Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115         *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123  * kvm_arch_init_vm - initializes a VM data structure
124  * @kvm:        pointer to the KVM struct
125  */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128         int ret = 0;
129
130         if (type)
131                 return -EINVAL;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_timer_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155         return VM_FAULT_SIGBUS;
156 }
157
158 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
159                            struct kvm_memory_slot *dont)
160 {
161 }
162
163 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
164                             unsigned long npages)
165 {
166         return 0;
167 }
168
169 /**
170  * kvm_arch_destroy_vm - destroy the VM data structure
171  * @kvm:        pointer to the KVM struct
172  */
173 void kvm_arch_destroy_vm(struct kvm *kvm)
174 {
175         int i;
176
177         kvm_free_stage2_pgd(kvm);
178
179         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
180                 if (kvm->vcpus[i]) {
181                         kvm_arch_vcpu_free(kvm->vcpus[i]);
182                         kvm->vcpus[i] = NULL;
183                 }
184         }
185 }
186
187 int kvm_dev_ioctl_check_extension(long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_DEVICE_CTRL:
195         case KVM_CAP_USER_MEMORY:
196         case KVM_CAP_SYNC_MMU:
197         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
198         case KVM_CAP_ONE_REG:
199         case KVM_CAP_ARM_PSCI:
200                 r = 1;
201                 break;
202         case KVM_CAP_COALESCED_MMIO:
203                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
204                 break;
205         case KVM_CAP_ARM_SET_DEVICE_ADDR:
206                 r = 1;
207                 break;
208         case KVM_CAP_NR_VCPUS:
209                 r = num_online_cpus();
210                 break;
211         case KVM_CAP_MAX_VCPUS:
212                 r = KVM_MAX_VCPUS;
213                 break;
214         default:
215                 r = kvm_arch_dev_ioctl_check_extension(ext);
216                 break;
217         }
218         return r;
219 }
220
221 long kvm_arch_dev_ioctl(struct file *filp,
222                         unsigned int ioctl, unsigned long arg)
223 {
224         return -EINVAL;
225 }
226
227 void kvm_arch_memslots_updated(struct kvm *kvm)
228 {
229 }
230
231 int kvm_arch_prepare_memory_region(struct kvm *kvm,
232                                    struct kvm_memory_slot *memslot,
233                                    struct kvm_userspace_memory_region *mem,
234                                    enum kvm_mr_change change)
235 {
236         return 0;
237 }
238
239 void kvm_arch_commit_memory_region(struct kvm *kvm,
240                                    struct kvm_userspace_memory_region *mem,
241                                    const struct kvm_memory_slot *old,
242                                    enum kvm_mr_change change)
243 {
244 }
245
246 void kvm_arch_flush_shadow_all(struct kvm *kvm)
247 {
248 }
249
250 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
251                                    struct kvm_memory_slot *slot)
252 {
253 }
254
255 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
256 {
257         int err;
258         struct kvm_vcpu *vcpu;
259
260         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
261         if (!vcpu) {
262                 err = -ENOMEM;
263                 goto out;
264         }
265
266         err = kvm_vcpu_init(vcpu, kvm, id);
267         if (err)
268                 goto free_vcpu;
269
270         err = create_hyp_mappings(vcpu, vcpu + 1);
271         if (err)
272                 goto vcpu_uninit;
273
274         return vcpu;
275 vcpu_uninit:
276         kvm_vcpu_uninit(vcpu);
277 free_vcpu:
278         kmem_cache_free(kvm_vcpu_cache, vcpu);
279 out:
280         return ERR_PTR(err);
281 }
282
283 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
284 {
285         return 0;
286 }
287
288 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
289 {
290         kvm_mmu_free_memory_caches(vcpu);
291         kvm_timer_vcpu_terminate(vcpu);
292         kmem_cache_free(kvm_vcpu_cache, vcpu);
293 }
294
295 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
296 {
297         kvm_arch_vcpu_free(vcpu);
298 }
299
300 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
301 {
302         return 0;
303 }
304
305 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
306 {
307         int ret;
308
309         /* Force users to call KVM_ARM_VCPU_INIT */
310         vcpu->arch.target = -1;
311
312         /* Set up VGIC */
313         ret = kvm_vgic_vcpu_init(vcpu);
314         if (ret)
315                 return ret;
316
317         /* Set up the timer */
318         kvm_timer_vcpu_init(vcpu);
319
320         return 0;
321 }
322
323 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
324 {
325 }
326
327 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
328 {
329         vcpu->cpu = cpu;
330         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
331
332         /*
333          * Check whether this vcpu requires the cache to be flushed on
334          * this physical CPU. This is a consequence of doing dcache
335          * operations by set/way on this vcpu. We do it here to be in
336          * a non-preemptible section.
337          */
338         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
339                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
340
341         kvm_arm_set_running_vcpu(vcpu);
342 }
343
344 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
345 {
346         /*
347          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
348          * if the vcpu is no longer assigned to a cpu.  This is used for the
349          * optimized make_all_cpus_request path.
350          */
351         vcpu->cpu = -1;
352
353         kvm_arm_set_running_vcpu(NULL);
354 }
355
356 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
357                                         struct kvm_guest_debug *dbg)
358 {
359         return -EINVAL;
360 }
361
362
363 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
364                                     struct kvm_mp_state *mp_state)
365 {
366         return -EINVAL;
367 }
368
369 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
370                                     struct kvm_mp_state *mp_state)
371 {
372         return -EINVAL;
373 }
374
375 /**
376  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
377  * @v:          The VCPU pointer
378  *
379  * If the guest CPU is not waiting for interrupts or an interrupt line is
380  * asserted, the CPU is by definition runnable.
381  */
382 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
383 {
384         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
385 }
386
387 /* Just ensure a guest exit from a particular CPU */
388 static void exit_vm_noop(void *info)
389 {
390 }
391
392 void force_vm_exit(const cpumask_t *mask)
393 {
394         smp_call_function_many(mask, exit_vm_noop, NULL, true);
395 }
396
397 /**
398  * need_new_vmid_gen - check that the VMID is still valid
399  * @kvm: The VM's VMID to checkt
400  *
401  * return true if there is a new generation of VMIDs being used
402  *
403  * The hardware supports only 256 values with the value zero reserved for the
404  * host, so we check if an assigned value belongs to a previous generation,
405  * which which requires us to assign a new value. If we're the first to use a
406  * VMID for the new generation, we must flush necessary caches and TLBs on all
407  * CPUs.
408  */
409 static bool need_new_vmid_gen(struct kvm *kvm)
410 {
411         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
412 }
413
414 /**
415  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
416  * @kvm The guest that we are about to run
417  *
418  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
419  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
420  * caches and TLBs.
421  */
422 static void update_vttbr(struct kvm *kvm)
423 {
424         phys_addr_t pgd_phys;
425         u64 vmid;
426
427         if (!need_new_vmid_gen(kvm))
428                 return;
429
430         spin_lock(&kvm_vmid_lock);
431
432         /*
433          * We need to re-check the vmid_gen here to ensure that if another vcpu
434          * already allocated a valid vmid for this vm, then this vcpu should
435          * use the same vmid.
436          */
437         if (!need_new_vmid_gen(kvm)) {
438                 spin_unlock(&kvm_vmid_lock);
439                 return;
440         }
441
442         /* First user of a new VMID generation? */
443         if (unlikely(kvm_next_vmid == 0)) {
444                 atomic64_inc(&kvm_vmid_gen);
445                 kvm_next_vmid = 1;
446
447                 /*
448                  * On SMP we know no other CPUs can use this CPU's or each
449                  * other's VMID after force_vm_exit returns since the
450                  * kvm_vmid_lock blocks them from reentry to the guest.
451                  */
452                 force_vm_exit(cpu_all_mask);
453                 /*
454                  * Now broadcast TLB + ICACHE invalidation over the inner
455                  * shareable domain to make sure all data structures are
456                  * clean.
457                  */
458                 kvm_call_hyp(__kvm_flush_vm_context);
459         }
460
461         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
462         kvm->arch.vmid = kvm_next_vmid;
463         kvm_next_vmid++;
464
465         /* update vttbr to be used with the new vmid */
466         pgd_phys = virt_to_phys(kvm->arch.pgd);
467         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
468         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
469         kvm->arch.vttbr |= vmid;
470
471         spin_unlock(&kvm_vmid_lock);
472 }
473
474 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
475 {
476         int ret;
477
478         if (likely(vcpu->arch.has_run_once))
479                 return 0;
480
481         vcpu->arch.has_run_once = true;
482
483         /*
484          * Initialize the VGIC before running a vcpu the first time on
485          * this VM.
486          */
487         if (unlikely(!vgic_initialized(vcpu->kvm))) {
488                 ret = kvm_vgic_init(vcpu->kvm);
489                 if (ret)
490                         return ret;
491         }
492
493         return 0;
494 }
495
496 static void vcpu_pause(struct kvm_vcpu *vcpu)
497 {
498         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
499
500         wait_event_interruptible(*wq, !vcpu->arch.pause);
501 }
502
503 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
504 {
505         return vcpu->arch.target >= 0;
506 }
507
508 /**
509  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
510  * @vcpu:       The VCPU pointer
511  * @run:        The kvm_run structure pointer used for userspace state exchange
512  *
513  * This function is called through the VCPU_RUN ioctl called from user space. It
514  * will execute VM code in a loop until the time slice for the process is used
515  * or some emulation is needed from user space in which case the function will
516  * return with return value 0 and with the kvm_run structure filled in with the
517  * required data for the requested emulation.
518  */
519 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
520 {
521         int ret;
522         sigset_t sigsaved;
523
524         if (unlikely(!kvm_vcpu_initialized(vcpu)))
525                 return -ENOEXEC;
526
527         ret = kvm_vcpu_first_run_init(vcpu);
528         if (ret)
529                 return ret;
530
531         if (run->exit_reason == KVM_EXIT_MMIO) {
532                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
533                 if (ret)
534                         return ret;
535         }
536
537         if (vcpu->sigset_active)
538                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
539
540         ret = 1;
541         run->exit_reason = KVM_EXIT_UNKNOWN;
542         while (ret > 0) {
543                 /*
544                  * Check conditions before entering the guest
545                  */
546                 cond_resched();
547
548                 update_vttbr(vcpu->kvm);
549
550                 if (vcpu->arch.pause)
551                         vcpu_pause(vcpu);
552
553                 kvm_vgic_flush_hwstate(vcpu);
554                 kvm_timer_flush_hwstate(vcpu);
555
556                 local_irq_disable();
557
558                 /*
559                  * Re-check atomic conditions
560                  */
561                 if (signal_pending(current)) {
562                         ret = -EINTR;
563                         run->exit_reason = KVM_EXIT_INTR;
564                 }
565
566                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
567                         local_irq_enable();
568                         kvm_timer_sync_hwstate(vcpu);
569                         kvm_vgic_sync_hwstate(vcpu);
570                         continue;
571                 }
572
573                 /**************************************************************
574                  * Enter the guest
575                  */
576                 trace_kvm_entry(*vcpu_pc(vcpu));
577                 kvm_guest_enter();
578                 vcpu->mode = IN_GUEST_MODE;
579
580                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
581
582                 vcpu->mode = OUTSIDE_GUEST_MODE;
583                 vcpu->arch.last_pcpu = smp_processor_id();
584                 kvm_guest_exit();
585                 trace_kvm_exit(*vcpu_pc(vcpu));
586                 /*
587                  * We may have taken a host interrupt in HYP mode (ie
588                  * while executing the guest). This interrupt is still
589                  * pending, as we haven't serviced it yet!
590                  *
591                  * We're now back in SVC mode, with interrupts
592                  * disabled.  Enabling the interrupts now will have
593                  * the effect of taking the interrupt again, in SVC
594                  * mode this time.
595                  */
596                 local_irq_enable();
597
598                 /*
599                  * Back from guest
600                  *************************************************************/
601
602                 kvm_timer_sync_hwstate(vcpu);
603                 kvm_vgic_sync_hwstate(vcpu);
604
605                 ret = handle_exit(vcpu, run, ret);
606         }
607
608         if (vcpu->sigset_active)
609                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
610         return ret;
611 }
612
613 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
614 {
615         int bit_index;
616         bool set;
617         unsigned long *ptr;
618
619         if (number == KVM_ARM_IRQ_CPU_IRQ)
620                 bit_index = __ffs(HCR_VI);
621         else /* KVM_ARM_IRQ_CPU_FIQ */
622                 bit_index = __ffs(HCR_VF);
623
624         ptr = (unsigned long *)&vcpu->arch.irq_lines;
625         if (level)
626                 set = test_and_set_bit(bit_index, ptr);
627         else
628                 set = test_and_clear_bit(bit_index, ptr);
629
630         /*
631          * If we didn't change anything, no need to wake up or kick other CPUs
632          */
633         if (set == level)
634                 return 0;
635
636         /*
637          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
638          * trigger a world-switch round on the running physical CPU to set the
639          * virtual IRQ/FIQ fields in the HCR appropriately.
640          */
641         kvm_vcpu_kick(vcpu);
642
643         return 0;
644 }
645
646 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
647                           bool line_status)
648 {
649         u32 irq = irq_level->irq;
650         unsigned int irq_type, vcpu_idx, irq_num;
651         int nrcpus = atomic_read(&kvm->online_vcpus);
652         struct kvm_vcpu *vcpu = NULL;
653         bool level = irq_level->level;
654
655         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
656         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
657         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
658
659         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
660
661         switch (irq_type) {
662         case KVM_ARM_IRQ_TYPE_CPU:
663                 if (irqchip_in_kernel(kvm))
664                         return -ENXIO;
665
666                 if (vcpu_idx >= nrcpus)
667                         return -EINVAL;
668
669                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
670                 if (!vcpu)
671                         return -EINVAL;
672
673                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
674                         return -EINVAL;
675
676                 return vcpu_interrupt_line(vcpu, irq_num, level);
677         case KVM_ARM_IRQ_TYPE_PPI:
678                 if (!irqchip_in_kernel(kvm))
679                         return -ENXIO;
680
681                 if (vcpu_idx >= nrcpus)
682                         return -EINVAL;
683
684                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
685                 if (!vcpu)
686                         return -EINVAL;
687
688                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
689                         return -EINVAL;
690
691                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
692         case KVM_ARM_IRQ_TYPE_SPI:
693                 if (!irqchip_in_kernel(kvm))
694                         return -ENXIO;
695
696                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
697                     irq_num > KVM_ARM_IRQ_GIC_MAX)
698                         return -EINVAL;
699
700                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
701         }
702
703         return -EINVAL;
704 }
705
706 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
707                                          struct kvm_vcpu_init *init)
708 {
709         int ret;
710
711         ret = kvm_vcpu_set_target(vcpu, init);
712         if (ret)
713                 return ret;
714
715         /*
716          * Handle the "start in power-off" case by marking the VCPU as paused.
717          */
718         if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
719                 vcpu->arch.pause = true;
720
721         return 0;
722 }
723
724 long kvm_arch_vcpu_ioctl(struct file *filp,
725                          unsigned int ioctl, unsigned long arg)
726 {
727         struct kvm_vcpu *vcpu = filp->private_data;
728         void __user *argp = (void __user *)arg;
729
730         switch (ioctl) {
731         case KVM_ARM_VCPU_INIT: {
732                 struct kvm_vcpu_init init;
733
734                 if (copy_from_user(&init, argp, sizeof(init)))
735                         return -EFAULT;
736
737                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
738         }
739         case KVM_SET_ONE_REG:
740         case KVM_GET_ONE_REG: {
741                 struct kvm_one_reg reg;
742
743                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
744                         return -ENOEXEC;
745
746                 if (copy_from_user(&reg, argp, sizeof(reg)))
747                         return -EFAULT;
748                 if (ioctl == KVM_SET_ONE_REG)
749                         return kvm_arm_set_reg(vcpu, &reg);
750                 else
751                         return kvm_arm_get_reg(vcpu, &reg);
752         }
753         case KVM_GET_REG_LIST: {
754                 struct kvm_reg_list __user *user_list = argp;
755                 struct kvm_reg_list reg_list;
756                 unsigned n;
757
758                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
759                         return -ENOEXEC;
760
761                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
762                         return -EFAULT;
763                 n = reg_list.n;
764                 reg_list.n = kvm_arm_num_regs(vcpu);
765                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
766                         return -EFAULT;
767                 if (n < reg_list.n)
768                         return -E2BIG;
769                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
770         }
771         default:
772                 return -EINVAL;
773         }
774 }
775
776 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
777 {
778         return -EINVAL;
779 }
780
781 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
782                                         struct kvm_arm_device_addr *dev_addr)
783 {
784         unsigned long dev_id, type;
785
786         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
787                 KVM_ARM_DEVICE_ID_SHIFT;
788         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
789                 KVM_ARM_DEVICE_TYPE_SHIFT;
790
791         switch (dev_id) {
792         case KVM_ARM_DEVICE_VGIC_V2:
793                 if (!vgic_present)
794                         return -ENXIO;
795                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
796         default:
797                 return -ENODEV;
798         }
799 }
800
801 long kvm_arch_vm_ioctl(struct file *filp,
802                        unsigned int ioctl, unsigned long arg)
803 {
804         struct kvm *kvm = filp->private_data;
805         void __user *argp = (void __user *)arg;
806
807         switch (ioctl) {
808         case KVM_CREATE_IRQCHIP: {
809                 if (vgic_present)
810                         return kvm_vgic_create(kvm);
811                 else
812                         return -ENXIO;
813         }
814         case KVM_ARM_SET_DEVICE_ADDR: {
815                 struct kvm_arm_device_addr dev_addr;
816
817                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
818                         return -EFAULT;
819                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
820         }
821         case KVM_ARM_PREFERRED_TARGET: {
822                 int err;
823                 struct kvm_vcpu_init init;
824
825                 err = kvm_vcpu_preferred_target(&init);
826                 if (err)
827                         return err;
828
829                 if (copy_to_user(argp, &init, sizeof(init)))
830                         return -EFAULT;
831
832                 return 0;
833         }
834         default:
835                 return -EINVAL;
836         }
837 }
838
839 static void cpu_init_hyp_mode(void *dummy)
840 {
841         phys_addr_t boot_pgd_ptr;
842         phys_addr_t pgd_ptr;
843         unsigned long hyp_stack_ptr;
844         unsigned long stack_page;
845         unsigned long vector_ptr;
846
847         /* Switch from the HYP stub to our own HYP init vector */
848         __hyp_set_vectors(kvm_get_idmap_vector());
849
850         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
851         pgd_ptr = kvm_mmu_get_httbr();
852         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
853         hyp_stack_ptr = stack_page + PAGE_SIZE;
854         vector_ptr = (unsigned long)__kvm_hyp_vector;
855
856         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
857 }
858
859 static int hyp_init_cpu_notify(struct notifier_block *self,
860                                unsigned long action, void *cpu)
861 {
862         switch (action) {
863         case CPU_STARTING:
864         case CPU_STARTING_FROZEN:
865                 cpu_init_hyp_mode(NULL);
866                 break;
867         }
868
869         return NOTIFY_OK;
870 }
871
872 static struct notifier_block hyp_init_cpu_nb = {
873         .notifier_call = hyp_init_cpu_notify,
874 };
875
876 #ifdef CONFIG_CPU_PM
877 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
878                                     unsigned long cmd,
879                                     void *v)
880 {
881         if (cmd == CPU_PM_EXIT &&
882             __hyp_get_vectors() == hyp_default_vectors) {
883                 cpu_init_hyp_mode(NULL);
884                 return NOTIFY_OK;
885         }
886
887         return NOTIFY_DONE;
888 }
889
890 static struct notifier_block hyp_init_cpu_pm_nb = {
891         .notifier_call = hyp_init_cpu_pm_notifier,
892 };
893
894 static void __init hyp_cpu_pm_init(void)
895 {
896         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
897 }
898 #else
899 static inline void hyp_cpu_pm_init(void)
900 {
901 }
902 #endif
903
904 /**
905  * Inits Hyp-mode on all online CPUs
906  */
907 static int init_hyp_mode(void)
908 {
909         int cpu;
910         int err = 0;
911
912         /*
913          * Allocate Hyp PGD and setup Hyp identity mapping
914          */
915         err = kvm_mmu_init();
916         if (err)
917                 goto out_err;
918
919         /*
920          * It is probably enough to obtain the default on one
921          * CPU. It's unlikely to be different on the others.
922          */
923         hyp_default_vectors = __hyp_get_vectors();
924
925         /*
926          * Allocate stack pages for Hypervisor-mode
927          */
928         for_each_possible_cpu(cpu) {
929                 unsigned long stack_page;
930
931                 stack_page = __get_free_page(GFP_KERNEL);
932                 if (!stack_page) {
933                         err = -ENOMEM;
934                         goto out_free_stack_pages;
935                 }
936
937                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
938         }
939
940         /*
941          * Map the Hyp-code called directly from the host
942          */
943         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
944         if (err) {
945                 kvm_err("Cannot map world-switch code\n");
946                 goto out_free_mappings;
947         }
948
949         /*
950          * Map the Hyp stack pages
951          */
952         for_each_possible_cpu(cpu) {
953                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
954                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
955
956                 if (err) {
957                         kvm_err("Cannot map hyp stack\n");
958                         goto out_free_mappings;
959                 }
960         }
961
962         /*
963          * Map the host CPU structures
964          */
965         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
966         if (!kvm_host_cpu_state) {
967                 err = -ENOMEM;
968                 kvm_err("Cannot allocate host CPU state\n");
969                 goto out_free_mappings;
970         }
971
972         for_each_possible_cpu(cpu) {
973                 kvm_cpu_context_t *cpu_ctxt;
974
975                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
976                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
977
978                 if (err) {
979                         kvm_err("Cannot map host CPU state: %d\n", err);
980                         goto out_free_context;
981                 }
982         }
983
984         /*
985          * Execute the init code on each CPU.
986          */
987         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
988
989         /*
990          * Init HYP view of VGIC
991          */
992         err = kvm_vgic_hyp_init();
993         if (err)
994                 goto out_free_context;
995
996 #ifdef CONFIG_KVM_ARM_VGIC
997                 vgic_present = true;
998 #endif
999
1000         /*
1001          * Init HYP architected timer support
1002          */
1003         err = kvm_timer_hyp_init();
1004         if (err)
1005                 goto out_free_mappings;
1006
1007 #ifndef CONFIG_HOTPLUG_CPU
1008         free_boot_hyp_pgd();
1009 #endif
1010
1011         kvm_perf_init();
1012
1013         kvm_info("Hyp mode initialized successfully\n");
1014
1015         return 0;
1016 out_free_context:
1017         free_percpu(kvm_host_cpu_state);
1018 out_free_mappings:
1019         free_hyp_pgds();
1020 out_free_stack_pages:
1021         for_each_possible_cpu(cpu)
1022                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1023 out_err:
1024         kvm_err("error initializing Hyp mode: %d\n", err);
1025         return err;
1026 }
1027
1028 static void check_kvm_target_cpu(void *ret)
1029 {
1030         *(int *)ret = kvm_target_cpu();
1031 }
1032
1033 /**
1034  * Initialize Hyp-mode and memory mappings on all CPUs.
1035  */
1036 int kvm_arch_init(void *opaque)
1037 {
1038         int err;
1039         int ret, cpu;
1040
1041         if (!is_hyp_mode_available()) {
1042                 kvm_err("HYP mode not available\n");
1043                 return -ENODEV;
1044         }
1045
1046         for_each_online_cpu(cpu) {
1047                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1048                 if (ret < 0) {
1049                         kvm_err("Error, CPU %d not supported!\n", cpu);
1050                         return -ENODEV;
1051                 }
1052         }
1053
1054         cpu_notifier_register_begin();
1055
1056         err = init_hyp_mode();
1057         if (err)
1058                 goto out_err;
1059
1060         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1061         if (err) {
1062                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1063                 goto out_err;
1064         }
1065
1066         cpu_notifier_register_done();
1067
1068         hyp_cpu_pm_init();
1069
1070         kvm_coproc_table_init();
1071         return 0;
1072 out_err:
1073         cpu_notifier_register_done();
1074         return err;
1075 }
1076
1077 /* NOP: Compiling as a module not supported */
1078 void kvm_arch_exit(void)
1079 {
1080         kvm_perf_teardown();
1081 }
1082
1083 static int arm_init(void)
1084 {
1085         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1086         return rc;
1087 }
1088
1089 module_init(arm_init);