Merge tag 'regmap-v3.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-drm-fsl-dcu.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68  * Ordering of locks:
69  *
70  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89                            unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92                                   unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 bool kvm_rebooting;
100 EXPORT_SYMBOL_GPL(kvm_rebooting);
101
102 static bool largepages_enabled = true;
103
104 bool kvm_is_mmio_pfn(pfn_t pfn)
105 {
106         if (pfn_valid(pfn))
107                 return PageReserved(pfn_to_page(pfn));
108
109         return true;
110 }
111
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 int vcpu_load(struct kvm_vcpu *vcpu)
116 {
117         int cpu;
118
119         if (mutex_lock_killable(&vcpu->mutex))
120                 return -EINTR;
121         if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
122                 /* The thread running this VCPU changed. */
123                 struct pid *oldpid = vcpu->pid;
124                 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
125                 rcu_assign_pointer(vcpu->pid, newpid);
126                 synchronize_rcu();
127                 put_pid(oldpid);
128         }
129         cpu = get_cpu();
130         preempt_notifier_register(&vcpu->preempt_notifier);
131         kvm_arch_vcpu_load(vcpu, cpu);
132         put_cpu();
133         return 0;
134 }
135
136 void vcpu_put(struct kvm_vcpu *vcpu)
137 {
138         preempt_disable();
139         kvm_arch_vcpu_put(vcpu);
140         preempt_notifier_unregister(&vcpu->preempt_notifier);
141         preempt_enable();
142         mutex_unlock(&vcpu->mutex);
143 }
144
145 static void ack_flush(void *_completed)
146 {
147 }
148
149 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
150 {
151         int i, cpu, me;
152         cpumask_var_t cpus;
153         bool called = true;
154         struct kvm_vcpu *vcpu;
155
156         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
157
158         me = get_cpu();
159         kvm_for_each_vcpu(i, vcpu, kvm) {
160                 kvm_make_request(req, vcpu);
161                 cpu = vcpu->cpu;
162
163                 /* Set ->requests bit before we read ->mode */
164                 smp_mb();
165
166                 if (cpus != NULL && cpu != -1 && cpu != me &&
167                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
168                         cpumask_set_cpu(cpu, cpus);
169         }
170         if (unlikely(cpus == NULL))
171                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
172         else if (!cpumask_empty(cpus))
173                 smp_call_function_many(cpus, ack_flush, NULL, 1);
174         else
175                 called = false;
176         put_cpu();
177         free_cpumask_var(cpus);
178         return called;
179 }
180
181 void kvm_flush_remote_tlbs(struct kvm *kvm)
182 {
183         long dirty_count = kvm->tlbs_dirty;
184
185         smp_mb();
186         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
187                 ++kvm->stat.remote_tlb_flush;
188         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
189 }
190 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
191
192 void kvm_reload_remote_mmus(struct kvm *kvm)
193 {
194         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
195 }
196
197 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
198 {
199         make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
200 }
201
202 void kvm_make_scan_ioapic_request(struct kvm *kvm)
203 {
204         make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
205 }
206
207 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
208 {
209         struct page *page;
210         int r;
211
212         mutex_init(&vcpu->mutex);
213         vcpu->cpu = -1;
214         vcpu->kvm = kvm;
215         vcpu->vcpu_id = id;
216         vcpu->pid = NULL;
217         init_waitqueue_head(&vcpu->wq);
218         kvm_async_pf_vcpu_init(vcpu);
219
220         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
221         if (!page) {
222                 r = -ENOMEM;
223                 goto fail;
224         }
225         vcpu->run = page_address(page);
226
227         kvm_vcpu_set_in_spin_loop(vcpu, false);
228         kvm_vcpu_set_dy_eligible(vcpu, false);
229         vcpu->preempted = false;
230
231         r = kvm_arch_vcpu_init(vcpu);
232         if (r < 0)
233                 goto fail_free_run;
234         return 0;
235
236 fail_free_run:
237         free_page((unsigned long)vcpu->run);
238 fail:
239         return r;
240 }
241 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
242
243 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
244 {
245         put_pid(vcpu->pid);
246         kvm_arch_vcpu_uninit(vcpu);
247         free_page((unsigned long)vcpu->run);
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
250
251 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
252 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
253 {
254         return container_of(mn, struct kvm, mmu_notifier);
255 }
256
257 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
258                                              struct mm_struct *mm,
259                                              unsigned long address)
260 {
261         struct kvm *kvm = mmu_notifier_to_kvm(mn);
262         int need_tlb_flush, idx;
263
264         /*
265          * When ->invalidate_page runs, the linux pte has been zapped
266          * already but the page is still allocated until
267          * ->invalidate_page returns. So if we increase the sequence
268          * here the kvm page fault will notice if the spte can't be
269          * established because the page is going to be freed. If
270          * instead the kvm page fault establishes the spte before
271          * ->invalidate_page runs, kvm_unmap_hva will release it
272          * before returning.
273          *
274          * The sequence increase only need to be seen at spin_unlock
275          * time, and not at spin_lock time.
276          *
277          * Increasing the sequence after the spin_unlock would be
278          * unsafe because the kvm page fault could then establish the
279          * pte after kvm_unmap_hva returned, without noticing the page
280          * is going to be freed.
281          */
282         idx = srcu_read_lock(&kvm->srcu);
283         spin_lock(&kvm->mmu_lock);
284
285         kvm->mmu_notifier_seq++;
286         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
287         /* we've to flush the tlb before the pages can be freed */
288         if (need_tlb_flush)
289                 kvm_flush_remote_tlbs(kvm);
290
291         spin_unlock(&kvm->mmu_lock);
292         srcu_read_unlock(&kvm->srcu, idx);
293 }
294
295 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
296                                         struct mm_struct *mm,
297                                         unsigned long address,
298                                         pte_t pte)
299 {
300         struct kvm *kvm = mmu_notifier_to_kvm(mn);
301         int idx;
302
303         idx = srcu_read_lock(&kvm->srcu);
304         spin_lock(&kvm->mmu_lock);
305         kvm->mmu_notifier_seq++;
306         kvm_set_spte_hva(kvm, address, pte);
307         spin_unlock(&kvm->mmu_lock);
308         srcu_read_unlock(&kvm->srcu, idx);
309 }
310
311 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
312                                                     struct mm_struct *mm,
313                                                     unsigned long start,
314                                                     unsigned long end)
315 {
316         struct kvm *kvm = mmu_notifier_to_kvm(mn);
317         int need_tlb_flush = 0, idx;
318
319         idx = srcu_read_lock(&kvm->srcu);
320         spin_lock(&kvm->mmu_lock);
321         /*
322          * The count increase must become visible at unlock time as no
323          * spte can be established without taking the mmu_lock and
324          * count is also read inside the mmu_lock critical section.
325          */
326         kvm->mmu_notifier_count++;
327         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
328         need_tlb_flush |= kvm->tlbs_dirty;
329         /* we've to flush the tlb before the pages can be freed */
330         if (need_tlb_flush)
331                 kvm_flush_remote_tlbs(kvm);
332
333         spin_unlock(&kvm->mmu_lock);
334         srcu_read_unlock(&kvm->srcu, idx);
335 }
336
337 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
338                                                   struct mm_struct *mm,
339                                                   unsigned long start,
340                                                   unsigned long end)
341 {
342         struct kvm *kvm = mmu_notifier_to_kvm(mn);
343
344         spin_lock(&kvm->mmu_lock);
345         /*
346          * This sequence increase will notify the kvm page fault that
347          * the page that is going to be mapped in the spte could have
348          * been freed.
349          */
350         kvm->mmu_notifier_seq++;
351         smp_wmb();
352         /*
353          * The above sequence increase must be visible before the
354          * below count decrease, which is ensured by the smp_wmb above
355          * in conjunction with the smp_rmb in mmu_notifier_retry().
356          */
357         kvm->mmu_notifier_count--;
358         spin_unlock(&kvm->mmu_lock);
359
360         BUG_ON(kvm->mmu_notifier_count < 0);
361 }
362
363 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
364                                               struct mm_struct *mm,
365                                               unsigned long address)
366 {
367         struct kvm *kvm = mmu_notifier_to_kvm(mn);
368         int young, idx;
369
370         idx = srcu_read_lock(&kvm->srcu);
371         spin_lock(&kvm->mmu_lock);
372
373         young = kvm_age_hva(kvm, address);
374         if (young)
375                 kvm_flush_remote_tlbs(kvm);
376
377         spin_unlock(&kvm->mmu_lock);
378         srcu_read_unlock(&kvm->srcu, idx);
379
380         return young;
381 }
382
383 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
384                                        struct mm_struct *mm,
385                                        unsigned long address)
386 {
387         struct kvm *kvm = mmu_notifier_to_kvm(mn);
388         int young, idx;
389
390         idx = srcu_read_lock(&kvm->srcu);
391         spin_lock(&kvm->mmu_lock);
392         young = kvm_test_age_hva(kvm, address);
393         spin_unlock(&kvm->mmu_lock);
394         srcu_read_unlock(&kvm->srcu, idx);
395
396         return young;
397 }
398
399 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
400                                      struct mm_struct *mm)
401 {
402         struct kvm *kvm = mmu_notifier_to_kvm(mn);
403         int idx;
404
405         idx = srcu_read_lock(&kvm->srcu);
406         kvm_arch_flush_shadow_all(kvm);
407         srcu_read_unlock(&kvm->srcu, idx);
408 }
409
410 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
411         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
412         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
413         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
414         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
415         .test_young             = kvm_mmu_notifier_test_young,
416         .change_pte             = kvm_mmu_notifier_change_pte,
417         .release                = kvm_mmu_notifier_release,
418 };
419
420 static int kvm_init_mmu_notifier(struct kvm *kvm)
421 {
422         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
423         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
424 }
425
426 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430         return 0;
431 }
432
433 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
434
435 static void kvm_init_memslots_id(struct kvm *kvm)
436 {
437         int i;
438         struct kvm_memslots *slots = kvm->memslots;
439
440         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
441                 slots->id_to_index[i] = slots->memslots[i].id = i;
442 }
443
444 static struct kvm *kvm_create_vm(unsigned long type)
445 {
446         int r, i;
447         struct kvm *kvm = kvm_arch_alloc_vm();
448
449         if (!kvm)
450                 return ERR_PTR(-ENOMEM);
451
452         r = kvm_arch_init_vm(kvm, type);
453         if (r)
454                 goto out_err_nodisable;
455
456         r = hardware_enable_all();
457         if (r)
458                 goto out_err_nodisable;
459
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
462         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
463 #endif
464
465         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
466
467         r = -ENOMEM;
468         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
469         if (!kvm->memslots)
470                 goto out_err_nosrcu;
471         kvm_init_memslots_id(kvm);
472         if (init_srcu_struct(&kvm->srcu))
473                 goto out_err_nosrcu;
474         for (i = 0; i < KVM_NR_BUSES; i++) {
475                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
476                                         GFP_KERNEL);
477                 if (!kvm->buses[i])
478                         goto out_err;
479         }
480
481         spin_lock_init(&kvm->mmu_lock);
482         kvm->mm = current->mm;
483         atomic_inc(&kvm->mm->mm_count);
484         kvm_eventfd_init(kvm);
485         mutex_init(&kvm->lock);
486         mutex_init(&kvm->irq_lock);
487         mutex_init(&kvm->slots_lock);
488         atomic_set(&kvm->users_count, 1);
489         INIT_LIST_HEAD(&kvm->devices);
490
491         r = kvm_init_mmu_notifier(kvm);
492         if (r)
493                 goto out_err;
494
495         spin_lock(&kvm_lock);
496         list_add(&kvm->vm_list, &vm_list);
497         spin_unlock(&kvm_lock);
498
499         return kvm;
500
501 out_err:
502         cleanup_srcu_struct(&kvm->srcu);
503 out_err_nosrcu:
504         hardware_disable_all();
505 out_err_nodisable:
506         for (i = 0; i < KVM_NR_BUSES; i++)
507                 kfree(kvm->buses[i]);
508         kfree(kvm->memslots);
509         kvm_arch_free_vm(kvm);
510         return ERR_PTR(r);
511 }
512
513 /*
514  * Avoid using vmalloc for a small buffer.
515  * Should not be used when the size is statically known.
516  */
517 void *kvm_kvzalloc(unsigned long size)
518 {
519         if (size > PAGE_SIZE)
520                 return vzalloc(size);
521         else
522                 return kzalloc(size, GFP_KERNEL);
523 }
524
525 void kvm_kvfree(const void *addr)
526 {
527         if (is_vmalloc_addr(addr))
528                 vfree(addr);
529         else
530                 kfree(addr);
531 }
532
533 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
534 {
535         if (!memslot->dirty_bitmap)
536                 return;
537
538         kvm_kvfree(memslot->dirty_bitmap);
539         memslot->dirty_bitmap = NULL;
540 }
541
542 /*
543  * Free any memory in @free but not in @dont.
544  */
545 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
546                                   struct kvm_memory_slot *dont)
547 {
548         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
549                 kvm_destroy_dirty_bitmap(free);
550
551         kvm_arch_free_memslot(kvm, free, dont);
552
553         free->npages = 0;
554 }
555
556 void kvm_free_physmem(struct kvm *kvm)
557 {
558         struct kvm_memslots *slots = kvm->memslots;
559         struct kvm_memory_slot *memslot;
560
561         kvm_for_each_memslot(memslot, slots)
562                 kvm_free_physmem_slot(kvm, memslot, NULL);
563
564         kfree(kvm->memslots);
565 }
566
567 static void kvm_destroy_devices(struct kvm *kvm)
568 {
569         struct list_head *node, *tmp;
570
571         list_for_each_safe(node, tmp, &kvm->devices) {
572                 struct kvm_device *dev =
573                         list_entry(node, struct kvm_device, vm_node);
574
575                 list_del(node);
576                 dev->ops->destroy(dev);
577         }
578 }
579
580 static void kvm_destroy_vm(struct kvm *kvm)
581 {
582         int i;
583         struct mm_struct *mm = kvm->mm;
584
585         kvm_arch_sync_events(kvm);
586         spin_lock(&kvm_lock);
587         list_del(&kvm->vm_list);
588         spin_unlock(&kvm_lock);
589         kvm_free_irq_routing(kvm);
590         for (i = 0; i < KVM_NR_BUSES; i++)
591                 kvm_io_bus_destroy(kvm->buses[i]);
592         kvm_coalesced_mmio_free(kvm);
593 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
594         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
595 #else
596         kvm_arch_flush_shadow_all(kvm);
597 #endif
598         kvm_arch_destroy_vm(kvm);
599         kvm_destroy_devices(kvm);
600         kvm_free_physmem(kvm);
601         cleanup_srcu_struct(&kvm->srcu);
602         kvm_arch_free_vm(kvm);
603         hardware_disable_all();
604         mmdrop(mm);
605 }
606
607 void kvm_get_kvm(struct kvm *kvm)
608 {
609         atomic_inc(&kvm->users_count);
610 }
611 EXPORT_SYMBOL_GPL(kvm_get_kvm);
612
613 void kvm_put_kvm(struct kvm *kvm)
614 {
615         if (atomic_dec_and_test(&kvm->users_count))
616                 kvm_destroy_vm(kvm);
617 }
618 EXPORT_SYMBOL_GPL(kvm_put_kvm);
619
620
621 static int kvm_vm_release(struct inode *inode, struct file *filp)
622 {
623         struct kvm *kvm = filp->private_data;
624
625         kvm_irqfd_release(kvm);
626
627         kvm_put_kvm(kvm);
628         return 0;
629 }
630
631 /*
632  * Allocation size is twice as large as the actual dirty bitmap size.
633  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
634  */
635 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 #ifndef CONFIG_S390
638         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
639
640         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
641         if (!memslot->dirty_bitmap)
642                 return -ENOMEM;
643
644 #endif /* !CONFIG_S390 */
645         return 0;
646 }
647
648 static int cmp_memslot(const void *slot1, const void *slot2)
649 {
650         struct kvm_memory_slot *s1, *s2;
651
652         s1 = (struct kvm_memory_slot *)slot1;
653         s2 = (struct kvm_memory_slot *)slot2;
654
655         if (s1->npages < s2->npages)
656                 return 1;
657         if (s1->npages > s2->npages)
658                 return -1;
659
660         return 0;
661 }
662
663 /*
664  * Sort the memslots base on its size, so the larger slots
665  * will get better fit.
666  */
667 static void sort_memslots(struct kvm_memslots *slots)
668 {
669         int i;
670
671         sort(slots->memslots, KVM_MEM_SLOTS_NUM,
672               sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
673
674         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
675                 slots->id_to_index[slots->memslots[i].id] = i;
676 }
677
678 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
679                      u64 last_generation)
680 {
681         if (new) {
682                 int id = new->id;
683                 struct kvm_memory_slot *old = id_to_memslot(slots, id);
684                 unsigned long npages = old->npages;
685
686                 *old = *new;
687                 if (new->npages != npages)
688                         sort_memslots(slots);
689         }
690
691         slots->generation = last_generation + 1;
692 }
693
694 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
695 {
696         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
697
698 #ifdef KVM_CAP_READONLY_MEM
699         valid_flags |= KVM_MEM_READONLY;
700 #endif
701
702         if (mem->flags & ~valid_flags)
703                 return -EINVAL;
704
705         return 0;
706 }
707
708 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
709                 struct kvm_memslots *slots, struct kvm_memory_slot *new)
710 {
711         struct kvm_memslots *old_memslots = kvm->memslots;
712
713         update_memslots(slots, new, kvm->memslots->generation);
714         rcu_assign_pointer(kvm->memslots, slots);
715         synchronize_srcu_expedited(&kvm->srcu);
716
717         kvm_arch_memslots_updated(kvm);
718
719         return old_memslots;
720 }
721
722 /*
723  * Allocate some memory and give it an address in the guest physical address
724  * space.
725  *
726  * Discontiguous memory is allowed, mostly for framebuffers.
727  *
728  * Must be called holding mmap_sem for write.
729  */
730 int __kvm_set_memory_region(struct kvm *kvm,
731                             struct kvm_userspace_memory_region *mem)
732 {
733         int r;
734         gfn_t base_gfn;
735         unsigned long npages;
736         struct kvm_memory_slot *slot;
737         struct kvm_memory_slot old, new;
738         struct kvm_memslots *slots = NULL, *old_memslots;
739         enum kvm_mr_change change;
740
741         r = check_memory_region_flags(mem);
742         if (r)
743                 goto out;
744
745         r = -EINVAL;
746         /* General sanity checks */
747         if (mem->memory_size & (PAGE_SIZE - 1))
748                 goto out;
749         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
750                 goto out;
751         /* We can read the guest memory with __xxx_user() later on. */
752         if ((mem->slot < KVM_USER_MEM_SLOTS) &&
753             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
754              !access_ok(VERIFY_WRITE,
755                         (void __user *)(unsigned long)mem->userspace_addr,
756                         mem->memory_size)))
757                 goto out;
758         if (mem->slot >= KVM_MEM_SLOTS_NUM)
759                 goto out;
760         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
761                 goto out;
762
763         slot = id_to_memslot(kvm->memslots, mem->slot);
764         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
765         npages = mem->memory_size >> PAGE_SHIFT;
766
767         r = -EINVAL;
768         if (npages > KVM_MEM_MAX_NR_PAGES)
769                 goto out;
770
771         if (!npages)
772                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
773
774         new = old = *slot;
775
776         new.id = mem->slot;
777         new.base_gfn = base_gfn;
778         new.npages = npages;
779         new.flags = mem->flags;
780
781         r = -EINVAL;
782         if (npages) {
783                 if (!old.npages)
784                         change = KVM_MR_CREATE;
785                 else { /* Modify an existing slot. */
786                         if ((mem->userspace_addr != old.userspace_addr) ||
787                             (npages != old.npages) ||
788                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
789                                 goto out;
790
791                         if (base_gfn != old.base_gfn)
792                                 change = KVM_MR_MOVE;
793                         else if (new.flags != old.flags)
794                                 change = KVM_MR_FLAGS_ONLY;
795                         else { /* Nothing to change. */
796                                 r = 0;
797                                 goto out;
798                         }
799                 }
800         } else if (old.npages) {
801                 change = KVM_MR_DELETE;
802         } else /* Modify a non-existent slot: disallowed. */
803                 goto out;
804
805         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
806                 /* Check for overlaps */
807                 r = -EEXIST;
808                 kvm_for_each_memslot(slot, kvm->memslots) {
809                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
810                             (slot->id == mem->slot))
811                                 continue;
812                         if (!((base_gfn + npages <= slot->base_gfn) ||
813                               (base_gfn >= slot->base_gfn + slot->npages)))
814                                 goto out;
815                 }
816         }
817
818         /* Free page dirty bitmap if unneeded */
819         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
820                 new.dirty_bitmap = NULL;
821
822         r = -ENOMEM;
823         if (change == KVM_MR_CREATE) {
824                 new.userspace_addr = mem->userspace_addr;
825
826                 if (kvm_arch_create_memslot(kvm, &new, npages))
827                         goto out_free;
828         }
829
830         /* Allocate page dirty bitmap if needed */
831         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
832                 if (kvm_create_dirty_bitmap(&new) < 0)
833                         goto out_free;
834         }
835
836         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
837                 r = -ENOMEM;
838                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839                                 GFP_KERNEL);
840                 if (!slots)
841                         goto out_free;
842                 slot = id_to_memslot(slots, mem->slot);
843                 slot->flags |= KVM_MEMSLOT_INVALID;
844
845                 old_memslots = install_new_memslots(kvm, slots, NULL);
846
847                 /* slot was deleted or moved, clear iommu mapping */
848                 kvm_iommu_unmap_pages(kvm, &old);
849                 /* From this point no new shadow pages pointing to a deleted,
850                  * or moved, memslot will be created.
851                  *
852                  * validation of sp->gfn happens in:
853                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
854                  *      - kvm_is_visible_gfn (mmu_check_roots)
855                  */
856                 kvm_arch_flush_shadow_memslot(kvm, slot);
857                 slots = old_memslots;
858         }
859
860         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
861         if (r)
862                 goto out_slots;
863
864         r = -ENOMEM;
865         /*
866          * We can re-use the old_memslots from above, the only difference
867          * from the currently installed memslots is the invalid flag.  This
868          * will get overwritten by update_memslots anyway.
869          */
870         if (!slots) {
871                 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
872                                 GFP_KERNEL);
873                 if (!slots)
874                         goto out_free;
875         }
876
877         /* actual memory is freed via old in kvm_free_physmem_slot below */
878         if (change == KVM_MR_DELETE) {
879                 new.dirty_bitmap = NULL;
880                 memset(&new.arch, 0, sizeof(new.arch));
881         }
882
883         old_memslots = install_new_memslots(kvm, slots, &new);
884
885         kvm_arch_commit_memory_region(kvm, mem, &old, change);
886
887         kvm_free_physmem_slot(kvm, &old, &new);
888         kfree(old_memslots);
889
890         /*
891          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
892          * un-mapped and re-mapped if their base changes.  Since base change
893          * unmapping is handled above with slot deletion, mapping alone is
894          * needed here.  Anything else the iommu might care about for existing
895          * slots (size changes, userspace addr changes and read-only flag
896          * changes) is disallowed above, so any other attribute changes getting
897          * here can be skipped.
898          */
899         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
900                 r = kvm_iommu_map_pages(kvm, &new);
901                 return r;
902         }
903
904         return 0;
905
906 out_slots:
907         kfree(slots);
908 out_free:
909         kvm_free_physmem_slot(kvm, &new, &old);
910 out:
911         return r;
912 }
913 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
914
915 int kvm_set_memory_region(struct kvm *kvm,
916                           struct kvm_userspace_memory_region *mem)
917 {
918         int r;
919
920         mutex_lock(&kvm->slots_lock);
921         r = __kvm_set_memory_region(kvm, mem);
922         mutex_unlock(&kvm->slots_lock);
923         return r;
924 }
925 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
926
927 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
928                                    struct kvm_userspace_memory_region *mem)
929 {
930         if (mem->slot >= KVM_USER_MEM_SLOTS)
931                 return -EINVAL;
932         return kvm_set_memory_region(kvm, mem);
933 }
934
935 int kvm_get_dirty_log(struct kvm *kvm,
936                         struct kvm_dirty_log *log, int *is_dirty)
937 {
938         struct kvm_memory_slot *memslot;
939         int r, i;
940         unsigned long n;
941         unsigned long any = 0;
942
943         r = -EINVAL;
944         if (log->slot >= KVM_USER_MEM_SLOTS)
945                 goto out;
946
947         memslot = id_to_memslot(kvm->memslots, log->slot);
948         r = -ENOENT;
949         if (!memslot->dirty_bitmap)
950                 goto out;
951
952         n = kvm_dirty_bitmap_bytes(memslot);
953
954         for (i = 0; !any && i < n/sizeof(long); ++i)
955                 any = memslot->dirty_bitmap[i];
956
957         r = -EFAULT;
958         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
959                 goto out;
960
961         if (any)
962                 *is_dirty = 1;
963
964         r = 0;
965 out:
966         return r;
967 }
968 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
969
970 bool kvm_largepages_enabled(void)
971 {
972         return largepages_enabled;
973 }
974
975 void kvm_disable_largepages(void)
976 {
977         largepages_enabled = false;
978 }
979 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
980
981 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
982 {
983         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
984 }
985 EXPORT_SYMBOL_GPL(gfn_to_memslot);
986
987 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
988 {
989         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
990
991         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
992               memslot->flags & KVM_MEMSLOT_INVALID)
993                 return 0;
994
995         return 1;
996 }
997 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
998
999 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1000 {
1001         struct vm_area_struct *vma;
1002         unsigned long addr, size;
1003
1004         size = PAGE_SIZE;
1005
1006         addr = gfn_to_hva(kvm, gfn);
1007         if (kvm_is_error_hva(addr))
1008                 return PAGE_SIZE;
1009
1010         down_read(&current->mm->mmap_sem);
1011         vma = find_vma(current->mm, addr);
1012         if (!vma)
1013                 goto out;
1014
1015         size = vma_kernel_pagesize(vma);
1016
1017 out:
1018         up_read(&current->mm->mmap_sem);
1019
1020         return size;
1021 }
1022
1023 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1024 {
1025         return slot->flags & KVM_MEM_READONLY;
1026 }
1027
1028 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029                                        gfn_t *nr_pages, bool write)
1030 {
1031         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032                 return KVM_HVA_ERR_BAD;
1033
1034         if (memslot_is_readonly(slot) && write)
1035                 return KVM_HVA_ERR_RO_BAD;
1036
1037         if (nr_pages)
1038                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1039
1040         return __gfn_to_hva_memslot(slot, gfn);
1041 }
1042
1043 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1044                                      gfn_t *nr_pages)
1045 {
1046         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1047 }
1048
1049 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1050                                  gfn_t gfn)
1051 {
1052         return gfn_to_hva_many(slot, gfn, NULL);
1053 }
1054 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1055
1056 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1057 {
1058         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1059 }
1060 EXPORT_SYMBOL_GPL(gfn_to_hva);
1061
1062 /*
1063  * If writable is set to false, the hva returned by this function is only
1064  * allowed to be read.
1065  */
1066 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1067 {
1068         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1069         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1070
1071         if (!kvm_is_error_hva(hva) && writable)
1072                 *writable = !memslot_is_readonly(slot);
1073
1074         return hva;
1075 }
1076
1077 static int kvm_read_hva(void *data, void __user *hva, int len)
1078 {
1079         return __copy_from_user(data, hva, len);
1080 }
1081
1082 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1083 {
1084         return __copy_from_user_inatomic(data, hva, len);
1085 }
1086
1087 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1088         unsigned long start, int write, struct page **page)
1089 {
1090         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1091
1092         if (write)
1093                 flags |= FOLL_WRITE;
1094
1095         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1096 }
1097
1098 static inline int check_user_page_hwpoison(unsigned long addr)
1099 {
1100         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1101
1102         rc = __get_user_pages(current, current->mm, addr, 1,
1103                               flags, NULL, NULL, NULL);
1104         return rc == -EHWPOISON;
1105 }
1106
1107 /*
1108  * The atomic path to get the writable pfn which will be stored in @pfn,
1109  * true indicates success, otherwise false is returned.
1110  */
1111 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1112                             bool write_fault, bool *writable, pfn_t *pfn)
1113 {
1114         struct page *page[1];
1115         int npages;
1116
1117         if (!(async || atomic))
1118                 return false;
1119
1120         /*
1121          * Fast pin a writable pfn only if it is a write fault request
1122          * or the caller allows to map a writable pfn for a read fault
1123          * request.
1124          */
1125         if (!(write_fault || writable))
1126                 return false;
1127
1128         npages = __get_user_pages_fast(addr, 1, 1, page);
1129         if (npages == 1) {
1130                 *pfn = page_to_pfn(page[0]);
1131
1132                 if (writable)
1133                         *writable = true;
1134                 return true;
1135         }
1136
1137         return false;
1138 }
1139
1140 /*
1141  * The slow path to get the pfn of the specified host virtual address,
1142  * 1 indicates success, -errno is returned if error is detected.
1143  */
1144 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1145                            bool *writable, pfn_t *pfn)
1146 {
1147         struct page *page[1];
1148         int npages = 0;
1149
1150         might_sleep();
1151
1152         if (writable)
1153                 *writable = write_fault;
1154
1155         if (async) {
1156                 down_read(&current->mm->mmap_sem);
1157                 npages = get_user_page_nowait(current, current->mm,
1158                                               addr, write_fault, page);
1159                 up_read(&current->mm->mmap_sem);
1160         } else
1161                 npages = get_user_pages_fast(addr, 1, write_fault,
1162                                              page);
1163         if (npages != 1)
1164                 return npages;
1165
1166         /* map read fault as writable if possible */
1167         if (unlikely(!write_fault) && writable) {
1168                 struct page *wpage[1];
1169
1170                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1171                 if (npages == 1) {
1172                         *writable = true;
1173                         put_page(page[0]);
1174                         page[0] = wpage[0];
1175                 }
1176
1177                 npages = 1;
1178         }
1179         *pfn = page_to_pfn(page[0]);
1180         return npages;
1181 }
1182
1183 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1184 {
1185         if (unlikely(!(vma->vm_flags & VM_READ)))
1186                 return false;
1187
1188         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1189                 return false;
1190
1191         return true;
1192 }
1193
1194 /*
1195  * Pin guest page in memory and return its pfn.
1196  * @addr: host virtual address which maps memory to the guest
1197  * @atomic: whether this function can sleep
1198  * @async: whether this function need to wait IO complete if the
1199  *         host page is not in the memory
1200  * @write_fault: whether we should get a writable host page
1201  * @writable: whether it allows to map a writable host page for !@write_fault
1202  *
1203  * The function will map a writable host page for these two cases:
1204  * 1): @write_fault = true
1205  * 2): @write_fault = false && @writable, @writable will tell the caller
1206  *     whether the mapping is writable.
1207  */
1208 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1209                         bool write_fault, bool *writable)
1210 {
1211         struct vm_area_struct *vma;
1212         pfn_t pfn = 0;
1213         int npages;
1214
1215         /* we can do it either atomically or asynchronously, not both */
1216         BUG_ON(atomic && async);
1217
1218         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1219                 return pfn;
1220
1221         if (atomic)
1222                 return KVM_PFN_ERR_FAULT;
1223
1224         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1225         if (npages == 1)
1226                 return pfn;
1227
1228         down_read(&current->mm->mmap_sem);
1229         if (npages == -EHWPOISON ||
1230               (!async && check_user_page_hwpoison(addr))) {
1231                 pfn = KVM_PFN_ERR_HWPOISON;
1232                 goto exit;
1233         }
1234
1235         vma = find_vma_intersection(current->mm, addr, addr + 1);
1236
1237         if (vma == NULL)
1238                 pfn = KVM_PFN_ERR_FAULT;
1239         else if ((vma->vm_flags & VM_PFNMAP)) {
1240                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1241                         vma->vm_pgoff;
1242                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1243         } else {
1244                 if (async && vma_is_valid(vma, write_fault))
1245                         *async = true;
1246                 pfn = KVM_PFN_ERR_FAULT;
1247         }
1248 exit:
1249         up_read(&current->mm->mmap_sem);
1250         return pfn;
1251 }
1252
1253 static pfn_t
1254 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1255                      bool *async, bool write_fault, bool *writable)
1256 {
1257         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1258
1259         if (addr == KVM_HVA_ERR_RO_BAD)
1260                 return KVM_PFN_ERR_RO_FAULT;
1261
1262         if (kvm_is_error_hva(addr))
1263                 return KVM_PFN_NOSLOT;
1264
1265         /* Do not map writable pfn in the readonly memslot. */
1266         if (writable && memslot_is_readonly(slot)) {
1267                 *writable = false;
1268                 writable = NULL;
1269         }
1270
1271         return hva_to_pfn(addr, atomic, async, write_fault,
1272                           writable);
1273 }
1274
1275 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1276                           bool write_fault, bool *writable)
1277 {
1278         struct kvm_memory_slot *slot;
1279
1280         if (async)
1281                 *async = false;
1282
1283         slot = gfn_to_memslot(kvm, gfn);
1284
1285         return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1286                                     writable);
1287 }
1288
1289 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1290 {
1291         return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1294
1295 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1296                        bool write_fault, bool *writable)
1297 {
1298         return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1299 }
1300 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1301
1302 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1303 {
1304         return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1307
1308 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1309                       bool *writable)
1310 {
1311         return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1312 }
1313 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1314
1315 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1316 {
1317         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1318 }
1319
1320 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1321 {
1322         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1323 }
1324 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1325
1326 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1327                                                                   int nr_pages)
1328 {
1329         unsigned long addr;
1330         gfn_t entry;
1331
1332         addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1333         if (kvm_is_error_hva(addr))
1334                 return -1;
1335
1336         if (entry < nr_pages)
1337                 return 0;
1338
1339         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1340 }
1341 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1342
1343 static struct page *kvm_pfn_to_page(pfn_t pfn)
1344 {
1345         if (is_error_noslot_pfn(pfn))
1346                 return KVM_ERR_PTR_BAD_PAGE;
1347
1348         if (kvm_is_mmio_pfn(pfn)) {
1349                 WARN_ON(1);
1350                 return KVM_ERR_PTR_BAD_PAGE;
1351         }
1352
1353         return pfn_to_page(pfn);
1354 }
1355
1356 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1357 {
1358         pfn_t pfn;
1359
1360         pfn = gfn_to_pfn(kvm, gfn);
1361
1362         return kvm_pfn_to_page(pfn);
1363 }
1364
1365 EXPORT_SYMBOL_GPL(gfn_to_page);
1366
1367 void kvm_release_page_clean(struct page *page)
1368 {
1369         WARN_ON(is_error_page(page));
1370
1371         kvm_release_pfn_clean(page_to_pfn(page));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1374
1375 void kvm_release_pfn_clean(pfn_t pfn)
1376 {
1377         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1378                 put_page(pfn_to_page(pfn));
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1381
1382 void kvm_release_page_dirty(struct page *page)
1383 {
1384         WARN_ON(is_error_page(page));
1385
1386         kvm_release_pfn_dirty(page_to_pfn(page));
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1389
1390 void kvm_release_pfn_dirty(pfn_t pfn)
1391 {
1392         kvm_set_pfn_dirty(pfn);
1393         kvm_release_pfn_clean(pfn);
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1396
1397 void kvm_set_page_dirty(struct page *page)
1398 {
1399         kvm_set_pfn_dirty(page_to_pfn(page));
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1402
1403 void kvm_set_pfn_dirty(pfn_t pfn)
1404 {
1405         if (!kvm_is_mmio_pfn(pfn)) {
1406                 struct page *page = pfn_to_page(pfn);
1407                 if (!PageReserved(page))
1408                         SetPageDirty(page);
1409         }
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1412
1413 void kvm_set_pfn_accessed(pfn_t pfn)
1414 {
1415         if (!kvm_is_mmio_pfn(pfn))
1416                 mark_page_accessed(pfn_to_page(pfn));
1417 }
1418 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1419
1420 void kvm_get_pfn(pfn_t pfn)
1421 {
1422         if (!kvm_is_mmio_pfn(pfn))
1423                 get_page(pfn_to_page(pfn));
1424 }
1425 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1426
1427 static int next_segment(unsigned long len, int offset)
1428 {
1429         if (len > PAGE_SIZE - offset)
1430                 return PAGE_SIZE - offset;
1431         else
1432                 return len;
1433 }
1434
1435 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1436                         int len)
1437 {
1438         int r;
1439         unsigned long addr;
1440
1441         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1442         if (kvm_is_error_hva(addr))
1443                 return -EFAULT;
1444         r = kvm_read_hva(data, (void __user *)addr + offset, len);
1445         if (r)
1446                 return -EFAULT;
1447         return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1450
1451 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1452 {
1453         gfn_t gfn = gpa >> PAGE_SHIFT;
1454         int seg;
1455         int offset = offset_in_page(gpa);
1456         int ret;
1457
1458         while ((seg = next_segment(len, offset)) != 0) {
1459                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1460                 if (ret < 0)
1461                         return ret;
1462                 offset = 0;
1463                 len -= seg;
1464                 data += seg;
1465                 ++gfn;
1466         }
1467         return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_read_guest);
1470
1471 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1472                           unsigned long len)
1473 {
1474         int r;
1475         unsigned long addr;
1476         gfn_t gfn = gpa >> PAGE_SHIFT;
1477         int offset = offset_in_page(gpa);
1478
1479         addr = gfn_to_hva_prot(kvm, gfn, NULL);
1480         if (kvm_is_error_hva(addr))
1481                 return -EFAULT;
1482         pagefault_disable();
1483         r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1484         pagefault_enable();
1485         if (r)
1486                 return -EFAULT;
1487         return 0;
1488 }
1489 EXPORT_SYMBOL(kvm_read_guest_atomic);
1490
1491 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1492                          int offset, int len)
1493 {
1494         int r;
1495         unsigned long addr;
1496
1497         addr = gfn_to_hva(kvm, gfn);
1498         if (kvm_is_error_hva(addr))
1499                 return -EFAULT;
1500         r = __copy_to_user((void __user *)addr + offset, data, len);
1501         if (r)
1502                 return -EFAULT;
1503         mark_page_dirty(kvm, gfn);
1504         return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1507
1508 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1509                     unsigned long len)
1510 {
1511         gfn_t gfn = gpa >> PAGE_SHIFT;
1512         int seg;
1513         int offset = offset_in_page(gpa);
1514         int ret;
1515
1516         while ((seg = next_segment(len, offset)) != 0) {
1517                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1518                 if (ret < 0)
1519                         return ret;
1520                 offset = 0;
1521                 len -= seg;
1522                 data += seg;
1523                 ++gfn;
1524         }
1525         return 0;
1526 }
1527
1528 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1529                               gpa_t gpa, unsigned long len)
1530 {
1531         struct kvm_memslots *slots = kvm_memslots(kvm);
1532         int offset = offset_in_page(gpa);
1533         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1534         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1535         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1536         gfn_t nr_pages_avail;
1537
1538         ghc->gpa = gpa;
1539         ghc->generation = slots->generation;
1540         ghc->len = len;
1541         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1542         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1543         if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1544                 ghc->hva += offset;
1545         } else {
1546                 /*
1547                  * If the requested region crosses two memslots, we still
1548                  * verify that the entire region is valid here.
1549                  */
1550                 while (start_gfn <= end_gfn) {
1551                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1552                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1553                                                    &nr_pages_avail);
1554                         if (kvm_is_error_hva(ghc->hva))
1555                                 return -EFAULT;
1556                         start_gfn += nr_pages_avail;
1557                 }
1558                 /* Use the slow path for cross page reads and writes. */
1559                 ghc->memslot = NULL;
1560         }
1561         return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1564
1565 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1566                            void *data, unsigned long len)
1567 {
1568         struct kvm_memslots *slots = kvm_memslots(kvm);
1569         int r;
1570
1571         BUG_ON(len > ghc->len);
1572
1573         if (slots->generation != ghc->generation)
1574                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1575
1576         if (unlikely(!ghc->memslot))
1577                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1578
1579         if (kvm_is_error_hva(ghc->hva))
1580                 return -EFAULT;
1581
1582         r = __copy_to_user((void __user *)ghc->hva, data, len);
1583         if (r)
1584                 return -EFAULT;
1585         mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1586
1587         return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1590
1591 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1592                            void *data, unsigned long len)
1593 {
1594         struct kvm_memslots *slots = kvm_memslots(kvm);
1595         int r;
1596
1597         BUG_ON(len > ghc->len);
1598
1599         if (slots->generation != ghc->generation)
1600                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1601
1602         if (unlikely(!ghc->memslot))
1603                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1604
1605         if (kvm_is_error_hva(ghc->hva))
1606                 return -EFAULT;
1607
1608         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1609         if (r)
1610                 return -EFAULT;
1611
1612         return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1615
1616 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1617 {
1618         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1619
1620         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1623
1624 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1625 {
1626         gfn_t gfn = gpa >> PAGE_SHIFT;
1627         int seg;
1628         int offset = offset_in_page(gpa);
1629         int ret;
1630
1631         while ((seg = next_segment(len, offset)) != 0) {
1632                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1633                 if (ret < 0)
1634                         return ret;
1635                 offset = 0;
1636                 len -= seg;
1637                 ++gfn;
1638         }
1639         return 0;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1642
1643 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1644                              gfn_t gfn)
1645 {
1646         if (memslot && memslot->dirty_bitmap) {
1647                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1648
1649                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1650         }
1651 }
1652
1653 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1654 {
1655         struct kvm_memory_slot *memslot;
1656
1657         memslot = gfn_to_memslot(kvm, gfn);
1658         mark_page_dirty_in_slot(kvm, memslot, gfn);
1659 }
1660 EXPORT_SYMBOL_GPL(mark_page_dirty);
1661
1662 /*
1663  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1664  */
1665 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1666 {
1667         DEFINE_WAIT(wait);
1668
1669         for (;;) {
1670                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1671
1672                 if (kvm_arch_vcpu_runnable(vcpu)) {
1673                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1674                         break;
1675                 }
1676                 if (kvm_cpu_has_pending_timer(vcpu))
1677                         break;
1678                 if (signal_pending(current))
1679                         break;
1680
1681                 schedule();
1682         }
1683
1684         finish_wait(&vcpu->wq, &wait);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1687
1688 #ifndef CONFIG_S390
1689 /*
1690  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1691  */
1692 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1693 {
1694         int me;
1695         int cpu = vcpu->cpu;
1696         wait_queue_head_t *wqp;
1697
1698         wqp = kvm_arch_vcpu_wq(vcpu);
1699         if (waitqueue_active(wqp)) {
1700                 wake_up_interruptible(wqp);
1701                 ++vcpu->stat.halt_wakeup;
1702         }
1703
1704         me = get_cpu();
1705         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1706                 if (kvm_arch_vcpu_should_kick(vcpu))
1707                         smp_send_reschedule(cpu);
1708         put_cpu();
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1711 #endif /* !CONFIG_S390 */
1712
1713 void kvm_resched(struct kvm_vcpu *vcpu)
1714 {
1715         if (!need_resched())
1716                 return;
1717         cond_resched();
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_resched);
1720
1721 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1722 {
1723         struct pid *pid;
1724         struct task_struct *task = NULL;
1725         bool ret = false;
1726
1727         rcu_read_lock();
1728         pid = rcu_dereference(target->pid);
1729         if (pid)
1730                 task = get_pid_task(target->pid, PIDTYPE_PID);
1731         rcu_read_unlock();
1732         if (!task)
1733                 return ret;
1734         if (task->flags & PF_VCPU) {
1735                 put_task_struct(task);
1736                 return ret;
1737         }
1738         ret = yield_to(task, 1);
1739         put_task_struct(task);
1740
1741         return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1744
1745 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1746 /*
1747  * Helper that checks whether a VCPU is eligible for directed yield.
1748  * Most eligible candidate to yield is decided by following heuristics:
1749  *
1750  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1751  *  (preempted lock holder), indicated by @in_spin_loop.
1752  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1753  *
1754  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1755  *  chance last time (mostly it has become eligible now since we have probably
1756  *  yielded to lockholder in last iteration. This is done by toggling
1757  *  @dy_eligible each time a VCPU checked for eligibility.)
1758  *
1759  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1760  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1761  *  burning. Giving priority for a potential lock-holder increases lock
1762  *  progress.
1763  *
1764  *  Since algorithm is based on heuristics, accessing another VCPU data without
1765  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1766  *  and continue with next VCPU and so on.
1767  */
1768 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1769 {
1770         bool eligible;
1771
1772         eligible = !vcpu->spin_loop.in_spin_loop ||
1773                         (vcpu->spin_loop.in_spin_loop &&
1774                          vcpu->spin_loop.dy_eligible);
1775
1776         if (vcpu->spin_loop.in_spin_loop)
1777                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1778
1779         return eligible;
1780 }
1781 #endif
1782
1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 {
1785         struct kvm *kvm = me->kvm;
1786         struct kvm_vcpu *vcpu;
1787         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788         int yielded = 0;
1789         int try = 3;
1790         int pass;
1791         int i;
1792
1793         kvm_vcpu_set_in_spin_loop(me, true);
1794         /*
1795          * We boost the priority of a VCPU that is runnable but not
1796          * currently running, because it got preempted by something
1797          * else and called schedule in __vcpu_run.  Hopefully that
1798          * VCPU is holding the lock that we need and will release it.
1799          * We approximate round-robin by starting at the last boosted VCPU.
1800          */
1801         for (pass = 0; pass < 2 && !yielded && try; pass++) {
1802                 kvm_for_each_vcpu(i, vcpu, kvm) {
1803                         if (!pass && i <= last_boosted_vcpu) {
1804                                 i = last_boosted_vcpu;
1805                                 continue;
1806                         } else if (pass && i > last_boosted_vcpu)
1807                                 break;
1808                         if (!ACCESS_ONCE(vcpu->preempted))
1809                                 continue;
1810                         if (vcpu == me)
1811                                 continue;
1812                         if (waitqueue_active(&vcpu->wq))
1813                                 continue;
1814                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1815                                 continue;
1816
1817                         yielded = kvm_vcpu_yield_to(vcpu);
1818                         if (yielded > 0) {
1819                                 kvm->last_boosted_vcpu = i;
1820                                 break;
1821                         } else if (yielded < 0) {
1822                                 try--;
1823                                 if (!try)
1824                                         break;
1825                         }
1826                 }
1827         }
1828         kvm_vcpu_set_in_spin_loop(me, false);
1829
1830         /* Ensure vcpu is not eligible during next spinloop */
1831         kvm_vcpu_set_dy_eligible(me, false);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834
1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 {
1837         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1838         struct page *page;
1839
1840         if (vmf->pgoff == 0)
1841                 page = virt_to_page(vcpu->run);
1842 #ifdef CONFIG_X86
1843         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1844                 page = virt_to_page(vcpu->arch.pio_data);
1845 #endif
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1848                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1849 #endif
1850         else
1851                 return kvm_arch_vcpu_fault(vcpu, vmf);
1852         get_page(page);
1853         vmf->page = page;
1854         return 0;
1855 }
1856
1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1858         .fault = kvm_vcpu_fault,
1859 };
1860
1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 {
1863         vma->vm_ops = &kvm_vcpu_vm_ops;
1864         return 0;
1865 }
1866
1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 {
1869         struct kvm_vcpu *vcpu = filp->private_data;
1870
1871         kvm_put_kvm(vcpu->kvm);
1872         return 0;
1873 }
1874
1875 static struct file_operations kvm_vcpu_fops = {
1876         .release        = kvm_vcpu_release,
1877         .unlocked_ioctl = kvm_vcpu_ioctl,
1878 #ifdef CONFIG_COMPAT
1879         .compat_ioctl   = kvm_vcpu_compat_ioctl,
1880 #endif
1881         .mmap           = kvm_vcpu_mmap,
1882         .llseek         = noop_llseek,
1883 };
1884
1885 /*
1886  * Allocates an inode for the vcpu.
1887  */
1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 {
1890         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1891 }
1892
1893 /*
1894  * Creates some virtual cpus.  Good luck creating more than one.
1895  */
1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 {
1898         int r;
1899         struct kvm_vcpu *vcpu, *v;
1900
1901         if (id >= KVM_MAX_VCPUS)
1902                 return -EINVAL;
1903
1904         vcpu = kvm_arch_vcpu_create(kvm, id);
1905         if (IS_ERR(vcpu))
1906                 return PTR_ERR(vcpu);
1907
1908         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1909
1910         r = kvm_arch_vcpu_setup(vcpu);
1911         if (r)
1912                 goto vcpu_destroy;
1913
1914         mutex_lock(&kvm->lock);
1915         if (!kvm_vcpu_compatible(vcpu)) {
1916                 r = -EINVAL;
1917                 goto unlock_vcpu_destroy;
1918         }
1919         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1920                 r = -EINVAL;
1921                 goto unlock_vcpu_destroy;
1922         }
1923
1924         kvm_for_each_vcpu(r, v, kvm)
1925                 if (v->vcpu_id == id) {
1926                         r = -EEXIST;
1927                         goto unlock_vcpu_destroy;
1928                 }
1929
1930         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1931
1932         /* Now it's all set up, let userspace reach it */
1933         kvm_get_kvm(kvm);
1934         r = create_vcpu_fd(vcpu);
1935         if (r < 0) {
1936                 kvm_put_kvm(kvm);
1937                 goto unlock_vcpu_destroy;
1938         }
1939
1940         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1941         smp_wmb();
1942         atomic_inc(&kvm->online_vcpus);
1943
1944         mutex_unlock(&kvm->lock);
1945         kvm_arch_vcpu_postcreate(vcpu);
1946         return r;
1947
1948 unlock_vcpu_destroy:
1949         mutex_unlock(&kvm->lock);
1950 vcpu_destroy:
1951         kvm_arch_vcpu_destroy(vcpu);
1952         return r;
1953 }
1954
1955 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1956 {
1957         if (sigset) {
1958                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1959                 vcpu->sigset_active = 1;
1960                 vcpu->sigset = *sigset;
1961         } else
1962                 vcpu->sigset_active = 0;
1963         return 0;
1964 }
1965
1966 static long kvm_vcpu_ioctl(struct file *filp,
1967                            unsigned int ioctl, unsigned long arg)
1968 {
1969         struct kvm_vcpu *vcpu = filp->private_data;
1970         void __user *argp = (void __user *)arg;
1971         int r;
1972         struct kvm_fpu *fpu = NULL;
1973         struct kvm_sregs *kvm_sregs = NULL;
1974
1975         if (vcpu->kvm->mm != current->mm)
1976                 return -EIO;
1977
1978 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1979         /*
1980          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1981          * so vcpu_load() would break it.
1982          */
1983         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1984                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1985 #endif
1986
1987
1988         r = vcpu_load(vcpu);
1989         if (r)
1990                 return r;
1991         switch (ioctl) {
1992         case KVM_RUN:
1993                 r = -EINVAL;
1994                 if (arg)
1995                         goto out;
1996                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1997                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1998                 break;
1999         case KVM_GET_REGS: {
2000                 struct kvm_regs *kvm_regs;
2001
2002                 r = -ENOMEM;
2003                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2004                 if (!kvm_regs)
2005                         goto out;
2006                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2007                 if (r)
2008                         goto out_free1;
2009                 r = -EFAULT;
2010                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2011                         goto out_free1;
2012                 r = 0;
2013 out_free1:
2014                 kfree(kvm_regs);
2015                 break;
2016         }
2017         case KVM_SET_REGS: {
2018                 struct kvm_regs *kvm_regs;
2019
2020                 r = -ENOMEM;
2021                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2022                 if (IS_ERR(kvm_regs)) {
2023                         r = PTR_ERR(kvm_regs);
2024                         goto out;
2025                 }
2026                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2027                 kfree(kvm_regs);
2028                 break;
2029         }
2030         case KVM_GET_SREGS: {
2031                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2032                 r = -ENOMEM;
2033                 if (!kvm_sregs)
2034                         goto out;
2035                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2036                 if (r)
2037                         goto out;
2038                 r = -EFAULT;
2039                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2040                         goto out;
2041                 r = 0;
2042                 break;
2043         }
2044         case KVM_SET_SREGS: {
2045                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2046                 if (IS_ERR(kvm_sregs)) {
2047                         r = PTR_ERR(kvm_sregs);
2048                         kvm_sregs = NULL;
2049                         goto out;
2050                 }
2051                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2052                 break;
2053         }
2054         case KVM_GET_MP_STATE: {
2055                 struct kvm_mp_state mp_state;
2056
2057                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2058                 if (r)
2059                         goto out;
2060                 r = -EFAULT;
2061                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2062                         goto out;
2063                 r = 0;
2064                 break;
2065         }
2066         case KVM_SET_MP_STATE: {
2067                 struct kvm_mp_state mp_state;
2068
2069                 r = -EFAULT;
2070                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2071                         goto out;
2072                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2073                 break;
2074         }
2075         case KVM_TRANSLATE: {
2076                 struct kvm_translation tr;
2077
2078                 r = -EFAULT;
2079                 if (copy_from_user(&tr, argp, sizeof tr))
2080                         goto out;
2081                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2082                 if (r)
2083                         goto out;
2084                 r = -EFAULT;
2085                 if (copy_to_user(argp, &tr, sizeof tr))
2086                         goto out;
2087                 r = 0;
2088                 break;
2089         }
2090         case KVM_SET_GUEST_DEBUG: {
2091                 struct kvm_guest_debug dbg;
2092
2093                 r = -EFAULT;
2094                 if (copy_from_user(&dbg, argp, sizeof dbg))
2095                         goto out;
2096                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2097                 break;
2098         }
2099         case KVM_SET_SIGNAL_MASK: {
2100                 struct kvm_signal_mask __user *sigmask_arg = argp;
2101                 struct kvm_signal_mask kvm_sigmask;
2102                 sigset_t sigset, *p;
2103
2104                 p = NULL;
2105                 if (argp) {
2106                         r = -EFAULT;
2107                         if (copy_from_user(&kvm_sigmask, argp,
2108                                            sizeof kvm_sigmask))
2109                                 goto out;
2110                         r = -EINVAL;
2111                         if (kvm_sigmask.len != sizeof sigset)
2112                                 goto out;
2113                         r = -EFAULT;
2114                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2115                                            sizeof sigset))
2116                                 goto out;
2117                         p = &sigset;
2118                 }
2119                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2120                 break;
2121         }
2122         case KVM_GET_FPU: {
2123                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2124                 r = -ENOMEM;
2125                 if (!fpu)
2126                         goto out;
2127                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2128                 if (r)
2129                         goto out;
2130                 r = -EFAULT;
2131                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2132                         goto out;
2133                 r = 0;
2134                 break;
2135         }
2136         case KVM_SET_FPU: {
2137                 fpu = memdup_user(argp, sizeof(*fpu));
2138                 if (IS_ERR(fpu)) {
2139                         r = PTR_ERR(fpu);
2140                         fpu = NULL;
2141                         goto out;
2142                 }
2143                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2144                 break;
2145         }
2146         default:
2147                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2148         }
2149 out:
2150         vcpu_put(vcpu);
2151         kfree(fpu);
2152         kfree(kvm_sregs);
2153         return r;
2154 }
2155
2156 #ifdef CONFIG_COMPAT
2157 static long kvm_vcpu_compat_ioctl(struct file *filp,
2158                                   unsigned int ioctl, unsigned long arg)
2159 {
2160         struct kvm_vcpu *vcpu = filp->private_data;
2161         void __user *argp = compat_ptr(arg);
2162         int r;
2163
2164         if (vcpu->kvm->mm != current->mm)
2165                 return -EIO;
2166
2167         switch (ioctl) {
2168         case KVM_SET_SIGNAL_MASK: {
2169                 struct kvm_signal_mask __user *sigmask_arg = argp;
2170                 struct kvm_signal_mask kvm_sigmask;
2171                 compat_sigset_t csigset;
2172                 sigset_t sigset;
2173
2174                 if (argp) {
2175                         r = -EFAULT;
2176                         if (copy_from_user(&kvm_sigmask, argp,
2177                                            sizeof kvm_sigmask))
2178                                 goto out;
2179                         r = -EINVAL;
2180                         if (kvm_sigmask.len != sizeof csigset)
2181                                 goto out;
2182                         r = -EFAULT;
2183                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2184                                            sizeof csigset))
2185                                 goto out;
2186                         sigset_from_compat(&sigset, &csigset);
2187                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2188                 } else
2189                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2190                 break;
2191         }
2192         default:
2193                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2194         }
2195
2196 out:
2197         return r;
2198 }
2199 #endif
2200
2201 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2202                                  int (*accessor)(struct kvm_device *dev,
2203                                                  struct kvm_device_attr *attr),
2204                                  unsigned long arg)
2205 {
2206         struct kvm_device_attr attr;
2207
2208         if (!accessor)
2209                 return -EPERM;
2210
2211         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2212                 return -EFAULT;
2213
2214         return accessor(dev, &attr);
2215 }
2216
2217 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2218                              unsigned long arg)
2219 {
2220         struct kvm_device *dev = filp->private_data;
2221
2222         switch (ioctl) {
2223         case KVM_SET_DEVICE_ATTR:
2224                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2225         case KVM_GET_DEVICE_ATTR:
2226                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2227         case KVM_HAS_DEVICE_ATTR:
2228                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2229         default:
2230                 if (dev->ops->ioctl)
2231                         return dev->ops->ioctl(dev, ioctl, arg);
2232
2233                 return -ENOTTY;
2234         }
2235 }
2236
2237 static int kvm_device_release(struct inode *inode, struct file *filp)
2238 {
2239         struct kvm_device *dev = filp->private_data;
2240         struct kvm *kvm = dev->kvm;
2241
2242         kvm_put_kvm(kvm);
2243         return 0;
2244 }
2245
2246 static const struct file_operations kvm_device_fops = {
2247         .unlocked_ioctl = kvm_device_ioctl,
2248 #ifdef CONFIG_COMPAT
2249         .compat_ioctl = kvm_device_ioctl,
2250 #endif
2251         .release = kvm_device_release,
2252 };
2253
2254 struct kvm_device *kvm_device_from_filp(struct file *filp)
2255 {
2256         if (filp->f_op != &kvm_device_fops)
2257                 return NULL;
2258
2259         return filp->private_data;
2260 }
2261
2262 static int kvm_ioctl_create_device(struct kvm *kvm,
2263                                    struct kvm_create_device *cd)
2264 {
2265         struct kvm_device_ops *ops = NULL;
2266         struct kvm_device *dev;
2267         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2268         int ret;
2269
2270         switch (cd->type) {
2271 #ifdef CONFIG_KVM_MPIC
2272         case KVM_DEV_TYPE_FSL_MPIC_20:
2273         case KVM_DEV_TYPE_FSL_MPIC_42:
2274                 ops = &kvm_mpic_ops;
2275                 break;
2276 #endif
2277 #ifdef CONFIG_KVM_XICS
2278         case KVM_DEV_TYPE_XICS:
2279                 ops = &kvm_xics_ops;
2280                 break;
2281 #endif
2282 #ifdef CONFIG_KVM_VFIO
2283         case KVM_DEV_TYPE_VFIO:
2284                 ops = &kvm_vfio_ops;
2285                 break;
2286 #endif
2287         default:
2288                 return -ENODEV;
2289         }
2290
2291         if (test)
2292                 return 0;
2293
2294         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2295         if (!dev)
2296                 return -ENOMEM;
2297
2298         dev->ops = ops;
2299         dev->kvm = kvm;
2300
2301         ret = ops->create(dev, cd->type);
2302         if (ret < 0) {
2303                 kfree(dev);
2304                 return ret;
2305         }
2306
2307         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2308         if (ret < 0) {
2309                 ops->destroy(dev);
2310                 return ret;
2311         }
2312
2313         list_add(&dev->vm_node, &kvm->devices);
2314         kvm_get_kvm(kvm);
2315         cd->fd = ret;
2316         return 0;
2317 }
2318
2319 static long kvm_vm_ioctl(struct file *filp,
2320                            unsigned int ioctl, unsigned long arg)
2321 {
2322         struct kvm *kvm = filp->private_data;
2323         void __user *argp = (void __user *)arg;
2324         int r;
2325
2326         if (kvm->mm != current->mm)
2327                 return -EIO;
2328         switch (ioctl) {
2329         case KVM_CREATE_VCPU:
2330                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2331                 break;
2332         case KVM_SET_USER_MEMORY_REGION: {
2333                 struct kvm_userspace_memory_region kvm_userspace_mem;
2334
2335                 r = -EFAULT;
2336                 if (copy_from_user(&kvm_userspace_mem, argp,
2337                                                 sizeof kvm_userspace_mem))
2338                         goto out;
2339
2340                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2341                 break;
2342         }
2343         case KVM_GET_DIRTY_LOG: {
2344                 struct kvm_dirty_log log;
2345
2346                 r = -EFAULT;
2347                 if (copy_from_user(&log, argp, sizeof log))
2348                         goto out;
2349                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2350                 break;
2351         }
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353         case KVM_REGISTER_COALESCED_MMIO: {
2354                 struct kvm_coalesced_mmio_zone zone;
2355                 r = -EFAULT;
2356                 if (copy_from_user(&zone, argp, sizeof zone))
2357                         goto out;
2358                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2359                 break;
2360         }
2361         case KVM_UNREGISTER_COALESCED_MMIO: {
2362                 struct kvm_coalesced_mmio_zone zone;
2363                 r = -EFAULT;
2364                 if (copy_from_user(&zone, argp, sizeof zone))
2365                         goto out;
2366                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2367                 break;
2368         }
2369 #endif
2370         case KVM_IRQFD: {
2371                 struct kvm_irqfd data;
2372
2373                 r = -EFAULT;
2374                 if (copy_from_user(&data, argp, sizeof data))
2375                         goto out;
2376                 r = kvm_irqfd(kvm, &data);
2377                 break;
2378         }
2379         case KVM_IOEVENTFD: {
2380                 struct kvm_ioeventfd data;
2381
2382                 r = -EFAULT;
2383                 if (copy_from_user(&data, argp, sizeof data))
2384                         goto out;
2385                 r = kvm_ioeventfd(kvm, &data);
2386                 break;
2387         }
2388 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2389         case KVM_SET_BOOT_CPU_ID:
2390                 r = 0;
2391                 mutex_lock(&kvm->lock);
2392                 if (atomic_read(&kvm->online_vcpus) != 0)
2393                         r = -EBUSY;
2394                 else
2395                         kvm->bsp_vcpu_id = arg;
2396                 mutex_unlock(&kvm->lock);
2397                 break;
2398 #endif
2399 #ifdef CONFIG_HAVE_KVM_MSI
2400         case KVM_SIGNAL_MSI: {
2401                 struct kvm_msi msi;
2402
2403                 r = -EFAULT;
2404                 if (copy_from_user(&msi, argp, sizeof msi))
2405                         goto out;
2406                 r = kvm_send_userspace_msi(kvm, &msi);
2407                 break;
2408         }
2409 #endif
2410 #ifdef __KVM_HAVE_IRQ_LINE
2411         case KVM_IRQ_LINE_STATUS:
2412         case KVM_IRQ_LINE: {
2413                 struct kvm_irq_level irq_event;
2414
2415                 r = -EFAULT;
2416                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2417                         goto out;
2418
2419                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2420                                         ioctl == KVM_IRQ_LINE_STATUS);
2421                 if (r)
2422                         goto out;
2423
2424                 r = -EFAULT;
2425                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2426                         if (copy_to_user(argp, &irq_event, sizeof irq_event))
2427                                 goto out;
2428                 }
2429
2430                 r = 0;
2431                 break;
2432         }
2433 #endif
2434 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2435         case KVM_SET_GSI_ROUTING: {
2436                 struct kvm_irq_routing routing;
2437                 struct kvm_irq_routing __user *urouting;
2438                 struct kvm_irq_routing_entry *entries;
2439
2440                 r = -EFAULT;
2441                 if (copy_from_user(&routing, argp, sizeof(routing)))
2442                         goto out;
2443                 r = -EINVAL;
2444                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2445                         goto out;
2446                 if (routing.flags)
2447                         goto out;
2448                 r = -ENOMEM;
2449                 entries = vmalloc(routing.nr * sizeof(*entries));
2450                 if (!entries)
2451                         goto out;
2452                 r = -EFAULT;
2453                 urouting = argp;
2454                 if (copy_from_user(entries, urouting->entries,
2455                                    routing.nr * sizeof(*entries)))
2456                         goto out_free_irq_routing;
2457                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2458                                         routing.flags);
2459         out_free_irq_routing:
2460                 vfree(entries);
2461                 break;
2462         }
2463 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2464         case KVM_CREATE_DEVICE: {
2465                 struct kvm_create_device cd;
2466
2467                 r = -EFAULT;
2468                 if (copy_from_user(&cd, argp, sizeof(cd)))
2469                         goto out;
2470
2471                 r = kvm_ioctl_create_device(kvm, &cd);
2472                 if (r)
2473                         goto out;
2474
2475                 r = -EFAULT;
2476                 if (copy_to_user(argp, &cd, sizeof(cd)))
2477                         goto out;
2478
2479                 r = 0;
2480                 break;
2481         }
2482         default:
2483                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2484                 if (r == -ENOTTY)
2485                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2486         }
2487 out:
2488         return r;
2489 }
2490
2491 #ifdef CONFIG_COMPAT
2492 struct compat_kvm_dirty_log {
2493         __u32 slot;
2494         __u32 padding1;
2495         union {
2496                 compat_uptr_t dirty_bitmap; /* one bit per page */
2497                 __u64 padding2;
2498         };
2499 };
2500
2501 static long kvm_vm_compat_ioctl(struct file *filp,
2502                            unsigned int ioctl, unsigned long arg)
2503 {
2504         struct kvm *kvm = filp->private_data;
2505         int r;
2506
2507         if (kvm->mm != current->mm)
2508                 return -EIO;
2509         switch (ioctl) {
2510         case KVM_GET_DIRTY_LOG: {
2511                 struct compat_kvm_dirty_log compat_log;
2512                 struct kvm_dirty_log log;
2513
2514                 r = -EFAULT;
2515                 if (copy_from_user(&compat_log, (void __user *)arg,
2516                                    sizeof(compat_log)))
2517                         goto out;
2518                 log.slot         = compat_log.slot;
2519                 log.padding1     = compat_log.padding1;
2520                 log.padding2     = compat_log.padding2;
2521                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2522
2523                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2524                 break;
2525         }
2526         default:
2527                 r = kvm_vm_ioctl(filp, ioctl, arg);
2528         }
2529
2530 out:
2531         return r;
2532 }
2533 #endif
2534
2535 static struct file_operations kvm_vm_fops = {
2536         .release        = kvm_vm_release,
2537         .unlocked_ioctl = kvm_vm_ioctl,
2538 #ifdef CONFIG_COMPAT
2539         .compat_ioctl   = kvm_vm_compat_ioctl,
2540 #endif
2541         .llseek         = noop_llseek,
2542 };
2543
2544 static int kvm_dev_ioctl_create_vm(unsigned long type)
2545 {
2546         int r;
2547         struct kvm *kvm;
2548
2549         kvm = kvm_create_vm(type);
2550         if (IS_ERR(kvm))
2551                 return PTR_ERR(kvm);
2552 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2553         r = kvm_coalesced_mmio_init(kvm);
2554         if (r < 0) {
2555                 kvm_put_kvm(kvm);
2556                 return r;
2557         }
2558 #endif
2559         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2560         if (r < 0)
2561                 kvm_put_kvm(kvm);
2562
2563         return r;
2564 }
2565
2566 static long kvm_dev_ioctl_check_extension_generic(long arg)
2567 {
2568         switch (arg) {
2569         case KVM_CAP_USER_MEMORY:
2570         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2571         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2572 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2573         case KVM_CAP_SET_BOOT_CPU_ID:
2574 #endif
2575         case KVM_CAP_INTERNAL_ERROR_DATA:
2576 #ifdef CONFIG_HAVE_KVM_MSI
2577         case KVM_CAP_SIGNAL_MSI:
2578 #endif
2579 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2580         case KVM_CAP_IRQFD_RESAMPLE:
2581 #endif
2582                 return 1;
2583 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2584         case KVM_CAP_IRQ_ROUTING:
2585                 return KVM_MAX_IRQ_ROUTES;
2586 #endif
2587         default:
2588                 break;
2589         }
2590         return kvm_dev_ioctl_check_extension(arg);
2591 }
2592
2593 static long kvm_dev_ioctl(struct file *filp,
2594                           unsigned int ioctl, unsigned long arg)
2595 {
2596         long r = -EINVAL;
2597
2598         switch (ioctl) {
2599         case KVM_GET_API_VERSION:
2600                 r = -EINVAL;
2601                 if (arg)
2602                         goto out;
2603                 r = KVM_API_VERSION;
2604                 break;
2605         case KVM_CREATE_VM:
2606                 r = kvm_dev_ioctl_create_vm(arg);
2607                 break;
2608         case KVM_CHECK_EXTENSION:
2609                 r = kvm_dev_ioctl_check_extension_generic(arg);
2610                 break;
2611         case KVM_GET_VCPU_MMAP_SIZE:
2612                 r = -EINVAL;
2613                 if (arg)
2614                         goto out;
2615                 r = PAGE_SIZE;     /* struct kvm_run */
2616 #ifdef CONFIG_X86
2617                 r += PAGE_SIZE;    /* pio data page */
2618 #endif
2619 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2620                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2621 #endif
2622                 break;
2623         case KVM_TRACE_ENABLE:
2624         case KVM_TRACE_PAUSE:
2625         case KVM_TRACE_DISABLE:
2626                 r = -EOPNOTSUPP;
2627                 break;
2628         default:
2629                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2630         }
2631 out:
2632         return r;
2633 }
2634
2635 static struct file_operations kvm_chardev_ops = {
2636         .unlocked_ioctl = kvm_dev_ioctl,
2637         .compat_ioctl   = kvm_dev_ioctl,
2638         .llseek         = noop_llseek,
2639 };
2640
2641 static struct miscdevice kvm_dev = {
2642         KVM_MINOR,
2643         "kvm",
2644         &kvm_chardev_ops,
2645 };
2646
2647 static void hardware_enable_nolock(void *junk)
2648 {
2649         int cpu = raw_smp_processor_id();
2650         int r;
2651
2652         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2653                 return;
2654
2655         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2656
2657         r = kvm_arch_hardware_enable(NULL);
2658
2659         if (r) {
2660                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2661                 atomic_inc(&hardware_enable_failed);
2662                 printk(KERN_INFO "kvm: enabling virtualization on "
2663                                  "CPU%d failed\n", cpu);
2664         }
2665 }
2666
2667 static void hardware_enable(void)
2668 {
2669         raw_spin_lock(&kvm_count_lock);
2670         if (kvm_usage_count)
2671                 hardware_enable_nolock(NULL);
2672         raw_spin_unlock(&kvm_count_lock);
2673 }
2674
2675 static void hardware_disable_nolock(void *junk)
2676 {
2677         int cpu = raw_smp_processor_id();
2678
2679         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2680                 return;
2681         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2682         kvm_arch_hardware_disable(NULL);
2683 }
2684
2685 static void hardware_disable(void)
2686 {
2687         raw_spin_lock(&kvm_count_lock);
2688         if (kvm_usage_count)
2689                 hardware_disable_nolock(NULL);
2690         raw_spin_unlock(&kvm_count_lock);
2691 }
2692
2693 static void hardware_disable_all_nolock(void)
2694 {
2695         BUG_ON(!kvm_usage_count);
2696
2697         kvm_usage_count--;
2698         if (!kvm_usage_count)
2699                 on_each_cpu(hardware_disable_nolock, NULL, 1);
2700 }
2701
2702 static void hardware_disable_all(void)
2703 {
2704         raw_spin_lock(&kvm_count_lock);
2705         hardware_disable_all_nolock();
2706         raw_spin_unlock(&kvm_count_lock);
2707 }
2708
2709 static int hardware_enable_all(void)
2710 {
2711         int r = 0;
2712
2713         raw_spin_lock(&kvm_count_lock);
2714
2715         kvm_usage_count++;
2716         if (kvm_usage_count == 1) {
2717                 atomic_set(&hardware_enable_failed, 0);
2718                 on_each_cpu(hardware_enable_nolock, NULL, 1);
2719
2720                 if (atomic_read(&hardware_enable_failed)) {
2721                         hardware_disable_all_nolock();
2722                         r = -EBUSY;
2723                 }
2724         }
2725
2726         raw_spin_unlock(&kvm_count_lock);
2727
2728         return r;
2729 }
2730
2731 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2732                            void *v)
2733 {
2734         int cpu = (long)v;
2735
2736         val &= ~CPU_TASKS_FROZEN;
2737         switch (val) {
2738         case CPU_DYING:
2739                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2740                        cpu);
2741                 hardware_disable();
2742                 break;
2743         case CPU_STARTING:
2744                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2745                        cpu);
2746                 hardware_enable();
2747                 break;
2748         }
2749         return NOTIFY_OK;
2750 }
2751
2752 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2753                       void *v)
2754 {
2755         /*
2756          * Some (well, at least mine) BIOSes hang on reboot if
2757          * in vmx root mode.
2758          *
2759          * And Intel TXT required VMX off for all cpu when system shutdown.
2760          */
2761         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2762         kvm_rebooting = true;
2763         on_each_cpu(hardware_disable_nolock, NULL, 1);
2764         return NOTIFY_OK;
2765 }
2766
2767 static struct notifier_block kvm_reboot_notifier = {
2768         .notifier_call = kvm_reboot,
2769         .priority = 0,
2770 };
2771
2772 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2773 {
2774         int i;
2775
2776         for (i = 0; i < bus->dev_count; i++) {
2777                 struct kvm_io_device *pos = bus->range[i].dev;
2778
2779                 kvm_iodevice_destructor(pos);
2780         }
2781         kfree(bus);
2782 }
2783
2784 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2785                                  const struct kvm_io_range *r2)
2786 {
2787         if (r1->addr < r2->addr)
2788                 return -1;
2789         if (r1->addr + r1->len > r2->addr + r2->len)
2790                 return 1;
2791         return 0;
2792 }
2793
2794 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2795 {
2796         return kvm_io_bus_cmp(p1, p2);
2797 }
2798
2799 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2800                           gpa_t addr, int len)
2801 {
2802         bus->range[bus->dev_count++] = (struct kvm_io_range) {
2803                 .addr = addr,
2804                 .len = len,
2805                 .dev = dev,
2806         };
2807
2808         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2809                 kvm_io_bus_sort_cmp, NULL);
2810
2811         return 0;
2812 }
2813
2814 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2815                              gpa_t addr, int len)
2816 {
2817         struct kvm_io_range *range, key;
2818         int off;
2819
2820         key = (struct kvm_io_range) {
2821                 .addr = addr,
2822                 .len = len,
2823         };
2824
2825         range = bsearch(&key, bus->range, bus->dev_count,
2826                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2827         if (range == NULL)
2828                 return -ENOENT;
2829
2830         off = range - bus->range;
2831
2832         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2833                 off--;
2834
2835         return off;
2836 }
2837
2838 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2839                               struct kvm_io_range *range, const void *val)
2840 {
2841         int idx;
2842
2843         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2844         if (idx < 0)
2845                 return -EOPNOTSUPP;
2846
2847         while (idx < bus->dev_count &&
2848                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2849                 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2850                                         range->len, val))
2851                         return idx;
2852                 idx++;
2853         }
2854
2855         return -EOPNOTSUPP;
2856 }
2857
2858 /* kvm_io_bus_write - called under kvm->slots_lock */
2859 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2860                      int len, const void *val)
2861 {
2862         struct kvm_io_bus *bus;
2863         struct kvm_io_range range;
2864         int r;
2865
2866         range = (struct kvm_io_range) {
2867                 .addr = addr,
2868                 .len = len,
2869         };
2870
2871         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2872         r = __kvm_io_bus_write(bus, &range, val);
2873         return r < 0 ? r : 0;
2874 }
2875
2876 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2877 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878                             int len, const void *val, long cookie)
2879 {
2880         struct kvm_io_bus *bus;
2881         struct kvm_io_range range;
2882
2883         range = (struct kvm_io_range) {
2884                 .addr = addr,
2885                 .len = len,
2886         };
2887
2888         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2889
2890         /* First try the device referenced by cookie. */
2891         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2892             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2893                 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2894                                         val))
2895                         return cookie;
2896
2897         /*
2898          * cookie contained garbage; fall back to search and return the
2899          * correct cookie value.
2900          */
2901         return __kvm_io_bus_write(bus, &range, val);
2902 }
2903
2904 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2905                              void *val)
2906 {
2907         int idx;
2908
2909         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2910         if (idx < 0)
2911                 return -EOPNOTSUPP;
2912
2913         while (idx < bus->dev_count &&
2914                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2915                 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2916                                        range->len, val))
2917                         return idx;
2918                 idx++;
2919         }
2920
2921         return -EOPNOTSUPP;
2922 }
2923
2924 /* kvm_io_bus_read - called under kvm->slots_lock */
2925 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2926                     int len, void *val)
2927 {
2928         struct kvm_io_bus *bus;
2929         struct kvm_io_range range;
2930         int r;
2931
2932         range = (struct kvm_io_range) {
2933                 .addr = addr,
2934                 .len = len,
2935         };
2936
2937         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2938         r = __kvm_io_bus_read(bus, &range, val);
2939         return r < 0 ? r : 0;
2940 }
2941
2942 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2943 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944                            int len, void *val, long cookie)
2945 {
2946         struct kvm_io_bus *bus;
2947         struct kvm_io_range range;
2948
2949         range = (struct kvm_io_range) {
2950                 .addr = addr,
2951                 .len = len,
2952         };
2953
2954         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2955
2956         /* First try the device referenced by cookie. */
2957         if ((cookie >= 0) && (cookie < bus->dev_count) &&
2958             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2959                 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2960                                        val))
2961                         return cookie;
2962
2963         /*
2964          * cookie contained garbage; fall back to search and return the
2965          * correct cookie value.
2966          */
2967         return __kvm_io_bus_read(bus, &range, val);
2968 }
2969
2970 /* Caller must hold slots_lock. */
2971 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2972                             int len, struct kvm_io_device *dev)
2973 {
2974         struct kvm_io_bus *new_bus, *bus;
2975
2976         bus = kvm->buses[bus_idx];
2977         /* exclude ioeventfd which is limited by maximum fd */
2978         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2979                 return -ENOSPC;
2980
2981         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2982                           sizeof(struct kvm_io_range)), GFP_KERNEL);
2983         if (!new_bus)
2984                 return -ENOMEM;
2985         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2986                sizeof(struct kvm_io_range)));
2987         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2988         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2989         synchronize_srcu_expedited(&kvm->srcu);
2990         kfree(bus);
2991
2992         return 0;
2993 }
2994
2995 /* Caller must hold slots_lock. */
2996 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2997                               struct kvm_io_device *dev)
2998 {
2999         int i, r;
3000         struct kvm_io_bus *new_bus, *bus;
3001
3002         bus = kvm->buses[bus_idx];
3003         r = -ENOENT;
3004         for (i = 0; i < bus->dev_count; i++)
3005                 if (bus->range[i].dev == dev) {
3006                         r = 0;
3007                         break;
3008                 }
3009
3010         if (r)
3011                 return r;
3012
3013         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3014                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3015         if (!new_bus)
3016                 return -ENOMEM;
3017
3018         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3019         new_bus->dev_count--;
3020         memcpy(new_bus->range + i, bus->range + i + 1,
3021                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3022
3023         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3024         synchronize_srcu_expedited(&kvm->srcu);
3025         kfree(bus);
3026         return r;
3027 }
3028
3029 static struct notifier_block kvm_cpu_notifier = {
3030         .notifier_call = kvm_cpu_hotplug,
3031 };
3032
3033 static int vm_stat_get(void *_offset, u64 *val)
3034 {
3035         unsigned offset = (long)_offset;
3036         struct kvm *kvm;
3037
3038         *val = 0;
3039         spin_lock(&kvm_lock);
3040         list_for_each_entry(kvm, &vm_list, vm_list)
3041                 *val += *(u32 *)((void *)kvm + offset);
3042         spin_unlock(&kvm_lock);
3043         return 0;
3044 }
3045
3046 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3047
3048 static int vcpu_stat_get(void *_offset, u64 *val)
3049 {
3050         unsigned offset = (long)_offset;
3051         struct kvm *kvm;
3052         struct kvm_vcpu *vcpu;
3053         int i;
3054
3055         *val = 0;
3056         spin_lock(&kvm_lock);
3057         list_for_each_entry(kvm, &vm_list, vm_list)
3058                 kvm_for_each_vcpu(i, vcpu, kvm)
3059                         *val += *(u32 *)((void *)vcpu + offset);
3060
3061         spin_unlock(&kvm_lock);
3062         return 0;
3063 }
3064
3065 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3066
3067 static const struct file_operations *stat_fops[] = {
3068         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3069         [KVM_STAT_VM]   = &vm_stat_fops,
3070 };
3071
3072 static int kvm_init_debug(void)
3073 {
3074         int r = -EEXIST;
3075         struct kvm_stats_debugfs_item *p;
3076
3077         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3078         if (kvm_debugfs_dir == NULL)
3079                 goto out;
3080
3081         for (p = debugfs_entries; p->name; ++p) {
3082                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3083                                                 (void *)(long)p->offset,
3084                                                 stat_fops[p->kind]);
3085                 if (p->dentry == NULL)
3086                         goto out_dir;
3087         }
3088
3089         return 0;
3090
3091 out_dir:
3092         debugfs_remove_recursive(kvm_debugfs_dir);
3093 out:
3094         return r;
3095 }
3096
3097 static void kvm_exit_debug(void)
3098 {
3099         struct kvm_stats_debugfs_item *p;
3100
3101         for (p = debugfs_entries; p->name; ++p)
3102                 debugfs_remove(p->dentry);
3103         debugfs_remove(kvm_debugfs_dir);
3104 }
3105
3106 static int kvm_suspend(void)
3107 {
3108         if (kvm_usage_count)
3109                 hardware_disable_nolock(NULL);
3110         return 0;
3111 }
3112
3113 static void kvm_resume(void)
3114 {
3115         if (kvm_usage_count) {
3116                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3117                 hardware_enable_nolock(NULL);
3118         }
3119 }
3120
3121 static struct syscore_ops kvm_syscore_ops = {
3122         .suspend = kvm_suspend,
3123         .resume = kvm_resume,
3124 };
3125
3126 static inline
3127 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3128 {
3129         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3130 }
3131
3132 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3133 {
3134         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3135         if (vcpu->preempted)
3136                 vcpu->preempted = false;
3137
3138         kvm_arch_vcpu_load(vcpu, cpu);
3139 }
3140
3141 static void kvm_sched_out(struct preempt_notifier *pn,
3142                           struct task_struct *next)
3143 {
3144         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3145
3146         if (current->state == TASK_RUNNING)
3147                 vcpu->preempted = true;
3148         kvm_arch_vcpu_put(vcpu);
3149 }
3150
3151 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3152                   struct module *module)
3153 {
3154         int r;
3155         int cpu;
3156
3157         r = kvm_arch_init(opaque);
3158         if (r)
3159                 goto out_fail;
3160
3161         /*
3162          * kvm_arch_init makes sure there's at most one caller
3163          * for architectures that support multiple implementations,
3164          * like intel and amd on x86.
3165          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3166          * conflicts in case kvm is already setup for another implementation.
3167          */
3168         r = kvm_irqfd_init();
3169         if (r)
3170                 goto out_irqfd;
3171
3172         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3173                 r = -ENOMEM;
3174                 goto out_free_0;
3175         }
3176
3177         r = kvm_arch_hardware_setup();
3178         if (r < 0)
3179                 goto out_free_0a;
3180
3181         for_each_online_cpu(cpu) {
3182                 smp_call_function_single(cpu,
3183                                 kvm_arch_check_processor_compat,
3184                                 &r, 1);
3185                 if (r < 0)
3186                         goto out_free_1;
3187         }
3188
3189         r = register_cpu_notifier(&kvm_cpu_notifier);
3190         if (r)
3191                 goto out_free_2;
3192         register_reboot_notifier(&kvm_reboot_notifier);
3193
3194         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3195         if (!vcpu_align)
3196                 vcpu_align = __alignof__(struct kvm_vcpu);
3197         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3198                                            0, NULL);
3199         if (!kvm_vcpu_cache) {
3200                 r = -ENOMEM;
3201                 goto out_free_3;
3202         }
3203
3204         r = kvm_async_pf_init();
3205         if (r)
3206                 goto out_free;
3207
3208         kvm_chardev_ops.owner = module;
3209         kvm_vm_fops.owner = module;
3210         kvm_vcpu_fops.owner = module;
3211
3212         r = misc_register(&kvm_dev);
3213         if (r) {
3214                 printk(KERN_ERR "kvm: misc device register failed\n");
3215                 goto out_unreg;
3216         }
3217
3218         register_syscore_ops(&kvm_syscore_ops);
3219
3220         kvm_preempt_ops.sched_in = kvm_sched_in;
3221         kvm_preempt_ops.sched_out = kvm_sched_out;
3222
3223         r = kvm_init_debug();
3224         if (r) {
3225                 printk(KERN_ERR "kvm: create debugfs files failed\n");
3226                 goto out_undebugfs;
3227         }
3228
3229         return 0;
3230
3231 out_undebugfs:
3232         unregister_syscore_ops(&kvm_syscore_ops);
3233         misc_deregister(&kvm_dev);
3234 out_unreg:
3235         kvm_async_pf_deinit();
3236 out_free:
3237         kmem_cache_destroy(kvm_vcpu_cache);
3238 out_free_3:
3239         unregister_reboot_notifier(&kvm_reboot_notifier);
3240         unregister_cpu_notifier(&kvm_cpu_notifier);
3241 out_free_2:
3242 out_free_1:
3243         kvm_arch_hardware_unsetup();
3244 out_free_0a:
3245         free_cpumask_var(cpus_hardware_enabled);
3246 out_free_0:
3247         kvm_irqfd_exit();
3248 out_irqfd:
3249         kvm_arch_exit();
3250 out_fail:
3251         return r;
3252 }
3253 EXPORT_SYMBOL_GPL(kvm_init);
3254
3255 void kvm_exit(void)
3256 {
3257         kvm_exit_debug();
3258         misc_deregister(&kvm_dev);
3259         kmem_cache_destroy(kvm_vcpu_cache);
3260         kvm_async_pf_deinit();
3261         unregister_syscore_ops(&kvm_syscore_ops);
3262         unregister_reboot_notifier(&kvm_reboot_notifier);
3263         unregister_cpu_notifier(&kvm_cpu_notifier);
3264         on_each_cpu(hardware_disable_nolock, NULL, 1);
3265         kvm_arch_hardware_unsetup();
3266         kvm_arch_exit();
3267         kvm_irqfd_exit();
3268         free_cpumask_var(cpus_hardware_enabled);
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_exit);