[PATCH] sysctl: remove the proc_dir_entry member for the sysctl tables
[linux-drm-fsl-dcu.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         mutex_init(&isec->lock);
189         INIT_LIST_HEAD(&isec->list);
190         isec->inode = inode;
191         isec->sid = SECINITSID_UNLABELED;
192         isec->sclass = SECCLASS_FILE;
193         isec->task_sid = tsec->sid;
194         inode->i_security = isec;
195
196         return 0;
197 }
198
199 static void inode_free_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec = inode->i_security;
202         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204         spin_lock(&sbsec->isec_lock);
205         if (!list_empty(&isec->list))
206                 list_del_init(&isec->list);
207         spin_unlock(&sbsec->isec_lock);
208
209         inode->i_security = NULL;
210         kmem_cache_free(sel_inode_cache, isec);
211 }
212
213 static int file_alloc_security(struct file *file)
214 {
215         struct task_security_struct *tsec = current->security;
216         struct file_security_struct *fsec;
217
218         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219         if (!fsec)
220                 return -ENOMEM;
221
222         fsec->file = file;
223         fsec->sid = tsec->sid;
224         fsec->fown_sid = tsec->sid;
225         file->f_security = fsec;
226
227         return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232         struct file_security_struct *fsec = file->f_security;
233         file->f_security = NULL;
234         kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239         struct superblock_security_struct *sbsec;
240
241         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242         if (!sbsec)
243                 return -ENOMEM;
244
245         mutex_init(&sbsec->lock);
246         INIT_LIST_HEAD(&sbsec->list);
247         INIT_LIST_HEAD(&sbsec->isec_head);
248         spin_lock_init(&sbsec->isec_lock);
249         sbsec->sb = sb;
250         sbsec->sid = SECINITSID_UNLABELED;
251         sbsec->def_sid = SECINITSID_FILE;
252         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253         sb->s_security = sbsec;
254
255         return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec = sb->s_security;
261
262         spin_lock(&sb_security_lock);
263         if (!list_empty(&sbsec->list))
264                 list_del_init(&sbsec->list);
265         spin_unlock(&sb_security_lock);
266
267         sb->s_security = NULL;
268         kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273         struct sk_security_struct *ssec;
274
275         ssec = kzalloc(sizeof(*ssec), priority);
276         if (!ssec)
277                 return -ENOMEM;
278
279         ssec->sk = sk;
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_init(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_context = 1,
321         Opt_fscontext = 2,
322         Opt_defcontext = 4,
323         Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327         {Opt_context, "context=%s"},
328         {Opt_fscontext, "fscontext=%s"},
329         {Opt_defcontext, "defcontext=%s"},
330         {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336                         struct superblock_security_struct *sbsec,
337                         struct task_security_struct *tsec)
338 {
339         int rc;
340
341         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342                           FILESYSTEM__RELABELFROM, NULL);
343         if (rc)
344                 return rc;
345
346         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELTO, NULL);
348         return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352                         struct superblock_security_struct *sbsec,
353                         struct task_security_struct *tsec)
354 {
355         int rc;
356         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357                           FILESYSTEM__RELABELFROM, NULL);
358         if (rc)
359                 return rc;
360
361         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362                           FILESYSTEM__ASSOCIATE, NULL);
363         return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368         char *context = NULL, *defcontext = NULL;
369         char *fscontext = NULL, *rootcontext = NULL;
370         const char *name;
371         u32 sid;
372         int alloc = 0, rc = 0, seen = 0;
373         struct task_security_struct *tsec = current->security;
374         struct superblock_security_struct *sbsec = sb->s_security;
375
376         if (!data)
377                 goto out;
378
379         name = sb->s_type->name;
380
381         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383                 /* NFS we understand. */
384                 if (!strcmp(name, "nfs")) {
385                         struct nfs_mount_data *d = data;
386
387                         if (d->version <  NFS_MOUNT_VERSION)
388                                 goto out;
389
390                         if (d->context[0]) {
391                                 context = d->context;
392                                 seen |= Opt_context;
393                         }
394                 } else
395                         goto out;
396
397         } else {
398                 /* Standard string-based options. */
399                 char *p, *options = data;
400
401                 while ((p = strsep(&options, "|")) != NULL) {
402                         int token;
403                         substring_t args[MAX_OPT_ARGS];
404
405                         if (!*p)
406                                 continue;
407
408                         token = match_token(p, tokens, args);
409
410                         switch (token) {
411                         case Opt_context:
412                                 if (seen & (Opt_context|Opt_defcontext)) {
413                                         rc = -EINVAL;
414                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415                                         goto out_free;
416                                 }
417                                 context = match_strdup(&args[0]);
418                                 if (!context) {
419                                         rc = -ENOMEM;
420                                         goto out_free;
421                                 }
422                                 if (!alloc)
423                                         alloc = 1;
424                                 seen |= Opt_context;
425                                 break;
426
427                         case Opt_fscontext:
428                                 if (seen & Opt_fscontext) {
429                                         rc = -EINVAL;
430                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431                                         goto out_free;
432                                 }
433                                 fscontext = match_strdup(&args[0]);
434                                 if (!fscontext) {
435                                         rc = -ENOMEM;
436                                         goto out_free;
437                                 }
438                                 if (!alloc)
439                                         alloc = 1;
440                                 seen |= Opt_fscontext;
441                                 break;
442
443                         case Opt_rootcontext:
444                                 if (seen & Opt_rootcontext) {
445                                         rc = -EINVAL;
446                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447                                         goto out_free;
448                                 }
449                                 rootcontext = match_strdup(&args[0]);
450                                 if (!rootcontext) {
451                                         rc = -ENOMEM;
452                                         goto out_free;
453                                 }
454                                 if (!alloc)
455                                         alloc = 1;
456                                 seen |= Opt_rootcontext;
457                                 break;
458
459                         case Opt_defcontext:
460                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461                                         rc = -EINVAL;
462                                         printk(KERN_WARNING "SELinux:  "
463                                                "defcontext option is invalid "
464                                                "for this filesystem type\n");
465                                         goto out_free;
466                                 }
467                                 if (seen & (Opt_context|Opt_defcontext)) {
468                                         rc = -EINVAL;
469                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470                                         goto out_free;
471                                 }
472                                 defcontext = match_strdup(&args[0]);
473                                 if (!defcontext) {
474                                         rc = -ENOMEM;
475                                         goto out_free;
476                                 }
477                                 if (!alloc)
478                                         alloc = 1;
479                                 seen |= Opt_defcontext;
480                                 break;
481
482                         default:
483                                 rc = -EINVAL;
484                                 printk(KERN_WARNING "SELinux:  unknown mount "
485                                        "option\n");
486                                 goto out_free;
487
488                         }
489                 }
490         }
491
492         if (!seen)
493                 goto out;
494
495         /* sets the context of the superblock for the fs being mounted. */
496         if (fscontext) {
497                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498                 if (rc) {
499                         printk(KERN_WARNING "SELinux: security_context_to_sid"
500                                "(%s) failed for (dev %s, type %s) errno=%d\n",
501                                fscontext, sb->s_id, name, rc);
502                         goto out_free;
503                 }
504
505                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506                 if (rc)
507                         goto out_free;
508
509                 sbsec->sid = sid;
510         }
511
512         /*
513          * Switch to using mount point labeling behavior.
514          * sets the label used on all file below the mountpoint, and will set
515          * the superblock context if not already set.
516          */
517         if (context) {
518                 rc = security_context_to_sid(context, strlen(context), &sid);
519                 if (rc) {
520                         printk(KERN_WARNING "SELinux: security_context_to_sid"
521                                "(%s) failed for (dev %s, type %s) errno=%d\n",
522                                context, sb->s_id, name, rc);
523                         goto out_free;
524                 }
525
526                 if (!fscontext) {
527                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528                         if (rc)
529                                 goto out_free;
530                         sbsec->sid = sid;
531                 } else {
532                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533                         if (rc)
534                                 goto out_free;
535                 }
536                 sbsec->mntpoint_sid = sid;
537
538                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539         }
540
541         if (rootcontext) {
542                 struct inode *inode = sb->s_root->d_inode;
543                 struct inode_security_struct *isec = inode->i_security;
544                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545                 if (rc) {
546                         printk(KERN_WARNING "SELinux: security_context_to_sid"
547                                "(%s) failed for (dev %s, type %s) errno=%d\n",
548                                rootcontext, sb->s_id, name, rc);
549                         goto out_free;
550                 }
551
552                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553                 if (rc)
554                         goto out_free;
555
556                 isec->sid = sid;
557                 isec->initialized = 1;
558         }
559
560         if (defcontext) {
561                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562                 if (rc) {
563                         printk(KERN_WARNING "SELinux: security_context_to_sid"
564                                "(%s) failed for (dev %s, type %s) errno=%d\n",
565                                defcontext, sb->s_id, name, rc);
566                         goto out_free;
567                 }
568
569                 if (sid == sbsec->def_sid)
570                         goto out_free;
571
572                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573                 if (rc)
574                         goto out_free;
575
576                 sbsec->def_sid = sid;
577         }
578
579 out_free:
580         if (alloc) {
581                 kfree(context);
582                 kfree(defcontext);
583                 kfree(fscontext);
584                 kfree(rootcontext);
585         }
586 out:
587         return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592         struct superblock_security_struct *sbsec = sb->s_security;
593         struct dentry *root = sb->s_root;
594         struct inode *inode = root->d_inode;
595         int rc = 0;
596
597         mutex_lock(&sbsec->lock);
598         if (sbsec->initialized)
599                 goto out;
600
601         if (!ss_initialized) {
602                 /* Defer initialization until selinux_complete_init,
603                    after the initial policy is loaded and the security
604                    server is ready to handle calls. */
605                 spin_lock(&sb_security_lock);
606                 if (list_empty(&sbsec->list))
607                         list_add(&sbsec->list, &superblock_security_head);
608                 spin_unlock(&sb_security_lock);
609                 goto out;
610         }
611
612         /* Determine the labeling behavior to use for this filesystem type. */
613         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614         if (rc) {
615                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616                        __FUNCTION__, sb->s_type->name, rc);
617                 goto out;
618         }
619
620         rc = try_context_mount(sb, data);
621         if (rc)
622                 goto out;
623
624         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625                 /* Make sure that the xattr handler exists and that no
626                    error other than -ENODATA is returned by getxattr on
627                    the root directory.  -ENODATA is ok, as this may be
628                    the first boot of the SELinux kernel before we have
629                    assigned xattr values to the filesystem. */
630                 if (!inode->i_op->getxattr) {
631                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632                                "xattr support\n", sb->s_id, sb->s_type->name);
633                         rc = -EOPNOTSUPP;
634                         goto out;
635                 }
636                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637                 if (rc < 0 && rc != -ENODATA) {
638                         if (rc == -EOPNOTSUPP)
639                                 printk(KERN_WARNING "SELinux: (dev %s, type "
640                                        "%s) has no security xattr handler\n",
641                                        sb->s_id, sb->s_type->name);
642                         else
643                                 printk(KERN_WARNING "SELinux: (dev %s, type "
644                                        "%s) getxattr errno %d\n", sb->s_id,
645                                        sb->s_type->name, -rc);
646                         goto out;
647                 }
648         }
649
650         if (strcmp(sb->s_type->name, "proc") == 0)
651                 sbsec->proc = 1;
652
653         sbsec->initialized = 1;
654
655         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657                        sb->s_id, sb->s_type->name);
658         }
659         else {
660                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661                        sb->s_id, sb->s_type->name,
662                        labeling_behaviors[sbsec->behavior-1]);
663         }
664
665         /* Initialize the root inode. */
666         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668         /* Initialize any other inodes associated with the superblock, e.g.
669            inodes created prior to initial policy load or inodes created
670            during get_sb by a pseudo filesystem that directly
671            populates itself. */
672         spin_lock(&sbsec->isec_lock);
673 next_inode:
674         if (!list_empty(&sbsec->isec_head)) {
675                 struct inode_security_struct *isec =
676                                 list_entry(sbsec->isec_head.next,
677                                            struct inode_security_struct, list);
678                 struct inode *inode = isec->inode;
679                 spin_unlock(&sbsec->isec_lock);
680                 inode = igrab(inode);
681                 if (inode) {
682                         if (!IS_PRIVATE (inode))
683                                 inode_doinit(inode);
684                         iput(inode);
685                 }
686                 spin_lock(&sbsec->isec_lock);
687                 list_del_init(&isec->list);
688                 goto next_inode;
689         }
690         spin_unlock(&sbsec->isec_lock);
691 out:
692         mutex_unlock(&sbsec->lock);
693         return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698         switch (mode & S_IFMT) {
699         case S_IFSOCK:
700                 return SECCLASS_SOCK_FILE;
701         case S_IFLNK:
702                 return SECCLASS_LNK_FILE;
703         case S_IFREG:
704                 return SECCLASS_FILE;
705         case S_IFBLK:
706                 return SECCLASS_BLK_FILE;
707         case S_IFDIR:
708                 return SECCLASS_DIR;
709         case S_IFCHR:
710                 return SECCLASS_CHR_FILE;
711         case S_IFIFO:
712                 return SECCLASS_FIFO_FILE;
713
714         }
715
716         return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731         switch (family) {
732         case PF_UNIX:
733                 switch (type) {
734                 case SOCK_STREAM:
735                 case SOCK_SEQPACKET:
736                         return SECCLASS_UNIX_STREAM_SOCKET;
737                 case SOCK_DGRAM:
738                         return SECCLASS_UNIX_DGRAM_SOCKET;
739                 }
740                 break;
741         case PF_INET:
742         case PF_INET6:
743                 switch (type) {
744                 case SOCK_STREAM:
745                         if (default_protocol_stream(protocol))
746                                 return SECCLASS_TCP_SOCKET;
747                         else
748                                 return SECCLASS_RAWIP_SOCKET;
749                 case SOCK_DGRAM:
750                         if (default_protocol_dgram(protocol))
751                                 return SECCLASS_UDP_SOCKET;
752                         else
753                                 return SECCLASS_RAWIP_SOCKET;
754                 case SOCK_DCCP:
755                         return SECCLASS_DCCP_SOCKET;
756                 default:
757                         return SECCLASS_RAWIP_SOCKET;
758                 }
759                 break;
760         case PF_NETLINK:
761                 switch (protocol) {
762                 case NETLINK_ROUTE:
763                         return SECCLASS_NETLINK_ROUTE_SOCKET;
764                 case NETLINK_FIREWALL:
765                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
766                 case NETLINK_INET_DIAG:
767                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
768                 case NETLINK_NFLOG:
769                         return SECCLASS_NETLINK_NFLOG_SOCKET;
770                 case NETLINK_XFRM:
771                         return SECCLASS_NETLINK_XFRM_SOCKET;
772                 case NETLINK_SELINUX:
773                         return SECCLASS_NETLINK_SELINUX_SOCKET;
774                 case NETLINK_AUDIT:
775                         return SECCLASS_NETLINK_AUDIT_SOCKET;
776                 case NETLINK_IP6_FW:
777                         return SECCLASS_NETLINK_IP6FW_SOCKET;
778                 case NETLINK_DNRTMSG:
779                         return SECCLASS_NETLINK_DNRT_SOCKET;
780                 case NETLINK_KOBJECT_UEVENT:
781                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
782                 default:
783                         return SECCLASS_NETLINK_SOCKET;
784                 }
785         case PF_PACKET:
786                 return SECCLASS_PACKET_SOCKET;
787         case PF_KEY:
788                 return SECCLASS_KEY_SOCKET;
789         case PF_APPLETALK:
790                 return SECCLASS_APPLETALK_SOCKET;
791         }
792
793         return SECCLASS_SOCKET;
794 }
795
796 #ifdef CONFIG_PROC_FS
797 static int selinux_proc_get_sid(struct proc_dir_entry *de,
798                                 u16 tclass,
799                                 u32 *sid)
800 {
801         int buflen, rc;
802         char *buffer, *path, *end;
803
804         buffer = (char*)__get_free_page(GFP_KERNEL);
805         if (!buffer)
806                 return -ENOMEM;
807
808         buflen = PAGE_SIZE;
809         end = buffer+buflen;
810         *--end = '\0';
811         buflen--;
812         path = end-1;
813         *path = '/';
814         while (de && de != de->parent) {
815                 buflen -= de->namelen + 1;
816                 if (buflen < 0)
817                         break;
818                 end -= de->namelen;
819                 memcpy(end, de->name, de->namelen);
820                 *--end = '/';
821                 path = end;
822                 de = de->parent;
823         }
824         rc = security_genfs_sid("proc", path, tclass, sid);
825         free_page((unsigned long)buffer);
826         return rc;
827 }
828 #else
829 static int selinux_proc_get_sid(struct proc_dir_entry *de,
830                                 u16 tclass,
831                                 u32 *sid)
832 {
833         return -EINVAL;
834 }
835 #endif
836
837 /* The inode's security attributes must be initialized before first use. */
838 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
839 {
840         struct superblock_security_struct *sbsec = NULL;
841         struct inode_security_struct *isec = inode->i_security;
842         u32 sid;
843         struct dentry *dentry;
844 #define INITCONTEXTLEN 255
845         char *context = NULL;
846         unsigned len = 0;
847         int rc = 0;
848
849         if (isec->initialized)
850                 goto out;
851
852         mutex_lock(&isec->lock);
853         if (isec->initialized)
854                 goto out_unlock;
855
856         sbsec = inode->i_sb->s_security;
857         if (!sbsec->initialized) {
858                 /* Defer initialization until selinux_complete_init,
859                    after the initial policy is loaded and the security
860                    server is ready to handle calls. */
861                 spin_lock(&sbsec->isec_lock);
862                 if (list_empty(&isec->list))
863                         list_add(&isec->list, &sbsec->isec_head);
864                 spin_unlock(&sbsec->isec_lock);
865                 goto out_unlock;
866         }
867
868         switch (sbsec->behavior) {
869         case SECURITY_FS_USE_XATTR:
870                 if (!inode->i_op->getxattr) {
871                         isec->sid = sbsec->def_sid;
872                         break;
873                 }
874
875                 /* Need a dentry, since the xattr API requires one.
876                    Life would be simpler if we could just pass the inode. */
877                 if (opt_dentry) {
878                         /* Called from d_instantiate or d_splice_alias. */
879                         dentry = dget(opt_dentry);
880                 } else {
881                         /* Called from selinux_complete_init, try to find a dentry. */
882                         dentry = d_find_alias(inode);
883                 }
884                 if (!dentry) {
885                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
886                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887                                inode->i_ino);
888                         goto out_unlock;
889                 }
890
891                 len = INITCONTEXTLEN;
892                 context = kmalloc(len, GFP_KERNEL);
893                 if (!context) {
894                         rc = -ENOMEM;
895                         dput(dentry);
896                         goto out_unlock;
897                 }
898                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899                                            context, len);
900                 if (rc == -ERANGE) {
901                         /* Need a larger buffer.  Query for the right size. */
902                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903                                                    NULL, 0);
904                         if (rc < 0) {
905                                 dput(dentry);
906                                 goto out_unlock;
907                         }
908                         kfree(context);
909                         len = rc;
910                         context = kmalloc(len, GFP_KERNEL);
911                         if (!context) {
912                                 rc = -ENOMEM;
913                                 dput(dentry);
914                                 goto out_unlock;
915                         }
916                         rc = inode->i_op->getxattr(dentry,
917                                                    XATTR_NAME_SELINUX,
918                                                    context, len);
919                 }
920                 dput(dentry);
921                 if (rc < 0) {
922                         if (rc != -ENODATA) {
923                                 printk(KERN_WARNING "%s:  getxattr returned "
924                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
925                                        -rc, inode->i_sb->s_id, inode->i_ino);
926                                 kfree(context);
927                                 goto out_unlock;
928                         }
929                         /* Map ENODATA to the default file SID */
930                         sid = sbsec->def_sid;
931                         rc = 0;
932                 } else {
933                         rc = security_context_to_sid_default(context, rc, &sid,
934                                                              sbsec->def_sid);
935                         if (rc) {
936                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
937                                        "returned %d for dev=%s ino=%ld\n",
938                                        __FUNCTION__, context, -rc,
939                                        inode->i_sb->s_id, inode->i_ino);
940                                 kfree(context);
941                                 /* Leave with the unlabeled SID */
942                                 rc = 0;
943                                 break;
944                         }
945                 }
946                 kfree(context);
947                 isec->sid = sid;
948                 break;
949         case SECURITY_FS_USE_TASK:
950                 isec->sid = isec->task_sid;
951                 break;
952         case SECURITY_FS_USE_TRANS:
953                 /* Default to the fs SID. */
954                 isec->sid = sbsec->sid;
955
956                 /* Try to obtain a transition SID. */
957                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
958                 rc = security_transition_sid(isec->task_sid,
959                                              sbsec->sid,
960                                              isec->sclass,
961                                              &sid);
962                 if (rc)
963                         goto out_unlock;
964                 isec->sid = sid;
965                 break;
966         case SECURITY_FS_USE_MNTPOINT:
967                 isec->sid = sbsec->mntpoint_sid;
968                 break;
969         default:
970                 /* Default to the fs superblock SID. */
971                 isec->sid = sbsec->sid;
972
973                 if (sbsec->proc) {
974                         struct proc_inode *proci = PROC_I(inode);
975                         if (proci->pde) {
976                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
977                                 rc = selinux_proc_get_sid(proci->pde,
978                                                           isec->sclass,
979                                                           &sid);
980                                 if (rc)
981                                         goto out_unlock;
982                                 isec->sid = sid;
983                         }
984                 }
985                 break;
986         }
987
988         isec->initialized = 1;
989
990 out_unlock:
991         mutex_unlock(&isec->lock);
992 out:
993         if (isec->sclass == SECCLASS_FILE)
994                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
995         return rc;
996 }
997
998 /* Convert a Linux signal to an access vector. */
999 static inline u32 signal_to_av(int sig)
1000 {
1001         u32 perm = 0;
1002
1003         switch (sig) {
1004         case SIGCHLD:
1005                 /* Commonly granted from child to parent. */
1006                 perm = PROCESS__SIGCHLD;
1007                 break;
1008         case SIGKILL:
1009                 /* Cannot be caught or ignored */
1010                 perm = PROCESS__SIGKILL;
1011                 break;
1012         case SIGSTOP:
1013                 /* Cannot be caught or ignored */
1014                 perm = PROCESS__SIGSTOP;
1015                 break;
1016         default:
1017                 /* All other signals. */
1018                 perm = PROCESS__SIGNAL;
1019                 break;
1020         }
1021
1022         return perm;
1023 }
1024
1025 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1026    fork check, ptrace check, etc. */
1027 static int task_has_perm(struct task_struct *tsk1,
1028                          struct task_struct *tsk2,
1029                          u32 perms)
1030 {
1031         struct task_security_struct *tsec1, *tsec2;
1032
1033         tsec1 = tsk1->security;
1034         tsec2 = tsk2->security;
1035         return avc_has_perm(tsec1->sid, tsec2->sid,
1036                             SECCLASS_PROCESS, perms, NULL);
1037 }
1038
1039 /* Check whether a task is allowed to use a capability. */
1040 static int task_has_capability(struct task_struct *tsk,
1041                                int cap)
1042 {
1043         struct task_security_struct *tsec;
1044         struct avc_audit_data ad;
1045
1046         tsec = tsk->security;
1047
1048         AVC_AUDIT_DATA_INIT(&ad,CAP);
1049         ad.tsk = tsk;
1050         ad.u.cap = cap;
1051
1052         return avc_has_perm(tsec->sid, tsec->sid,
1053                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1054 }
1055
1056 /* Check whether a task is allowed to use a system operation. */
1057 static int task_has_system(struct task_struct *tsk,
1058                            u32 perms)
1059 {
1060         struct task_security_struct *tsec;
1061
1062         tsec = tsk->security;
1063
1064         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1065                             SECCLASS_SYSTEM, perms, NULL);
1066 }
1067
1068 /* Check whether a task has a particular permission to an inode.
1069    The 'adp' parameter is optional and allows other audit
1070    data to be passed (e.g. the dentry). */
1071 static int inode_has_perm(struct task_struct *tsk,
1072                           struct inode *inode,
1073                           u32 perms,
1074                           struct avc_audit_data *adp)
1075 {
1076         struct task_security_struct *tsec;
1077         struct inode_security_struct *isec;
1078         struct avc_audit_data ad;
1079
1080         tsec = tsk->security;
1081         isec = inode->i_security;
1082
1083         if (!adp) {
1084                 adp = &ad;
1085                 AVC_AUDIT_DATA_INIT(&ad, FS);
1086                 ad.u.fs.inode = inode;
1087         }
1088
1089         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1090 }
1091
1092 /* Same as inode_has_perm, but pass explicit audit data containing
1093    the dentry to help the auditing code to more easily generate the
1094    pathname if needed. */
1095 static inline int dentry_has_perm(struct task_struct *tsk,
1096                                   struct vfsmount *mnt,
1097                                   struct dentry *dentry,
1098                                   u32 av)
1099 {
1100         struct inode *inode = dentry->d_inode;
1101         struct avc_audit_data ad;
1102         AVC_AUDIT_DATA_INIT(&ad,FS);
1103         ad.u.fs.mnt = mnt;
1104         ad.u.fs.dentry = dentry;
1105         return inode_has_perm(tsk, inode, av, &ad);
1106 }
1107
1108 /* Check whether a task can use an open file descriptor to
1109    access an inode in a given way.  Check access to the
1110    descriptor itself, and then use dentry_has_perm to
1111    check a particular permission to the file.
1112    Access to the descriptor is implicitly granted if it
1113    has the same SID as the process.  If av is zero, then
1114    access to the file is not checked, e.g. for cases
1115    where only the descriptor is affected like seek. */
1116 static int file_has_perm(struct task_struct *tsk,
1117                                 struct file *file,
1118                                 u32 av)
1119 {
1120         struct task_security_struct *tsec = tsk->security;
1121         struct file_security_struct *fsec = file->f_security;
1122         struct vfsmount *mnt = file->f_path.mnt;
1123         struct dentry *dentry = file->f_path.dentry;
1124         struct inode *inode = dentry->d_inode;
1125         struct avc_audit_data ad;
1126         int rc;
1127
1128         AVC_AUDIT_DATA_INIT(&ad, FS);
1129         ad.u.fs.mnt = mnt;
1130         ad.u.fs.dentry = dentry;
1131
1132         if (tsec->sid != fsec->sid) {
1133                 rc = avc_has_perm(tsec->sid, fsec->sid,
1134                                   SECCLASS_FD,
1135                                   FD__USE,
1136                                   &ad);
1137                 if (rc)
1138                         return rc;
1139         }
1140
1141         /* av is zero if only checking access to the descriptor. */
1142         if (av)
1143                 return inode_has_perm(tsk, inode, av, &ad);
1144
1145         return 0;
1146 }
1147
1148 /* Check whether a task can create a file. */
1149 static int may_create(struct inode *dir,
1150                       struct dentry *dentry,
1151                       u16 tclass)
1152 {
1153         struct task_security_struct *tsec;
1154         struct inode_security_struct *dsec;
1155         struct superblock_security_struct *sbsec;
1156         u32 newsid;
1157         struct avc_audit_data ad;
1158         int rc;
1159
1160         tsec = current->security;
1161         dsec = dir->i_security;
1162         sbsec = dir->i_sb->s_security;
1163
1164         AVC_AUDIT_DATA_INIT(&ad, FS);
1165         ad.u.fs.dentry = dentry;
1166
1167         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1168                           DIR__ADD_NAME | DIR__SEARCH,
1169                           &ad);
1170         if (rc)
1171                 return rc;
1172
1173         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1174                 newsid = tsec->create_sid;
1175         } else {
1176                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1177                                              &newsid);
1178                 if (rc)
1179                         return rc;
1180         }
1181
1182         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1183         if (rc)
1184                 return rc;
1185
1186         return avc_has_perm(newsid, sbsec->sid,
1187                             SECCLASS_FILESYSTEM,
1188                             FILESYSTEM__ASSOCIATE, &ad);
1189 }
1190
1191 /* Check whether a task can create a key. */
1192 static int may_create_key(u32 ksid,
1193                           struct task_struct *ctx)
1194 {
1195         struct task_security_struct *tsec;
1196
1197         tsec = ctx->security;
1198
1199         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1200 }
1201
1202 #define MAY_LINK   0
1203 #define MAY_UNLINK 1
1204 #define MAY_RMDIR  2
1205
1206 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1207 static int may_link(struct inode *dir,
1208                     struct dentry *dentry,
1209                     int kind)
1210
1211 {
1212         struct task_security_struct *tsec;
1213         struct inode_security_struct *dsec, *isec;
1214         struct avc_audit_data ad;
1215         u32 av;
1216         int rc;
1217
1218         tsec = current->security;
1219         dsec = dir->i_security;
1220         isec = dentry->d_inode->i_security;
1221
1222         AVC_AUDIT_DATA_INIT(&ad, FS);
1223         ad.u.fs.dentry = dentry;
1224
1225         av = DIR__SEARCH;
1226         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1227         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1228         if (rc)
1229                 return rc;
1230
1231         switch (kind) {
1232         case MAY_LINK:
1233                 av = FILE__LINK;
1234                 break;
1235         case MAY_UNLINK:
1236                 av = FILE__UNLINK;
1237                 break;
1238         case MAY_RMDIR:
1239                 av = DIR__RMDIR;
1240                 break;
1241         default:
1242                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1243                 return 0;
1244         }
1245
1246         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1247         return rc;
1248 }
1249
1250 static inline int may_rename(struct inode *old_dir,
1251                              struct dentry *old_dentry,
1252                              struct inode *new_dir,
1253                              struct dentry *new_dentry)
1254 {
1255         struct task_security_struct *tsec;
1256         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1257         struct avc_audit_data ad;
1258         u32 av;
1259         int old_is_dir, new_is_dir;
1260         int rc;
1261
1262         tsec = current->security;
1263         old_dsec = old_dir->i_security;
1264         old_isec = old_dentry->d_inode->i_security;
1265         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1266         new_dsec = new_dir->i_security;
1267
1268         AVC_AUDIT_DATA_INIT(&ad, FS);
1269
1270         ad.u.fs.dentry = old_dentry;
1271         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1272                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1273         if (rc)
1274                 return rc;
1275         rc = avc_has_perm(tsec->sid, old_isec->sid,
1276                           old_isec->sclass, FILE__RENAME, &ad);
1277         if (rc)
1278                 return rc;
1279         if (old_is_dir && new_dir != old_dir) {
1280                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1281                                   old_isec->sclass, DIR__REPARENT, &ad);
1282                 if (rc)
1283                         return rc;
1284         }
1285
1286         ad.u.fs.dentry = new_dentry;
1287         av = DIR__ADD_NAME | DIR__SEARCH;
1288         if (new_dentry->d_inode)
1289                 av |= DIR__REMOVE_NAME;
1290         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1291         if (rc)
1292                 return rc;
1293         if (new_dentry->d_inode) {
1294                 new_isec = new_dentry->d_inode->i_security;
1295                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1296                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1297                                   new_isec->sclass,
1298                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1299                 if (rc)
1300                         return rc;
1301         }
1302
1303         return 0;
1304 }
1305
1306 /* Check whether a task can perform a filesystem operation. */
1307 static int superblock_has_perm(struct task_struct *tsk,
1308                                struct super_block *sb,
1309                                u32 perms,
1310                                struct avc_audit_data *ad)
1311 {
1312         struct task_security_struct *tsec;
1313         struct superblock_security_struct *sbsec;
1314
1315         tsec = tsk->security;
1316         sbsec = sb->s_security;
1317         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1318                             perms, ad);
1319 }
1320
1321 /* Convert a Linux mode and permission mask to an access vector. */
1322 static inline u32 file_mask_to_av(int mode, int mask)
1323 {
1324         u32 av = 0;
1325
1326         if ((mode & S_IFMT) != S_IFDIR) {
1327                 if (mask & MAY_EXEC)
1328                         av |= FILE__EXECUTE;
1329                 if (mask & MAY_READ)
1330                         av |= FILE__READ;
1331
1332                 if (mask & MAY_APPEND)
1333                         av |= FILE__APPEND;
1334                 else if (mask & MAY_WRITE)
1335                         av |= FILE__WRITE;
1336
1337         } else {
1338                 if (mask & MAY_EXEC)
1339                         av |= DIR__SEARCH;
1340                 if (mask & MAY_WRITE)
1341                         av |= DIR__WRITE;
1342                 if (mask & MAY_READ)
1343                         av |= DIR__READ;
1344         }
1345
1346         return av;
1347 }
1348
1349 /* Convert a Linux file to an access vector. */
1350 static inline u32 file_to_av(struct file *file)
1351 {
1352         u32 av = 0;
1353
1354         if (file->f_mode & FMODE_READ)
1355                 av |= FILE__READ;
1356         if (file->f_mode & FMODE_WRITE) {
1357                 if (file->f_flags & O_APPEND)
1358                         av |= FILE__APPEND;
1359                 else
1360                         av |= FILE__WRITE;
1361         }
1362
1363         return av;
1364 }
1365
1366 /* Hook functions begin here. */
1367
1368 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1369 {
1370         struct task_security_struct *psec = parent->security;
1371         struct task_security_struct *csec = child->security;
1372         int rc;
1373
1374         rc = secondary_ops->ptrace(parent,child);
1375         if (rc)
1376                 return rc;
1377
1378         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1379         /* Save the SID of the tracing process for later use in apply_creds. */
1380         if (!(child->ptrace & PT_PTRACED) && !rc)
1381                 csec->ptrace_sid = psec->sid;
1382         return rc;
1383 }
1384
1385 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1386                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1387 {
1388         int error;
1389
1390         error = task_has_perm(current, target, PROCESS__GETCAP);
1391         if (error)
1392                 return error;
1393
1394         return secondary_ops->capget(target, effective, inheritable, permitted);
1395 }
1396
1397 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1398                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1399 {
1400         int error;
1401
1402         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1403         if (error)
1404                 return error;
1405
1406         return task_has_perm(current, target, PROCESS__SETCAP);
1407 }
1408
1409 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1410                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1411 {
1412         secondary_ops->capset_set(target, effective, inheritable, permitted);
1413 }
1414
1415 static int selinux_capable(struct task_struct *tsk, int cap)
1416 {
1417         int rc;
1418
1419         rc = secondary_ops->capable(tsk, cap);
1420         if (rc)
1421                 return rc;
1422
1423         return task_has_capability(tsk,cap);
1424 }
1425
1426 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1427 {
1428         int buflen, rc;
1429         char *buffer, *path, *end;
1430
1431         rc = -ENOMEM;
1432         buffer = (char*)__get_free_page(GFP_KERNEL);
1433         if (!buffer)
1434                 goto out;
1435
1436         buflen = PAGE_SIZE;
1437         end = buffer+buflen;
1438         *--end = '\0';
1439         buflen--;
1440         path = end-1;
1441         *path = '/';
1442         while (table) {
1443                 const char *name = table->procname;
1444                 size_t namelen = strlen(name);
1445                 buflen -= namelen + 1;
1446                 if (buflen < 0)
1447                         goto out_free;
1448                 end -= namelen;
1449                 memcpy(end, name, namelen);
1450                 *--end = '/';
1451                 path = end;
1452                 table = table->parent;
1453         }
1454         rc = security_genfs_sid("proc", path, tclass, sid);
1455 out_free:
1456         free_page((unsigned long)buffer);
1457 out:
1458         return rc;
1459 }
1460
1461 static int selinux_sysctl(ctl_table *table, int op)
1462 {
1463         int error = 0;
1464         u32 av;
1465         struct task_security_struct *tsec;
1466         u32 tsid;
1467         int rc;
1468
1469         rc = secondary_ops->sysctl(table, op);
1470         if (rc)
1471                 return rc;
1472
1473         tsec = current->security;
1474
1475         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1476                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1477         if (rc) {
1478                 /* Default to the well-defined sysctl SID. */
1479                 tsid = SECINITSID_SYSCTL;
1480         }
1481
1482         /* The op values are "defined" in sysctl.c, thereby creating
1483          * a bad coupling between this module and sysctl.c */
1484         if(op == 001) {
1485                 error = avc_has_perm(tsec->sid, tsid,
1486                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1487         } else {
1488                 av = 0;
1489                 if (op & 004)
1490                         av |= FILE__READ;
1491                 if (op & 002)
1492                         av |= FILE__WRITE;
1493                 if (av)
1494                         error = avc_has_perm(tsec->sid, tsid,
1495                                              SECCLASS_FILE, av, NULL);
1496         }
1497
1498         return error;
1499 }
1500
1501 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1502 {
1503         int rc = 0;
1504
1505         if (!sb)
1506                 return 0;
1507
1508         switch (cmds) {
1509                 case Q_SYNC:
1510                 case Q_QUOTAON:
1511                 case Q_QUOTAOFF:
1512                 case Q_SETINFO:
1513                 case Q_SETQUOTA:
1514                         rc = superblock_has_perm(current,
1515                                                  sb,
1516                                                  FILESYSTEM__QUOTAMOD, NULL);
1517                         break;
1518                 case Q_GETFMT:
1519                 case Q_GETINFO:
1520                 case Q_GETQUOTA:
1521                         rc = superblock_has_perm(current,
1522                                                  sb,
1523                                                  FILESYSTEM__QUOTAGET, NULL);
1524                         break;
1525                 default:
1526                         rc = 0;  /* let the kernel handle invalid cmds */
1527                         break;
1528         }
1529         return rc;
1530 }
1531
1532 static int selinux_quota_on(struct dentry *dentry)
1533 {
1534         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1535 }
1536
1537 static int selinux_syslog(int type)
1538 {
1539         int rc;
1540
1541         rc = secondary_ops->syslog(type);
1542         if (rc)
1543                 return rc;
1544
1545         switch (type) {
1546                 case 3:         /* Read last kernel messages */
1547                 case 10:        /* Return size of the log buffer */
1548                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1549                         break;
1550                 case 6:         /* Disable logging to console */
1551                 case 7:         /* Enable logging to console */
1552                 case 8:         /* Set level of messages printed to console */
1553                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1554                         break;
1555                 case 0:         /* Close log */
1556                 case 1:         /* Open log */
1557                 case 2:         /* Read from log */
1558                 case 4:         /* Read/clear last kernel messages */
1559                 case 5:         /* Clear ring buffer */
1560                 default:
1561                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1562                         break;
1563         }
1564         return rc;
1565 }
1566
1567 /*
1568  * Check that a process has enough memory to allocate a new virtual
1569  * mapping. 0 means there is enough memory for the allocation to
1570  * succeed and -ENOMEM implies there is not.
1571  *
1572  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1573  * if the capability is granted, but __vm_enough_memory requires 1 if
1574  * the capability is granted.
1575  *
1576  * Do not audit the selinux permission check, as this is applied to all
1577  * processes that allocate mappings.
1578  */
1579 static int selinux_vm_enough_memory(long pages)
1580 {
1581         int rc, cap_sys_admin = 0;
1582         struct task_security_struct *tsec = current->security;
1583
1584         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1585         if (rc == 0)
1586                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1587                                         SECCLASS_CAPABILITY,
1588                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1589                                         NULL);
1590
1591         if (rc == 0)
1592                 cap_sys_admin = 1;
1593
1594         return __vm_enough_memory(pages, cap_sys_admin);
1595 }
1596
1597 /* binprm security operations */
1598
1599 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1600 {
1601         struct bprm_security_struct *bsec;
1602
1603         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1604         if (!bsec)
1605                 return -ENOMEM;
1606
1607         bsec->bprm = bprm;
1608         bsec->sid = SECINITSID_UNLABELED;
1609         bsec->set = 0;
1610
1611         bprm->security = bsec;
1612         return 0;
1613 }
1614
1615 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1616 {
1617         struct task_security_struct *tsec;
1618         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1619         struct inode_security_struct *isec;
1620         struct bprm_security_struct *bsec;
1621         u32 newsid;
1622         struct avc_audit_data ad;
1623         int rc;
1624
1625         rc = secondary_ops->bprm_set_security(bprm);
1626         if (rc)
1627                 return rc;
1628
1629         bsec = bprm->security;
1630
1631         if (bsec->set)
1632                 return 0;
1633
1634         tsec = current->security;
1635         isec = inode->i_security;
1636
1637         /* Default to the current task SID. */
1638         bsec->sid = tsec->sid;
1639
1640         /* Reset fs, key, and sock SIDs on execve. */
1641         tsec->create_sid = 0;
1642         tsec->keycreate_sid = 0;
1643         tsec->sockcreate_sid = 0;
1644
1645         if (tsec->exec_sid) {
1646                 newsid = tsec->exec_sid;
1647                 /* Reset exec SID on execve. */
1648                 tsec->exec_sid = 0;
1649         } else {
1650                 /* Check for a default transition on this program. */
1651                 rc = security_transition_sid(tsec->sid, isec->sid,
1652                                              SECCLASS_PROCESS, &newsid);
1653                 if (rc)
1654                         return rc;
1655         }
1656
1657         AVC_AUDIT_DATA_INIT(&ad, FS);
1658         ad.u.fs.mnt = bprm->file->f_path.mnt;
1659         ad.u.fs.dentry = bprm->file->f_path.dentry;
1660
1661         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1662                 newsid = tsec->sid;
1663
1664         if (tsec->sid == newsid) {
1665                 rc = avc_has_perm(tsec->sid, isec->sid,
1666                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1667                 if (rc)
1668                         return rc;
1669         } else {
1670                 /* Check permissions for the transition. */
1671                 rc = avc_has_perm(tsec->sid, newsid,
1672                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1673                 if (rc)
1674                         return rc;
1675
1676                 rc = avc_has_perm(newsid, isec->sid,
1677                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1678                 if (rc)
1679                         return rc;
1680
1681                 /* Clear any possibly unsafe personality bits on exec: */
1682                 current->personality &= ~PER_CLEAR_ON_SETID;
1683
1684                 /* Set the security field to the new SID. */
1685                 bsec->sid = newsid;
1686         }
1687
1688         bsec->set = 1;
1689         return 0;
1690 }
1691
1692 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1693 {
1694         return secondary_ops->bprm_check_security(bprm);
1695 }
1696
1697
1698 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1699 {
1700         struct task_security_struct *tsec = current->security;
1701         int atsecure = 0;
1702
1703         if (tsec->osid != tsec->sid) {
1704                 /* Enable secure mode for SIDs transitions unless
1705                    the noatsecure permission is granted between
1706                    the two SIDs, i.e. ahp returns 0. */
1707                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1708                                          SECCLASS_PROCESS,
1709                                          PROCESS__NOATSECURE, NULL);
1710         }
1711
1712         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1713 }
1714
1715 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1716 {
1717         kfree(bprm->security);
1718         bprm->security = NULL;
1719 }
1720
1721 extern struct vfsmount *selinuxfs_mount;
1722 extern struct dentry *selinux_null;
1723
1724 /* Derived from fs/exec.c:flush_old_files. */
1725 static inline void flush_unauthorized_files(struct files_struct * files)
1726 {
1727         struct avc_audit_data ad;
1728         struct file *file, *devnull = NULL;
1729         struct tty_struct *tty;
1730         struct fdtable *fdt;
1731         long j = -1;
1732         int drop_tty = 0;
1733
1734         mutex_lock(&tty_mutex);
1735         tty = get_current_tty();
1736         if (tty) {
1737                 file_list_lock();
1738                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1739                 if (file) {
1740                         /* Revalidate access to controlling tty.
1741                            Use inode_has_perm on the tty inode directly rather
1742                            than using file_has_perm, as this particular open
1743                            file may belong to another process and we are only
1744                            interested in the inode-based check here. */
1745                         struct inode *inode = file->f_path.dentry->d_inode;
1746                         if (inode_has_perm(current, inode,
1747                                            FILE__READ | FILE__WRITE, NULL)) {
1748                                 drop_tty = 1;
1749                         }
1750                 }
1751                 file_list_unlock();
1752
1753                 /* Reset controlling tty. */
1754                 if (drop_tty)
1755                         proc_set_tty(current, NULL);
1756         }
1757         mutex_unlock(&tty_mutex);
1758
1759         /* Revalidate access to inherited open files. */
1760
1761         AVC_AUDIT_DATA_INIT(&ad,FS);
1762
1763         spin_lock(&files->file_lock);
1764         for (;;) {
1765                 unsigned long set, i;
1766                 int fd;
1767
1768                 j++;
1769                 i = j * __NFDBITS;
1770                 fdt = files_fdtable(files);
1771                 if (i >= fdt->max_fds)
1772                         break;
1773                 set = fdt->open_fds->fds_bits[j];
1774                 if (!set)
1775                         continue;
1776                 spin_unlock(&files->file_lock);
1777                 for ( ; set ; i++,set >>= 1) {
1778                         if (set & 1) {
1779                                 file = fget(i);
1780                                 if (!file)
1781                                         continue;
1782                                 if (file_has_perm(current,
1783                                                   file,
1784                                                   file_to_av(file))) {
1785                                         sys_close(i);
1786                                         fd = get_unused_fd();
1787                                         if (fd != i) {
1788                                                 if (fd >= 0)
1789                                                         put_unused_fd(fd);
1790                                                 fput(file);
1791                                                 continue;
1792                                         }
1793                                         if (devnull) {
1794                                                 get_file(devnull);
1795                                         } else {
1796                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1797                                                 if (IS_ERR(devnull)) {
1798                                                         devnull = NULL;
1799                                                         put_unused_fd(fd);
1800                                                         fput(file);
1801                                                         continue;
1802                                                 }
1803                                         }
1804                                         fd_install(fd, devnull);
1805                                 }
1806                                 fput(file);
1807                         }
1808                 }
1809                 spin_lock(&files->file_lock);
1810
1811         }
1812         spin_unlock(&files->file_lock);
1813 }
1814
1815 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1816 {
1817         struct task_security_struct *tsec;
1818         struct bprm_security_struct *bsec;
1819         u32 sid;
1820         int rc;
1821
1822         secondary_ops->bprm_apply_creds(bprm, unsafe);
1823
1824         tsec = current->security;
1825
1826         bsec = bprm->security;
1827         sid = bsec->sid;
1828
1829         tsec->osid = tsec->sid;
1830         bsec->unsafe = 0;
1831         if (tsec->sid != sid) {
1832                 /* Check for shared state.  If not ok, leave SID
1833                    unchanged and kill. */
1834                 if (unsafe & LSM_UNSAFE_SHARE) {
1835                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1836                                         PROCESS__SHARE, NULL);
1837                         if (rc) {
1838                                 bsec->unsafe = 1;
1839                                 return;
1840                         }
1841                 }
1842
1843                 /* Check for ptracing, and update the task SID if ok.
1844                    Otherwise, leave SID unchanged and kill. */
1845                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1846                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1847                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1848                                           NULL);
1849                         if (rc) {
1850                                 bsec->unsafe = 1;
1851                                 return;
1852                         }
1853                 }
1854                 tsec->sid = sid;
1855         }
1856 }
1857
1858 /*
1859  * called after apply_creds without the task lock held
1860  */
1861 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1862 {
1863         struct task_security_struct *tsec;
1864         struct rlimit *rlim, *initrlim;
1865         struct itimerval itimer;
1866         struct bprm_security_struct *bsec;
1867         int rc, i;
1868
1869         tsec = current->security;
1870         bsec = bprm->security;
1871
1872         if (bsec->unsafe) {
1873                 force_sig_specific(SIGKILL, current);
1874                 return;
1875         }
1876         if (tsec->osid == tsec->sid)
1877                 return;
1878
1879         /* Close files for which the new task SID is not authorized. */
1880         flush_unauthorized_files(current->files);
1881
1882         /* Check whether the new SID can inherit signal state
1883            from the old SID.  If not, clear itimers to avoid
1884            subsequent signal generation and flush and unblock
1885            signals. This must occur _after_ the task SID has
1886           been updated so that any kill done after the flush
1887           will be checked against the new SID. */
1888         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1889                           PROCESS__SIGINH, NULL);
1890         if (rc) {
1891                 memset(&itimer, 0, sizeof itimer);
1892                 for (i = 0; i < 3; i++)
1893                         do_setitimer(i, &itimer, NULL);
1894                 flush_signals(current);
1895                 spin_lock_irq(&current->sighand->siglock);
1896                 flush_signal_handlers(current, 1);
1897                 sigemptyset(&current->blocked);
1898                 recalc_sigpending();
1899                 spin_unlock_irq(&current->sighand->siglock);
1900         }
1901
1902         /* Check whether the new SID can inherit resource limits
1903            from the old SID.  If not, reset all soft limits to
1904            the lower of the current task's hard limit and the init
1905            task's soft limit.  Note that the setting of hard limits
1906            (even to lower them) can be controlled by the setrlimit
1907            check. The inclusion of the init task's soft limit into
1908            the computation is to avoid resetting soft limits higher
1909            than the default soft limit for cases where the default
1910            is lower than the hard limit, e.g. RLIMIT_CORE or
1911            RLIMIT_STACK.*/
1912         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1913                           PROCESS__RLIMITINH, NULL);
1914         if (rc) {
1915                 for (i = 0; i < RLIM_NLIMITS; i++) {
1916                         rlim = current->signal->rlim + i;
1917                         initrlim = init_task.signal->rlim+i;
1918                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1919                 }
1920                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1921                         /*
1922                          * This will cause RLIMIT_CPU calculations
1923                          * to be refigured.
1924                          */
1925                         current->it_prof_expires = jiffies_to_cputime(1);
1926                 }
1927         }
1928
1929         /* Wake up the parent if it is waiting so that it can
1930            recheck wait permission to the new task SID. */
1931         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1932 }
1933
1934 /* superblock security operations */
1935
1936 static int selinux_sb_alloc_security(struct super_block *sb)
1937 {
1938         return superblock_alloc_security(sb);
1939 }
1940
1941 static void selinux_sb_free_security(struct super_block *sb)
1942 {
1943         superblock_free_security(sb);
1944 }
1945
1946 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1947 {
1948         if (plen > olen)
1949                 return 0;
1950
1951         return !memcmp(prefix, option, plen);
1952 }
1953
1954 static inline int selinux_option(char *option, int len)
1955 {
1956         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1957                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1958                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1959                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1960 }
1961
1962 static inline void take_option(char **to, char *from, int *first, int len)
1963 {
1964         if (!*first) {
1965                 **to = ',';
1966                 *to += 1;
1967         } else
1968                 *first = 0;
1969         memcpy(*to, from, len);
1970         *to += len;
1971 }
1972
1973 static inline void take_selinux_option(char **to, char *from, int *first, 
1974                                        int len)
1975 {
1976         int current_size = 0;
1977
1978         if (!*first) {
1979                 **to = '|';
1980                 *to += 1;
1981         }
1982         else
1983                 *first = 0;
1984
1985         while (current_size < len) {
1986                 if (*from != '"') {
1987                         **to = *from;
1988                         *to += 1;
1989                 }
1990                 from += 1;
1991                 current_size += 1;
1992         }
1993 }
1994
1995 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1996 {
1997         int fnosec, fsec, rc = 0;
1998         char *in_save, *in_curr, *in_end;
1999         char *sec_curr, *nosec_save, *nosec;
2000         int open_quote = 0;
2001
2002         in_curr = orig;
2003         sec_curr = copy;
2004
2005         /* Binary mount data: just copy */
2006         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2007                 copy_page(sec_curr, in_curr);
2008                 goto out;
2009         }
2010
2011         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2012         if (!nosec) {
2013                 rc = -ENOMEM;
2014                 goto out;
2015         }
2016
2017         nosec_save = nosec;
2018         fnosec = fsec = 1;
2019         in_save = in_end = orig;
2020
2021         do {
2022                 if (*in_end == '"')
2023                         open_quote = !open_quote;
2024                 if ((*in_end == ',' && open_quote == 0) ||
2025                                 *in_end == '\0') {
2026                         int len = in_end - in_curr;
2027
2028                         if (selinux_option(in_curr, len))
2029                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2030                         else
2031                                 take_option(&nosec, in_curr, &fnosec, len);
2032
2033                         in_curr = in_end + 1;
2034                 }
2035         } while (*in_end++);
2036
2037         strcpy(in_save, nosec_save);
2038         free_page((unsigned long)nosec_save);
2039 out:
2040         return rc;
2041 }
2042
2043 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2044 {
2045         struct avc_audit_data ad;
2046         int rc;
2047
2048         rc = superblock_doinit(sb, data);
2049         if (rc)
2050                 return rc;
2051
2052         AVC_AUDIT_DATA_INIT(&ad,FS);
2053         ad.u.fs.dentry = sb->s_root;
2054         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2055 }
2056
2057 static int selinux_sb_statfs(struct dentry *dentry)
2058 {
2059         struct avc_audit_data ad;
2060
2061         AVC_AUDIT_DATA_INIT(&ad,FS);
2062         ad.u.fs.dentry = dentry->d_sb->s_root;
2063         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2064 }
2065
2066 static int selinux_mount(char * dev_name,
2067                          struct nameidata *nd,
2068                          char * type,
2069                          unsigned long flags,
2070                          void * data)
2071 {
2072         int rc;
2073
2074         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2075         if (rc)
2076                 return rc;
2077
2078         if (flags & MS_REMOUNT)
2079                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2080                                            FILESYSTEM__REMOUNT, NULL);
2081         else
2082                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2083                                        FILE__MOUNTON);
2084 }
2085
2086 static int selinux_umount(struct vfsmount *mnt, int flags)
2087 {
2088         int rc;
2089
2090         rc = secondary_ops->sb_umount(mnt, flags);
2091         if (rc)
2092                 return rc;
2093
2094         return superblock_has_perm(current,mnt->mnt_sb,
2095                                    FILESYSTEM__UNMOUNT,NULL);
2096 }
2097
2098 /* inode security operations */
2099
2100 static int selinux_inode_alloc_security(struct inode *inode)
2101 {
2102         return inode_alloc_security(inode);
2103 }
2104
2105 static void selinux_inode_free_security(struct inode *inode)
2106 {
2107         inode_free_security(inode);
2108 }
2109
2110 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2111                                        char **name, void **value,
2112                                        size_t *len)
2113 {
2114         struct task_security_struct *tsec;
2115         struct inode_security_struct *dsec;
2116         struct superblock_security_struct *sbsec;
2117         u32 newsid, clen;
2118         int rc;
2119         char *namep = NULL, *context;
2120
2121         tsec = current->security;
2122         dsec = dir->i_security;
2123         sbsec = dir->i_sb->s_security;
2124
2125         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2126                 newsid = tsec->create_sid;
2127         } else {
2128                 rc = security_transition_sid(tsec->sid, dsec->sid,
2129                                              inode_mode_to_security_class(inode->i_mode),
2130                                              &newsid);
2131                 if (rc) {
2132                         printk(KERN_WARNING "%s:  "
2133                                "security_transition_sid failed, rc=%d (dev=%s "
2134                                "ino=%ld)\n",
2135                                __FUNCTION__,
2136                                -rc, inode->i_sb->s_id, inode->i_ino);
2137                         return rc;
2138                 }
2139         }
2140
2141         /* Possibly defer initialization to selinux_complete_init. */
2142         if (sbsec->initialized) {
2143                 struct inode_security_struct *isec = inode->i_security;
2144                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2145                 isec->sid = newsid;
2146                 isec->initialized = 1;
2147         }
2148
2149         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2150                 return -EOPNOTSUPP;
2151
2152         if (name) {
2153                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2154                 if (!namep)
2155                         return -ENOMEM;
2156                 *name = namep;
2157         }
2158
2159         if (value && len) {
2160                 rc = security_sid_to_context(newsid, &context, &clen);
2161                 if (rc) {
2162                         kfree(namep);
2163                         return rc;
2164                 }
2165                 *value = context;
2166                 *len = clen;
2167         }
2168
2169         return 0;
2170 }
2171
2172 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2173 {
2174         return may_create(dir, dentry, SECCLASS_FILE);
2175 }
2176
2177 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2178 {
2179         int rc;
2180
2181         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2182         if (rc)
2183                 return rc;
2184         return may_link(dir, old_dentry, MAY_LINK);
2185 }
2186
2187 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2188 {
2189         int rc;
2190
2191         rc = secondary_ops->inode_unlink(dir, dentry);
2192         if (rc)
2193                 return rc;
2194         return may_link(dir, dentry, MAY_UNLINK);
2195 }
2196
2197 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2198 {
2199         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2200 }
2201
2202 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2203 {
2204         return may_create(dir, dentry, SECCLASS_DIR);
2205 }
2206
2207 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2208 {
2209         return may_link(dir, dentry, MAY_RMDIR);
2210 }
2211
2212 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2213 {
2214         int rc;
2215
2216         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2217         if (rc)
2218                 return rc;
2219
2220         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2221 }
2222
2223 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2224                                 struct inode *new_inode, struct dentry *new_dentry)
2225 {
2226         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2227 }
2228
2229 static int selinux_inode_readlink(struct dentry *dentry)
2230 {
2231         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2232 }
2233
2234 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2235 {
2236         int rc;
2237
2238         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2239         if (rc)
2240                 return rc;
2241         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2242 }
2243
2244 static int selinux_inode_permission(struct inode *inode, int mask,
2245                                     struct nameidata *nd)
2246 {
2247         int rc;
2248
2249         rc = secondary_ops->inode_permission(inode, mask, nd);
2250         if (rc)
2251                 return rc;
2252
2253         if (!mask) {
2254                 /* No permission to check.  Existence test. */
2255                 return 0;
2256         }
2257
2258         return inode_has_perm(current, inode,
2259                                file_mask_to_av(inode->i_mode, mask), NULL);
2260 }
2261
2262 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2263 {
2264         int rc;
2265
2266         rc = secondary_ops->inode_setattr(dentry, iattr);
2267         if (rc)
2268                 return rc;
2269
2270         if (iattr->ia_valid & ATTR_FORCE)
2271                 return 0;
2272
2273         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2274                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2275                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2276
2277         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2278 }
2279
2280 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2281 {
2282         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2283 }
2284
2285 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2286 {
2287         struct task_security_struct *tsec = current->security;
2288         struct inode *inode = dentry->d_inode;
2289         struct inode_security_struct *isec = inode->i_security;
2290         struct superblock_security_struct *sbsec;
2291         struct avc_audit_data ad;
2292         u32 newsid;
2293         int rc = 0;
2294
2295         if (strcmp(name, XATTR_NAME_SELINUX)) {
2296                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2297                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2298                     !capable(CAP_SYS_ADMIN)) {
2299                         /* A different attribute in the security namespace.
2300                            Restrict to administrator. */
2301                         return -EPERM;
2302                 }
2303
2304                 /* Not an attribute we recognize, so just check the
2305                    ordinary setattr permission. */
2306                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2307         }
2308
2309         sbsec = inode->i_sb->s_security;
2310         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2311                 return -EOPNOTSUPP;
2312
2313         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2314                 return -EPERM;
2315
2316         AVC_AUDIT_DATA_INIT(&ad,FS);
2317         ad.u.fs.dentry = dentry;
2318
2319         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2320                           FILE__RELABELFROM, &ad);
2321         if (rc)
2322                 return rc;
2323
2324         rc = security_context_to_sid(value, size, &newsid);
2325         if (rc)
2326                 return rc;
2327
2328         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2329                           FILE__RELABELTO, &ad);
2330         if (rc)
2331                 return rc;
2332
2333         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2334                                           isec->sclass);
2335         if (rc)
2336                 return rc;
2337
2338         return avc_has_perm(newsid,
2339                             sbsec->sid,
2340                             SECCLASS_FILESYSTEM,
2341                             FILESYSTEM__ASSOCIATE,
2342                             &ad);
2343 }
2344
2345 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2346                                         void *value, size_t size, int flags)
2347 {
2348         struct inode *inode = dentry->d_inode;
2349         struct inode_security_struct *isec = inode->i_security;
2350         u32 newsid;
2351         int rc;
2352
2353         if (strcmp(name, XATTR_NAME_SELINUX)) {
2354                 /* Not an attribute we recognize, so nothing to do. */
2355                 return;
2356         }
2357
2358         rc = security_context_to_sid(value, size, &newsid);
2359         if (rc) {
2360                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2361                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2362                 return;
2363         }
2364
2365         isec->sid = newsid;
2366         return;
2367 }
2368
2369 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2370 {
2371         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2372 }
2373
2374 static int selinux_inode_listxattr (struct dentry *dentry)
2375 {
2376         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2377 }
2378
2379 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2380 {
2381         if (strcmp(name, XATTR_NAME_SELINUX)) {
2382                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2383                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2384                     !capable(CAP_SYS_ADMIN)) {
2385                         /* A different attribute in the security namespace.
2386                            Restrict to administrator. */
2387                         return -EPERM;
2388                 }
2389
2390                 /* Not an attribute we recognize, so just check the
2391                    ordinary setattr permission. Might want a separate
2392                    permission for removexattr. */
2393                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2394         }
2395
2396         /* No one is allowed to remove a SELinux security label.
2397            You can change the label, but all data must be labeled. */
2398         return -EACCES;
2399 }
2400
2401 static const char *selinux_inode_xattr_getsuffix(void)
2402 {
2403       return XATTR_SELINUX_SUFFIX;
2404 }
2405
2406 /*
2407  * Copy the in-core inode security context value to the user.  If the
2408  * getxattr() prior to this succeeded, check to see if we need to
2409  * canonicalize the value to be finally returned to the user.
2410  *
2411  * Permission check is handled by selinux_inode_getxattr hook.
2412  */
2413 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2414 {
2415         struct inode_security_struct *isec = inode->i_security;
2416
2417         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2418                 return -EOPNOTSUPP;
2419
2420         return selinux_getsecurity(isec->sid, buffer, size);
2421 }
2422
2423 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2424                                      const void *value, size_t size, int flags)
2425 {
2426         struct inode_security_struct *isec = inode->i_security;
2427         u32 newsid;
2428         int rc;
2429
2430         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2431                 return -EOPNOTSUPP;
2432
2433         if (!value || !size)
2434                 return -EACCES;
2435
2436         rc = security_context_to_sid((void*)value, size, &newsid);
2437         if (rc)
2438                 return rc;
2439
2440         isec->sid = newsid;
2441         return 0;
2442 }
2443
2444 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2445 {
2446         const int len = sizeof(XATTR_NAME_SELINUX);
2447         if (buffer && len <= buffer_size)
2448                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2449         return len;
2450 }
2451
2452 /* file security operations */
2453
2454 static int selinux_file_permission(struct file *file, int mask)
2455 {
2456         int rc;
2457         struct inode *inode = file->f_path.dentry->d_inode;
2458
2459         if (!mask) {
2460                 /* No permission to check.  Existence test. */
2461                 return 0;
2462         }
2463
2464         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2465         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2466                 mask |= MAY_APPEND;
2467
2468         rc = file_has_perm(current, file,
2469                            file_mask_to_av(inode->i_mode, mask));
2470         if (rc)
2471                 return rc;
2472
2473         return selinux_netlbl_inode_permission(inode, mask);
2474 }
2475
2476 static int selinux_file_alloc_security(struct file *file)
2477 {
2478         return file_alloc_security(file);
2479 }
2480
2481 static void selinux_file_free_security(struct file *file)
2482 {
2483         file_free_security(file);
2484 }
2485
2486 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2487                               unsigned long arg)
2488 {
2489         int error = 0;
2490
2491         switch (cmd) {
2492                 case FIONREAD:
2493                 /* fall through */
2494                 case FIBMAP:
2495                 /* fall through */
2496                 case FIGETBSZ:
2497                 /* fall through */
2498                 case EXT2_IOC_GETFLAGS:
2499                 /* fall through */
2500                 case EXT2_IOC_GETVERSION:
2501                         error = file_has_perm(current, file, FILE__GETATTR);
2502                         break;
2503
2504                 case EXT2_IOC_SETFLAGS:
2505                 /* fall through */
2506                 case EXT2_IOC_SETVERSION:
2507                         error = file_has_perm(current, file, FILE__SETATTR);
2508                         break;
2509
2510                 /* sys_ioctl() checks */
2511                 case FIONBIO:
2512                 /* fall through */
2513                 case FIOASYNC:
2514                         error = file_has_perm(current, file, 0);
2515                         break;
2516
2517                 case KDSKBENT:
2518                 case KDSKBSENT:
2519                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2520                         break;
2521
2522                 /* default case assumes that the command will go
2523                  * to the file's ioctl() function.
2524                  */
2525                 default:
2526                         error = file_has_perm(current, file, FILE__IOCTL);
2527
2528         }
2529         return error;
2530 }
2531
2532 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2533 {
2534 #ifndef CONFIG_PPC32
2535         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2536                 /*
2537                  * We are making executable an anonymous mapping or a
2538                  * private file mapping that will also be writable.
2539                  * This has an additional check.
2540                  */
2541                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2542                 if (rc)
2543                         return rc;
2544         }
2545 #endif
2546
2547         if (file) {
2548                 /* read access is always possible with a mapping */
2549                 u32 av = FILE__READ;
2550
2551                 /* write access only matters if the mapping is shared */
2552                 if (shared && (prot & PROT_WRITE))
2553                         av |= FILE__WRITE;
2554
2555                 if (prot & PROT_EXEC)
2556                         av |= FILE__EXECUTE;
2557
2558                 return file_has_perm(current, file, av);
2559         }
2560         return 0;
2561 }
2562
2563 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2564                              unsigned long prot, unsigned long flags)
2565 {
2566         int rc;
2567
2568         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2569         if (rc)
2570                 return rc;
2571
2572         if (selinux_checkreqprot)
2573                 prot = reqprot;
2574
2575         return file_map_prot_check(file, prot,
2576                                    (flags & MAP_TYPE) == MAP_SHARED);
2577 }
2578
2579 static int selinux_file_mprotect(struct vm_area_struct *vma,
2580                                  unsigned long reqprot,
2581                                  unsigned long prot)
2582 {
2583         int rc;
2584
2585         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2586         if (rc)
2587                 return rc;
2588
2589         if (selinux_checkreqprot)
2590                 prot = reqprot;
2591
2592 #ifndef CONFIG_PPC32
2593         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2594                 rc = 0;
2595                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2596                     vma->vm_end <= vma->vm_mm->brk) {
2597                         rc = task_has_perm(current, current,
2598                                            PROCESS__EXECHEAP);
2599                 } else if (!vma->vm_file &&
2600                            vma->vm_start <= vma->vm_mm->start_stack &&
2601                            vma->vm_end >= vma->vm_mm->start_stack) {
2602                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2603                 } else if (vma->vm_file && vma->anon_vma) {
2604                         /*
2605                          * We are making executable a file mapping that has
2606                          * had some COW done. Since pages might have been
2607                          * written, check ability to execute the possibly
2608                          * modified content.  This typically should only
2609                          * occur for text relocations.
2610                          */
2611                         rc = file_has_perm(current, vma->vm_file,
2612                                            FILE__EXECMOD);
2613                 }
2614                 if (rc)
2615                         return rc;
2616         }
2617 #endif
2618
2619         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2620 }
2621
2622 static int selinux_file_lock(struct file *file, unsigned int cmd)
2623 {
2624         return file_has_perm(current, file, FILE__LOCK);
2625 }
2626
2627 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2628                               unsigned long arg)
2629 {
2630         int err = 0;
2631
2632         switch (cmd) {
2633                 case F_SETFL:
2634                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2635                                 err = -EINVAL;
2636                                 break;
2637                         }
2638
2639                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2640                                 err = file_has_perm(current, file,FILE__WRITE);
2641                                 break;
2642                         }
2643                         /* fall through */
2644                 case F_SETOWN:
2645                 case F_SETSIG:
2646                 case F_GETFL:
2647                 case F_GETOWN:
2648                 case F_GETSIG:
2649                         /* Just check FD__USE permission */
2650                         err = file_has_perm(current, file, 0);
2651                         break;
2652                 case F_GETLK:
2653                 case F_SETLK:
2654                 case F_SETLKW:
2655 #if BITS_PER_LONG == 32
2656                 case F_GETLK64:
2657                 case F_SETLK64:
2658                 case F_SETLKW64:
2659 #endif
2660                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2661                                 err = -EINVAL;
2662                                 break;
2663                         }
2664                         err = file_has_perm(current, file, FILE__LOCK);
2665                         break;
2666         }
2667
2668         return err;
2669 }
2670
2671 static int selinux_file_set_fowner(struct file *file)
2672 {
2673         struct task_security_struct *tsec;
2674         struct file_security_struct *fsec;
2675
2676         tsec = current->security;
2677         fsec = file->f_security;
2678         fsec->fown_sid = tsec->sid;
2679
2680         return 0;
2681 }
2682
2683 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2684                                        struct fown_struct *fown, int signum)
2685 {
2686         struct file *file;
2687         u32 perm;
2688         struct task_security_struct *tsec;
2689         struct file_security_struct *fsec;
2690
2691         /* struct fown_struct is never outside the context of a struct file */
2692         file = container_of(fown, struct file, f_owner);
2693
2694         tsec = tsk->security;
2695         fsec = file->f_security;
2696
2697         if (!signum)
2698                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2699         else
2700                 perm = signal_to_av(signum);
2701
2702         return avc_has_perm(fsec->fown_sid, tsec->sid,
2703                             SECCLASS_PROCESS, perm, NULL);
2704 }
2705
2706 static int selinux_file_receive(struct file *file)
2707 {
2708         return file_has_perm(current, file, file_to_av(file));
2709 }
2710
2711 /* task security operations */
2712
2713 static int selinux_task_create(unsigned long clone_flags)
2714 {
2715         int rc;
2716
2717         rc = secondary_ops->task_create(clone_flags);
2718         if (rc)
2719                 return rc;
2720
2721         return task_has_perm(current, current, PROCESS__FORK);
2722 }
2723
2724 static int selinux_task_alloc_security(struct task_struct *tsk)
2725 {
2726         struct task_security_struct *tsec1, *tsec2;
2727         int rc;
2728
2729         tsec1 = current->security;
2730
2731         rc = task_alloc_security(tsk);
2732         if (rc)
2733                 return rc;
2734         tsec2 = tsk->security;
2735
2736         tsec2->osid = tsec1->osid;
2737         tsec2->sid = tsec1->sid;
2738
2739         /* Retain the exec, fs, key, and sock SIDs across fork */
2740         tsec2->exec_sid = tsec1->exec_sid;
2741         tsec2->create_sid = tsec1->create_sid;
2742         tsec2->keycreate_sid = tsec1->keycreate_sid;
2743         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2744
2745         /* Retain ptracer SID across fork, if any.
2746            This will be reset by the ptrace hook upon any
2747            subsequent ptrace_attach operations. */
2748         tsec2->ptrace_sid = tsec1->ptrace_sid;
2749
2750         return 0;
2751 }
2752
2753 static void selinux_task_free_security(struct task_struct *tsk)
2754 {
2755         task_free_security(tsk);
2756 }
2757
2758 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2759 {
2760         /* Since setuid only affects the current process, and
2761            since the SELinux controls are not based on the Linux
2762            identity attributes, SELinux does not need to control
2763            this operation.  However, SELinux does control the use
2764            of the CAP_SETUID and CAP_SETGID capabilities using the
2765            capable hook. */
2766         return 0;
2767 }
2768
2769 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2770 {
2771         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2772 }
2773
2774 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2775 {
2776         /* See the comment for setuid above. */
2777         return 0;
2778 }
2779
2780 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2781 {
2782         return task_has_perm(current, p, PROCESS__SETPGID);
2783 }
2784
2785 static int selinux_task_getpgid(struct task_struct *p)
2786 {
2787         return task_has_perm(current, p, PROCESS__GETPGID);
2788 }
2789
2790 static int selinux_task_getsid(struct task_struct *p)
2791 {
2792         return task_has_perm(current, p, PROCESS__GETSESSION);
2793 }
2794
2795 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2796 {
2797         selinux_get_task_sid(p, secid);
2798 }
2799
2800 static int selinux_task_setgroups(struct group_info *group_info)
2801 {
2802         /* See the comment for setuid above. */
2803         return 0;
2804 }
2805
2806 static int selinux_task_setnice(struct task_struct *p, int nice)
2807 {
2808         int rc;
2809
2810         rc = secondary_ops->task_setnice(p, nice);
2811         if (rc)
2812                 return rc;
2813
2814         return task_has_perm(current,p, PROCESS__SETSCHED);
2815 }
2816
2817 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2818 {
2819         return task_has_perm(current, p, PROCESS__SETSCHED);
2820 }
2821
2822 static int selinux_task_getioprio(struct task_struct *p)
2823 {
2824         return task_has_perm(current, p, PROCESS__GETSCHED);
2825 }
2826
2827 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2828 {
2829         struct rlimit *old_rlim = current->signal->rlim + resource;
2830         int rc;
2831
2832         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2833         if (rc)
2834                 return rc;
2835
2836         /* Control the ability to change the hard limit (whether
2837            lowering or raising it), so that the hard limit can
2838            later be used as a safe reset point for the soft limit
2839            upon context transitions. See selinux_bprm_apply_creds. */
2840         if (old_rlim->rlim_max != new_rlim->rlim_max)
2841                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2842
2843         return 0;
2844 }
2845
2846 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2847 {
2848         return task_has_perm(current, p, PROCESS__SETSCHED);
2849 }
2850
2851 static int selinux_task_getscheduler(struct task_struct *p)
2852 {
2853         return task_has_perm(current, p, PROCESS__GETSCHED);
2854 }
2855
2856 static int selinux_task_movememory(struct task_struct *p)
2857 {
2858         return task_has_perm(current, p, PROCESS__SETSCHED);
2859 }
2860
2861 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2862                                 int sig, u32 secid)
2863 {
2864         u32 perm;
2865         int rc;
2866         struct task_security_struct *tsec;
2867
2868         rc = secondary_ops->task_kill(p, info, sig, secid);
2869         if (rc)
2870                 return rc;
2871
2872         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2873                 return 0;
2874
2875         if (!sig)
2876                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2877         else
2878                 perm = signal_to_av(sig);
2879         tsec = p->security;
2880         if (secid)
2881                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2882         else
2883                 rc = task_has_perm(current, p, perm);
2884         return rc;
2885 }
2886
2887 static int selinux_task_prctl(int option,
2888                               unsigned long arg2,
2889                               unsigned long arg3,
2890                               unsigned long arg4,
2891                               unsigned long arg5)
2892 {
2893         /* The current prctl operations do not appear to require
2894            any SELinux controls since they merely observe or modify
2895            the state of the current process. */
2896         return 0;
2897 }
2898
2899 static int selinux_task_wait(struct task_struct *p)
2900 {
2901         u32 perm;
2902
2903         perm = signal_to_av(p->exit_signal);
2904
2905         return task_has_perm(p, current, perm);
2906 }
2907
2908 static void selinux_task_reparent_to_init(struct task_struct *p)
2909 {
2910         struct task_security_struct *tsec;
2911
2912         secondary_ops->task_reparent_to_init(p);
2913
2914         tsec = p->security;
2915         tsec->osid = tsec->sid;
2916         tsec->sid = SECINITSID_KERNEL;
2917         return;
2918 }
2919
2920 static void selinux_task_to_inode(struct task_struct *p,
2921                                   struct inode *inode)
2922 {
2923         struct task_security_struct *tsec = p->security;
2924         struct inode_security_struct *isec = inode->i_security;
2925
2926         isec->sid = tsec->sid;
2927         isec->initialized = 1;
2928         return;
2929 }
2930
2931 /* Returns error only if unable to parse addresses */
2932 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2933                         struct avc_audit_data *ad, u8 *proto)
2934 {
2935         int offset, ihlen, ret = -EINVAL;
2936         struct iphdr _iph, *ih;
2937
2938         offset = skb->nh.raw - skb->data;
2939         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2940         if (ih == NULL)
2941                 goto out;
2942
2943         ihlen = ih->ihl * 4;
2944         if (ihlen < sizeof(_iph))
2945                 goto out;
2946
2947         ad->u.net.v4info.saddr = ih->saddr;
2948         ad->u.net.v4info.daddr = ih->daddr;
2949         ret = 0;
2950
2951         if (proto)
2952                 *proto = ih->protocol;
2953
2954         switch (ih->protocol) {
2955         case IPPROTO_TCP: {
2956                 struct tcphdr _tcph, *th;
2957
2958                 if (ntohs(ih->frag_off) & IP_OFFSET)
2959                         break;
2960
2961                 offset += ihlen;
2962                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2963                 if (th == NULL)
2964                         break;
2965
2966                 ad->u.net.sport = th->source;
2967                 ad->u.net.dport = th->dest;
2968                 break;
2969         }
2970         
2971         case IPPROTO_UDP: {
2972                 struct udphdr _udph, *uh;
2973                 
2974                 if (ntohs(ih->frag_off) & IP_OFFSET)
2975                         break;
2976                         
2977                 offset += ihlen;
2978                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2979                 if (uh == NULL)
2980                         break;  
2981
2982                 ad->u.net.sport = uh->source;
2983                 ad->u.net.dport = uh->dest;
2984                 break;
2985         }
2986
2987         case IPPROTO_DCCP: {
2988                 struct dccp_hdr _dccph, *dh;
2989
2990                 if (ntohs(ih->frag_off) & IP_OFFSET)
2991                         break;
2992
2993                 offset += ihlen;
2994                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2995                 if (dh == NULL)
2996                         break;
2997
2998                 ad->u.net.sport = dh->dccph_sport;
2999                 ad->u.net.dport = dh->dccph_dport;
3000                 break;
3001         }
3002
3003         default:
3004                 break;
3005         }
3006 out:
3007         return ret;
3008 }
3009
3010 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3011
3012 /* Returns error only if unable to parse addresses */
3013 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3014                         struct avc_audit_data *ad, u8 *proto)
3015 {
3016         u8 nexthdr;
3017         int ret = -EINVAL, offset;
3018         struct ipv6hdr _ipv6h, *ip6;
3019
3020         offset = skb->nh.raw - skb->data;
3021         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3022         if (ip6 == NULL)
3023                 goto out;
3024
3025         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3026         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3027         ret = 0;
3028
3029         nexthdr = ip6->nexthdr;
3030         offset += sizeof(_ipv6h);
3031         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3032         if (offset < 0)
3033                 goto out;
3034
3035         if (proto)
3036                 *proto = nexthdr;
3037
3038         switch (nexthdr) {
3039         case IPPROTO_TCP: {
3040                 struct tcphdr _tcph, *th;
3041
3042                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3043                 if (th == NULL)
3044                         break;
3045
3046                 ad->u.net.sport = th->source;
3047                 ad->u.net.dport = th->dest;
3048                 break;
3049         }
3050
3051         case IPPROTO_UDP: {
3052                 struct udphdr _udph, *uh;
3053
3054                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3055                 if (uh == NULL)
3056                         break;
3057
3058                 ad->u.net.sport = uh->source;
3059                 ad->u.net.dport = uh->dest;
3060                 break;
3061         }
3062
3063         case IPPROTO_DCCP: {
3064                 struct dccp_hdr _dccph, *dh;
3065
3066                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3067                 if (dh == NULL)
3068                         break;
3069
3070                 ad->u.net.sport = dh->dccph_sport;
3071                 ad->u.net.dport = dh->dccph_dport;
3072                 break;
3073         }
3074
3075         /* includes fragments */
3076         default:
3077                 break;
3078         }
3079 out:
3080         return ret;
3081 }
3082
3083 #endif /* IPV6 */
3084
3085 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3086                              char **addrp, int *len, int src, u8 *proto)
3087 {
3088         int ret = 0;
3089
3090         switch (ad->u.net.family) {
3091         case PF_INET:
3092                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3093                 if (ret || !addrp)
3094                         break;
3095                 *len = 4;
3096                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3097                                         &ad->u.net.v4info.daddr);
3098                 break;
3099
3100 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3101         case PF_INET6:
3102                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3103                 if (ret || !addrp)
3104                         break;
3105                 *len = 16;
3106                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3107                                         &ad->u.net.v6info.daddr);
3108                 break;
3109 #endif  /* IPV6 */
3110         default:
3111                 break;
3112         }
3113
3114         return ret;
3115 }
3116
3117 /* socket security operations */
3118 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3119                            u32 perms)
3120 {
3121         struct inode_security_struct *isec;
3122         struct task_security_struct *tsec;
3123         struct avc_audit_data ad;
3124         int err = 0;
3125
3126         tsec = task->security;
3127         isec = SOCK_INODE(sock)->i_security;
3128
3129         if (isec->sid == SECINITSID_KERNEL)
3130                 goto out;
3131
3132         AVC_AUDIT_DATA_INIT(&ad,NET);
3133         ad.u.net.sk = sock->sk;
3134         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3135
3136 out:
3137         return err;
3138 }
3139
3140 static int selinux_socket_create(int family, int type,
3141                                  int protocol, int kern)
3142 {
3143         int err = 0;
3144         struct task_security_struct *tsec;
3145         u32 newsid;
3146
3147         if (kern)
3148                 goto out;
3149
3150         tsec = current->security;
3151         newsid = tsec->sockcreate_sid ? : tsec->sid;
3152         err = avc_has_perm(tsec->sid, newsid,
3153                            socket_type_to_security_class(family, type,
3154                            protocol), SOCKET__CREATE, NULL);
3155
3156 out:
3157         return err;
3158 }
3159
3160 static int selinux_socket_post_create(struct socket *sock, int family,
3161                                       int type, int protocol, int kern)
3162 {
3163         int err = 0;
3164         struct inode_security_struct *isec;
3165         struct task_security_struct *tsec;
3166         struct sk_security_struct *sksec;
3167         u32 newsid;
3168
3169         isec = SOCK_INODE(sock)->i_security;
3170
3171         tsec = current->security;
3172         newsid = tsec->sockcreate_sid ? : tsec->sid;
3173         isec->sclass = socket_type_to_security_class(family, type, protocol);
3174         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3175         isec->initialized = 1;
3176
3177         if (sock->sk) {
3178                 sksec = sock->sk->sk_security;
3179                 sksec->sid = isec->sid;
3180                 err = selinux_netlbl_socket_post_create(sock);
3181         }
3182
3183         return err;
3184 }
3185
3186 /* Range of port numbers used to automatically bind.
3187    Need to determine whether we should perform a name_bind
3188    permission check between the socket and the port number. */
3189 #define ip_local_port_range_0 sysctl_local_port_range[0]
3190 #define ip_local_port_range_1 sysctl_local_port_range[1]
3191
3192 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3193 {
3194         u16 family;
3195         int err;
3196
3197         err = socket_has_perm(current, sock, SOCKET__BIND);
3198         if (err)
3199                 goto out;
3200
3201         /*
3202          * If PF_INET or PF_INET6, check name_bind permission for the port.
3203          * Multiple address binding for SCTP is not supported yet: we just
3204          * check the first address now.
3205          */
3206         family = sock->sk->sk_family;
3207         if (family == PF_INET || family == PF_INET6) {
3208                 char *addrp;
3209                 struct inode_security_struct *isec;
3210                 struct task_security_struct *tsec;
3211                 struct avc_audit_data ad;
3212                 struct sockaddr_in *addr4 = NULL;
3213                 struct sockaddr_in6 *addr6 = NULL;
3214                 unsigned short snum;
3215                 struct sock *sk = sock->sk;
3216                 u32 sid, node_perm, addrlen;
3217
3218                 tsec = current->security;
3219                 isec = SOCK_INODE(sock)->i_security;
3220
3221                 if (family == PF_INET) {
3222                         addr4 = (struct sockaddr_in *)address;
3223                         snum = ntohs(addr4->sin_port);
3224                         addrlen = sizeof(addr4->sin_addr.s_addr);
3225                         addrp = (char *)&addr4->sin_addr.s_addr;
3226                 } else {
3227                         addr6 = (struct sockaddr_in6 *)address;
3228                         snum = ntohs(addr6->sin6_port);
3229                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3230                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3231                 }
3232
3233                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3234                            snum > ip_local_port_range_1)) {
3235                         err = security_port_sid(sk->sk_family, sk->sk_type,
3236                                                 sk->sk_protocol, snum, &sid);
3237                         if (err)
3238                                 goto out;
3239                         AVC_AUDIT_DATA_INIT(&ad,NET);
3240                         ad.u.net.sport = htons(snum);
3241                         ad.u.net.family = family;
3242                         err = avc_has_perm(isec->sid, sid,
3243                                            isec->sclass,
3244                                            SOCKET__NAME_BIND, &ad);
3245                         if (err)
3246                                 goto out;
3247                 }
3248                 
3249                 switch(isec->sclass) {
3250                 case SECCLASS_TCP_SOCKET:
3251                         node_perm = TCP_SOCKET__NODE_BIND;
3252                         break;
3253                         
3254                 case SECCLASS_UDP_SOCKET:
3255                         node_perm = UDP_SOCKET__NODE_BIND;
3256                         break;
3257
3258                 case SECCLASS_DCCP_SOCKET:
3259                         node_perm = DCCP_SOCKET__NODE_BIND;
3260                         break;
3261
3262                 default:
3263                         node_perm = RAWIP_SOCKET__NODE_BIND;
3264                         break;
3265                 }
3266                 
3267                 err = security_node_sid(family, addrp, addrlen, &sid);
3268                 if (err)
3269                         goto out;
3270                 
3271                 AVC_AUDIT_DATA_INIT(&ad,NET);
3272                 ad.u.net.sport = htons(snum);
3273                 ad.u.net.family = family;
3274
3275                 if (family == PF_INET)
3276                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3277                 else
3278                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3279
3280                 err = avc_has_perm(isec->sid, sid,
3281                                    isec->sclass, node_perm, &ad);
3282                 if (err)
3283                         goto out;
3284         }
3285 out:
3286         return err;
3287 }
3288
3289 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3290 {
3291         struct inode_security_struct *isec;
3292         int err;
3293
3294         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3295         if (err)
3296                 return err;
3297
3298         /*
3299          * If a TCP or DCCP socket, check name_connect permission for the port.
3300          */
3301         isec = SOCK_INODE(sock)->i_security;
3302         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3303             isec->sclass == SECCLASS_DCCP_SOCKET) {
3304                 struct sock *sk = sock->sk;
3305                 struct avc_audit_data ad;
3306                 struct sockaddr_in *addr4 = NULL;
3307                 struct sockaddr_in6 *addr6 = NULL;
3308                 unsigned short snum;
3309                 u32 sid, perm;
3310
3311                 if (sk->sk_family == PF_INET) {
3312                         addr4 = (struct sockaddr_in *)address;
3313                         if (addrlen < sizeof(struct sockaddr_in))
3314                                 return -EINVAL;
3315                         snum = ntohs(addr4->sin_port);
3316                 } else {
3317                         addr6 = (struct sockaddr_in6 *)address;
3318                         if (addrlen < SIN6_LEN_RFC2133)
3319                                 return -EINVAL;
3320                         snum = ntohs(addr6->sin6_port);
3321                 }
3322
3323                 err = security_port_sid(sk->sk_family, sk->sk_type,
3324                                         sk->sk_protocol, snum, &sid);
3325                 if (err)
3326                         goto out;
3327
3328                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3329                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3330
3331                 AVC_AUDIT_DATA_INIT(&ad,NET);
3332                 ad.u.net.dport = htons(snum);
3333                 ad.u.net.family = sk->sk_family;
3334                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3335                 if (err)
3336                         goto out;
3337         }
3338
3339 out:
3340         return err;
3341 }
3342
3343 static int selinux_socket_listen(struct socket *sock, int backlog)
3344 {
3345         return socket_has_perm(current, sock, SOCKET__LISTEN);
3346 }
3347
3348 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3349 {
3350         int err;
3351         struct inode_security_struct *isec;
3352         struct inode_security_struct *newisec;
3353
3354         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3355         if (err)
3356                 return err;
3357
3358         newisec = SOCK_INODE(newsock)->i_security;
3359
3360         isec = SOCK_INODE(sock)->i_security;
3361         newisec->sclass = isec->sclass;
3362         newisec->sid = isec->sid;
3363         newisec->initialized = 1;
3364
3365         return 0;
3366 }
3367
3368 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3369                                   int size)
3370 {
3371         int rc;
3372
3373         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3374         if (rc)
3375                 return rc;
3376
3377         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3378 }
3379
3380 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3381                                   int size, int flags)
3382 {
3383         return socket_has_perm(current, sock, SOCKET__READ);
3384 }
3385
3386 static int selinux_socket_getsockname(struct socket *sock)
3387 {
3388         return socket_has_perm(current, sock, SOCKET__GETATTR);
3389 }
3390
3391 static int selinux_socket_getpeername(struct socket *sock)
3392 {
3393         return socket_has_perm(current, sock, SOCKET__GETATTR);
3394 }
3395
3396 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3397 {
3398         int err;
3399
3400         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3401         if (err)
3402                 return err;
3403
3404         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3405 }
3406
3407 static int selinux_socket_getsockopt(struct socket *sock, int level,
3408                                      int optname)
3409 {
3410         return socket_has_perm(current, sock, SOCKET__GETOPT);
3411 }
3412
3413 static int selinux_socket_shutdown(struct socket *sock, int how)
3414 {
3415         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3416 }
3417
3418 static int selinux_socket_unix_stream_connect(struct socket *sock,
3419                                               struct socket *other,
3420                                               struct sock *newsk)
3421 {
3422         struct sk_security_struct *ssec;
3423         struct inode_security_struct *isec;
3424         struct inode_security_struct *other_isec;
3425         struct avc_audit_data ad;
3426         int err;
3427
3428         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3429         if (err)
3430                 return err;
3431
3432         isec = SOCK_INODE(sock)->i_security;
3433         other_isec = SOCK_INODE(other)->i_security;
3434
3435         AVC_AUDIT_DATA_INIT(&ad,NET);
3436         ad.u.net.sk = other->sk;
3437
3438         err = avc_has_perm(isec->sid, other_isec->sid,
3439                            isec->sclass,
3440                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3441         if (err)
3442                 return err;
3443
3444         /* connecting socket */
3445         ssec = sock->sk->sk_security;
3446         ssec->peer_sid = other_isec->sid;
3447         
3448         /* server child socket */
3449         ssec = newsk->sk_security;
3450         ssec->peer_sid = isec->sid;
3451         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3452
3453         return err;
3454 }
3455
3456 static int selinux_socket_unix_may_send(struct socket *sock,
3457                                         struct socket *other)
3458 {
3459         struct inode_security_struct *isec;
3460         struct inode_security_struct *other_isec;
3461         struct avc_audit_data ad;
3462         int err;
3463
3464         isec = SOCK_INODE(sock)->i_security;
3465         other_isec = SOCK_INODE(other)->i_security;
3466
3467         AVC_AUDIT_DATA_INIT(&ad,NET);
3468         ad.u.net.sk = other->sk;
3469
3470         err = avc_has_perm(isec->sid, other_isec->sid,
3471                            isec->sclass, SOCKET__SENDTO, &ad);
3472         if (err)
3473                 return err;
3474
3475         return 0;
3476 }
3477
3478 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3479                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3480 {
3481         int err = 0;
3482         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3483         struct socket *sock;
3484         u16 sock_class = 0;
3485         u32 sock_sid = 0;
3486
3487         read_lock_bh(&sk->sk_callback_lock);
3488         sock = sk->sk_socket;
3489         if (sock) {
3490                 struct inode *inode;
3491                 inode = SOCK_INODE(sock);
3492                 if (inode) {
3493                         struct inode_security_struct *isec;
3494                         isec = inode->i_security;
3495                         sock_sid = isec->sid;
3496                         sock_class = isec->sclass;
3497                 }
3498         }
3499         read_unlock_bh(&sk->sk_callback_lock);
3500         if (!sock_sid)
3501                 goto out;
3502
3503         if (!skb->dev)
3504                 goto out;
3505
3506         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3507         if (err)
3508                 goto out;
3509
3510         switch (sock_class) {
3511         case SECCLASS_UDP_SOCKET:
3512                 netif_perm = NETIF__UDP_RECV;
3513                 node_perm = NODE__UDP_RECV;
3514                 recv_perm = UDP_SOCKET__RECV_MSG;
3515                 break;
3516         
3517         case SECCLASS_TCP_SOCKET:
3518                 netif_perm = NETIF__TCP_RECV;
3519                 node_perm = NODE__TCP_RECV;
3520                 recv_perm = TCP_SOCKET__RECV_MSG;
3521                 break;
3522
3523         case SECCLASS_DCCP_SOCKET:
3524                 netif_perm = NETIF__DCCP_RECV;
3525                 node_perm = NODE__DCCP_RECV;
3526                 recv_perm = DCCP_SOCKET__RECV_MSG;
3527                 break;
3528
3529         default:
3530                 netif_perm = NETIF__RAWIP_RECV;
3531                 node_perm = NODE__RAWIP_RECV;
3532                 break;
3533         }
3534
3535         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3536         if (err)
3537                 goto out;
3538         
3539         err = security_node_sid(family, addrp, len, &node_sid);
3540         if (err)
3541                 goto out;
3542         
3543         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3544         if (err)
3545                 goto out;
3546
3547         if (recv_perm) {
3548                 u32 port_sid;
3549
3550                 err = security_port_sid(sk->sk_family, sk->sk_type,
3551                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3552                                         &port_sid);
3553                 if (err)
3554                         goto out;
3555
3556                 err = avc_has_perm(sock_sid, port_sid,
3557                                    sock_class, recv_perm, ad);
3558         }
3559
3560 out:
3561         return err;
3562 }
3563
3564 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3565 {
3566         u16 family;
3567         char *addrp;
3568         int len, err = 0;
3569         struct avc_audit_data ad;
3570         struct sk_security_struct *sksec = sk->sk_security;
3571
3572         family = sk->sk_family;
3573         if (family != PF_INET && family != PF_INET6)
3574                 goto out;
3575
3576         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3577         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3578                 family = PF_INET;
3579
3580         AVC_AUDIT_DATA_INIT(&ad, NET);
3581         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3582         ad.u.net.family = family;
3583
3584         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3585         if (err)
3586                 goto out;
3587
3588         if (selinux_compat_net)
3589                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3590                                                   addrp, len);
3591         else
3592                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3593                                    PACKET__RECV, &ad);
3594         if (err)
3595                 goto out;
3596
3597         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3598         if (err)
3599                 goto out;
3600
3601         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3602 out:    
3603         return err;
3604 }
3605
3606 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3607                                             int __user *optlen, unsigned len)
3608 {
3609         int err = 0;
3610         char *scontext;
3611         u32 scontext_len;
3612         struct sk_security_struct *ssec;
3613         struct inode_security_struct *isec;
3614         u32 peer_sid = SECSID_NULL;
3615
3616         isec = SOCK_INODE(sock)->i_security;
3617
3618         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3619             isec->sclass == SECCLASS_TCP_SOCKET) {
3620                 ssec = sock->sk->sk_security;
3621                 peer_sid = ssec->peer_sid;
3622         }
3623         if (peer_sid == SECSID_NULL) {
3624                 err = -ENOPROTOOPT;
3625                 goto out;
3626         }
3627
3628         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3629
3630         if (err)
3631                 goto out;
3632
3633         if (scontext_len > len) {
3634                 err = -ERANGE;
3635                 goto out_len;
3636         }
3637
3638         if (copy_to_user(optval, scontext, scontext_len))
3639                 err = -EFAULT;
3640
3641 out_len:
3642         if (put_user(scontext_len, optlen))
3643                 err = -EFAULT;
3644
3645         kfree(scontext);
3646 out:    
3647         return err;
3648 }
3649
3650 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3651 {
3652         u32 peer_secid = SECSID_NULL;
3653         int err = 0;
3654
3655         if (sock && sock->sk->sk_family == PF_UNIX)
3656                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3657         else if (skb)
3658                 security_skb_extlbl_sid(skb,
3659                                         SECINITSID_UNLABELED,
3660                                         &peer_secid);
3661
3662         if (peer_secid == SECSID_NULL)
3663                 err = -EINVAL;
3664         *secid = peer_secid;
3665
3666         return err;
3667 }
3668
3669 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3670 {
3671         return sk_alloc_security(sk, family, priority);
3672 }
3673
3674 static void selinux_sk_free_security(struct sock *sk)
3675 {
3676         sk_free_security(sk);
3677 }
3678
3679 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3680 {
3681         struct sk_security_struct *ssec = sk->sk_security;
3682         struct sk_security_struct *newssec = newsk->sk_security;
3683
3684         newssec->sid = ssec->sid;
3685         newssec->peer_sid = ssec->peer_sid;
3686
3687         selinux_netlbl_sk_security_clone(ssec, newssec);
3688 }
3689
3690 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3691 {
3692         if (!sk)
3693                 *secid = SECINITSID_ANY_SOCKET;
3694         else {
3695                 struct sk_security_struct *sksec = sk->sk_security;
3696
3697                 *secid = sksec->sid;
3698         }
3699 }
3700
3701 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3702 {
3703         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3704         struct sk_security_struct *sksec = sk->sk_security;
3705
3706         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3707             sk->sk_family == PF_UNIX)
3708                 isec->sid = sksec->sid;
3709
3710         selinux_netlbl_sock_graft(sk, parent);
3711 }
3712
3713 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3714                                      struct request_sock *req)
3715 {
3716         struct sk_security_struct *sksec = sk->sk_security;
3717         int err;
3718         u32 newsid;
3719         u32 peersid;
3720
3721         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3722         if (peersid == SECSID_NULL) {
3723                 req->secid = sksec->sid;
3724                 req->peer_secid = SECSID_NULL;
3725                 return 0;
3726         }
3727
3728         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3729         if (err)
3730                 return err;
3731
3732         req->secid = newsid;
3733         req->peer_secid = peersid;
3734         return 0;
3735 }
3736
3737 static void selinux_inet_csk_clone(struct sock *newsk,
3738                                    const struct request_sock *req)
3739 {
3740         struct sk_security_struct *newsksec = newsk->sk_security;
3741
3742         newsksec->sid = req->secid;
3743         newsksec->peer_sid = req->peer_secid;
3744         /* NOTE: Ideally, we should also get the isec->sid for the
3745            new socket in sync, but we don't have the isec available yet.
3746            So we will wait until sock_graft to do it, by which
3747            time it will have been created and available. */
3748
3749         /* We don't need to take any sort of lock here as we are the only
3750          * thread with access to newsksec */
3751         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3752 }
3753
3754 static void selinux_inet_conn_established(struct sock *sk,
3755                                 struct sk_buff *skb)
3756 {
3757         struct sk_security_struct *sksec = sk->sk_security;
3758
3759         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3760 }
3761
3762 static void selinux_req_classify_flow(const struct request_sock *req,
3763                                       struct flowi *fl)
3764 {
3765         fl->secid = req->secid;
3766 }
3767
3768 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3769 {
3770         int err = 0;
3771         u32 perm;
3772         struct nlmsghdr *nlh;
3773         struct socket *sock = sk->sk_socket;
3774         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3775         
3776         if (skb->len < NLMSG_SPACE(0)) {
3777                 err = -EINVAL;
3778                 goto out;
3779         }
3780         nlh = (struct nlmsghdr *)skb->data;
3781         
3782         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3783         if (err) {
3784                 if (err == -EINVAL) {
3785                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3786                                   "SELinux:  unrecognized netlink message"
3787                                   " type=%hu for sclass=%hu\n",
3788                                   nlh->nlmsg_type, isec->sclass);
3789                         if (!selinux_enforcing)
3790                                 err = 0;
3791                 }
3792
3793                 /* Ignore */
3794                 if (err == -ENOENT)
3795                         err = 0;
3796                 goto out;
3797         }
3798
3799         err = socket_has_perm(current, sock, perm);
3800 out:
3801         return err;
3802 }
3803
3804 #ifdef CONFIG_NETFILTER
3805
3806 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3807                                             struct avc_audit_data *ad,
3808                                             u16 family, char *addrp, int len)
3809 {
3810         int err = 0;
3811         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3812         struct socket *sock;
3813         struct inode *inode;
3814         struct inode_security_struct *isec;
3815
3816         sock = sk->sk_socket;
3817         if (!sock)
3818                 goto out;
3819
3820         inode = SOCK_INODE(sock);
3821         if (!inode)
3822                 goto out;
3823
3824         isec = inode->i_security;
3825         
3826         err = sel_netif_sids(dev, &if_sid, NULL);
3827         if (err)
3828                 goto out;
3829
3830         switch (isec->sclass) {
3831         case SECCLASS_UDP_SOCKET:
3832                 netif_perm = NETIF__UDP_SEND;
3833                 node_perm = NODE__UDP_SEND;
3834                 send_perm = UDP_SOCKET__SEND_MSG;
3835                 break;
3836         
3837         case SECCLASS_TCP_SOCKET:
3838                 netif_perm = NETIF__TCP_SEND;
3839                 node_perm = NODE__TCP_SEND;
3840                 send_perm = TCP_SOCKET__SEND_MSG;
3841                 break;
3842
3843         case SECCLASS_DCCP_SOCKET:
3844                 netif_perm = NETIF__DCCP_SEND;
3845                 node_perm = NODE__DCCP_SEND;
3846                 send_perm = DCCP_SOCKET__SEND_MSG;
3847                 break;
3848
3849         default:
3850                 netif_perm = NETIF__RAWIP_SEND;
3851                 node_perm = NODE__RAWIP_SEND;
3852                 break;
3853         }
3854
3855         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3856         if (err)
3857                 goto out;
3858                 
3859         err = security_node_sid(family, addrp, len, &node_sid);
3860         if (err)
3861                 goto out;
3862         
3863         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3864         if (err)
3865                 goto out;
3866
3867         if (send_perm) {
3868                 u32 port_sid;
3869                 
3870                 err = security_port_sid(sk->sk_family,
3871                                         sk->sk_type,
3872                                         sk->sk_protocol,
3873                                         ntohs(ad->u.net.dport),
3874                                         &port_sid);
3875                 if (err)
3876                         goto out;
3877
3878                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3879                                    send_perm, ad);
3880         }
3881 out:
3882         return err;
3883 }
3884
3885 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3886                                               struct sk_buff **pskb,
3887                                               const struct net_device *in,
3888                                               const struct net_device *out,
3889                                               int (*okfn)(struct sk_buff *),
3890                                               u16 family)
3891 {
3892         char *addrp;
3893         int len, err = 0;
3894         struct sock *sk;
3895         struct sk_buff *skb = *pskb;
3896         struct avc_audit_data ad;
3897         struct net_device *dev = (struct net_device *)out;
3898         struct sk_security_struct *sksec;
3899         u8 proto;
3900
3901         sk = skb->sk;
3902         if (!sk)
3903                 goto out;
3904
3905         sksec = sk->sk_security;
3906
3907         AVC_AUDIT_DATA_INIT(&ad, NET);
3908         ad.u.net.netif = dev->name;
3909         ad.u.net.family = family;
3910
3911         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3912         if (err)
3913                 goto out;
3914
3915         if (selinux_compat_net)
3916                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3917                                                        family, addrp, len);
3918         else
3919                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3920                                    PACKET__SEND, &ad);
3921
3922         if (err)
3923                 goto out;
3924
3925         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3926 out:
3927         return err ? NF_DROP : NF_ACCEPT;
3928 }
3929
3930 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3931                                                 struct sk_buff **pskb,
3932                                                 const struct net_device *in,
3933                                                 const struct net_device *out,
3934                                                 int (*okfn)(struct sk_buff *))
3935 {
3936         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3937 }
3938
3939 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3940
3941 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3942                                                 struct sk_buff **pskb,
3943                                                 const struct net_device *in,
3944                                                 const struct net_device *out,
3945                                                 int (*okfn)(struct sk_buff *))
3946 {
3947         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3948 }
3949
3950 #endif  /* IPV6 */
3951
3952 #endif  /* CONFIG_NETFILTER */
3953
3954 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3955 {
3956         int err;
3957
3958         err = secondary_ops->netlink_send(sk, skb);
3959         if (err)
3960                 return err;
3961
3962         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3963                 err = selinux_nlmsg_perm(sk, skb);
3964
3965         return err;
3966 }
3967
3968 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3969 {
3970         int err;
3971         struct avc_audit_data ad;
3972
3973         err = secondary_ops->netlink_recv(skb, capability);
3974         if (err)
3975                 return err;
3976
3977         AVC_AUDIT_DATA_INIT(&ad, CAP);
3978         ad.u.cap = capability;
3979
3980         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3981                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3982 }
3983
3984 static int ipc_alloc_security(struct task_struct *task,
3985                               struct kern_ipc_perm *perm,
3986                               u16 sclass)
3987 {
3988         struct task_security_struct *tsec = task->security;
3989         struct ipc_security_struct *isec;
3990
3991         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3992         if (!isec)
3993                 return -ENOMEM;
3994
3995         isec->sclass = sclass;
3996         isec->ipc_perm = perm;
3997         isec->sid = tsec->sid;
3998         perm->security = isec;
3999
4000         return 0;
4001 }
4002
4003 static void ipc_free_security(struct kern_ipc_perm *perm)
4004 {
4005         struct ipc_security_struct *isec = perm->security;
4006         perm->security = NULL;
4007         kfree(isec);
4008 }
4009
4010 static int msg_msg_alloc_security(struct msg_msg *msg)
4011 {
4012         struct msg_security_struct *msec;
4013
4014         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4015         if (!msec)
4016                 return -ENOMEM;
4017
4018         msec->msg = msg;
4019         msec->sid = SECINITSID_UNLABELED;
4020         msg->security = msec;
4021
4022         return 0;
4023 }
4024
4025 static void msg_msg_free_security(struct msg_msg *msg)
4026 {
4027         struct msg_security_struct *msec = msg->security;
4028
4029         msg->security = NULL;
4030         kfree(msec);
4031 }
4032
4033 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4034                         u32 perms)
4035 {
4036         struct task_security_struct *tsec;
4037         struct ipc_security_struct *isec;
4038         struct avc_audit_data ad;
4039
4040         tsec = current->security;
4041         isec = ipc_perms->security;
4042
4043         AVC_AUDIT_DATA_INIT(&ad, IPC);
4044         ad.u.ipc_id = ipc_perms->key;
4045
4046         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4047 }
4048
4049 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4050 {
4051         return msg_msg_alloc_security(msg);
4052 }
4053
4054 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4055 {
4056         msg_msg_free_security(msg);
4057 }
4058
4059 /* message queue security operations */
4060 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4061 {
4062         struct task_security_struct *tsec;
4063         struct ipc_security_struct *isec;
4064         struct avc_audit_data ad;
4065         int rc;
4066
4067         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4068         if (rc)
4069                 return rc;
4070
4071         tsec = current->security;
4072         isec = msq->q_perm.security;
4073
4074         AVC_AUDIT_DATA_INIT(&ad, IPC);
4075         ad.u.ipc_id = msq->q_perm.key;
4076
4077         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4078                           MSGQ__CREATE, &ad);
4079         if (rc) {
4080                 ipc_free_security(&msq->q_perm);
4081                 return rc;
4082         }
4083         return 0;
4084 }
4085
4086 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4087 {
4088         ipc_free_security(&msq->q_perm);
4089 }
4090
4091 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4092 {
4093         struct task_security_struct *tsec;
4094         struct ipc_security_struct *isec;
4095         struct avc_audit_data ad;
4096
4097         tsec = current->security;
4098         isec = msq->q_perm.security;
4099
4100         AVC_AUDIT_DATA_INIT(&ad, IPC);
4101         ad.u.ipc_id = msq->q_perm.key;
4102
4103         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4104                             MSGQ__ASSOCIATE, &ad);
4105 }
4106
4107 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4108 {
4109         int err;
4110         int perms;
4111
4112         switch(cmd) {
4113         case IPC_INFO:
4114         case MSG_INFO:
4115                 /* No specific object, just general system-wide information. */
4116                 return task_has_system(current, SYSTEM__IPC_INFO);
4117         case IPC_STAT:
4118         case MSG_STAT:
4119                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4120                 break;
4121         case IPC_SET:
4122                 perms = MSGQ__SETATTR;
4123                 break;
4124         case IPC_RMID:
4125                 perms = MSGQ__DESTROY;
4126                 break;
4127         default:
4128                 return 0;
4129         }
4130
4131         err = ipc_has_perm(&msq->q_perm, perms);
4132         return err;
4133 }
4134
4135 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4136 {
4137         struct task_security_struct *tsec;
4138         struct ipc_security_struct *isec;
4139         struct msg_security_struct *msec;
4140         struct avc_audit_data ad;
4141         int rc;
4142
4143         tsec = current->security;
4144         isec = msq->q_perm.security;
4145         msec = msg->security;
4146
4147         /*
4148          * First time through, need to assign label to the message
4149          */
4150         if (msec->sid == SECINITSID_UNLABELED) {
4151                 /*
4152                  * Compute new sid based on current process and
4153                  * message queue this message will be stored in
4154                  */
4155                 rc = security_transition_sid(tsec->sid,
4156                                              isec->sid,
4157                                              SECCLASS_MSG,
4158                                              &msec->sid);
4159                 if (rc)
4160                         return rc;
4161         }
4162
4163         AVC_AUDIT_DATA_INIT(&ad, IPC);
4164         ad.u.ipc_id = msq->q_perm.key;
4165
4166         /* Can this process write to the queue? */
4167         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4168                           MSGQ__WRITE, &ad);
4169         if (!rc)
4170                 /* Can this process send the message */
4171                 rc = avc_has_perm(tsec->sid, msec->sid,
4172                                   SECCLASS_MSG, MSG__SEND, &ad);
4173         if (!rc)
4174                 /* Can the message be put in the queue? */
4175                 rc = avc_has_perm(msec->sid, isec->sid,
4176                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4177
4178         return rc;
4179 }
4180
4181 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4182                                     struct task_struct *target,
4183                                     long type, int mode)
4184 {
4185         struct task_security_struct *tsec;
4186         struct ipc_security_struct *isec;
4187         struct msg_security_struct *msec;
4188         struct avc_audit_data ad;
4189         int rc;
4190
4191         tsec = target->security;
4192         isec = msq->q_perm.security;
4193         msec = msg->security;
4194
4195         AVC_AUDIT_DATA_INIT(&ad, IPC);
4196         ad.u.ipc_id = msq->q_perm.key;
4197
4198         rc = avc_has_perm(tsec->sid, isec->sid,
4199                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4200         if (!rc)
4201                 rc = avc_has_perm(tsec->sid, msec->sid,
4202                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4203         return rc;
4204 }
4205
4206 /* Shared Memory security operations */
4207 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4208 {
4209         struct task_security_struct *tsec;
4210         struct ipc_security_struct *isec;
4211         struct avc_audit_data ad;
4212         int rc;
4213
4214         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4215         if (rc)
4216                 return rc;
4217
4218         tsec = current->security;
4219         isec = shp->shm_perm.security;
4220
4221         AVC_AUDIT_DATA_INIT(&ad, IPC);
4222         ad.u.ipc_id = shp->shm_perm.key;
4223
4224         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4225                           SHM__CREATE, &ad);
4226         if (rc) {
4227                 ipc_free_security(&shp->shm_perm);
4228                 return rc;
4229         }
4230         return 0;
4231 }
4232
4233 static void selinux_shm_free_security(struct shmid_kernel *shp)
4234 {
4235         ipc_free_security(&shp->shm_perm);
4236 }
4237
4238 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4239 {
4240         struct task_security_struct *tsec;
4241         struct ipc_security_struct *isec;
4242         struct avc_audit_data ad;
4243
4244         tsec = current->security;
4245         isec = shp->shm_perm.security;
4246
4247         AVC_AUDIT_DATA_INIT(&ad, IPC);
4248         ad.u.ipc_id = shp->shm_perm.key;
4249
4250         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4251                             SHM__ASSOCIATE, &ad);
4252 }
4253
4254 /* Note, at this point, shp is locked down */
4255 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4256 {
4257         int perms;
4258         int err;
4259
4260         switch(cmd) {
4261         case IPC_INFO:
4262         case SHM_INFO:
4263                 /* No specific object, just general system-wide information. */
4264                 return task_has_system(current, SYSTEM__IPC_INFO);
4265         case IPC_STAT:
4266         case SHM_STAT:
4267                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4268                 break;
4269         case IPC_SET:
4270                 perms = SHM__SETATTR;
4271                 break;
4272         case SHM_LOCK:
4273         case SHM_UNLOCK:
4274                 perms = SHM__LOCK;
4275                 break;
4276         case IPC_RMID:
4277                 perms = SHM__DESTROY;
4278                 break;
4279         default:
4280                 return 0;
4281         }
4282
4283         err = ipc_has_perm(&shp->shm_perm, perms);
4284         return err;
4285 }
4286
4287 static int selinux_shm_shmat(struct shmid_kernel *shp,
4288                              char __user *shmaddr, int shmflg)
4289 {
4290         u32 perms;
4291         int rc;
4292
4293         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4294         if (rc)
4295                 return rc;
4296
4297         if (shmflg & SHM_RDONLY)
4298                 perms = SHM__READ;
4299         else
4300                 perms = SHM__READ | SHM__WRITE;
4301
4302         return ipc_has_perm(&shp->shm_perm, perms);
4303 }
4304
4305 /* Semaphore security operations */
4306 static int selinux_sem_alloc_security(struct sem_array *sma)
4307 {
4308         struct task_security_struct *tsec;
4309         struct ipc_security_struct *isec;
4310         struct avc_audit_data ad;
4311         int rc;
4312
4313         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4314         if (rc)
4315                 return rc;
4316
4317         tsec = current->security;
4318         isec = sma->sem_perm.security;
4319
4320         AVC_AUDIT_DATA_INIT(&ad, IPC);
4321         ad.u.ipc_id = sma->sem_perm.key;
4322
4323         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4324                           SEM__CREATE, &ad);
4325         if (rc) {
4326                 ipc_free_security(&sma->sem_perm);
4327                 return rc;
4328         }
4329         return 0;
4330 }
4331
4332 static void selinux_sem_free_security(struct sem_array *sma)
4333 {
4334         ipc_free_security(&sma->sem_perm);
4335 }
4336
4337 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4338 {
4339         struct task_security_struct *tsec;
4340         struct ipc_security_struct *isec;
4341         struct avc_audit_data ad;
4342
4343         tsec = current->security;
4344         isec = sma->sem_perm.security;
4345
4346         AVC_AUDIT_DATA_INIT(&ad, IPC);
4347         ad.u.ipc_id = sma->sem_perm.key;
4348
4349         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4350                             SEM__ASSOCIATE, &ad);
4351 }
4352
4353 /* Note, at this point, sma is locked down */
4354 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4355 {
4356         int err;
4357         u32 perms;
4358
4359         switch(cmd) {
4360         case IPC_INFO:
4361         case SEM_INFO:
4362                 /* No specific object, just general system-wide information. */
4363                 return task_has_system(current, SYSTEM__IPC_INFO);
4364         case GETPID:
4365         case GETNCNT:
4366         case GETZCNT:
4367                 perms = SEM__GETATTR;
4368                 break;
4369         case GETVAL:
4370         case GETALL:
4371                 perms = SEM__READ;
4372                 break;
4373         case SETVAL:
4374         case SETALL:
4375                 perms = SEM__WRITE;
4376                 break;
4377         case IPC_RMID:
4378                 perms = SEM__DESTROY;
4379                 break;
4380         case IPC_SET:
4381                 perms = SEM__SETATTR;
4382                 break;
4383         case IPC_STAT:
4384         case SEM_STAT:
4385                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4386                 break;
4387         default:
4388                 return 0;
4389         }
4390
4391         err = ipc_has_perm(&sma->sem_perm, perms);
4392         return err;
4393 }
4394
4395 static int selinux_sem_semop(struct sem_array *sma,
4396                              struct sembuf *sops, unsigned nsops, int alter)
4397 {
4398         u32 perms;
4399
4400         if (alter)
4401                 perms = SEM__READ | SEM__WRITE;
4402         else
4403                 perms = SEM__READ;
4404
4405         return ipc_has_perm(&sma->sem_perm, perms);
4406 }
4407
4408 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4409 {
4410         u32 av = 0;
4411
4412         av = 0;
4413         if (flag & S_IRUGO)
4414                 av |= IPC__UNIX_READ;
4415         if (flag & S_IWUGO)
4416                 av |= IPC__UNIX_WRITE;
4417
4418         if (av == 0)
4419                 return 0;
4420
4421         return ipc_has_perm(ipcp, av);
4422 }
4423
4424 /* module stacking operations */
4425 static int selinux_register_security (const char *name, struct security_operations *ops)
4426 {
4427         if (secondary_ops != original_ops) {
4428                 printk(KERN_INFO "%s:  There is already a secondary security "
4429                        "module registered.\n", __FUNCTION__);
4430                 return -EINVAL;
4431         }
4432
4433         secondary_ops = ops;
4434
4435         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4436                __FUNCTION__,
4437                name);
4438
4439         return 0;
4440 }
4441
4442 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4443 {
4444         if (ops != secondary_ops) {
4445                 printk (KERN_INFO "%s:  trying to unregister a security module "
4446                         "that is not registered.\n", __FUNCTION__);
4447                 return -EINVAL;
4448         }
4449
4450         secondary_ops = original_ops;
4451
4452         return 0;
4453 }
4454
4455 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4456 {
4457         if (inode)
4458                 inode_doinit_with_dentry(inode, dentry);
4459 }
4460
4461 static int selinux_getprocattr(struct task_struct *p,
4462                                char *name, void *value, size_t size)
4463 {
4464         struct task_security_struct *tsec;
4465         u32 sid;
4466         int error;
4467
4468         if (current != p) {
4469                 error = task_has_perm(current, p, PROCESS__GETATTR);
4470                 if (error)
4471                         return error;
4472         }
4473
4474         tsec = p->security;
4475
4476         if (!strcmp(name, "current"))
4477                 sid = tsec->sid;
4478         else if (!strcmp(name, "prev"))
4479                 sid = tsec->osid;
4480         else if (!strcmp(name, "exec"))
4481                 sid = tsec->exec_sid;
4482         else if (!strcmp(name, "fscreate"))
4483                 sid = tsec->create_sid;
4484         else if (!strcmp(name, "keycreate"))
4485                 sid = tsec->keycreate_sid;
4486         else if (!strcmp(name, "sockcreate"))
4487                 sid = tsec->sockcreate_sid;
4488         else
4489                 return -EINVAL;
4490
4491         if (!sid)
4492                 return 0;
4493
4494         return selinux_getsecurity(sid, value, size);
4495 }
4496
4497 static int selinux_setprocattr(struct task_struct *p,
4498                                char *name, void *value, size_t size)
4499 {
4500         struct task_security_struct *tsec;
4501         u32 sid = 0;
4502         int error;
4503         char *str = value;
4504
4505         if (current != p) {
4506                 /* SELinux only allows a process to change its own
4507                    security attributes. */
4508                 return -EACCES;
4509         }
4510
4511         /*
4512          * Basic control over ability to set these attributes at all.
4513          * current == p, but we'll pass them separately in case the
4514          * above restriction is ever removed.
4515          */
4516         if (!strcmp(name, "exec"))
4517                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4518         else if (!strcmp(name, "fscreate"))
4519                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4520         else if (!strcmp(name, "keycreate"))
4521                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4522         else if (!strcmp(name, "sockcreate"))
4523                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4524         else if (!strcmp(name, "current"))
4525                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4526         else
4527                 error = -EINVAL;
4528         if (error)
4529                 return error;
4530
4531         /* Obtain a SID for the context, if one was specified. */
4532         if (size && str[1] && str[1] != '\n') {
4533                 if (str[size-1] == '\n') {
4534                         str[size-1] = 0;
4535                         size--;
4536                 }
4537                 error = security_context_to_sid(value, size, &sid);
4538                 if (error)
4539                         return error;
4540         }
4541
4542         /* Permission checking based on the specified context is
4543            performed during the actual operation (execve,
4544            open/mkdir/...), when we know the full context of the
4545            operation.  See selinux_bprm_set_security for the execve
4546            checks and may_create for the file creation checks. The
4547            operation will then fail if the context is not permitted. */
4548         tsec = p->security;
4549         if (!strcmp(name, "exec"))
4550                 tsec->exec_sid = sid;
4551         else if (!strcmp(name, "fscreate"))
4552                 tsec->create_sid = sid;
4553         else if (!strcmp(name, "keycreate")) {
4554                 error = may_create_key(sid, p);
4555                 if (error)
4556                         return error;
4557                 tsec->keycreate_sid = sid;
4558         } else if (!strcmp(name, "sockcreate"))
4559                 tsec->sockcreate_sid = sid;
4560         else if (!strcmp(name, "current")) {
4561                 struct av_decision avd;
4562
4563                 if (sid == 0)
4564                         return -EINVAL;
4565
4566                 /* Only allow single threaded processes to change context */
4567                 if (atomic_read(&p->mm->mm_users) != 1) {
4568                         struct task_struct *g, *t;
4569                         struct mm_struct *mm = p->mm;
4570                         read_lock(&tasklist_lock);
4571                         do_each_thread(g, t)
4572                                 if (t->mm == mm && t != p) {
4573                                         read_unlock(&tasklist_lock);
4574                                         return -EPERM;
4575                                 }
4576                         while_each_thread(g, t);
4577                         read_unlock(&tasklist_lock);
4578                 }
4579
4580                 /* Check permissions for the transition. */
4581                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4582                                      PROCESS__DYNTRANSITION, NULL);
4583                 if (error)
4584                         return error;
4585
4586                 /* Check for ptracing, and update the task SID if ok.
4587                    Otherwise, leave SID unchanged and fail. */
4588                 task_lock(p);
4589                 if (p->ptrace & PT_PTRACED) {
4590                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4591                                                      SECCLASS_PROCESS,
4592                                                      PROCESS__PTRACE, &avd);
4593                         if (!error)
4594                                 tsec->sid = sid;
4595                         task_unlock(p);
4596                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4597                                   PROCESS__PTRACE, &avd, error, NULL);
4598                         if (error)
4599                                 return error;
4600                 } else {
4601                         tsec->sid = sid;
4602                         task_unlock(p);
4603                 }
4604         }
4605         else
4606                 return -EINVAL;
4607
4608         return size;
4609 }
4610
4611 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4612 {
4613         return security_sid_to_context(secid, secdata, seclen);
4614 }
4615
4616 static void selinux_release_secctx(char *secdata, u32 seclen)
4617 {
4618         if (secdata)
4619                 kfree(secdata);
4620 }
4621
4622 #ifdef CONFIG_KEYS
4623
4624 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4625                              unsigned long flags)
4626 {
4627         struct task_security_struct *tsec = tsk->security;
4628         struct key_security_struct *ksec;
4629
4630         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4631         if (!ksec)
4632                 return -ENOMEM;
4633
4634         ksec->obj = k;
4635         if (tsec->keycreate_sid)
4636                 ksec->sid = tsec->keycreate_sid;
4637         else
4638                 ksec->sid = tsec->sid;
4639         k->security = ksec;
4640
4641         return 0;
4642 }
4643
4644 static void selinux_key_free(struct key *k)
4645 {
4646         struct key_security_struct *ksec = k->security;
4647
4648         k->security = NULL;
4649         kfree(ksec);
4650 }
4651
4652 static int selinux_key_permission(key_ref_t key_ref,
4653                             struct task_struct *ctx,
4654                             key_perm_t perm)
4655 {
4656         struct key *key;
4657         struct task_security_struct *tsec;
4658         struct key_security_struct *ksec;
4659
4660         key = key_ref_to_ptr(key_ref);
4661
4662         tsec = ctx->security;
4663         ksec = key->security;
4664
4665         /* if no specific permissions are requested, we skip the
4666            permission check. No serious, additional covert channels
4667            appear to be created. */
4668         if (perm == 0)
4669                 return 0;
4670
4671         return avc_has_perm(tsec->sid, ksec->sid,
4672                             SECCLASS_KEY, perm, NULL);
4673 }
4674
4675 #endif
4676
4677 static struct security_operations selinux_ops = {
4678         .ptrace =                       selinux_ptrace,
4679         .capget =                       selinux_capget,
4680         .capset_check =                 selinux_capset_check,
4681         .capset_set =                   selinux_capset_set,
4682         .sysctl =                       selinux_sysctl,
4683         .capable =                      selinux_capable,
4684         .quotactl =                     selinux_quotactl,
4685         .quota_on =                     selinux_quota_on,
4686         .syslog =                       selinux_syslog,
4687         .vm_enough_memory =             selinux_vm_enough_memory,
4688
4689         .netlink_send =                 selinux_netlink_send,
4690         .netlink_recv =                 selinux_netlink_recv,
4691
4692         .bprm_alloc_security =          selinux_bprm_alloc_security,
4693         .bprm_free_security =           selinux_bprm_free_security,
4694         .bprm_apply_creds =             selinux_bprm_apply_creds,
4695         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4696         .bprm_set_security =            selinux_bprm_set_security,
4697         .bprm_check_security =          selinux_bprm_check_security,
4698         .bprm_secureexec =              selinux_bprm_secureexec,
4699
4700         .sb_alloc_security =            selinux_sb_alloc_security,
4701         .sb_free_security =             selinux_sb_free_security,
4702         .sb_copy_data =                 selinux_sb_copy_data,
4703         .sb_kern_mount =                selinux_sb_kern_mount,
4704         .sb_statfs =                    selinux_sb_statfs,
4705         .sb_mount =                     selinux_mount,
4706         .sb_umount =                    selinux_umount,
4707
4708         .inode_alloc_security =         selinux_inode_alloc_security,
4709         .inode_free_security =          selinux_inode_free_security,
4710         .inode_init_security =          selinux_inode_init_security,
4711         .inode_create =                 selinux_inode_create,
4712         .inode_link =                   selinux_inode_link,
4713         .inode_unlink =                 selinux_inode_unlink,
4714         .inode_symlink =                selinux_inode_symlink,
4715         .inode_mkdir =                  selinux_inode_mkdir,
4716         .inode_rmdir =                  selinux_inode_rmdir,
4717         .inode_mknod =                  selinux_inode_mknod,
4718         .inode_rename =                 selinux_inode_rename,
4719         .inode_readlink =               selinux_inode_readlink,
4720         .inode_follow_link =            selinux_inode_follow_link,
4721         .inode_permission =             selinux_inode_permission,
4722         .inode_setattr =                selinux_inode_setattr,
4723         .inode_getattr =                selinux_inode_getattr,
4724         .inode_setxattr =               selinux_inode_setxattr,
4725         .inode_post_setxattr =          selinux_inode_post_setxattr,
4726         .inode_getxattr =               selinux_inode_getxattr,
4727         .inode_listxattr =              selinux_inode_listxattr,
4728         .inode_removexattr =            selinux_inode_removexattr,
4729         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4730         .inode_getsecurity =            selinux_inode_getsecurity,
4731         .inode_setsecurity =            selinux_inode_setsecurity,
4732         .inode_listsecurity =           selinux_inode_listsecurity,
4733
4734         .file_permission =              selinux_file_permission,
4735         .file_alloc_security =          selinux_file_alloc_security,
4736         .file_free_security =           selinux_file_free_security,
4737         .file_ioctl =                   selinux_file_ioctl,
4738         .file_mmap =                    selinux_file_mmap,
4739         .file_mprotect =                selinux_file_mprotect,
4740         .file_lock =                    selinux_file_lock,
4741         .file_fcntl =                   selinux_file_fcntl,
4742         .file_set_fowner =              selinux_file_set_fowner,
4743         .file_send_sigiotask =          selinux_file_send_sigiotask,
4744         .file_receive =                 selinux_file_receive,
4745
4746         .task_create =                  selinux_task_create,
4747         .task_alloc_security =          selinux_task_alloc_security,
4748         .task_free_security =           selinux_task_free_security,
4749         .task_setuid =                  selinux_task_setuid,
4750         .task_post_setuid =             selinux_task_post_setuid,
4751         .task_setgid =                  selinux_task_setgid,
4752         .task_setpgid =                 selinux_task_setpgid,
4753         .task_getpgid =                 selinux_task_getpgid,
4754         .task_getsid =                  selinux_task_getsid,
4755         .task_getsecid =                selinux_task_getsecid,
4756         .task_setgroups =               selinux_task_setgroups,
4757         .task_setnice =                 selinux_task_setnice,
4758         .task_setioprio =               selinux_task_setioprio,
4759         .task_getioprio =               selinux_task_getioprio,
4760         .task_setrlimit =               selinux_task_setrlimit,
4761         .task_setscheduler =            selinux_task_setscheduler,
4762         .task_getscheduler =            selinux_task_getscheduler,
4763         .task_movememory =              selinux_task_movememory,
4764         .task_kill =                    selinux_task_kill,
4765         .task_wait =                    selinux_task_wait,
4766         .task_prctl =                   selinux_task_prctl,
4767         .task_reparent_to_init =        selinux_task_reparent_to_init,
4768         .task_to_inode =                selinux_task_to_inode,
4769
4770         .ipc_permission =               selinux_ipc_permission,
4771
4772         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4773         .msg_msg_free_security =        selinux_msg_msg_free_security,
4774
4775         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4776         .msg_queue_free_security =      selinux_msg_queue_free_security,
4777         .msg_queue_associate =          selinux_msg_queue_associate,
4778         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4779         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4780         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4781
4782         .shm_alloc_security =           selinux_shm_alloc_security,
4783         .shm_free_security =            selinux_shm_free_security,
4784         .shm_associate =                selinux_shm_associate,
4785         .shm_shmctl =                   selinux_shm_shmctl,
4786         .shm_shmat =                    selinux_shm_shmat,
4787
4788         .sem_alloc_security =           selinux_sem_alloc_security,
4789         .sem_free_security =            selinux_sem_free_security,
4790         .sem_associate =                selinux_sem_associate,
4791         .sem_semctl =                   selinux_sem_semctl,
4792         .sem_semop =                    selinux_sem_semop,
4793
4794         .register_security =            selinux_register_security,
4795         .unregister_security =          selinux_unregister_security,
4796
4797         .d_instantiate =                selinux_d_instantiate,
4798
4799         .getprocattr =                  selinux_getprocattr,
4800         .setprocattr =                  selinux_setprocattr,
4801
4802         .secid_to_secctx =              selinux_secid_to_secctx,
4803         .release_secctx =               selinux_release_secctx,
4804
4805         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4806         .unix_may_send =                selinux_socket_unix_may_send,
4807
4808         .socket_create =                selinux_socket_create,
4809         .socket_post_create =           selinux_socket_post_create,
4810         .socket_bind =                  selinux_socket_bind,
4811         .socket_connect =               selinux_socket_connect,
4812         .socket_listen =                selinux_socket_listen,
4813         .socket_accept =                selinux_socket_accept,
4814         .socket_sendmsg =               selinux_socket_sendmsg,
4815         .socket_recvmsg =               selinux_socket_recvmsg,
4816         .socket_getsockname =           selinux_socket_getsockname,
4817         .socket_getpeername =           selinux_socket_getpeername,
4818         .socket_getsockopt =            selinux_socket_getsockopt,
4819         .socket_setsockopt =            selinux_socket_setsockopt,
4820         .socket_shutdown =              selinux_socket_shutdown,
4821         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4822         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4823         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4824         .sk_alloc_security =            selinux_sk_alloc_security,
4825         .sk_free_security =             selinux_sk_free_security,
4826         .sk_clone_security =            selinux_sk_clone_security,
4827         .sk_getsecid =                  selinux_sk_getsecid,
4828         .sock_graft =                   selinux_sock_graft,
4829         .inet_conn_request =            selinux_inet_conn_request,
4830         .inet_csk_clone =               selinux_inet_csk_clone,
4831         .inet_conn_established =        selinux_inet_conn_established,
4832         .req_classify_flow =            selinux_req_classify_flow,
4833
4834 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4835         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4836         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4837         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4838         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4839         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4840         .xfrm_state_free_security =     selinux_xfrm_state_free,
4841         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4842         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4843         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4844         .xfrm_decode_session =          selinux_xfrm_decode_session,
4845 #endif
4846
4847 #ifdef CONFIG_KEYS
4848         .key_alloc =                    selinux_key_alloc,
4849         .key_free =                     selinux_key_free,
4850         .key_permission =               selinux_key_permission,
4851 #endif
4852 };
4853
4854 static __init int selinux_init(void)
4855 {
4856         struct task_security_struct *tsec;
4857
4858         if (!selinux_enabled) {
4859                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4860                 return 0;
4861         }
4862
4863         printk(KERN_INFO "SELinux:  Initializing.\n");
4864
4865         /* Set the security state for the initial task. */
4866         if (task_alloc_security(current))
4867                 panic("SELinux:  Failed to initialize initial task.\n");
4868         tsec = current->security;
4869         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4870
4871         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4872                                             sizeof(struct inode_security_struct),
4873                                             0, SLAB_PANIC, NULL, NULL);
4874         avc_init();
4875
4876         original_ops = secondary_ops = security_ops;
4877         if (!secondary_ops)
4878                 panic ("SELinux: No initial security operations\n");
4879         if (register_security (&selinux_ops))
4880                 panic("SELinux: Unable to register with kernel.\n");
4881
4882         if (selinux_enforcing) {
4883                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4884         } else {
4885                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4886         }
4887
4888 #ifdef CONFIG_KEYS
4889         /* Add security information to initial keyrings */
4890         selinux_key_alloc(&root_user_keyring, current,
4891                           KEY_ALLOC_NOT_IN_QUOTA);
4892         selinux_key_alloc(&root_session_keyring, current,
4893                           KEY_ALLOC_NOT_IN_QUOTA);
4894 #endif
4895
4896         return 0;
4897 }
4898
4899 void selinux_complete_init(void)
4900 {
4901         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4902
4903         /* Set up any superblocks initialized prior to the policy load. */
4904         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4905         spin_lock(&sb_lock);
4906         spin_lock(&sb_security_lock);
4907 next_sb:
4908         if (!list_empty(&superblock_security_head)) {
4909                 struct superblock_security_struct *sbsec =
4910                                 list_entry(superblock_security_head.next,
4911                                            struct superblock_security_struct,
4912                                            list);
4913                 struct super_block *sb = sbsec->sb;
4914                 sb->s_count++;
4915                 spin_unlock(&sb_security_lock);
4916                 spin_unlock(&sb_lock);
4917                 down_read(&sb->s_umount);
4918                 if (sb->s_root)
4919                         superblock_doinit(sb, NULL);
4920                 drop_super(sb);
4921                 spin_lock(&sb_lock);
4922                 spin_lock(&sb_security_lock);
4923                 list_del_init(&sbsec->list);
4924                 goto next_sb;
4925         }
4926         spin_unlock(&sb_security_lock);
4927         spin_unlock(&sb_lock);
4928 }
4929
4930 /* SELinux requires early initialization in order to label
4931    all processes and objects when they are created. */
4932 security_initcall(selinux_init);
4933
4934 #if defined(CONFIG_NETFILTER)
4935
4936 static struct nf_hook_ops selinux_ipv4_op = {
4937         .hook =         selinux_ipv4_postroute_last,
4938         .owner =        THIS_MODULE,
4939         .pf =           PF_INET,
4940         .hooknum =      NF_IP_POST_ROUTING,
4941         .priority =     NF_IP_PRI_SELINUX_LAST,
4942 };
4943
4944 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4945
4946 static struct nf_hook_ops selinux_ipv6_op = {
4947         .hook =         selinux_ipv6_postroute_last,
4948         .owner =        THIS_MODULE,
4949         .pf =           PF_INET6,
4950         .hooknum =      NF_IP6_POST_ROUTING,
4951         .priority =     NF_IP6_PRI_SELINUX_LAST,
4952 };
4953
4954 #endif  /* IPV6 */
4955
4956 static int __init selinux_nf_ip_init(void)
4957 {
4958         int err = 0;
4959
4960         if (!selinux_enabled)
4961                 goto out;
4962                 
4963         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4964         
4965         err = nf_register_hook(&selinux_ipv4_op);
4966         if (err)
4967                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4968
4969 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4970
4971         err = nf_register_hook(&selinux_ipv6_op);
4972         if (err)
4973                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4974
4975 #endif  /* IPV6 */
4976
4977 out:
4978         return err;
4979 }
4980
4981 __initcall(selinux_nf_ip_init);
4982
4983 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4984 static void selinux_nf_ip_exit(void)
4985 {
4986         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4987
4988         nf_unregister_hook(&selinux_ipv4_op);
4989 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4990         nf_unregister_hook(&selinux_ipv6_op);
4991 #endif  /* IPV6 */
4992 }
4993 #endif
4994
4995 #else /* CONFIG_NETFILTER */
4996
4997 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4998 #define selinux_nf_ip_exit()
4999 #endif
5000
5001 #endif /* CONFIG_NETFILTER */
5002
5003 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5004 int selinux_disable(void)
5005 {
5006         extern void exit_sel_fs(void);
5007         static int selinux_disabled = 0;
5008
5009         if (ss_initialized) {
5010                 /* Not permitted after initial policy load. */
5011                 return -EINVAL;
5012         }
5013
5014         if (selinux_disabled) {
5015                 /* Only do this once. */
5016                 return -EINVAL;
5017         }
5018
5019         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5020
5021         selinux_disabled = 1;
5022         selinux_enabled = 0;
5023
5024         /* Reset security_ops to the secondary module, dummy or capability. */
5025         security_ops = secondary_ops;
5026
5027         /* Unregister netfilter hooks. */
5028         selinux_nf_ip_exit();
5029
5030         /* Unregister selinuxfs. */
5031         exit_sel_fs();
5032
5033         return 0;
5034 }
5035 #endif
5036
5037