tools/perf/build: Fix feature-libunwind-debug-frame handling
[linux-drm-fsl-dcu.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include "util/parse-options.h"
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40
41 #define SUPPORT_OLD_POWER_EVENTS 1
42 #define PWR_EVENT_EXIT -1
43
44
45 static unsigned int     numcpus;
46 static u64              min_freq;       /* Lowest CPU frequency seen */
47 static u64              max_freq;       /* Highest CPU frequency seen */
48 static u64              turbo_frequency;
49
50 static u64              first_time, last_time;
51
52 static bool             power_only;
53
54
55 struct per_pid;
56 struct per_pidcomm;
57
58 struct cpu_sample;
59 struct power_event;
60 struct wake_event;
61
62 struct sample_wrapper;
63
64 /*
65  * Datastructure layout:
66  * We keep an list of "pid"s, matching the kernels notion of a task struct.
67  * Each "pid" entry, has a list of "comm"s.
68  *      this is because we want to track different programs different, while
69  *      exec will reuse the original pid (by design).
70  * Each comm has a list of samples that will be used to draw
71  * final graph.
72  */
73
74 struct per_pid {
75         struct per_pid *next;
76
77         int             pid;
78         int             ppid;
79
80         u64             start_time;
81         u64             end_time;
82         u64             total_time;
83         int             display;
84
85         struct per_pidcomm *all;
86         struct per_pidcomm *current;
87 };
88
89
90 struct per_pidcomm {
91         struct per_pidcomm *next;
92
93         u64             start_time;
94         u64             end_time;
95         u64             total_time;
96
97         int             Y;
98         int             display;
99
100         long            state;
101         u64             state_since;
102
103         char            *comm;
104
105         struct cpu_sample *samples;
106 };
107
108 struct sample_wrapper {
109         struct sample_wrapper *next;
110
111         u64             timestamp;
112         unsigned char   data[0];
113 };
114
115 #define TYPE_NONE       0
116 #define TYPE_RUNNING    1
117 #define TYPE_WAITING    2
118 #define TYPE_BLOCKED    3
119
120 struct cpu_sample {
121         struct cpu_sample *next;
122
123         u64 start_time;
124         u64 end_time;
125         int type;
126         int cpu;
127 };
128
129 static struct per_pid *all_data;
130
131 #define CSTATE 1
132 #define PSTATE 2
133
134 struct power_event {
135         struct power_event *next;
136         int type;
137         int state;
138         u64 start_time;
139         u64 end_time;
140         int cpu;
141 };
142
143 struct wake_event {
144         struct wake_event *next;
145         int waker;
146         int wakee;
147         u64 time;
148 };
149
150 static struct power_event    *power_events;
151 static struct wake_event     *wake_events;
152
153 struct process_filter;
154 struct process_filter {
155         char                    *name;
156         int                     pid;
157         struct process_filter   *next;
158 };
159
160 static struct process_filter *process_filter;
161
162
163 static struct per_pid *find_create_pid(int pid)
164 {
165         struct per_pid *cursor = all_data;
166
167         while (cursor) {
168                 if (cursor->pid == pid)
169                         return cursor;
170                 cursor = cursor->next;
171         }
172         cursor = zalloc(sizeof(*cursor));
173         assert(cursor != NULL);
174         cursor->pid = pid;
175         cursor->next = all_data;
176         all_data = cursor;
177         return cursor;
178 }
179
180 static void pid_set_comm(int pid, char *comm)
181 {
182         struct per_pid *p;
183         struct per_pidcomm *c;
184         p = find_create_pid(pid);
185         c = p->all;
186         while (c) {
187                 if (c->comm && strcmp(c->comm, comm) == 0) {
188                         p->current = c;
189                         return;
190                 }
191                 if (!c->comm) {
192                         c->comm = strdup(comm);
193                         p->current = c;
194                         return;
195                 }
196                 c = c->next;
197         }
198         c = zalloc(sizeof(*c));
199         assert(c != NULL);
200         c->comm = strdup(comm);
201         p->current = c;
202         c->next = p->all;
203         p->all = c;
204 }
205
206 static void pid_fork(int pid, int ppid, u64 timestamp)
207 {
208         struct per_pid *p, *pp;
209         p = find_create_pid(pid);
210         pp = find_create_pid(ppid);
211         p->ppid = ppid;
212         if (pp->current && pp->current->comm && !p->current)
213                 pid_set_comm(pid, pp->current->comm);
214
215         p->start_time = timestamp;
216         if (p->current) {
217                 p->current->start_time = timestamp;
218                 p->current->state_since = timestamp;
219         }
220 }
221
222 static void pid_exit(int pid, u64 timestamp)
223 {
224         struct per_pid *p;
225         p = find_create_pid(pid);
226         p->end_time = timestamp;
227         if (p->current)
228                 p->current->end_time = timestamp;
229 }
230
231 static void
232 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
233 {
234         struct per_pid *p;
235         struct per_pidcomm *c;
236         struct cpu_sample *sample;
237
238         p = find_create_pid(pid);
239         c = p->current;
240         if (!c) {
241                 c = zalloc(sizeof(*c));
242                 assert(c != NULL);
243                 p->current = c;
244                 c->next = p->all;
245                 p->all = c;
246         }
247
248         sample = zalloc(sizeof(*sample));
249         assert(sample != NULL);
250         sample->start_time = start;
251         sample->end_time = end;
252         sample->type = type;
253         sample->next = c->samples;
254         sample->cpu = cpu;
255         c->samples = sample;
256
257         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
258                 c->total_time += (end-start);
259                 p->total_time += (end-start);
260         }
261
262         if (c->start_time == 0 || c->start_time > start)
263                 c->start_time = start;
264         if (p->start_time == 0 || p->start_time > start)
265                 p->start_time = start;
266 }
267
268 #define MAX_CPUS 4096
269
270 static u64 cpus_cstate_start_times[MAX_CPUS];
271 static int cpus_cstate_state[MAX_CPUS];
272 static u64 cpus_pstate_start_times[MAX_CPUS];
273 static u64 cpus_pstate_state[MAX_CPUS];
274
275 static int process_comm_event(struct perf_tool *tool __maybe_unused,
276                               union perf_event *event,
277                               struct perf_sample *sample __maybe_unused,
278                               struct machine *machine __maybe_unused)
279 {
280         pid_set_comm(event->comm.tid, event->comm.comm);
281         return 0;
282 }
283
284 static int process_fork_event(struct perf_tool *tool __maybe_unused,
285                               union perf_event *event,
286                               struct perf_sample *sample __maybe_unused,
287                               struct machine *machine __maybe_unused)
288 {
289         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
290         return 0;
291 }
292
293 static int process_exit_event(struct perf_tool *tool __maybe_unused,
294                               union perf_event *event,
295                               struct perf_sample *sample __maybe_unused,
296                               struct machine *machine __maybe_unused)
297 {
298         pid_exit(event->fork.pid, event->fork.time);
299         return 0;
300 }
301
302 struct trace_entry {
303         unsigned short          type;
304         unsigned char           flags;
305         unsigned char           preempt_count;
306         int                     pid;
307         int                     lock_depth;
308 };
309
310 #ifdef SUPPORT_OLD_POWER_EVENTS
311 static int use_old_power_events;
312 struct power_entry_old {
313         struct trace_entry te;
314         u64     type;
315         u64     value;
316         u64     cpu_id;
317 };
318 #endif
319
320 struct power_processor_entry {
321         struct trace_entry te;
322         u32     state;
323         u32     cpu_id;
324 };
325
326 #define TASK_COMM_LEN 16
327 struct wakeup_entry {
328         struct trace_entry te;
329         char comm[TASK_COMM_LEN];
330         int   pid;
331         int   prio;
332         int   success;
333 };
334
335 struct sched_switch {
336         struct trace_entry te;
337         char prev_comm[TASK_COMM_LEN];
338         int  prev_pid;
339         int  prev_prio;
340         long prev_state; /* Arjan weeps. */
341         char next_comm[TASK_COMM_LEN];
342         int  next_pid;
343         int  next_prio;
344 };
345
346 static void c_state_start(int cpu, u64 timestamp, int state)
347 {
348         cpus_cstate_start_times[cpu] = timestamp;
349         cpus_cstate_state[cpu] = state;
350 }
351
352 static void c_state_end(int cpu, u64 timestamp)
353 {
354         struct power_event *pwr = zalloc(sizeof(*pwr));
355
356         if (!pwr)
357                 return;
358
359         pwr->state = cpus_cstate_state[cpu];
360         pwr->start_time = cpus_cstate_start_times[cpu];
361         pwr->end_time = timestamp;
362         pwr->cpu = cpu;
363         pwr->type = CSTATE;
364         pwr->next = power_events;
365
366         power_events = pwr;
367 }
368
369 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
370 {
371         struct power_event *pwr;
372
373         if (new_freq > 8000000) /* detect invalid data */
374                 return;
375
376         pwr = zalloc(sizeof(*pwr));
377         if (!pwr)
378                 return;
379
380         pwr->state = cpus_pstate_state[cpu];
381         pwr->start_time = cpus_pstate_start_times[cpu];
382         pwr->end_time = timestamp;
383         pwr->cpu = cpu;
384         pwr->type = PSTATE;
385         pwr->next = power_events;
386
387         if (!pwr->start_time)
388                 pwr->start_time = first_time;
389
390         power_events = pwr;
391
392         cpus_pstate_state[cpu] = new_freq;
393         cpus_pstate_start_times[cpu] = timestamp;
394
395         if ((u64)new_freq > max_freq)
396                 max_freq = new_freq;
397
398         if (new_freq < min_freq || min_freq == 0)
399                 min_freq = new_freq;
400
401         if (new_freq == max_freq - 1000)
402                         turbo_frequency = max_freq;
403 }
404
405 static void
406 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
407 {
408         struct per_pid *p;
409         struct wakeup_entry *wake = (void *)te;
410         struct wake_event *we = zalloc(sizeof(*we));
411
412         if (!we)
413                 return;
414
415         we->time = timestamp;
416         we->waker = pid;
417
418         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
419                 we->waker = -1;
420
421         we->wakee = wake->pid;
422         we->next = wake_events;
423         wake_events = we;
424         p = find_create_pid(we->wakee);
425
426         if (p && p->current && p->current->state == TYPE_NONE) {
427                 p->current->state_since = timestamp;
428                 p->current->state = TYPE_WAITING;
429         }
430         if (p && p->current && p->current->state == TYPE_BLOCKED) {
431                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
432                 p->current->state_since = timestamp;
433                 p->current->state = TYPE_WAITING;
434         }
435 }
436
437 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
438 {
439         struct per_pid *p = NULL, *prev_p;
440         struct sched_switch *sw = (void *)te;
441
442
443         prev_p = find_create_pid(sw->prev_pid);
444
445         p = find_create_pid(sw->next_pid);
446
447         if (prev_p->current && prev_p->current->state != TYPE_NONE)
448                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
449         if (p && p->current) {
450                 if (p->current->state != TYPE_NONE)
451                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
452
453                 p->current->state_since = timestamp;
454                 p->current->state = TYPE_RUNNING;
455         }
456
457         if (prev_p->current) {
458                 prev_p->current->state = TYPE_NONE;
459                 prev_p->current->state_since = timestamp;
460                 if (sw->prev_state & 2)
461                         prev_p->current->state = TYPE_BLOCKED;
462                 if (sw->prev_state == 0)
463                         prev_p->current->state = TYPE_WAITING;
464         }
465 }
466
467 typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
468                                   struct perf_sample *sample);
469
470 static int process_sample_event(struct perf_tool *tool __maybe_unused,
471                                 union perf_event *event __maybe_unused,
472                                 struct perf_sample *sample,
473                                 struct perf_evsel *evsel,
474                                 struct machine *machine __maybe_unused)
475 {
476         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
477                 if (!first_time || first_time > sample->time)
478                         first_time = sample->time;
479                 if (last_time < sample->time)
480                         last_time = sample->time;
481         }
482
483         if (sample->cpu > numcpus)
484                 numcpus = sample->cpu;
485
486         if (evsel->handler != NULL) {
487                 tracepoint_handler f = evsel->handler;
488                 return f(evsel, sample);
489         }
490
491         return 0;
492 }
493
494 static int
495 process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
496                         struct perf_sample *sample)
497 {
498         struct power_processor_entry *ppe = sample->raw_data;
499
500         if (ppe->state == (u32) PWR_EVENT_EXIT)
501                 c_state_end(ppe->cpu_id, sample->time);
502         else
503                 c_state_start(ppe->cpu_id, sample->time, ppe->state);
504         return 0;
505 }
506
507 static int
508 process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
509                              struct perf_sample *sample)
510 {
511         struct power_processor_entry *ppe = sample->raw_data;
512
513         p_state_change(ppe->cpu_id, sample->time, ppe->state);
514         return 0;
515 }
516
517 static int
518 process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
519                             struct perf_sample *sample)
520 {
521         struct trace_entry *te = sample->raw_data;
522
523         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
524         return 0;
525 }
526
527 static int
528 process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
529                             struct perf_sample *sample)
530 {
531         struct trace_entry *te = sample->raw_data;
532
533         sched_switch(sample->cpu, sample->time, te);
534         return 0;
535 }
536
537 #ifdef SUPPORT_OLD_POWER_EVENTS
538 static int
539 process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
540                            struct perf_sample *sample)
541 {
542         struct power_entry_old *peo = sample->raw_data;
543
544         c_state_start(peo->cpu_id, sample->time, peo->value);
545         return 0;
546 }
547
548 static int
549 process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
550                          struct perf_sample *sample)
551 {
552         c_state_end(sample->cpu, sample->time);
553         return 0;
554 }
555
556 static int
557 process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
558                                struct perf_sample *sample)
559 {
560         struct power_entry_old *peo = sample->raw_data;
561
562         p_state_change(peo->cpu_id, sample->time, peo->value);
563         return 0;
564 }
565 #endif /* SUPPORT_OLD_POWER_EVENTS */
566
567 /*
568  * After the last sample we need to wrap up the current C/P state
569  * and close out each CPU for these.
570  */
571 static void end_sample_processing(void)
572 {
573         u64 cpu;
574         struct power_event *pwr;
575
576         for (cpu = 0; cpu <= numcpus; cpu++) {
577                 /* C state */
578 #if 0
579                 pwr = zalloc(sizeof(*pwr));
580                 if (!pwr)
581                         return;
582
583                 pwr->state = cpus_cstate_state[cpu];
584                 pwr->start_time = cpus_cstate_start_times[cpu];
585                 pwr->end_time = last_time;
586                 pwr->cpu = cpu;
587                 pwr->type = CSTATE;
588                 pwr->next = power_events;
589
590                 power_events = pwr;
591 #endif
592                 /* P state */
593
594                 pwr = zalloc(sizeof(*pwr));
595                 if (!pwr)
596                         return;
597
598                 pwr->state = cpus_pstate_state[cpu];
599                 pwr->start_time = cpus_pstate_start_times[cpu];
600                 pwr->end_time = last_time;
601                 pwr->cpu = cpu;
602                 pwr->type = PSTATE;
603                 pwr->next = power_events;
604
605                 if (!pwr->start_time)
606                         pwr->start_time = first_time;
607                 if (!pwr->state)
608                         pwr->state = min_freq;
609                 power_events = pwr;
610         }
611 }
612
613 /*
614  * Sort the pid datastructure
615  */
616 static void sort_pids(void)
617 {
618         struct per_pid *new_list, *p, *cursor, *prev;
619         /* sort by ppid first, then by pid, lowest to highest */
620
621         new_list = NULL;
622
623         while (all_data) {
624                 p = all_data;
625                 all_data = p->next;
626                 p->next = NULL;
627
628                 if (new_list == NULL) {
629                         new_list = p;
630                         p->next = NULL;
631                         continue;
632                 }
633                 prev = NULL;
634                 cursor = new_list;
635                 while (cursor) {
636                         if (cursor->ppid > p->ppid ||
637                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
638                                 /* must insert before */
639                                 if (prev) {
640                                         p->next = prev->next;
641                                         prev->next = p;
642                                         cursor = NULL;
643                                         continue;
644                                 } else {
645                                         p->next = new_list;
646                                         new_list = p;
647                                         cursor = NULL;
648                                         continue;
649                                 }
650                         }
651
652                         prev = cursor;
653                         cursor = cursor->next;
654                         if (!cursor)
655                                 prev->next = p;
656                 }
657         }
658         all_data = new_list;
659 }
660
661
662 static void draw_c_p_states(void)
663 {
664         struct power_event *pwr;
665         pwr = power_events;
666
667         /*
668          * two pass drawing so that the P state bars are on top of the C state blocks
669          */
670         while (pwr) {
671                 if (pwr->type == CSTATE)
672                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
673                 pwr = pwr->next;
674         }
675
676         pwr = power_events;
677         while (pwr) {
678                 if (pwr->type == PSTATE) {
679                         if (!pwr->state)
680                                 pwr->state = min_freq;
681                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
682                 }
683                 pwr = pwr->next;
684         }
685 }
686
687 static void draw_wakeups(void)
688 {
689         struct wake_event *we;
690         struct per_pid *p;
691         struct per_pidcomm *c;
692
693         we = wake_events;
694         while (we) {
695                 int from = 0, to = 0;
696                 char *task_from = NULL, *task_to = NULL;
697
698                 /* locate the column of the waker and wakee */
699                 p = all_data;
700                 while (p) {
701                         if (p->pid == we->waker || p->pid == we->wakee) {
702                                 c = p->all;
703                                 while (c) {
704                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
705                                                 if (p->pid == we->waker && !from) {
706                                                         from = c->Y;
707                                                         task_from = strdup(c->comm);
708                                                 }
709                                                 if (p->pid == we->wakee && !to) {
710                                                         to = c->Y;
711                                                         task_to = strdup(c->comm);
712                                                 }
713                                         }
714                                         c = c->next;
715                                 }
716                                 c = p->all;
717                                 while (c) {
718                                         if (p->pid == we->waker && !from) {
719                                                 from = c->Y;
720                                                 task_from = strdup(c->comm);
721                                         }
722                                         if (p->pid == we->wakee && !to) {
723                                                 to = c->Y;
724                                                 task_to = strdup(c->comm);
725                                         }
726                                         c = c->next;
727                                 }
728                         }
729                         p = p->next;
730                 }
731
732                 if (!task_from) {
733                         task_from = malloc(40);
734                         sprintf(task_from, "[%i]", we->waker);
735                 }
736                 if (!task_to) {
737                         task_to = malloc(40);
738                         sprintf(task_to, "[%i]", we->wakee);
739                 }
740
741                 if (we->waker == -1)
742                         svg_interrupt(we->time, to);
743                 else if (from && to && abs(from - to) == 1)
744                         svg_wakeline(we->time, from, to);
745                 else
746                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
747                 we = we->next;
748
749                 free(task_from);
750                 free(task_to);
751         }
752 }
753
754 static void draw_cpu_usage(void)
755 {
756         struct per_pid *p;
757         struct per_pidcomm *c;
758         struct cpu_sample *sample;
759         p = all_data;
760         while (p) {
761                 c = p->all;
762                 while (c) {
763                         sample = c->samples;
764                         while (sample) {
765                                 if (sample->type == TYPE_RUNNING)
766                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
767
768                                 sample = sample->next;
769                         }
770                         c = c->next;
771                 }
772                 p = p->next;
773         }
774 }
775
776 static void draw_process_bars(void)
777 {
778         struct per_pid *p;
779         struct per_pidcomm *c;
780         struct cpu_sample *sample;
781         int Y = 0;
782
783         Y = 2 * numcpus + 2;
784
785         p = all_data;
786         while (p) {
787                 c = p->all;
788                 while (c) {
789                         if (!c->display) {
790                                 c->Y = 0;
791                                 c = c->next;
792                                 continue;
793                         }
794
795                         svg_box(Y, c->start_time, c->end_time, "process");
796                         sample = c->samples;
797                         while (sample) {
798                                 if (sample->type == TYPE_RUNNING)
799                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
800                                 if (sample->type == TYPE_BLOCKED)
801                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
802                                 if (sample->type == TYPE_WAITING)
803                                         svg_waiting(Y, sample->start_time, sample->end_time);
804                                 sample = sample->next;
805                         }
806
807                         if (c->comm) {
808                                 char comm[256];
809                                 if (c->total_time > 5000000000) /* 5 seconds */
810                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
811                                 else
812                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
813
814                                 svg_text(Y, c->start_time, comm);
815                         }
816                         c->Y = Y;
817                         Y++;
818                         c = c->next;
819                 }
820                 p = p->next;
821         }
822 }
823
824 static void add_process_filter(const char *string)
825 {
826         int pid = strtoull(string, NULL, 10);
827         struct process_filter *filt = malloc(sizeof(*filt));
828
829         if (!filt)
830                 return;
831
832         filt->name = strdup(string);
833         filt->pid  = pid;
834         filt->next = process_filter;
835
836         process_filter = filt;
837 }
838
839 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
840 {
841         struct process_filter *filt;
842         if (!process_filter)
843                 return 1;
844
845         filt = process_filter;
846         while (filt) {
847                 if (filt->pid && p->pid == filt->pid)
848                         return 1;
849                 if (strcmp(filt->name, c->comm) == 0)
850                         return 1;
851                 filt = filt->next;
852         }
853         return 0;
854 }
855
856 static int determine_display_tasks_filtered(void)
857 {
858         struct per_pid *p;
859         struct per_pidcomm *c;
860         int count = 0;
861
862         p = all_data;
863         while (p) {
864                 p->display = 0;
865                 if (p->start_time == 1)
866                         p->start_time = first_time;
867
868                 /* no exit marker, task kept running to the end */
869                 if (p->end_time == 0)
870                         p->end_time = last_time;
871
872                 c = p->all;
873
874                 while (c) {
875                         c->display = 0;
876
877                         if (c->start_time == 1)
878                                 c->start_time = first_time;
879
880                         if (passes_filter(p, c)) {
881                                 c->display = 1;
882                                 p->display = 1;
883                                 count++;
884                         }
885
886                         if (c->end_time == 0)
887                                 c->end_time = last_time;
888
889                         c = c->next;
890                 }
891                 p = p->next;
892         }
893         return count;
894 }
895
896 static int determine_display_tasks(u64 threshold)
897 {
898         struct per_pid *p;
899         struct per_pidcomm *c;
900         int count = 0;
901
902         if (process_filter)
903                 return determine_display_tasks_filtered();
904
905         p = all_data;
906         while (p) {
907                 p->display = 0;
908                 if (p->start_time == 1)
909                         p->start_time = first_time;
910
911                 /* no exit marker, task kept running to the end */
912                 if (p->end_time == 0)
913                         p->end_time = last_time;
914                 if (p->total_time >= threshold && !power_only)
915                         p->display = 1;
916
917                 c = p->all;
918
919                 while (c) {
920                         c->display = 0;
921
922                         if (c->start_time == 1)
923                                 c->start_time = first_time;
924
925                         if (c->total_time >= threshold && !power_only) {
926                                 c->display = 1;
927                                 count++;
928                         }
929
930                         if (c->end_time == 0)
931                                 c->end_time = last_time;
932
933                         c = c->next;
934                 }
935                 p = p->next;
936         }
937         return count;
938 }
939
940
941
942 #define TIME_THRESH 10000000
943
944 static void write_svg_file(const char *filename)
945 {
946         u64 i;
947         int count;
948
949         numcpus++;
950
951
952         count = determine_display_tasks(TIME_THRESH);
953
954         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
955         if (count < 15)
956                 count = determine_display_tasks(TIME_THRESH / 10);
957
958         open_svg(filename, numcpus, count, first_time, last_time);
959
960         svg_time_grid();
961         svg_legenda();
962
963         for (i = 0; i < numcpus; i++)
964                 svg_cpu_box(i, max_freq, turbo_frequency);
965
966         draw_cpu_usage();
967         draw_process_bars();
968         draw_c_p_states();
969         draw_wakeups();
970
971         svg_close();
972 }
973
974 static int __cmd_timechart(const char *output_name)
975 {
976         struct perf_tool perf_timechart = {
977                 .comm            = process_comm_event,
978                 .fork            = process_fork_event,
979                 .exit            = process_exit_event,
980                 .sample          = process_sample_event,
981                 .ordered_samples = true,
982         };
983         const struct perf_evsel_str_handler power_tracepoints[] = {
984                 { "power:cpu_idle",             process_sample_cpu_idle },
985                 { "power:cpu_frequency",        process_sample_cpu_frequency },
986                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
987                 { "sched:sched_switch",         process_sample_sched_switch },
988 #ifdef SUPPORT_OLD_POWER_EVENTS
989                 { "power:power_start",          process_sample_power_start },
990                 { "power:power_end",            process_sample_power_end },
991                 { "power:power_frequency",      process_sample_power_frequency },
992 #endif
993         };
994         struct perf_data_file file = {
995                 .path = input_name,
996                 .mode = PERF_DATA_MODE_READ,
997         };
998
999         struct perf_session *session = perf_session__new(&file, false,
1000                                                          &perf_timechart);
1001         int ret = -EINVAL;
1002
1003         if (session == NULL)
1004                 return -ENOMEM;
1005
1006         if (!perf_session__has_traces(session, "timechart record"))
1007                 goto out_delete;
1008
1009         if (perf_session__set_tracepoints_handlers(session,
1010                                                    power_tracepoints)) {
1011                 pr_err("Initializing session tracepoint handlers failed\n");
1012                 goto out_delete;
1013         }
1014
1015         ret = perf_session__process_events(session, &perf_timechart);
1016         if (ret)
1017                 goto out_delete;
1018
1019         end_sample_processing();
1020
1021         sort_pids();
1022
1023         write_svg_file(output_name);
1024
1025         pr_info("Written %2.1f seconds of trace to %s.\n",
1026                 (last_time - first_time) / 1000000000.0, output_name);
1027 out_delete:
1028         perf_session__delete(session);
1029         return ret;
1030 }
1031
1032 static int __cmd_record(int argc, const char **argv)
1033 {
1034 #ifdef SUPPORT_OLD_POWER_EVENTS
1035         const char * const record_old_args[] = {
1036                 "record", "-a", "-R", "-c", "1",
1037                 "-e", "power:power_start",
1038                 "-e", "power:power_end",
1039                 "-e", "power:power_frequency",
1040                 "-e", "sched:sched_wakeup",
1041                 "-e", "sched:sched_switch",
1042         };
1043 #endif
1044         const char * const record_new_args[] = {
1045                 "record", "-a", "-R", "-c", "1",
1046                 "-e", "power:cpu_frequency",
1047                 "-e", "power:cpu_idle",
1048                 "-e", "sched:sched_wakeup",
1049                 "-e", "sched:sched_switch",
1050         };
1051         unsigned int rec_argc, i, j;
1052         const char **rec_argv;
1053         const char * const *record_args = record_new_args;
1054         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1055
1056 #ifdef SUPPORT_OLD_POWER_EVENTS
1057         if (!is_valid_tracepoint("power:cpu_idle") &&
1058             is_valid_tracepoint("power:power_start")) {
1059                 use_old_power_events = 1;
1060                 record_args = record_old_args;
1061                 record_elems = ARRAY_SIZE(record_old_args);
1062         }
1063 #endif
1064
1065         rec_argc = record_elems + argc - 1;
1066         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1067
1068         if (rec_argv == NULL)
1069                 return -ENOMEM;
1070
1071         for (i = 0; i < record_elems; i++)
1072                 rec_argv[i] = strdup(record_args[i]);
1073
1074         for (j = 1; j < (unsigned int)argc; j++, i++)
1075                 rec_argv[i] = argv[j];
1076
1077         return cmd_record(i, rec_argv, NULL);
1078 }
1079
1080 static int
1081 parse_process(const struct option *opt __maybe_unused, const char *arg,
1082               int __maybe_unused unset)
1083 {
1084         if (arg)
1085                 add_process_filter(arg);
1086         return 0;
1087 }
1088
1089 int cmd_timechart(int argc, const char **argv,
1090                   const char *prefix __maybe_unused)
1091 {
1092         const char *output_name = "output.svg";
1093         const struct option options[] = {
1094         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1095         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1096         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1097         OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1098         OPT_CALLBACK('p', "process", NULL, "process",
1099                       "process selector. Pass a pid or process name.",
1100                        parse_process),
1101         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1102                     "Look for files with symbols relative to this directory"),
1103         OPT_END()
1104         };
1105         const char * const timechart_usage[] = {
1106                 "perf timechart [<options>] {record}",
1107                 NULL
1108         };
1109
1110         argc = parse_options(argc, argv, options, timechart_usage,
1111                         PARSE_OPT_STOP_AT_NON_OPTION);
1112
1113         symbol__init();
1114
1115         if (argc && !strncmp(argv[0], "rec", 3))
1116                 return __cmd_record(argc, argv);
1117         else if (argc)
1118                 usage_with_options(timechart_usage, options);
1119
1120         setup_pager();
1121
1122         return __cmd_timechart(output_name);
1123 }