Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / virt / kvm / arm / vgic.c
1 /*
2  * Copyright (C) 2012 ARM Ltd.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 #include <trace/events/kvm.h>
34 #include <asm/kvm.h>
35 #include <kvm/iodev.h>
36
37 /*
38  * How the whole thing works (courtesy of Christoffer Dall):
39  *
40  * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
41  *   something is pending on the CPU interface.
42  * - Interrupts that are pending on the distributor are stored on the
43  *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44  *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
45  *   arch. timers).
46  * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
47  *   recalculated
48  * - To calculate the oracle, we need info for each cpu from
49  *   compute_pending_for_cpu, which considers:
50  *   - PPI: dist->irq_pending & dist->irq_enable
51  *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
52  *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
53  *     registers, stored on each vcpu. We only keep one bit of
54  *     information per interrupt, making sure that only one vcpu can
55  *     accept the interrupt.
56  * - If any of the above state changes, we must recalculate the oracle.
57  * - The same is true when injecting an interrupt, except that we only
58  *   consider a single interrupt at a time. The irq_spi_cpu array
59  *   contains the target CPU for each SPI.
60  *
61  * The handling of level interrupts adds some extra complexity. We
62  * need to track when the interrupt has been EOIed, so we can sample
63  * the 'line' again. This is achieved as such:
64  *
65  * - When a level interrupt is moved onto a vcpu, the corresponding
66  *   bit in irq_queued is set. As long as this bit is set, the line
67  *   will be ignored for further interrupts. The interrupt is injected
68  *   into the vcpu with the GICH_LR_EOI bit set (generate a
69  *   maintenance interrupt on EOI).
70  * - When the interrupt is EOIed, the maintenance interrupt fires,
71  *   and clears the corresponding bit in irq_queued. This allows the
72  *   interrupt line to be sampled again.
73  * - Note that level-triggered interrupts can also be set to pending from
74  *   writes to GICD_ISPENDRn and lowering the external input line does not
75  *   cause the interrupt to become inactive in such a situation.
76  *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77  *   inactive as long as the external input line is held high.
78  *
79  *
80  * Initialization rules: there are multiple stages to the vgic
81  * initialization, both for the distributor and the CPU interfaces.
82  *
83  * Distributor:
84  *
85  * - kvm_vgic_early_init(): initialization of static data that doesn't
86  *   depend on any sizing information or emulation type. No allocation
87  *   is allowed there.
88  *
89  * - vgic_init(): allocation and initialization of the generic data
90  *   structures that depend on sizing information (number of CPUs,
91  *   number of interrupts). Also initializes the vcpu specific data
92  *   structures. Can be executed lazily for GICv2.
93  *   [to be renamed to kvm_vgic_init??]
94  *
95  * CPU Interface:
96  *
97  * - kvm_vgic_cpu_early_init(): initialization of static data that
98  *   doesn't depend on any sizing information or emulation type. No
99  *   allocation is allowed there.
100  */
101
102 #include "vgic.h"
103
104 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
105 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
106 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
108 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
109                                                 int virt_irq);
110
111 static const struct vgic_ops *vgic_ops;
112 static const struct vgic_params *vgic;
113
114 static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
115 {
116         vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
117 }
118
119 static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
120 {
121         return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
122 }
123
124 int kvm_vgic_map_resources(struct kvm *kvm)
125 {
126         return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
127 }
128
129 /*
130  * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131  * extracts u32s out of them.
132  *
133  * This does not work on 64-bit BE systems, because the bitmap access
134  * will store two consecutive 32-bit words with the higher-addressed
135  * register's bits at the lower index and the lower-addressed register's
136  * bits at the higher index.
137  *
138  * Therefore, swizzle the register index when accessing the 32-bit word
139  * registers to access the right register's value.
140  */
141 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142 #define REG_OFFSET_SWIZZLE      1
143 #else
144 #define REG_OFFSET_SWIZZLE      0
145 #endif
146
147 static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
148 {
149         int nr_longs;
150
151         nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
152
153         b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
154         if (!b->private)
155                 return -ENOMEM;
156
157         b->shared = b->private + nr_cpus;
158
159         return 0;
160 }
161
162 static void vgic_free_bitmap(struct vgic_bitmap *b)
163 {
164         kfree(b->private);
165         b->private = NULL;
166         b->shared = NULL;
167 }
168
169 /*
170  * Call this function to convert a u64 value to an unsigned long * bitmask
171  * in a way that works on both 32-bit and 64-bit LE and BE platforms.
172  *
173  * Warning: Calling this function may modify *val.
174  */
175 static unsigned long *u64_to_bitmask(u64 *val)
176 {
177 #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178         *val = (*val >> 32) | (*val << 32);
179 #endif
180         return (unsigned long *)val;
181 }
182
183 u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
184 {
185         offset >>= 2;
186         if (!offset)
187                 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
188         else
189                 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
190 }
191
192 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
193                                    int cpuid, int irq)
194 {
195         if (irq < VGIC_NR_PRIVATE_IRQS)
196                 return test_bit(irq, x->private + cpuid);
197
198         return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
199 }
200
201 void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
202                              int irq, int val)
203 {
204         unsigned long *reg;
205
206         if (irq < VGIC_NR_PRIVATE_IRQS) {
207                 reg = x->private + cpuid;
208         } else {
209                 reg = x->shared;
210                 irq -= VGIC_NR_PRIVATE_IRQS;
211         }
212
213         if (val)
214                 set_bit(irq, reg);
215         else
216                 clear_bit(irq, reg);
217 }
218
219 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
220 {
221         return x->private + cpuid;
222 }
223
224 unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
225 {
226         return x->shared;
227 }
228
229 static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
230 {
231         int size;
232
233         size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234         size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
235
236         x->private = kzalloc(size, GFP_KERNEL);
237         if (!x->private)
238                 return -ENOMEM;
239
240         x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
241         return 0;
242 }
243
244 static void vgic_free_bytemap(struct vgic_bytemap *b)
245 {
246         kfree(b->private);
247         b->private = NULL;
248         b->shared = NULL;
249 }
250
251 u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
252 {
253         u32 *reg;
254
255         if (offset < VGIC_NR_PRIVATE_IRQS) {
256                 reg = x->private;
257                 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
258         } else {
259                 reg = x->shared;
260                 offset -= VGIC_NR_PRIVATE_IRQS;
261         }
262
263         return reg + (offset / sizeof(u32));
264 }
265
266 #define VGIC_CFG_LEVEL  0
267 #define VGIC_CFG_EDGE   1
268
269 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
270 {
271         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272         int irq_val;
273
274         irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275         return irq_val == VGIC_CFG_EDGE;
276 }
277
278 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
279 {
280         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
281
282         return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
283 }
284
285 static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
286 {
287         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
288
289         return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
290 }
291
292 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
293 {
294         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
295
296         return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
297 }
298
299 static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
300 {
301         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
302
303         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
304 }
305
306 static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
307 {
308         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
309
310         vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
311 }
312
313 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
314 {
315         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
316
317         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
318 }
319
320 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
321 {
322         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
323
324         vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
325 }
326
327 static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
328 {
329         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
330
331         return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
332 }
333
334 static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
335 {
336         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
337
338         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
339 }
340
341 static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
342 {
343         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
344
345         vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
346 }
347
348 static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
349 {
350         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
351
352         return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
353 }
354
355 static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
356 {
357         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
358
359         vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
360 }
361
362 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
363 {
364         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
365
366         return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
367 }
368
369 void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
370 {
371         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
372
373         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
374 }
375
376 void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
377 {
378         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
379
380         vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
381 }
382
383 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
384 {
385         if (irq < VGIC_NR_PRIVATE_IRQS)
386                 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
387         else
388                 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389                         vcpu->arch.vgic_cpu.pending_shared);
390 }
391
392 void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
393 {
394         if (irq < VGIC_NR_PRIVATE_IRQS)
395                 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
396         else
397                 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398                           vcpu->arch.vgic_cpu.pending_shared);
399 }
400
401 static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
402 {
403         return !vgic_irq_is_queued(vcpu, irq);
404 }
405
406 /**
407  * vgic_reg_access - access vgic register
408  * @mmio:   pointer to the data describing the mmio access
409  * @reg:    pointer to the virtual backing of vgic distributor data
410  * @offset: least significant 2 bits used for word offset
411  * @mode:   ACCESS_ mode (see defines above)
412  *
413  * Helper to make vgic register access easier using one of the access
414  * modes defined for vgic register access
415  * (read,raz,write-ignored,setbit,clearbit,write)
416  */
417 void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418                      phys_addr_t offset, int mode)
419 {
420         int word_offset = (offset & 3) * 8;
421         u32 mask = (1UL << (mmio->len * 8)) - 1;
422         u32 regval;
423
424         /*
425          * Any alignment fault should have been delivered to the guest
426          * directly (ARM ARM B3.12.7 "Prioritization of aborts").
427          */
428
429         if (reg) {
430                 regval = *reg;
431         } else {
432                 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
433                 regval = 0;
434         }
435
436         if (mmio->is_write) {
437                 u32 data = mmio_data_read(mmio, mask) << word_offset;
438                 switch (ACCESS_WRITE_MASK(mode)) {
439                 case ACCESS_WRITE_IGNORED:
440                         return;
441
442                 case ACCESS_WRITE_SETBIT:
443                         regval |= data;
444                         break;
445
446                 case ACCESS_WRITE_CLEARBIT:
447                         regval &= ~data;
448                         break;
449
450                 case ACCESS_WRITE_VALUE:
451                         regval = (regval & ~(mask << word_offset)) | data;
452                         break;
453                 }
454                 *reg = regval;
455         } else {
456                 switch (ACCESS_READ_MASK(mode)) {
457                 case ACCESS_READ_RAZ:
458                         regval = 0;
459                         /* fall through */
460
461                 case ACCESS_READ_VALUE:
462                         mmio_data_write(mmio, mask, regval >> word_offset);
463                 }
464         }
465 }
466
467 bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
468                         phys_addr_t offset)
469 {
470         vgic_reg_access(mmio, NULL, offset,
471                         ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
472         return false;
473 }
474
475 bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476                             phys_addr_t offset, int vcpu_id, int access)
477 {
478         u32 *reg;
479         int mode = ACCESS_READ_VALUE | access;
480         struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
481
482         reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483         vgic_reg_access(mmio, reg, offset, mode);
484         if (mmio->is_write) {
485                 if (access & ACCESS_WRITE_CLEARBIT) {
486                         if (offset < 4) /* Force SGI enabled */
487                                 *reg |= 0xffff;
488                         vgic_retire_disabled_irqs(target_vcpu);
489                 }
490                 vgic_update_state(kvm);
491                 return true;
492         }
493
494         return false;
495 }
496
497 bool vgic_handle_set_pending_reg(struct kvm *kvm,
498                                  struct kvm_exit_mmio *mmio,
499                                  phys_addr_t offset, int vcpu_id)
500 {
501         u32 *reg, orig;
502         u32 level_mask;
503         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504         struct vgic_dist *dist = &kvm->arch.vgic;
505
506         reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
507         level_mask = (~(*reg));
508
509         /* Mark both level and edge triggered irqs as pending */
510         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
511         orig = *reg;
512         vgic_reg_access(mmio, reg, offset, mode);
513
514         if (mmio->is_write) {
515                 /* Set the soft-pending flag only for level-triggered irqs */
516                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
517                                           vcpu_id, offset);
518                 vgic_reg_access(mmio, reg, offset, mode);
519                 *reg &= level_mask;
520
521                 /* Ignore writes to SGIs */
522                 if (offset < 2) {
523                         *reg &= ~0xffff;
524                         *reg |= orig & 0xffff;
525                 }
526
527                 vgic_update_state(kvm);
528                 return true;
529         }
530
531         return false;
532 }
533
534 bool vgic_handle_clear_pending_reg(struct kvm *kvm,
535                                    struct kvm_exit_mmio *mmio,
536                                    phys_addr_t offset, int vcpu_id)
537 {
538         u32 *level_active;
539         u32 *reg, orig;
540         int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
541         struct vgic_dist *dist = &kvm->arch.vgic;
542
543         reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
544         orig = *reg;
545         vgic_reg_access(mmio, reg, offset, mode);
546         if (mmio->is_write) {
547                 /* Re-set level triggered level-active interrupts */
548                 level_active = vgic_bitmap_get_reg(&dist->irq_level,
549                                           vcpu_id, offset);
550                 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
551                 *reg |= *level_active;
552
553                 /* Ignore writes to SGIs */
554                 if (offset < 2) {
555                         *reg &= ~0xffff;
556                         *reg |= orig & 0xffff;
557                 }
558
559                 /* Clear soft-pending flags */
560                 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
561                                           vcpu_id, offset);
562                 vgic_reg_access(mmio, reg, offset, mode);
563
564                 vgic_update_state(kvm);
565                 return true;
566         }
567         return false;
568 }
569
570 bool vgic_handle_set_active_reg(struct kvm *kvm,
571                                 struct kvm_exit_mmio *mmio,
572                                 phys_addr_t offset, int vcpu_id)
573 {
574         u32 *reg;
575         struct vgic_dist *dist = &kvm->arch.vgic;
576
577         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
578         vgic_reg_access(mmio, reg, offset,
579                         ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
580
581         if (mmio->is_write) {
582                 vgic_update_state(kvm);
583                 return true;
584         }
585
586         return false;
587 }
588
589 bool vgic_handle_clear_active_reg(struct kvm *kvm,
590                                   struct kvm_exit_mmio *mmio,
591                                   phys_addr_t offset, int vcpu_id)
592 {
593         u32 *reg;
594         struct vgic_dist *dist = &kvm->arch.vgic;
595
596         reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
597         vgic_reg_access(mmio, reg, offset,
598                         ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
599
600         if (mmio->is_write) {
601                 vgic_update_state(kvm);
602                 return true;
603         }
604
605         return false;
606 }
607
608 static u32 vgic_cfg_expand(u16 val)
609 {
610         u32 res = 0;
611         int i;
612
613         /*
614          * Turn a 16bit value like abcd...mnop into a 32bit word
615          * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
616          */
617         for (i = 0; i < 16; i++)
618                 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
619
620         return res;
621 }
622
623 static u16 vgic_cfg_compress(u32 val)
624 {
625         u16 res = 0;
626         int i;
627
628         /*
629          * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
630          * abcd...mnop which is what we really care about.
631          */
632         for (i = 0; i < 16; i++)
633                 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
634
635         return res;
636 }
637
638 /*
639  * The distributor uses 2 bits per IRQ for the CFG register, but the
640  * LSB is always 0. As such, we only keep the upper bit, and use the
641  * two above functions to compress/expand the bits
642  */
643 bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
644                          phys_addr_t offset)
645 {
646         u32 val;
647
648         if (offset & 4)
649                 val = *reg >> 16;
650         else
651                 val = *reg & 0xffff;
652
653         val = vgic_cfg_expand(val);
654         vgic_reg_access(mmio, &val, offset,
655                         ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
656         if (mmio->is_write) {
657                 if (offset < 8) {
658                         *reg = ~0U; /* Force PPIs/SGIs to 1 */
659                         return false;
660                 }
661
662                 val = vgic_cfg_compress(val);
663                 if (offset & 4) {
664                         *reg &= 0xffff;
665                         *reg |= val << 16;
666                 } else {
667                         *reg &= 0xffff << 16;
668                         *reg |= val;
669                 }
670         }
671
672         return false;
673 }
674
675 /**
676  * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
677  * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
678  *
679  * Move any IRQs that have already been assigned to LRs back to the
680  * emulated distributor state so that the complete emulated state can be read
681  * from the main emulation structures without investigating the LRs.
682  */
683 void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
684 {
685         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
686         int i;
687
688         for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
689                 struct vgic_lr lr = vgic_get_lr(vcpu, i);
690
691                 /*
692                  * There are three options for the state bits:
693                  *
694                  * 01: pending
695                  * 10: active
696                  * 11: pending and active
697                  */
698                 BUG_ON(!(lr.state & LR_STATE_MASK));
699
700                 /* Reestablish SGI source for pending and active IRQs */
701                 if (lr.irq < VGIC_NR_SGIS)
702                         add_sgi_source(vcpu, lr.irq, lr.source);
703
704                 /*
705                  * If the LR holds an active (10) or a pending and active (11)
706                  * interrupt then move the active state to the
707                  * distributor tracking bit.
708                  */
709                 if (lr.state & LR_STATE_ACTIVE) {
710                         vgic_irq_set_active(vcpu, lr.irq);
711                         lr.state &= ~LR_STATE_ACTIVE;
712                 }
713
714                 /*
715                  * Reestablish the pending state on the distributor and the
716                  * CPU interface.  It may have already been pending, but that
717                  * is fine, then we are only setting a few bits that were
718                  * already set.
719                  */
720                 if (lr.state & LR_STATE_PENDING) {
721                         vgic_dist_irq_set_pending(vcpu, lr.irq);
722                         lr.state &= ~LR_STATE_PENDING;
723                 }
724
725                 vgic_set_lr(vcpu, i, lr);
726
727                 /*
728                  * Mark the LR as free for other use.
729                  */
730                 BUG_ON(lr.state & LR_STATE_MASK);
731                 vgic_retire_lr(i, lr.irq, vcpu);
732                 vgic_irq_clear_queued(vcpu, lr.irq);
733
734                 /* Finally update the VGIC state. */
735                 vgic_update_state(vcpu->kvm);
736         }
737 }
738
739 const
740 struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
741                                       int len, gpa_t offset)
742 {
743         while (ranges->len) {
744                 if (offset >= ranges->base &&
745                     (offset + len) <= (ranges->base + ranges->len))
746                         return ranges;
747                 ranges++;
748         }
749
750         return NULL;
751 }
752
753 static bool vgic_validate_access(const struct vgic_dist *dist,
754                                  const struct vgic_io_range *range,
755                                  unsigned long offset)
756 {
757         int irq;
758
759         if (!range->bits_per_irq)
760                 return true;    /* Not an irq-based access */
761
762         irq = offset * 8 / range->bits_per_irq;
763         if (irq >= dist->nr_irqs)
764                 return false;
765
766         return true;
767 }
768
769 /*
770  * Call the respective handler function for the given range.
771  * We split up any 64 bit accesses into two consecutive 32 bit
772  * handler calls and merge the result afterwards.
773  * We do this in a little endian fashion regardless of the host's
774  * or guest's endianness, because the GIC is always LE and the rest of
775  * the code (vgic_reg_access) also puts it in a LE fashion already.
776  * At this point we have already identified the handle function, so
777  * range points to that one entry and offset is relative to this.
778  */
779 static bool call_range_handler(struct kvm_vcpu *vcpu,
780                                struct kvm_exit_mmio *mmio,
781                                unsigned long offset,
782                                const struct vgic_io_range *range)
783 {
784         struct kvm_exit_mmio mmio32;
785         bool ret;
786
787         if (likely(mmio->len <= 4))
788                 return range->handle_mmio(vcpu, mmio, offset);
789
790         /*
791          * Any access bigger than 4 bytes (that we currently handle in KVM)
792          * is actually 8 bytes long, caused by a 64-bit access
793          */
794
795         mmio32.len = 4;
796         mmio32.is_write = mmio->is_write;
797         mmio32.private = mmio->private;
798
799         mmio32.phys_addr = mmio->phys_addr + 4;
800         mmio32.data = &((u32 *)mmio->data)[1];
801         ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
802
803         mmio32.phys_addr = mmio->phys_addr;
804         mmio32.data = &((u32 *)mmio->data)[0];
805         ret |= range->handle_mmio(vcpu, &mmio32, offset);
806
807         return ret;
808 }
809
810 /**
811  * vgic_handle_mmio_access - handle an in-kernel MMIO access
812  * This is called by the read/write KVM IO device wrappers below.
813  * @vcpu:       pointer to the vcpu performing the access
814  * @this:       pointer to the KVM IO device in charge
815  * @addr:       guest physical address of the access
816  * @len:        size of the access
817  * @val:        pointer to the data region
818  * @is_write:   read or write access
819  *
820  * returns true if the MMIO access could be performed
821  */
822 static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
823                                    struct kvm_io_device *this, gpa_t addr,
824                                    int len, void *val, bool is_write)
825 {
826         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
827         struct vgic_io_device *iodev = container_of(this,
828                                                     struct vgic_io_device, dev);
829         struct kvm_run *run = vcpu->run;
830         const struct vgic_io_range *range;
831         struct kvm_exit_mmio mmio;
832         bool updated_state;
833         gpa_t offset;
834
835         offset = addr - iodev->addr;
836         range = vgic_find_range(iodev->reg_ranges, len, offset);
837         if (unlikely(!range || !range->handle_mmio)) {
838                 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
839                 return -ENXIO;
840         }
841
842         mmio.phys_addr = addr;
843         mmio.len = len;
844         mmio.is_write = is_write;
845         mmio.data = val;
846         mmio.private = iodev->redist_vcpu;
847
848         spin_lock(&dist->lock);
849         offset -= range->base;
850         if (vgic_validate_access(dist, range, offset)) {
851                 updated_state = call_range_handler(vcpu, &mmio, offset, range);
852         } else {
853                 if (!is_write)
854                         memset(val, 0, len);
855                 updated_state = false;
856         }
857         spin_unlock(&dist->lock);
858         run->mmio.is_write      = is_write;
859         run->mmio.len           = len;
860         run->mmio.phys_addr     = addr;
861         memcpy(run->mmio.data, val, len);
862
863         kvm_handle_mmio_return(vcpu, run);
864
865         if (updated_state)
866                 vgic_kick_vcpus(vcpu->kvm);
867
868         return 0;
869 }
870
871 static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
872                                  struct kvm_io_device *this,
873                                  gpa_t addr, int len, void *val)
874 {
875         return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
876 }
877
878 static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
879                                   struct kvm_io_device *this,
880                                   gpa_t addr, int len, const void *val)
881 {
882         return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
883                                        true);
884 }
885
886 struct kvm_io_device_ops vgic_io_ops = {
887         .read   = vgic_handle_mmio_read,
888         .write  = vgic_handle_mmio_write,
889 };
890
891 /**
892  * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
893  * @kvm:            The VM structure pointer
894  * @base:           The (guest) base address for the register frame
895  * @len:            Length of the register frame window
896  * @ranges:         Describing the handler functions for each register
897  * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
898  * @iodev:          Points to memory to be passed on to the handler
899  *
900  * @iodev stores the parameters of this function to be usable by the handler
901  * respectively the dispatcher function (since the KVM I/O bus framework lacks
902  * an opaque parameter). Initialization is done in this function, but the
903  * reference should be valid and unique for the whole VGIC lifetime.
904  * If the register frame is not mapped for a specific VCPU, pass -1 to
905  * @redist_vcpu_id.
906  */
907 int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
908                              const struct vgic_io_range *ranges,
909                              int redist_vcpu_id,
910                              struct vgic_io_device *iodev)
911 {
912         struct kvm_vcpu *vcpu = NULL;
913         int ret;
914
915         if (redist_vcpu_id >= 0)
916                 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
917
918         iodev->addr             = base;
919         iodev->len              = len;
920         iodev->reg_ranges       = ranges;
921         iodev->redist_vcpu      = vcpu;
922
923         kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
924
925         mutex_lock(&kvm->slots_lock);
926
927         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
928                                       &iodev->dev);
929         mutex_unlock(&kvm->slots_lock);
930
931         /* Mark the iodev as invalid if registration fails. */
932         if (ret)
933                 iodev->dev.ops = NULL;
934
935         return ret;
936 }
937
938 static int vgic_nr_shared_irqs(struct vgic_dist *dist)
939 {
940         return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
941 }
942
943 static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
944 {
945         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
946         unsigned long *active, *enabled, *act_percpu, *act_shared;
947         unsigned long active_private, active_shared;
948         int nr_shared = vgic_nr_shared_irqs(dist);
949         int vcpu_id;
950
951         vcpu_id = vcpu->vcpu_id;
952         act_percpu = vcpu->arch.vgic_cpu.active_percpu;
953         act_shared = vcpu->arch.vgic_cpu.active_shared;
954
955         active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
956         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
957         bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
958
959         active = vgic_bitmap_get_shared_map(&dist->irq_active);
960         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
961         bitmap_and(act_shared, active, enabled, nr_shared);
962         bitmap_and(act_shared, act_shared,
963                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
964                    nr_shared);
965
966         active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
967         active_shared = find_first_bit(act_shared, nr_shared);
968
969         return (active_private < VGIC_NR_PRIVATE_IRQS ||
970                 active_shared < nr_shared);
971 }
972
973 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
974 {
975         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976         unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
977         unsigned long pending_private, pending_shared;
978         int nr_shared = vgic_nr_shared_irqs(dist);
979         int vcpu_id;
980
981         vcpu_id = vcpu->vcpu_id;
982         pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
983         pend_shared = vcpu->arch.vgic_cpu.pending_shared;
984
985         pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
986         enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987         bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
988
989         pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
990         enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
991         bitmap_and(pend_shared, pending, enabled, nr_shared);
992         bitmap_and(pend_shared, pend_shared,
993                    vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
994                    nr_shared);
995
996         pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
997         pending_shared = find_first_bit(pend_shared, nr_shared);
998         return (pending_private < VGIC_NR_PRIVATE_IRQS ||
999                 pending_shared < vgic_nr_shared_irqs(dist));
1000 }
1001
1002 /*
1003  * Update the interrupt state and determine which CPUs have pending
1004  * or active interrupts. Must be called with distributor lock held.
1005  */
1006 void vgic_update_state(struct kvm *kvm)
1007 {
1008         struct vgic_dist *dist = &kvm->arch.vgic;
1009         struct kvm_vcpu *vcpu;
1010         int c;
1011
1012         if (!dist->enabled) {
1013                 set_bit(0, dist->irq_pending_on_cpu);
1014                 return;
1015         }
1016
1017         kvm_for_each_vcpu(c, vcpu, kvm) {
1018                 if (compute_pending_for_cpu(vcpu))
1019                         set_bit(c, dist->irq_pending_on_cpu);
1020
1021                 if (compute_active_for_cpu(vcpu))
1022                         set_bit(c, dist->irq_active_on_cpu);
1023                 else
1024                         clear_bit(c, dist->irq_active_on_cpu);
1025         }
1026 }
1027
1028 static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1029 {
1030         return vgic_ops->get_lr(vcpu, lr);
1031 }
1032
1033 static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1034                                struct vgic_lr vlr)
1035 {
1036         vgic_ops->set_lr(vcpu, lr, vlr);
1037 }
1038
1039 static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1040                                struct vgic_lr vlr)
1041 {
1042         vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1043 }
1044
1045 static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1046 {
1047         return vgic_ops->get_elrsr(vcpu);
1048 }
1049
1050 static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1051 {
1052         return vgic_ops->get_eisr(vcpu);
1053 }
1054
1055 static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1056 {
1057         vgic_ops->clear_eisr(vcpu);
1058 }
1059
1060 static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1061 {
1062         return vgic_ops->get_interrupt_status(vcpu);
1063 }
1064
1065 static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1066 {
1067         vgic_ops->enable_underflow(vcpu);
1068 }
1069
1070 static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1071 {
1072         vgic_ops->disable_underflow(vcpu);
1073 }
1074
1075 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1076 {
1077         vgic_ops->get_vmcr(vcpu, vmcr);
1078 }
1079
1080 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1081 {
1082         vgic_ops->set_vmcr(vcpu, vmcr);
1083 }
1084
1085 static inline void vgic_enable(struct kvm_vcpu *vcpu)
1086 {
1087         vgic_ops->enable(vcpu);
1088 }
1089
1090 static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1091 {
1092         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1093         struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1094
1095         vlr.state = 0;
1096         vgic_set_lr(vcpu, lr_nr, vlr);
1097         clear_bit(lr_nr, vgic_cpu->lr_used);
1098         vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1099         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1100 }
1101
1102 /*
1103  * An interrupt may have been disabled after being made pending on the
1104  * CPU interface (the classic case is a timer running while we're
1105  * rebooting the guest - the interrupt would kick as soon as the CPU
1106  * interface gets enabled, with deadly consequences).
1107  *
1108  * The solution is to examine already active LRs, and check the
1109  * interrupt is still enabled. If not, just retire it.
1110  */
1111 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1112 {
1113         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1114         int lr;
1115
1116         for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1117                 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1118
1119                 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1120                         vgic_retire_lr(lr, vlr.irq, vcpu);
1121                         if (vgic_irq_is_queued(vcpu, vlr.irq))
1122                                 vgic_irq_clear_queued(vcpu, vlr.irq);
1123                 }
1124         }
1125 }
1126
1127 static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1128                                  int lr_nr, struct vgic_lr vlr)
1129 {
1130         if (vgic_irq_is_active(vcpu, irq)) {
1131                 vlr.state |= LR_STATE_ACTIVE;
1132                 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1133                 vgic_irq_clear_active(vcpu, irq);
1134                 vgic_update_state(vcpu->kvm);
1135         } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
1136                 vlr.state |= LR_STATE_PENDING;
1137                 kvm_debug("Set pending: 0x%x\n", vlr.state);
1138         }
1139
1140         if (!vgic_irq_is_edge(vcpu, irq))
1141                 vlr.state |= LR_EOI_INT;
1142
1143         if (vlr.irq >= VGIC_NR_SGIS) {
1144                 struct irq_phys_map *map;
1145                 map = vgic_irq_map_search(vcpu, irq);
1146
1147                 if (map) {
1148                         vlr.hwirq = map->phys_irq;
1149                         vlr.state |= LR_HW;
1150                         vlr.state &= ~LR_EOI_INT;
1151
1152                         /*
1153                          * Make sure we're not going to sample this
1154                          * again, as a HW-backed interrupt cannot be
1155                          * in the PENDING_ACTIVE stage.
1156                          */
1157                         vgic_irq_set_queued(vcpu, irq);
1158                 }
1159         }
1160
1161         vgic_set_lr(vcpu, lr_nr, vlr);
1162         vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
1163 }
1164
1165 /*
1166  * Queue an interrupt to a CPU virtual interface. Return true on success,
1167  * or false if it wasn't possible to queue it.
1168  * sgi_source must be zero for any non-SGI interrupts.
1169  */
1170 bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1171 {
1172         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1173         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1174         struct vgic_lr vlr;
1175         int lr;
1176
1177         /* Sanitize the input... */
1178         BUG_ON(sgi_source_id & ~7);
1179         BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1180         BUG_ON(irq >= dist->nr_irqs);
1181
1182         kvm_debug("Queue IRQ%d\n", irq);
1183
1184         lr = vgic_cpu->vgic_irq_lr_map[irq];
1185
1186         /* Do we have an active interrupt for the same CPUID? */
1187         if (lr != LR_EMPTY) {
1188                 vlr = vgic_get_lr(vcpu, lr);
1189                 if (vlr.source == sgi_source_id) {
1190                         kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1191                         BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1192                         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1193                         return true;
1194                 }
1195         }
1196
1197         /* Try to use another LR for this interrupt */
1198         lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1199                                vgic->nr_lr);
1200         if (lr >= vgic->nr_lr)
1201                 return false;
1202
1203         kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1204         vgic_cpu->vgic_irq_lr_map[irq] = lr;
1205         set_bit(lr, vgic_cpu->lr_used);
1206
1207         vlr.irq = irq;
1208         vlr.source = sgi_source_id;
1209         vlr.state = 0;
1210         vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
1211
1212         return true;
1213 }
1214
1215 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1216 {
1217         if (!vgic_can_sample_irq(vcpu, irq))
1218                 return true; /* level interrupt, already queued */
1219
1220         if (vgic_queue_irq(vcpu, 0, irq)) {
1221                 if (vgic_irq_is_edge(vcpu, irq)) {
1222                         vgic_dist_irq_clear_pending(vcpu, irq);
1223                         vgic_cpu_irq_clear(vcpu, irq);
1224                 } else {
1225                         vgic_irq_set_queued(vcpu, irq);
1226                 }
1227
1228                 return true;
1229         }
1230
1231         return false;
1232 }
1233
1234 /*
1235  * Fill the list registers with pending interrupts before running the
1236  * guest.
1237  */
1238 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1239 {
1240         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1241         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1242         unsigned long *pa_percpu, *pa_shared;
1243         int i, vcpu_id, lr, ret;
1244         int overflow = 0;
1245         int nr_shared = vgic_nr_shared_irqs(dist);
1246
1247         vcpu_id = vcpu->vcpu_id;
1248
1249         pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1250         pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1251
1252         bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1253                   VGIC_NR_PRIVATE_IRQS);
1254         bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1255                   nr_shared);
1256         /*
1257          * We may not have any pending interrupt, or the interrupts
1258          * may have been serviced from another vcpu. In all cases,
1259          * move along.
1260          */
1261         if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
1262                 goto epilog;
1263
1264         /* SGIs */
1265         for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
1266                 if (!queue_sgi(vcpu, i))
1267                         overflow = 1;
1268         }
1269
1270         /* PPIs */
1271         for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
1272                 if (!vgic_queue_hwirq(vcpu, i))
1273                         overflow = 1;
1274         }
1275
1276         /* SPIs */
1277         for_each_set_bit(i, pa_shared, nr_shared) {
1278                 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1279                         overflow = 1;
1280         }
1281
1282
1283
1284
1285 epilog:
1286         if (overflow) {
1287                 vgic_enable_underflow(vcpu);
1288         } else {
1289                 vgic_disable_underflow(vcpu);
1290                 /*
1291                  * We're about to run this VCPU, and we've consumed
1292                  * everything the distributor had in store for
1293                  * us. Claim we don't have anything pending. We'll
1294                  * adjust that if needed while exiting.
1295                  */
1296                 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1297         }
1298
1299         for (lr = 0; lr < vgic->nr_lr; lr++) {
1300                 struct vgic_lr vlr;
1301
1302                 if (!test_bit(lr, vgic_cpu->lr_used))
1303                         continue;
1304
1305                 vlr = vgic_get_lr(vcpu, lr);
1306
1307                 /*
1308                  * If we have a mapping, and the virtual interrupt is
1309                  * presented to the guest (as pending or active), then we must
1310                  * set the state to active in the physical world. See
1311                  * Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt.
1312                  */
1313                 if (vlr.state & LR_HW) {
1314                         struct irq_phys_map *map;
1315                         map = vgic_irq_map_search(vcpu, vlr.irq);
1316
1317                         ret = irq_set_irqchip_state(map->irq,
1318                                                     IRQCHIP_STATE_ACTIVE,
1319                                                     true);
1320                         WARN_ON(ret);
1321                 }
1322         }
1323 }
1324
1325 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1326 {
1327         u32 status = vgic_get_interrupt_status(vcpu);
1328         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1329         bool level_pending = false;
1330         struct kvm *kvm = vcpu->kvm;
1331
1332         kvm_debug("STATUS = %08x\n", status);
1333
1334         if (status & INT_STATUS_EOI) {
1335                 /*
1336                  * Some level interrupts have been EOIed. Clear their
1337                  * active bit.
1338                  */
1339                 u64 eisr = vgic_get_eisr(vcpu);
1340                 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
1341                 int lr;
1342
1343                 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1344                         struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1345                         WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1346
1347                         spin_lock(&dist->lock);
1348                         vgic_irq_clear_queued(vcpu, vlr.irq);
1349                         WARN_ON(vlr.state & LR_STATE_MASK);
1350                         vlr.state = 0;
1351                         vgic_set_lr(vcpu, lr, vlr);
1352
1353                         /*
1354                          * If the IRQ was EOIed it was also ACKed and we we
1355                          * therefore assume we can clear the soft pending
1356                          * state (should it had been set) for this interrupt.
1357                          *
1358                          * Note: if the IRQ soft pending state was set after
1359                          * the IRQ was acked, it actually shouldn't be
1360                          * cleared, but we have no way of knowing that unless
1361                          * we start trapping ACKs when the soft-pending state
1362                          * is set.
1363                          */
1364                         vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1365
1366                         /*
1367                          * kvm_notify_acked_irq calls kvm_set_irq()
1368                          * to reset the IRQ level. Need to release the
1369                          * lock for kvm_set_irq to grab it.
1370                          */
1371                         spin_unlock(&dist->lock);
1372
1373                         kvm_notify_acked_irq(kvm, 0,
1374                                              vlr.irq - VGIC_NR_PRIVATE_IRQS);
1375                         spin_lock(&dist->lock);
1376
1377                         /* Any additional pending interrupt? */
1378                         if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1379                                 vgic_cpu_irq_set(vcpu, vlr.irq);
1380                                 level_pending = true;
1381                         } else {
1382                                 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1383                                 vgic_cpu_irq_clear(vcpu, vlr.irq);
1384                         }
1385
1386                         spin_unlock(&dist->lock);
1387
1388                         /*
1389                          * Despite being EOIed, the LR may not have
1390                          * been marked as empty.
1391                          */
1392                         vgic_sync_lr_elrsr(vcpu, lr, vlr);
1393                 }
1394         }
1395
1396         if (status & INT_STATUS_UNDERFLOW)
1397                 vgic_disable_underflow(vcpu);
1398
1399         /*
1400          * In the next iterations of the vcpu loop, if we sync the vgic state
1401          * after flushing it, but before entering the guest (this happens for
1402          * pending signals and vmid rollovers), then make sure we don't pick
1403          * up any old maintenance interrupts here.
1404          */
1405         vgic_clear_eisr(vcpu);
1406
1407         return level_pending;
1408 }
1409
1410 /*
1411  * Save the physical active state, and reset it to inactive.
1412  *
1413  * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1414  */
1415 static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1416 {
1417         struct irq_phys_map *map;
1418         int ret;
1419
1420         if (!(vlr.state & LR_HW))
1421                 return 0;
1422
1423         map = vgic_irq_map_search(vcpu, vlr.irq);
1424         BUG_ON(!map || !map->active);
1425
1426         ret = irq_get_irqchip_state(map->irq,
1427                                     IRQCHIP_STATE_ACTIVE,
1428                                     &map->active);
1429
1430         WARN_ON(ret);
1431
1432         if (map->active) {
1433                 ret = irq_set_irqchip_state(map->irq,
1434                                             IRQCHIP_STATE_ACTIVE,
1435                                             false);
1436                 WARN_ON(ret);
1437                 return 0;
1438         }
1439
1440         return 1;
1441 }
1442
1443 /* Sync back the VGIC state after a guest run */
1444 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1445 {
1446         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1447         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1448         u64 elrsr;
1449         unsigned long *elrsr_ptr;
1450         int lr, pending;
1451         bool level_pending;
1452
1453         level_pending = vgic_process_maintenance(vcpu);
1454         elrsr = vgic_get_elrsr(vcpu);
1455         elrsr_ptr = u64_to_bitmask(&elrsr);
1456
1457         /* Deal with HW interrupts, and clear mappings for empty LRs */
1458         for (lr = 0; lr < vgic->nr_lr; lr++) {
1459                 struct vgic_lr vlr;
1460
1461                 if (!test_bit(lr, vgic_cpu->lr_used))
1462                         continue;
1463
1464                 vlr = vgic_get_lr(vcpu, lr);
1465                 if (vgic_sync_hwirq(vcpu, vlr)) {
1466                         /*
1467                          * So this is a HW interrupt that the guest
1468                          * EOI-ed. Clean the LR state and allow the
1469                          * interrupt to be sampled again.
1470                          */
1471                         vlr.state = 0;
1472                         vlr.hwirq = 0;
1473                         vgic_set_lr(vcpu, lr, vlr);
1474                         vgic_irq_clear_queued(vcpu, vlr.irq);
1475                         set_bit(lr, elrsr_ptr);
1476                 }
1477
1478                 if (!test_bit(lr, elrsr_ptr))
1479                         continue;
1480
1481                 clear_bit(lr, vgic_cpu->lr_used);
1482
1483                 BUG_ON(vlr.irq >= dist->nr_irqs);
1484                 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1485         }
1486
1487         /* Check if we still have something up our sleeve... */
1488         pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1489         if (level_pending || pending < vgic->nr_lr)
1490                 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1491 }
1492
1493 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1494 {
1495         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1496
1497         if (!irqchip_in_kernel(vcpu->kvm))
1498                 return;
1499
1500         spin_lock(&dist->lock);
1501         __kvm_vgic_flush_hwstate(vcpu);
1502         spin_unlock(&dist->lock);
1503 }
1504
1505 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1506 {
1507         if (!irqchip_in_kernel(vcpu->kvm))
1508                 return;
1509
1510         __kvm_vgic_sync_hwstate(vcpu);
1511 }
1512
1513 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1514 {
1515         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1516
1517         if (!irqchip_in_kernel(vcpu->kvm))
1518                 return 0;
1519
1520         return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1521 }
1522
1523 int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1524 {
1525         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1526
1527         if (!irqchip_in_kernel(vcpu->kvm))
1528                 return 0;
1529
1530         return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1531 }
1532
1533
1534 void vgic_kick_vcpus(struct kvm *kvm)
1535 {
1536         struct kvm_vcpu *vcpu;
1537         int c;
1538
1539         /*
1540          * We've injected an interrupt, time to find out who deserves
1541          * a good kick...
1542          */
1543         kvm_for_each_vcpu(c, vcpu, kvm) {
1544                 if (kvm_vgic_vcpu_pending_irq(vcpu))
1545                         kvm_vcpu_kick(vcpu);
1546         }
1547 }
1548
1549 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1550 {
1551         int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1552
1553         /*
1554          * Only inject an interrupt if:
1555          * - edge triggered and we have a rising edge
1556          * - level triggered and we change level
1557          */
1558         if (edge_triggered) {
1559                 int state = vgic_dist_irq_is_pending(vcpu, irq);
1560                 return level > state;
1561         } else {
1562                 int state = vgic_dist_irq_get_level(vcpu, irq);
1563                 return level != state;
1564         }
1565 }
1566
1567 static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1568                                    struct irq_phys_map *map,
1569                                    unsigned int irq_num, bool level)
1570 {
1571         struct vgic_dist *dist = &kvm->arch.vgic;
1572         struct kvm_vcpu *vcpu;
1573         int edge_triggered, level_triggered;
1574         int enabled;
1575         bool ret = true, can_inject = true;
1576
1577         if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1578                 return -EINVAL;
1579
1580         spin_lock(&dist->lock);
1581
1582         vcpu = kvm_get_vcpu(kvm, cpuid);
1583         edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1584         level_triggered = !edge_triggered;
1585
1586         if (!vgic_validate_injection(vcpu, irq_num, level)) {
1587                 ret = false;
1588                 goto out;
1589         }
1590
1591         if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1592                 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1593                 if (cpuid == VCPU_NOT_ALLOCATED) {
1594                         /* Pretend we use CPU0, and prevent injection */
1595                         cpuid = 0;
1596                         can_inject = false;
1597                 }
1598                 vcpu = kvm_get_vcpu(kvm, cpuid);
1599         }
1600
1601         kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1602
1603         if (level) {
1604                 if (level_triggered)
1605                         vgic_dist_irq_set_level(vcpu, irq_num);
1606                 vgic_dist_irq_set_pending(vcpu, irq_num);
1607         } else {
1608                 if (level_triggered) {
1609                         vgic_dist_irq_clear_level(vcpu, irq_num);
1610                         if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1611                                 vgic_dist_irq_clear_pending(vcpu, irq_num);
1612                 }
1613
1614                 ret = false;
1615                 goto out;
1616         }
1617
1618         enabled = vgic_irq_is_enabled(vcpu, irq_num);
1619
1620         if (!enabled || !can_inject) {
1621                 ret = false;
1622                 goto out;
1623         }
1624
1625         if (!vgic_can_sample_irq(vcpu, irq_num)) {
1626                 /*
1627                  * Level interrupt in progress, will be picked up
1628                  * when EOId.
1629                  */
1630                 ret = false;
1631                 goto out;
1632         }
1633
1634         if (level) {
1635                 vgic_cpu_irq_set(vcpu, irq_num);
1636                 set_bit(cpuid, dist->irq_pending_on_cpu);
1637         }
1638
1639 out:
1640         spin_unlock(&dist->lock);
1641
1642         if (ret) {
1643                 /* kick the specified vcpu */
1644                 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1645         }
1646
1647         return 0;
1648 }
1649
1650 static int vgic_lazy_init(struct kvm *kvm)
1651 {
1652         int ret = 0;
1653
1654         if (unlikely(!vgic_initialized(kvm))) {
1655                 /*
1656                  * We only provide the automatic initialization of the VGIC
1657                  * for the legacy case of a GICv2. Any other type must
1658                  * be explicitly initialized once setup with the respective
1659                  * KVM device call.
1660                  */
1661                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1662                         return -EBUSY;
1663
1664                 mutex_lock(&kvm->lock);
1665                 ret = vgic_init(kvm);
1666                 mutex_unlock(&kvm->lock);
1667         }
1668
1669         return ret;
1670 }
1671
1672 /**
1673  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1674  * @kvm:     The VM structure pointer
1675  * @cpuid:   The CPU for PPIs
1676  * @irq_num: The IRQ number that is assigned to the device. This IRQ
1677  *           must not be mapped to a HW interrupt.
1678  * @level:   Edge-triggered:  true:  to trigger the interrupt
1679  *                            false: to ignore the call
1680  *           Level-sensitive  true:  raise the input signal
1681  *                            false: lower the input signal
1682  *
1683  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1684  * level-sensitive interrupts.  You can think of the level parameter as 1
1685  * being HIGH and 0 being LOW and all devices being active-HIGH.
1686  */
1687 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1688                         bool level)
1689 {
1690         struct irq_phys_map *map;
1691         int ret;
1692
1693         ret = vgic_lazy_init(kvm);
1694         if (ret)
1695                 return ret;
1696
1697         map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1698         if (map)
1699                 return -EINVAL;
1700
1701         return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1702 }
1703
1704 /**
1705  * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1706  * @kvm:     The VM structure pointer
1707  * @cpuid:   The CPU for PPIs
1708  * @map:     Pointer to a irq_phys_map structure describing the mapping
1709  * @level:   Edge-triggered:  true:  to trigger the interrupt
1710  *                            false: to ignore the call
1711  *           Level-sensitive  true:  raise the input signal
1712  *                            false: lower the input signal
1713  *
1714  * The GIC is not concerned with devices being active-LOW or active-HIGH for
1715  * level-sensitive interrupts.  You can think of the level parameter as 1
1716  * being HIGH and 0 being LOW and all devices being active-HIGH.
1717  */
1718 int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1719                                struct irq_phys_map *map, bool level)
1720 {
1721         int ret;
1722
1723         ret = vgic_lazy_init(kvm);
1724         if (ret)
1725                 return ret;
1726
1727         return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
1728 }
1729
1730 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1731 {
1732         /*
1733          * We cannot rely on the vgic maintenance interrupt to be
1734          * delivered synchronously. This means we can only use it to
1735          * exit the VM, and we perform the handling of EOIed
1736          * interrupts on the exit path (see vgic_process_maintenance).
1737          */
1738         return IRQ_HANDLED;
1739 }
1740
1741 static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1742                                                     int virt_irq)
1743 {
1744         if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1745                 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1746         else
1747                 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1748 }
1749
1750 /**
1751  * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1752  * @vcpu: The VCPU pointer
1753  * @virt_irq: The virtual irq number
1754  * @irq: The Linux IRQ number
1755  *
1756  * Establish a mapping between a guest visible irq (@virt_irq) and a
1757  * Linux irq (@irq). On injection, @virt_irq will be associated with
1758  * the physical interrupt represented by @irq. This mapping can be
1759  * established multiple times as long as the parameters are the same.
1760  *
1761  * Returns a valid pointer on success, and an error pointer otherwise
1762  */
1763 struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1764                                            int virt_irq, int irq)
1765 {
1766         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1767         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1768         struct irq_phys_map *map;
1769         struct irq_phys_map_entry *entry;
1770         struct irq_desc *desc;
1771         struct irq_data *data;
1772         int phys_irq;
1773
1774         desc = irq_to_desc(irq);
1775         if (!desc) {
1776                 kvm_err("%s: no interrupt descriptor\n", __func__);
1777                 return ERR_PTR(-EINVAL);
1778         }
1779
1780         data = irq_desc_get_irq_data(desc);
1781         while (data->parent_data)
1782                 data = data->parent_data;
1783
1784         phys_irq = data->hwirq;
1785
1786         /* Create a new mapping */
1787         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1788         if (!entry)
1789                 return ERR_PTR(-ENOMEM);
1790
1791         spin_lock(&dist->irq_phys_map_lock);
1792
1793         /* Try to match an existing mapping */
1794         map = vgic_irq_map_search(vcpu, virt_irq);
1795         if (map) {
1796                 /* Make sure this mapping matches */
1797                 if (map->phys_irq != phys_irq   ||
1798                     map->irq      != irq)
1799                         map = ERR_PTR(-EINVAL);
1800
1801                 /* Found an existing, valid mapping */
1802                 goto out;
1803         }
1804
1805         map           = &entry->map;
1806         map->virt_irq = virt_irq;
1807         map->phys_irq = phys_irq;
1808         map->irq      = irq;
1809
1810         list_add_tail_rcu(&entry->entry, root);
1811
1812 out:
1813         spin_unlock(&dist->irq_phys_map_lock);
1814         /* If we've found a hit in the existing list, free the useless
1815          * entry */
1816         if (IS_ERR(map) || map != &entry->map)
1817                 kfree(entry);
1818         return map;
1819 }
1820
1821 static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1822                                                 int virt_irq)
1823 {
1824         struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1825         struct irq_phys_map_entry *entry;
1826         struct irq_phys_map *map;
1827
1828         rcu_read_lock();
1829
1830         list_for_each_entry_rcu(entry, root, entry) {
1831                 map = &entry->map;
1832                 if (map->virt_irq == virt_irq) {
1833                         rcu_read_unlock();
1834                         return map;
1835                 }
1836         }
1837
1838         rcu_read_unlock();
1839
1840         return NULL;
1841 }
1842
1843 static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1844 {
1845         struct irq_phys_map_entry *entry;
1846
1847         entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1848         kfree(entry);
1849 }
1850
1851 /**
1852  * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1853  *
1854  * Return the logical active state of a mapped interrupt. This doesn't
1855  * necessarily reflects the current HW state.
1856  */
1857 bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1858 {
1859         BUG_ON(!map);
1860         return map->active;
1861 }
1862
1863 /**
1864  * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1865  *
1866  * Set the logical active state of a mapped interrupt. This doesn't
1867  * immediately affects the HW state.
1868  */
1869 void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1870 {
1871         BUG_ON(!map);
1872         map->active = active;
1873 }
1874
1875 /**
1876  * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1877  * @vcpu: The VCPU pointer
1878  * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1879  *
1880  * Remove an existing mapping between virtual and physical interrupts.
1881  */
1882 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1883 {
1884         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1885         struct irq_phys_map_entry *entry;
1886         struct list_head *root;
1887
1888         if (!map)
1889                 return -EINVAL;
1890
1891         root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1892
1893         spin_lock(&dist->irq_phys_map_lock);
1894
1895         list_for_each_entry(entry, root, entry) {
1896                 if (&entry->map == map) {
1897                         list_del_rcu(&entry->entry);
1898                         call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1899                         break;
1900                 }
1901         }
1902
1903         spin_unlock(&dist->irq_phys_map_lock);
1904
1905         return 0;
1906 }
1907
1908 static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1909 {
1910         struct vgic_dist *dist = &kvm->arch.vgic;
1911         struct irq_phys_map_entry *entry;
1912
1913         spin_lock(&dist->irq_phys_map_lock);
1914
1915         list_for_each_entry(entry, root, entry) {
1916                 list_del_rcu(&entry->entry);
1917                 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1918         }
1919
1920         spin_unlock(&dist->irq_phys_map_lock);
1921 }
1922
1923 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1924 {
1925         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1926
1927         kfree(vgic_cpu->pending_shared);
1928         kfree(vgic_cpu->active_shared);
1929         kfree(vgic_cpu->pend_act_shared);
1930         kfree(vgic_cpu->vgic_irq_lr_map);
1931         vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
1932         vgic_cpu->pending_shared = NULL;
1933         vgic_cpu->active_shared = NULL;
1934         vgic_cpu->pend_act_shared = NULL;
1935         vgic_cpu->vgic_irq_lr_map = NULL;
1936 }
1937
1938 static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1939 {
1940         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1941
1942         int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1943         vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1944         vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1945         vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
1946         vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
1947
1948         if (!vgic_cpu->pending_shared
1949                 || !vgic_cpu->active_shared
1950                 || !vgic_cpu->pend_act_shared
1951                 || !vgic_cpu->vgic_irq_lr_map) {
1952                 kvm_vgic_vcpu_destroy(vcpu);
1953                 return -ENOMEM;
1954         }
1955
1956         memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
1957
1958         /*
1959          * Store the number of LRs per vcpu, so we don't have to go
1960          * all the way to the distributor structure to find out. Only
1961          * assembly code should use this one.
1962          */
1963         vgic_cpu->nr_lr = vgic->nr_lr;
1964
1965         return 0;
1966 }
1967
1968 /**
1969  * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1970  *
1971  * No memory allocation should be performed here, only static init.
1972  */
1973 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1974 {
1975         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1976         INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1977 }
1978
1979 /**
1980  * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1981  *
1982  * The host's GIC naturally limits the maximum amount of VCPUs a guest
1983  * can use.
1984  */
1985 int kvm_vgic_get_max_vcpus(void)
1986 {
1987         return vgic->max_gic_vcpus;
1988 }
1989
1990 void kvm_vgic_destroy(struct kvm *kvm)
1991 {
1992         struct vgic_dist *dist = &kvm->arch.vgic;
1993         struct kvm_vcpu *vcpu;
1994         int i;
1995
1996         kvm_for_each_vcpu(i, vcpu, kvm)
1997                 kvm_vgic_vcpu_destroy(vcpu);
1998
1999         vgic_free_bitmap(&dist->irq_enabled);
2000         vgic_free_bitmap(&dist->irq_level);
2001         vgic_free_bitmap(&dist->irq_pending);
2002         vgic_free_bitmap(&dist->irq_soft_pend);
2003         vgic_free_bitmap(&dist->irq_queued);
2004         vgic_free_bitmap(&dist->irq_cfg);
2005         vgic_free_bytemap(&dist->irq_priority);
2006         if (dist->irq_spi_target) {
2007                 for (i = 0; i < dist->nr_cpus; i++)
2008                         vgic_free_bitmap(&dist->irq_spi_target[i]);
2009         }
2010         kfree(dist->irq_sgi_sources);
2011         kfree(dist->irq_spi_cpu);
2012         kfree(dist->irq_spi_mpidr);
2013         kfree(dist->irq_spi_target);
2014         kfree(dist->irq_pending_on_cpu);
2015         kfree(dist->irq_active_on_cpu);
2016         vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
2017         dist->irq_sgi_sources = NULL;
2018         dist->irq_spi_cpu = NULL;
2019         dist->irq_spi_target = NULL;
2020         dist->irq_pending_on_cpu = NULL;
2021         dist->irq_active_on_cpu = NULL;
2022         dist->nr_cpus = 0;
2023 }
2024
2025 /*
2026  * Allocate and initialize the various data structures. Must be called
2027  * with kvm->lock held!
2028  */
2029 int vgic_init(struct kvm *kvm)
2030 {
2031         struct vgic_dist *dist = &kvm->arch.vgic;
2032         struct kvm_vcpu *vcpu;
2033         int nr_cpus, nr_irqs;
2034         int ret, i, vcpu_id;
2035
2036         if (vgic_initialized(kvm))
2037                 return 0;
2038
2039         nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2040         if (!nr_cpus)           /* No vcpus? Can't be good... */
2041                 return -ENODEV;
2042
2043         /*
2044          * If nobody configured the number of interrupts, use the
2045          * legacy one.
2046          */
2047         if (!dist->nr_irqs)
2048                 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2049
2050         nr_irqs = dist->nr_irqs;
2051
2052         ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2053         ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2054         ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2055         ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2056         ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
2057         ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
2058         ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2059         ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2060
2061         if (ret)
2062                 goto out;
2063
2064         dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2065         dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2066         dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2067                                        GFP_KERNEL);
2068         dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2069                                            GFP_KERNEL);
2070         dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2071                                            GFP_KERNEL);
2072         if (!dist->irq_sgi_sources ||
2073             !dist->irq_spi_cpu ||
2074             !dist->irq_spi_target ||
2075             !dist->irq_pending_on_cpu ||
2076             !dist->irq_active_on_cpu) {
2077                 ret = -ENOMEM;
2078                 goto out;
2079         }
2080
2081         for (i = 0; i < nr_cpus; i++)
2082                 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2083                                         nr_cpus, nr_irqs);
2084
2085         if (ret)
2086                 goto out;
2087
2088         ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2089         if (ret)
2090                 goto out;
2091
2092         kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
2093                 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2094                 if (ret) {
2095                         kvm_err("VGIC: Failed to allocate vcpu memory\n");
2096                         break;
2097                 }
2098
2099                 for (i = 0; i < dist->nr_irqs; i++) {
2100                         if (i < VGIC_NR_PPIS)
2101                                 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2102                                                         vcpu->vcpu_id, i, 1);
2103                         if (i < VGIC_NR_PRIVATE_IRQS)
2104                                 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2105                                                         vcpu->vcpu_id, i,
2106                                                         VGIC_CFG_EDGE);
2107                 }
2108
2109                 vgic_enable(vcpu);
2110         }
2111
2112 out:
2113         if (ret)
2114                 kvm_vgic_destroy(kvm);
2115
2116         return ret;
2117 }
2118
2119 static int init_vgic_model(struct kvm *kvm, int type)
2120 {
2121         switch (type) {
2122         case KVM_DEV_TYPE_ARM_VGIC_V2:
2123                 vgic_v2_init_emulation(kvm);
2124                 break;
2125 #ifdef CONFIG_ARM_GIC_V3
2126         case KVM_DEV_TYPE_ARM_VGIC_V3:
2127                 vgic_v3_init_emulation(kvm);
2128                 break;
2129 #endif
2130         default:
2131                 return -ENODEV;
2132         }
2133
2134         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2135                 return -E2BIG;
2136
2137         return 0;
2138 }
2139
2140 /**
2141  * kvm_vgic_early_init - Earliest possible vgic initialization stage
2142  *
2143  * No memory allocation should be performed here, only static init.
2144  */
2145 void kvm_vgic_early_init(struct kvm *kvm)
2146 {
2147         spin_lock_init(&kvm->arch.vgic.lock);
2148         spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2149         INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2150 }
2151
2152 int kvm_vgic_create(struct kvm *kvm, u32 type)
2153 {
2154         int i, vcpu_lock_idx = -1, ret;
2155         struct kvm_vcpu *vcpu;
2156
2157         mutex_lock(&kvm->lock);
2158
2159         if (irqchip_in_kernel(kvm)) {
2160                 ret = -EEXIST;
2161                 goto out;
2162         }
2163
2164         /*
2165          * This function is also called by the KVM_CREATE_IRQCHIP handler,
2166          * which had no chance yet to check the availability of the GICv2
2167          * emulation. So check this here again. KVM_CREATE_DEVICE does
2168          * the proper checks already.
2169          */
2170         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2171                 ret = -ENODEV;
2172                 goto out;
2173         }
2174
2175         /*
2176          * Any time a vcpu is run, vcpu_load is called which tries to grab the
2177          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
2178          * that no other VCPUs are run while we create the vgic.
2179          */
2180         ret = -EBUSY;
2181         kvm_for_each_vcpu(i, vcpu, kvm) {
2182                 if (!mutex_trylock(&vcpu->mutex))
2183                         goto out_unlock;
2184                 vcpu_lock_idx = i;
2185         }
2186
2187         kvm_for_each_vcpu(i, vcpu, kvm) {
2188                 if (vcpu->arch.has_run_once)
2189                         goto out_unlock;
2190         }
2191         ret = 0;
2192
2193         ret = init_vgic_model(kvm, type);
2194         if (ret)
2195                 goto out_unlock;
2196
2197         kvm->arch.vgic.in_kernel = true;
2198         kvm->arch.vgic.vgic_model = type;
2199         kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
2200         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2201         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2202         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
2203
2204 out_unlock:
2205         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2206                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2207                 mutex_unlock(&vcpu->mutex);
2208         }
2209
2210 out:
2211         mutex_unlock(&kvm->lock);
2212         return ret;
2213 }
2214
2215 static int vgic_ioaddr_overlap(struct kvm *kvm)
2216 {
2217         phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2218         phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2219
2220         if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2221                 return 0;
2222         if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2223             (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2224                 return -EBUSY;
2225         return 0;
2226 }
2227
2228 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2229                               phys_addr_t addr, phys_addr_t size)
2230 {
2231         int ret;
2232
2233         if (addr & ~KVM_PHYS_MASK)
2234                 return -E2BIG;
2235
2236         if (addr & (SZ_4K - 1))
2237                 return -EINVAL;
2238
2239         if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2240                 return -EEXIST;
2241         if (addr + size < addr)
2242                 return -EINVAL;
2243
2244         *ioaddr = addr;
2245         ret = vgic_ioaddr_overlap(kvm);
2246         if (ret)
2247                 *ioaddr = VGIC_ADDR_UNDEF;
2248
2249         return ret;
2250 }
2251
2252 /**
2253  * kvm_vgic_addr - set or get vgic VM base addresses
2254  * @kvm:   pointer to the vm struct
2255  * @type:  the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
2256  * @addr:  pointer to address value
2257  * @write: if true set the address in the VM address space, if false read the
2258  *          address
2259  *
2260  * Set or get the vgic base addresses for the distributor and the virtual CPU
2261  * interface in the VM physical address space.  These addresses are properties
2262  * of the emulated core/SoC and therefore user space initially knows this
2263  * information.
2264  */
2265 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2266 {
2267         int r = 0;
2268         struct vgic_dist *vgic = &kvm->arch.vgic;
2269         int type_needed;
2270         phys_addr_t *addr_ptr, block_size;
2271         phys_addr_t alignment;
2272
2273         mutex_lock(&kvm->lock);
2274         switch (type) {
2275         case KVM_VGIC_V2_ADDR_TYPE_DIST:
2276                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2277                 addr_ptr = &vgic->vgic_dist_base;
2278                 block_size = KVM_VGIC_V2_DIST_SIZE;
2279                 alignment = SZ_4K;
2280                 break;
2281         case KVM_VGIC_V2_ADDR_TYPE_CPU:
2282                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2283                 addr_ptr = &vgic->vgic_cpu_base;
2284                 block_size = KVM_VGIC_V2_CPU_SIZE;
2285                 alignment = SZ_4K;
2286                 break;
2287 #ifdef CONFIG_ARM_GIC_V3
2288         case KVM_VGIC_V3_ADDR_TYPE_DIST:
2289                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2290                 addr_ptr = &vgic->vgic_dist_base;
2291                 block_size = KVM_VGIC_V3_DIST_SIZE;
2292                 alignment = SZ_64K;
2293                 break;
2294         case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2295                 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2296                 addr_ptr = &vgic->vgic_redist_base;
2297                 block_size = KVM_VGIC_V3_REDIST_SIZE;
2298                 alignment = SZ_64K;
2299                 break;
2300 #endif
2301         default:
2302                 r = -ENODEV;
2303                 goto out;
2304         }
2305
2306         if (vgic->vgic_model != type_needed) {
2307                 r = -ENODEV;
2308                 goto out;
2309         }
2310
2311         if (write) {
2312                 if (!IS_ALIGNED(*addr, alignment))
2313                         r = -EINVAL;
2314                 else
2315                         r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2316                                                block_size);
2317         } else {
2318                 *addr = *addr_ptr;
2319         }
2320
2321 out:
2322         mutex_unlock(&kvm->lock);
2323         return r;
2324 }
2325
2326 int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2327 {
2328         int r;
2329
2330         switch (attr->group) {
2331         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2332                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2333                 u64 addr;
2334                 unsigned long type = (unsigned long)attr->attr;
2335
2336                 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2337                         return -EFAULT;
2338
2339                 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2340                 return (r == -ENODEV) ? -ENXIO : r;
2341         }
2342         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2343                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2344                 u32 val;
2345                 int ret = 0;
2346
2347                 if (get_user(val, uaddr))
2348                         return -EFAULT;
2349
2350                 /*
2351                  * We require:
2352                  * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2353                  * - at most 1024 interrupts
2354                  * - a multiple of 32 interrupts
2355                  */
2356                 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2357                     val > VGIC_MAX_IRQS ||
2358                     (val & 31))
2359                         return -EINVAL;
2360
2361                 mutex_lock(&dev->kvm->lock);
2362
2363                 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
2364                         ret = -EBUSY;
2365                 else
2366                         dev->kvm->arch.vgic.nr_irqs = val;
2367
2368                 mutex_unlock(&dev->kvm->lock);
2369
2370                 return ret;
2371         }
2372         case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2373                 switch (attr->attr) {
2374                 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2375                         r = vgic_init(dev->kvm);
2376                         return r;
2377                 }
2378                 break;
2379         }
2380         }
2381
2382         return -ENXIO;
2383 }
2384
2385 int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2386 {
2387         int r = -ENXIO;
2388
2389         switch (attr->group) {
2390         case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2391                 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2392                 u64 addr;
2393                 unsigned long type = (unsigned long)attr->attr;
2394
2395                 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2396                 if (r)
2397                         return (r == -ENODEV) ? -ENXIO : r;
2398
2399                 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2400                         return -EFAULT;
2401                 break;
2402         }
2403         case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2404                 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2405
2406                 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2407                 break;
2408         }
2409
2410         }
2411
2412         return r;
2413 }
2414
2415 int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
2416 {
2417         if (vgic_find_range(ranges, 4, offset))
2418                 return 0;
2419         else
2420                 return -ENXIO;
2421 }
2422
2423 static void vgic_init_maintenance_interrupt(void *info)
2424 {
2425         enable_percpu_irq(vgic->maint_irq, 0);
2426 }
2427
2428 static int vgic_cpu_notify(struct notifier_block *self,
2429                            unsigned long action, void *cpu)
2430 {
2431         switch (action) {
2432         case CPU_STARTING:
2433         case CPU_STARTING_FROZEN:
2434                 vgic_init_maintenance_interrupt(NULL);
2435                 break;
2436         case CPU_DYING:
2437         case CPU_DYING_FROZEN:
2438                 disable_percpu_irq(vgic->maint_irq);
2439                 break;
2440         }
2441
2442         return NOTIFY_OK;
2443 }
2444
2445 static struct notifier_block vgic_cpu_nb = {
2446         .notifier_call = vgic_cpu_notify,
2447 };
2448
2449 static const struct of_device_id vgic_ids[] = {
2450         { .compatible = "arm,cortex-a15-gic",   .data = vgic_v2_probe, },
2451         { .compatible = "arm,cortex-a7-gic",    .data = vgic_v2_probe, },
2452         { .compatible = "arm,gic-400",          .data = vgic_v2_probe, },
2453         { .compatible = "arm,gic-v3",           .data = vgic_v3_probe, },
2454         {},
2455 };
2456
2457 int kvm_vgic_hyp_init(void)
2458 {
2459         const struct of_device_id *matched_id;
2460         const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2461                                 const struct vgic_params **);
2462         struct device_node *vgic_node;
2463         int ret;
2464
2465         vgic_node = of_find_matching_node_and_match(NULL,
2466                                                     vgic_ids, &matched_id);
2467         if (!vgic_node) {
2468                 kvm_err("error: no compatible GIC node found\n");
2469                 return -ENODEV;
2470         }
2471
2472         vgic_probe = matched_id->data;
2473         ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2474         if (ret)
2475                 return ret;
2476
2477         ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2478                                  "vgic", kvm_get_running_vcpus());
2479         if (ret) {
2480                 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2481                 return ret;
2482         }
2483
2484         ret = __register_cpu_notifier(&vgic_cpu_nb);
2485         if (ret) {
2486                 kvm_err("Cannot register vgic CPU notifier\n");
2487                 goto out_free_irq;
2488         }
2489
2490         on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2491
2492         return 0;
2493
2494 out_free_irq:
2495         free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2496         return ret;
2497 }
2498
2499 int kvm_irq_map_gsi(struct kvm *kvm,
2500                     struct kvm_kernel_irq_routing_entry *entries,
2501                     int gsi)
2502 {
2503         return 0;
2504 }
2505
2506 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2507 {
2508         return pin;
2509 }
2510
2511 int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2512                 u32 irq, int level, bool line_status)
2513 {
2514         unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2515
2516         trace_kvm_set_irq(irq, level, irq_source_id);
2517
2518         BUG_ON(!vgic_initialized(kvm));
2519
2520         return kvm_vgic_inject_irq(kvm, 0, spi, level);
2521 }
2522
2523 /* MSI not implemented yet */
2524 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2525                 struct kvm *kvm, int irq_source_id,
2526                 int level, bool line_status)
2527 {
2528         return 0;
2529 }