR is not available for use in the kernel.
1096                  * (To provide this, the TAR should be backed up/restored on
1097                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1098                  * this should be in pt_regs anyway (for debug).)
1099                  */
1100                 t->tar = mfspr(SPRN_TAR);
1101         }
1102 #endif
1103 }
1104
1105 static inline void restore_sprs(struct thread_struct *old_thread,
1106                                 struct thread_struct *new_thread)
1107 {
1108 #ifdef CONFIG_ALTIVEC
1109         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1110             old_thread->vrsave != new_thread->vrsave)
1111                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1112 #endif
1113 #ifdef CONFIG_PPC_BOOK3S_64
1114         if (cpu_has_feature(CPU_FTR_DSCR)) {
1115                 u64 dscr = get_paca()->dscr_default;
1116                 if (new_thread->dscr_inherit)
1117                         dscr = new_thread->dscr;
1118
1119                 if (old_thread->dscr != dscr)
1120                         mtspr(SPRN_DSCR, dscr);
1121         }
1122
1123         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1124                 if (old_thread->bescr != new_thread->bescr)
1125                         mtspr(SPRN_BESCR, new_thread->bescr);
1126                 if (old_thread->ebbhr != new_thread->ebbhr)
1127                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1128                 if (old_thread->ebbrr != new_thread->ebbrr)
1129                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1130
1131                 if (old_thread->fscr != new_thread->fscr)
1132                         mtspr(SPRN_FSCR, new_thread->fscr);
1133
1134                 if (old_thread->tar != new_thread->tar)
1135                         mtspr(SPRN_TAR, new_thread->tar);
1136         }
1137 #endif
1138 }
1139
1140 struct task_struct *__switch_to(struct task_struct *prev,
1141         struct task_struct *new)
1142 {
1143         struct thread_struct *new_thread, *old_thread;
1144         struct task_struct *last;
1145 #ifdef CONFIG_PPC_BOOK3S_64
1146         struct ppc64_tlb_batch *batch;
1147 #endif
1148
1149         new_thread = &new->thread;
1150         old_thread = &current->thread;
1151
1152         WARN_ON(!irqs_disabled());
1153
1154 #ifdef CONFIG_PPC64
1155         /*
1156          * Collect processor utilization data per process
1157          */
1158         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1159                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1160                 long unsigned start_tb, current_tb;
1161                 start_tb = old_thread->start_tb;
1162                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1163                 old_thread->accum_tb += (current_tb - start_tb);
1164                 new_thread->start_tb = current_tb;
1165         }
1166 #endif /* CONFIG_PPC64 */
1167
1168 #ifdef CONFIG_PPC_STD_MMU_64
1169         batch = this_cpu_ptr(&ppc64_tlb_batch);
1170         if (batch->active) {
1171                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1172                 if (batch->index)
1173                         __flush_tlb_pending(batch);
1174                 batch->active = 0;
1175         }
1176 #endif /* CONFIG_PPC_STD_MMU_64 */
1177
1178 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1179         switch_booke_debug_regs(&new->thread.debug);
1180 #else
1181 /*
1182  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1183  * schedule DABR
1184  */
1185 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1186         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1187                 __set_breakpoint(&new->thread.hw_brk);
1188 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1189 #endif
1190
1191         /*
1192          * We need to save SPRs before treclaim/trecheckpoint as these will
1193          * change a number of them.
1194          */
1195         save_sprs(&prev->thread);
1196
1197         /* Save FPU, Altivec, VSX and SPE state */
1198         giveup_all(prev);
1199
1200         __switch_to_tm(prev, new);
1201
1202         if (!radix_enabled()) {
1203                 /*
1204                  * We can't take a PMU exception inside _switch() since there
1205                  * is a window where the kernel stack SLB and the kernel stack
1206                  * are out of sync. Hard disable here.
1207                  */
1208                 hard_irq_disable();
1209         }
1210
1211         /*
1212          * Call restore_sprs() before calling _switch(). If we move it after
1213          * _switch() then we miss out on calling it for new tasks. The reason
1214          * for this is we manually create a stack frame for new tasks that
1215          * directly returns through ret_from_fork() or
1216          * ret_from_kernel_thread(). See copy_thread() for details.
1217          */
1218         restore_sprs(old_thread, new_thread);
1219
1220         last = _switch(old_thread, new_thread);
1221
1222 #ifdef CONFIG_PPC_STD_MMU_64
1223         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1224                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1225                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1226                 batch->active = 1;
1227         }
1228
1229         if (current_thread_info()->task->thread.regs)
1230                 restore_math(current_thread_info()->task->thread.regs);
1231 #endif /* CONFIG_PPC_STD_MMU_64 */
1232
1233         return last;
1234 }
1235
1236 static int instructions_to_print = 16;
1237
1238 static void show_instructions(struct pt_regs *regs)
1239 {
1240         int i;
1241         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1242                         sizeof(int));
1243
1244         printk("Instruction dump:");
1245
1246         for (i = 0; i < instructions_to_print; i++) {
1247                 int instr;
1248
1249                 if (!(i % 8))
1250                         pr_cont("\n");
1251
1252 #if !defined(CONFIG_BOOKE)
1253                 /* If executing with the IMMU off, adjust pc rather
1254                  * than print XXXXXXXX.
1255                  */
1256                 if (!(regs->msr & MSR_IR))
1257                         pc = (unsigned long)phys_to_virt(pc);
1258 #endif
1259
1260                 if (!__kernel_text_address(pc) ||
1261                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1262                         pr_cont("XXXXXXXX ");
1263                 } else {
1264                         if (regs->nip == pc)
1265                                 pr_cont("<%08x> ", instr);
1266                         else
1267                                 pr_cont("%08x ", instr);
1268                 }
1269
1270                 pc += sizeof(int);
1271         }
1272
1273         pr_cont("\n");
1274 }
1275
1276 struct regbit {
1277         unsigned long bit;
1278         const char *name;
1279 };
1280
1281 static struct regbit msr_bits[] = {
1282 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1283         {MSR_SF,        "SF"},
1284         {MSR_HV,        "HV"},
1285 #endif
1286         {MSR_VEC,       "VEC"},
1287         {MSR_VSX,       "VSX"},
1288 #ifdef CONFIG_BOOKE
1289         {MSR_CE,        "CE"},
1290 #endif
1291         {MSR_EE,        "EE"},
1292         {MSR_PR,        "PR"},
1293         {MSR_FP,        "FP"},
1294         {MSR_ME,        "ME"},
1295 #ifdef CONFIG_BOOKE
1296         {MSR_DE,        "DE"},
1297 #else
1298         {MSR_SE,        "SE"},
1299         {MSR_BE,        "BE"},
1300 #endif
1301         {MSR_IR,        "IR"},
1302         {MSR_DR,        "DR"},
1303         {MSR_PMM,       "PMM"},
1304 #ifndef CONFIG_BOOKE
1305         {MSR_RI,        "RI"},
1306         {MSR_LE,        "LE"},
1307 #endif
1308         {0,             NULL}
1309 };
1310
1311 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1312 {
1313         const char *s = "";
1314
1315         for (; bits->bit; ++bits)
1316                 if (val & bits->bit) {
1317                         pr_cont("%s%s", s, bits->name);
1318                         s = sep;
1319                 }
1320 }
1321
1322 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1323 static struct regbit msr_tm_bits[] = {
1324         {MSR_TS_T,      "T"},
1325         {MSR_TS_S,      "S"},
1326         {MSR_TM,        "E"},
1327         {0,             NULL}
1328 };
1329
1330 static void print_tm_bits(unsigned long val)
1331 {
1332 /*
1333  * This only prints something if at least one of the TM bit is set.
1334  * Inside the TM[], the output means:
1335  *   E: Enabled         (bit 32)
1336  *   S: Suspended       (bit 33)
1337  *   T: Transactional   (bit 34)
1338  */
1339         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1340                 pr_cont(",TM[");
1341                 print_bits(val, msr_tm_bits, "");
1342                 pr_cont("]");
1343         }
1344 }
1345 #else
1346 static void print_tm_bits(unsigned long val) {}
1347 #endif
1348
1349 static void print_msr_bits(unsigned long val)
1350 {
1351         pr_cont("<");
1352         print_bits(val, msr_bits, ",");
1353         print_tm_bits(val);
1354         pr_cont(">");
1355 }
1356
1357 #ifdef CONFIG_PPC64
1358 #define REG             "%016lx"
1359 #define REGS_PER_LINE   4
1360 #define LAST_VOLATILE   13
1361 #else
1362 #define REG             "%08lx"
1363 #define REGS_PER_LINE   8
1364 #define LAST_VOLATILE   12
1365 #endif
1366
1367 void show_regs(struct pt_regs * regs)
1368 {
1369         int i, trap;
1370
1371         show_regs_print_info(KERN_DEFAULT);
1372
1373         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1374                regs->nip, regs->link, regs->ctr);
1375         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1376                regs, regs->trap, print_tainted(), init_utsname()->release);
1377         printk("MSR: "REG" ", regs->msr);
1378         print_msr_bits(regs->msr);
1379         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1380         trap = TRAP(regs);
1381         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1382                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1383         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1384 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1385                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1386 #else
1387                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1388 #endif
1389 #ifdef CONFIG_PPC64
1390         pr_cont("SOFTE: %ld ", regs->softe);
1391 #endif
1392 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1393         if (MSR_TM_ACTIVE(regs->msr))
1394                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1395 #endif
1396
1397         for (i = 0;  i < 32;  i++) {
1398                 if ((i % REGS_PER_LINE) == 0)
1399                         pr_cont("\nGPR%02d: ", i);
1400                 pr_cont(REG " ", regs->gpr[i]);
1401                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1402                         break;
1403         }
1404         pr_cont("\n");
1405 #ifdef CONFIG_KALLSYMS
1406         /*
1407          * Lookup NIP late so we have the best change of getting the
1408          * above info out without failing
1409          */
1410         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1411         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1412 #endif
1413         show_stack(current, (unsigned long *) regs->gpr[1]);
1414         if (!user_mode(regs))
1415                 show_instructions(regs);
1416 }
1417
1418 void flush_thread(void)
1419 {
1420 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1421         flush_ptrace_hw_breakpoint(current);
1422 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1423         set_debug_reg_defaults(&current->thread);
1424 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1425 }
1426
1427 void
1428 release_thread(struct task_struct *t)
1429 {
1430 }
1431
1432 /*
1433  * this gets called so that we can store coprocessor state into memory and
1434  * copy the current task into the new thread.
1435  */
1436 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1437 {
1438         flush_all_to_thread(src);
1439         /*
1440          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1441          * flush but it removes the checkpointed state from the current CPU and
1442          * transitions the CPU out of TM mode.  Hence we need to call
1443          * tm_recheckpoint_new_task() (on the same task) to restore the
1444          * checkpointed state back and the TM mode.
1445          *
1446          * Can't pass dst because it isn't ready. Doesn't matter, passing
1447          * dst is only important for __switch_to()
1448          */
1449         __switch_to_tm(src, src);
1450
1451         *dst = *src;
1452
1453         clear_task_ebb(dst);
1454
1455         return 0;
1456 }
1457
1458 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1459 {
1460 #ifdef CONFIG_PPC_STD_MMU_64
1461         unsigned long sp_vsid;
1462         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1463
1464         if (radix_enabled())
1465                 return;
1466
1467         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1468                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1469                         << SLB_VSID_SHIFT_1T;
1470         else
1471                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1472                         << SLB_VSID_SHIFT;
1473         sp_vsid |= SLB_VSID_KERNEL | llp;
1474         p->thread.ksp_vsid = sp_vsid;
1475 #endif
1476 }
1477
1478 /*
1479  * Copy a thread..
1480  */
1481
1482 /*
1483  * Copy architecture-specific thread state
1484  */
1485 int copy_thread(unsigned long clone_flags, unsigned long usp,
1486                 unsigned long kthread_arg, struct task_struct *p)
1487 {
1488         struct pt_regs *childregs, *kregs;
1489         extern void ret_from_fork(void);
1490         extern void ret_from_kernel_thread(void);
1491         void (*f)(void);
1492         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1493         struct thread_info *ti = task_thread_info(p);
1494
1495         klp_init_thread_info(ti);
1496
1497         /* Copy registers */
1498         sp -= sizeof(struct pt_regs);
1499         childregs = (struct pt_regs *) sp;
1500         if (unlikely(p->flags & PF_KTHREAD)) {
1501                 /* kernel thread */
1502                 memset(childregs, 0, sizeof(struct pt_regs));
1503                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1504                 /* function */
1505                 if (usp)
1506                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1507 #ifdef CONFIG_PPC64
1508                 clear_tsk_thread_flag(p, TIF_32BIT);
1509                 childregs->softe = 1;
1510 #endif
1511                 childregs->gpr[15] = kthread_arg;
1512                 p->thread.regs = NULL;  /* no user register state */
1513                 ti->flags |= _TIF_RESTOREALL;
1514                 f = ret_from_kernel_thread;
1515         } else {
1516                 /* user thread */
1517                 struct pt_regs *regs = current_pt_regs();
1518                 CHECK_FULL_REGS(regs);
1519                 *childregs = *regs;
1520                 if (usp)
1521                         childregs->gpr[1] = usp;
1522                 p->thread.regs = childregs;
1523                 childregs->gpr[3] = 0;  /* Result from fork() */
1524                 if (clone_flags & CLONE_SETTLS) {
1525 #ifdef CONFIG_PPC64
1526                         if (!is_32bit_task())
1527                                 childregs->gpr[13] = childregs->gpr[6];
1528                         else
1529 #endif
1530                                 childregs->gpr[2] = childregs->gpr[6];
1531                 }
1532
1533                 f = ret_from_fork;
1534         }
1535         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1536         sp -= STACK_FRAME_OVERHEAD;
1537
1538         /*
1539          * The way this works is that at some point in the future
1540          * some task will call _switch to switch to the new task.
1541          * That will pop off the stack frame created below and start
1542          * the new task running at ret_from_fork.  The new task will
1543          * do some house keeping and then return from the fork or clone
1544          * system call, using the stack frame created above.
1545          */
1546         ((unsigned long *)sp)[0] = 0;
1547         sp -= sizeof(struct pt_regs);
1548         kregs = (struct pt_regs *) sp;
1549         sp -= STACK_FRAME_OVERHEAD;
1550         p->thread.ksp = sp;
1551 #ifdef CONFIG_PPC32
1552         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1553                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1554 #endif
1555 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1556         p->thread.ptrace_bps[0] = NULL;
1557 #endif
1558
1559         p->thread.fp_save_area = NULL;
1560 #ifdef CONFIG_ALTIVEC
1561         p->thread.vr_save_area = NULL;
1562 #endif
1563
1564         setup_ksp_vsid(p, sp);
1565
1566 #ifdef CONFIG_PPC64 
1567         if (cpu_has_feature(CPU_FTR_DSCR)) {
1568                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1569                 p->thread.dscr = mfspr(SPRN_DSCR);
1570         }
1571         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1572                 p->thread.ppr = INIT_PPR;
1573 #endif
1574         kregs->nip = ppc_function_entry(f);
1575         return 0;
1576 }
1577
1578 /*
1579  * Set up a thread for executing a new program
1580  */
1581 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1582 {
1583 #ifdef CONFIG_PPC64
1584         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1585 #endif
1586
1587         /*
1588          * If we exec out of a kernel thread then thread.regs will not be
1589          * set.  Do it now.
1590          */
1591         if (!current->thread.regs) {
1592                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1593                 current->thread.regs = regs - 1;
1594         }
1595
1596 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1597         /*
1598          * Clear any transactional state, we're exec()ing. The cause is
1599          * not important as there will never be a recheckpoint so it's not
1600          * user visible.
1601          */
1602         if (MSR_TM_SUSPENDED(mfmsr()))
1603                 tm_reclaim_current(0);
1604 #endif
1605
1606         memset(regs->gpr, 0, sizeof(regs->gpr));
1607         regs->ctr = 0;
1608         regs->link = 0;
1609         regs->xer = 0;
1610         regs->ccr = 0;
1611         regs->gpr[1] = sp;
1612
1613         /*
1614          * We have just cleared all the nonvolatile GPRs, so make
1615          * FULL_REGS(regs) return true.  This is necessary to allow
1616          * ptrace to examine the thread immediately after exec.
1617          */
1618         regs->trap &= ~1UL;
1619
1620 #ifdef CONFIG_PPC32
1621         regs->mq = 0;
1622         regs->nip = start;
1623         regs->msr = MSR_USER;
1624 #else
1625         if (!is_32bit_task()) {
1626                 unsigned long entry;
1627
1628                 if (is_elf2_task()) {
1629                         /* Look ma, no function descriptors! */
1630                         entry = start;
1631
1632                         /*
1633                          * Ulrich says:
1634                          *   The latest iteration of the ABI requires that when
1635                          *   calling a function (at its global entry point),
1636                          *   the caller must ensure r12 holds the entry point
1637                          *   address (so that the function can quickly
1638                          *   establish addressability).
1639                          */
1640                         regs->gpr[12] = start;
1641                         /* Make sure that's restored on entry to userspace. */
1642                         set_thread_flag(TIF_RESTOREALL);
1643                 } else {
1644                         unsigned long toc;
1645
1646                         /* start is a relocated pointer to the function
1647                          * descriptor for the elf _start routine.  The first
1648                          * entry in the function descriptor is the entry
1649                          * address of _start and the second entry is the TOC
1650                          * value we need to use.
1651                          */
1652                         __get_user(entry, (unsigned long __user *)start);
1653                         __get_user(toc, (unsigned long __user *)start+1);
1654
1655                         /* Check whether the e_entry function descriptor entries
1656                          * need to be relocated before we can use them.
1657                          */
1658                         if (load_addr != 0) {
1659                                 entry += load_addr;
1660                                 toc   += load_addr;
1661                         }
1662                         regs->gpr[2] = toc;
1663                 }
1664                 regs->nip = entry;
1665                 regs->msr = MSR_USER64;
1666         } else {
1667                 regs->nip = start;
1668                 regs->gpr[2] = 0;
1669                 regs->msr = MSR_USER32;
1670         }
1671 #endif
1672 #ifdef CONFIG_VSX
1673         current->thread.used_vsr = 0;
1674 #endif
1675         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1676         current->thread.fp_save_area = NULL;
1677 #ifdef CONFIG_ALTIVEC
1678         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1679         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1680         current->thread.vr_save_area = NULL;
1681         current->thread.vrsave = 0;
1682         current->thread.used_vr = 0;
1683 #endif /* CONFIG_ALTIVEC */
1684 #ifdef CONFIG_SPE
1685         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1686         current->thread.acc = 0;
1687         current->thread.spefscr = 0;
1688         current->thread.used_spe = 0;
1689 #endif /* CONFIG_SPE */
1690 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1691         current->thread.tm_tfhar = 0;
1692         current->thread.tm_texasr = 0;
1693         current->thread.tm_tfiar = 0;
1694 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1695 }
1696 EXPORT_SYMBOL(start_thread);
1697
1698 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1699                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1700
1701 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1702 {
1703         struct pt_regs *regs = tsk->thread.regs;
1704
1705         /* This is a bit hairy.  If we are an SPE enabled  processor
1706          * (have embedded fp) we store the IEEE exception enable flags in
1707          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1708          * mode (asyn, precise, disabled) for 'Classic' FP. */
1709         if (val & PR_FP_EXC_SW_ENABLE) {
1710 #ifdef CONFIG_SPE
1711                 if (cpu_has_feature(CPU_FTR_SPE)) {
1712                         /*
1713                          * When the sticky exception bits are set
1714                          * directly by userspace, it must call prctl
1715                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1716                          * in the existing prctl settings) or
1717                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1718                          * the bits being set).  <fenv.h> functions
1719                          * saving and restoring the whole
1720                          * floating-point environment need to do so
1721                          * anyway to restore the prctl settings from
1722                          * the saved environment.
1723                          */
1724                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1725                         tsk->thread.fpexc_mode = val &
1726                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1727                         return 0;
1728                 } else {
1729                         return -EINVAL;
1730                 }
1731 #else
1732                 return -EINVAL;
1733 #endif
1734         }
1735
1736         /* on a CONFIG_SPE this does not hurt us.  The bits that
1737          * __pack_fe01 use do not overlap with bits used for
1738          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1739          * on CONFIG_SPE implementations are reserved so writing to
1740          * them does not change anything */
1741         if (val > PR_FP_EXC_PRECISE)
1742                 return -EINVAL;
1743         tsk->thread.fpexc_mode = __pack_fe01(val);
1744         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1745                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1746                         | tsk->thread.fpexc_mode;
1747         return 0;
1748 }
1749
1750 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1751 {
1752         unsigned int val;
1753
1754         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1755 #ifdef CONFIG_SPE
1756                 if (cpu_has_feature(CPU_FTR_SPE)) {
1757                         /*
1758                          * When the sticky exception bits are set
1759                          * directly by userspace, it must call prctl
1760                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1761                          * in the existing prctl settings) or
1762                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1763                          * the bits being set).  <fenv.h> functions
1764                          * saving and restoring the whole
1765                          * floating-point environment need to do so
1766                          * anyway to restore the prctl settings from
1767                          * the saved environment.
1768                          */
1769                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1770                         val = tsk->thread.fpexc_mode;
1771                 } else
1772                         return -EINVAL;
1773 #else
1774                 return -EINVAL;
1775 #endif
1776         else
1777                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1778         return put_user(val, (unsigned int __user *) adr);
1779 }
1780
1781 int set_endian(struct task_struct *tsk, unsigned int val)
1782 {
1783         struct pt_regs *regs = tsk->thread.regs;
1784
1785         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1786             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1787                 return -EINVAL;
1788
1789         if (regs == NULL)
1790                 return -EINVAL;
1791
1792         if (val == PR_ENDIAN_BIG)
1793                 regs->msr &= ~MSR_LE;
1794         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1795                 regs->msr |= MSR_LE;
1796         else
1797                 return -EINVAL;
1798
1799         return 0;
1800 }
1801
1802 int get_endian(struct task_struct *tsk, unsigned long adr)
1803 {
1804         struct pt_regs *regs = tsk->thread.regs;
1805         unsigned int val;
1806
1807         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1808             !cpu_has_feature(CPU_FTR_REAL_LE))
1809                 return -EINVAL;
1810
1811         if (regs == NULL)
1812                 return -EINVAL;
1813
1814         if (regs->msr & MSR_LE) {
1815                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1816                         val = PR_ENDIAN_LITTLE;
1817                 else
1818                         val = PR_ENDIAN_PPC_LITTLE;
1819         } else
1820                 val = PR_ENDIAN_BIG;
1821
1822         return put_user(val, (unsigned int __user *)adr);
1823 }
1824
1825 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1826 {
1827         tsk->thread.align_ctl = val;
1828         return 0;
1829 }
1830
1831 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1832 {
1833         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1834 }
1835
1836 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1837                                   unsigned long nbytes)
1838 {
1839         unsigned long stack_page;
1840         unsigned long cpu = task_cpu(p);
1841
1842         /*
1843          * Avoid crashing if the stack has overflowed and corrupted
1844          * task_cpu(p), which is in the thread_info struct.
1845          */
1846         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1847                 stack_page = (unsigned long) hardirq_ctx[cpu];
1848                 if (sp >= stack_page + sizeof(struct thread_struct)
1849                     && sp <= stack_page + THREAD_SIZE - nbytes)
1850                         return 1;
1851
1852                 stack_page = (unsigned long) softirq_ctx[cpu];
1853                 if (sp >= stack_page + sizeof(struct thread_struct)
1854                     && sp <= stack_page + THREAD_SIZE - nbytes)
1855                         return 1;
1856         }
1857         return 0;
1858 }
1859
1860 int validate_sp(unsigned long sp, struct task_struct *p,
1861                        unsigned long nbytes)
1862 {
1863         unsigned long stack_page = (unsigned long)task_stack_page(p);
1864
1865         if (sp >= stack_page + sizeof(struct thread_struct)
1866             && sp <= stack_page + THREAD_SIZE - nbytes)
1867                 return 1;
1868
1869         return valid_irq_stack(sp, p, nbytes);
1870 }
1871
1872 EXPORT_SYMBOL(validate_sp);
1873
1874 unsigned long get_wchan(struct task_struct *p)
1875 {
1876         unsigned long ip, sp;
1877         int count = 0;
1878
1879         if (!p || p == current || p->state == TASK_RUNNING)
1880                 return 0;
1881
1882         sp = p->thread.ksp;
1883         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1884                 return 0;
1885
1886         do {
1887                 sp = *(unsigned long *)sp;
1888                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1889                         return 0;
1890                 if (count > 0) {
1891                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1892                         if (!in_sched_functions(ip))
1893                                 return ip;
1894                 }
1895         } while (count++ < 16);
1896         return 0;
1897 }
1898
1899 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1900
1901 void show_stack(struct task_struct *tsk, unsigned long *stack)
1902 {
1903         unsigned long sp, ip, lr, newsp;
1904         int count = 0;
1905         int firstframe = 1;
1906 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1907         int curr_frame = current->curr_ret_stack;
1908         extern void return_to_handler(void);
1909         unsigned long rth = (unsigned long)return_to_handler;
1910 #endif
1911
1912         sp = (unsigned long) stack;
1913         if (tsk == NULL)
1914                 tsk = current;
1915         if (sp == 0) {
1916                 if (tsk == current)
1917                         sp = current_stack_pointer();
1918                 else
1919                         sp = tsk->thread.ksp;
1920         }
1921
1922         lr = 0;
1923         printk("Call Trace:\n");
1924         do {
1925                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1926                         return;
1927
1928                 stack = (unsigned long *) sp;
1929                 newsp = stack[0];
1930                 ip = stack[STACK_FRAME_LR_SAVE];
1931                 if (!firstframe || ip != lr) {
1932                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1933 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1934                         if ((ip == rth) && curr_frame >= 0) {
1935                                 pr_cont(" (%pS)",
1936                                        (void *)current->ret_stack[curr_frame].ret);
1937                                 curr_frame--;
1938                         }
1939 #endif
1940                         if (firstframe)
1941                                 pr_cont(" (unreliable)");
1942                         pr_cont("\n");
1943                 }
1944                 firstframe = 0;
1945
1946                 /*
1947                  * See if this is an exception frame.
1948                  * We look for the "regshere" marker in the current frame.
1949                  */
1950                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1951                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1952                         struct pt_regs *regs = (struct pt_regs *)
1953                                 (sp + STACK_FRAME_OVERHEAD);
1954                         lr = regs->link;
1955                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1956                                regs->trap, (void *)regs->nip, (void *)lr);
1957                         firstframe = 1;
1958                 }
1959
1960                 sp = newsp;
1961         } while (count++ < kstack_depth_to_print);
1962 }
1963
1964 #ifdef CONFIG_PPC64
1965 /* Called with hard IRQs off */
1966 void notrace __ppc64_runlatch_on(void)
1967 {
1968         struct thread_info *ti = current_thread_info();
1969         unsigned long ctrl;
1970
1971         ctrl = mfspr(SPRN_CTRLF);
1972         ctrl |= CTRL_RUNLATCH;
1973         mtspr(SPRN_CTRLT, ctrl);
1974
1975         ti->local_flags |= _TLF_RUNLATCH;
1976 }
1977
1978 /* Called with hard IRQs off */
1979 void notrace __ppc64_runlatch_off(void)
1980 {
1981         struct thread_info *ti = current_thread_info();
1982         unsigned long ctrl;
1983
1984         ti->local_flags &= ~_TLF_RUNLATCH;
1985
1986         ctrl = mfspr(SPRN_CTRLF);
1987         ctrl &= ~CTRL_RUNLATCH;
1988         mtspr(SPRN_CTRLT, ctrl);
1989 }
1990 #endif /* CONFIG_PPC64 */
1991
1992 unsigned long arch_align_stack(unsigned long sp)
1993 {
1994         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1995                 sp -= get_random_int() & ~PAGE_MASK;
1996         return sp & ~0xf;
1997 }
1998
1999 static inline unsigned long brk_rnd(void)
2000 {
2001         unsigned long rnd = 0;
2002
2003         /* 8MB for 32bit, 1GB for 64bit */
2004         if (is_32bit_task())
2005                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2006         else
2007                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2008
2009         return rnd << PAGE_SHIFT;
2010 }
2011
2012 unsigned long arch_randomize_brk(struct mm_struct *mm)
2013 {
2014         unsigned long base = mm->brk;
2015         unsigned long ret;
2016
2017 #ifdef CONFIG_PPC_STD_MMU_64
2018         /*
2019          * If we are using 1TB segments and we are allowed to randomise
2020          * the heap, we can put it above 1TB so it is backed by a 1TB
2021          * segment. Otherwise the heap will be in the bottom 1TB
2022          * which always uses 256MB segments and this may result in a
2023          * performance penalty. We don't need to worry about radix. For
2024          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2025          */
2026         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2027                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2028 #endif
2029
2030         ret = PAGE_ALIGN(base + brk_rnd());
2031
2032         if (ret < mm->brk)
2033                 return mm->brk;
2034
2035         return ret;
2036 }
2037