Merge branch 'for-linus' of git://www.jni.nu/cris
[linux-drm-fsl-dcu.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
46
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49         do { \
50                 printk(KERN_DEBUG format , ## args); \
51         } while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
55
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
58
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
61
62 /*
63  * Central wireless core regulatory domains, we only need two,
64  * the current one and a world regulatory domain in case we have no
65  * information to give us an alpha2
66  */
67 const struct ieee80211_regdomain *cfg80211_regdomain;
68
69 /*
70  * We use this as a place for the rd structure built from the
71  * last parsed country IE to rest until CRDA gets back to us with
72  * what it thinks should apply for the same country
73  */
74 static const struct ieee80211_regdomain *country_ie_regdomain;
75
76 /*
77  * Protects static reg.c components:
78  *     - cfg80211_world_regdom
79  *     - cfg80211_regdom
80  *     - country_ie_regdomain
81  *     - last_request
82  */
83 DEFINE_MUTEX(reg_mutex);
84 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
85
86 /* Used to queue up regulatory hints */
87 static LIST_HEAD(reg_requests_list);
88 static spinlock_t reg_requests_lock;
89
90 /* Used to queue up beacon hints for review */
91 static LIST_HEAD(reg_pending_beacons);
92 static spinlock_t reg_pending_beacons_lock;
93
94 /* Used to keep track of processed beacon hints */
95 static LIST_HEAD(reg_beacon_list);
96
97 struct reg_beacon {
98         struct list_head list;
99         struct ieee80211_channel chan;
100 };
101
102 /* We keep a static world regulatory domain in case of the absence of CRDA */
103 static const struct ieee80211_regdomain world_regdom = {
104         .n_reg_rules = 5,
105         .alpha2 =  "00",
106         .reg_rules = {
107                 /* IEEE 802.11b/g, channels 1..11 */
108                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109                 /* IEEE 802.11b/g, channels 12..13. No HT40
110                  * channel fits here. */
111                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
112                         NL80211_RRF_PASSIVE_SCAN |
113                         NL80211_RRF_NO_IBSS),
114                 /* IEEE 802.11 channel 14 - Only JP enables
115                  * this and for 802.11b only */
116                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
117                         NL80211_RRF_PASSIVE_SCAN |
118                         NL80211_RRF_NO_IBSS |
119                         NL80211_RRF_NO_OFDM),
120                 /* IEEE 802.11a, channel 36..48 */
121                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
122                         NL80211_RRF_PASSIVE_SCAN |
123                         NL80211_RRF_NO_IBSS),
124
125                 /* NB: 5260 MHz - 5700 MHz requies DFS */
126
127                 /* IEEE 802.11a, channel 149..165 */
128                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
129                         NL80211_RRF_PASSIVE_SCAN |
130                         NL80211_RRF_NO_IBSS),
131         }
132 };
133
134 static const struct ieee80211_regdomain *cfg80211_world_regdom =
135         &world_regdom;
136
137 static char *ieee80211_regdom = "00";
138 static char user_alpha2[2];
139
140 module_param(ieee80211_regdom, charp, 0444);
141 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
142
143 static void reset_regdomains(void)
144 {
145         /* avoid freeing static information or freeing something twice */
146         if (cfg80211_regdomain == cfg80211_world_regdom)
147                 cfg80211_regdomain = NULL;
148         if (cfg80211_world_regdom == &world_regdom)
149                 cfg80211_world_regdom = NULL;
150         if (cfg80211_regdomain == &world_regdom)
151                 cfg80211_regdomain = NULL;
152
153         kfree(cfg80211_regdomain);
154         kfree(cfg80211_world_regdom);
155
156         cfg80211_world_regdom = &world_regdom;
157         cfg80211_regdomain = NULL;
158 }
159
160 /*
161  * Dynamic world regulatory domain requested by the wireless
162  * core upon initialization
163  */
164 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165 {
166         BUG_ON(!last_request);
167
168         reset_regdomains();
169
170         cfg80211_world_regdom = rd;
171         cfg80211_regdomain = rd;
172 }
173
174 bool is_world_regdom(const char *alpha2)
175 {
176         if (!alpha2)
177                 return false;
178         if (alpha2[0] == '0' && alpha2[1] == '0')
179                 return true;
180         return false;
181 }
182
183 static bool is_alpha2_set(const char *alpha2)
184 {
185         if (!alpha2)
186                 return false;
187         if (alpha2[0] != 0 && alpha2[1] != 0)
188                 return true;
189         return false;
190 }
191
192 static bool is_alpha_upper(char letter)
193 {
194         /* ASCII A - Z */
195         if (letter >= 65 && letter <= 90)
196                 return true;
197         return false;
198 }
199
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202         if (!alpha2)
203                 return false;
204         /*
205          * Special case where regulatory domain was built by driver
206          * but a specific alpha2 cannot be determined
207          */
208         if (alpha2[0] == '9' && alpha2[1] == '9')
209                 return true;
210         return false;
211 }
212
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215         if (!alpha2)
216                 return false;
217         /*
218          * Special case where regulatory domain is the
219          * result of an intersection between two regulatory domain
220          * structures
221          */
222         if (alpha2[0] == '9' && alpha2[1] == '8')
223                 return true;
224         return false;
225 }
226
227 static bool is_an_alpha2(const char *alpha2)
228 {
229         if (!alpha2)
230                 return false;
231         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
232                 return true;
233         return false;
234 }
235
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238         if (!alpha2_x || !alpha2_y)
239                 return false;
240         if (alpha2_x[0] == alpha2_y[0] &&
241                 alpha2_x[1] == alpha2_y[1])
242                 return true;
243         return false;
244 }
245
246 static bool regdom_changes(const char *alpha2)
247 {
248         assert_cfg80211_lock();
249
250         if (!cfg80211_regdomain)
251                 return true;
252         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253                 return false;
254         return true;
255 }
256
257 /*
258  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260  * has ever been issued.
261  */
262 static bool is_user_regdom_saved(void)
263 {
264         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265                 return false;
266
267         /* This would indicate a mistake on the design */
268         if (WARN((!is_world_regdom(user_alpha2) &&
269                   !is_an_alpha2(user_alpha2)),
270                  "Unexpected user alpha2: %c%c\n",
271                  user_alpha2[0],
272                  user_alpha2[1]))
273                 return false;
274
275         return true;
276 }
277
278 /**
279  * country_ie_integrity_changes - tells us if the country IE has changed
280  * @checksum: checksum of country IE of fields we are interested in
281  *
282  * If the country IE has not changed you can ignore it safely. This is
283  * useful to determine if two devices are seeing two different country IEs
284  * even on the same alpha2. Note that this will return false if no IE has
285  * been set on the wireless core yet.
286  */
287 static bool country_ie_integrity_changes(u32 checksum)
288 {
289         /* If no IE has been set then the checksum doesn't change */
290         if (unlikely(!last_request->country_ie_checksum))
291                 return false;
292         if (unlikely(last_request->country_ie_checksum != checksum))
293                 return true;
294         return false;
295 }
296
297 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
298                          const struct ieee80211_regdomain *src_regd)
299 {
300         struct ieee80211_regdomain *regd;
301         int size_of_regd = 0;
302         unsigned int i;
303
304         size_of_regd = sizeof(struct ieee80211_regdomain) +
305           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
306
307         regd = kzalloc(size_of_regd, GFP_KERNEL);
308         if (!regd)
309                 return -ENOMEM;
310
311         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
312
313         for (i = 0; i < src_regd->n_reg_rules; i++)
314                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
315                         sizeof(struct ieee80211_reg_rule));
316
317         *dst_regd = regd;
318         return 0;
319 }
320
321 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
322 struct reg_regdb_search_request {
323         char alpha2[2];
324         struct list_head list;
325 };
326
327 static LIST_HEAD(reg_regdb_search_list);
328 static DEFINE_MUTEX(reg_regdb_search_mutex);
329
330 static void reg_regdb_search(struct work_struct *work)
331 {
332         struct reg_regdb_search_request *request;
333         const struct ieee80211_regdomain *curdom, *regdom;
334         int i, r;
335
336         mutex_lock(&reg_regdb_search_mutex);
337         while (!list_empty(&reg_regdb_search_list)) {
338                 request = list_first_entry(&reg_regdb_search_list,
339                                            struct reg_regdb_search_request,
340                                            list);
341                 list_del(&request->list);
342
343                 for (i=0; i<reg_regdb_size; i++) {
344                         curdom = reg_regdb[i];
345
346                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
347                                 r = reg_copy_regd(&regdom, curdom);
348                                 if (r)
349                                         break;
350                                 mutex_lock(&cfg80211_mutex);
351                                 set_regdom(regdom);
352                                 mutex_unlock(&cfg80211_mutex);
353                                 break;
354                         }
355                 }
356
357                 kfree(request);
358         }
359         mutex_unlock(&reg_regdb_search_mutex);
360 }
361
362 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
363
364 static void reg_regdb_query(const char *alpha2)
365 {
366         struct reg_regdb_search_request *request;
367
368         if (!alpha2)
369                 return;
370
371         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
372         if (!request)
373                 return;
374
375         memcpy(request->alpha2, alpha2, 2);
376
377         mutex_lock(&reg_regdb_search_mutex);
378         list_add_tail(&request->list, &reg_regdb_search_list);
379         mutex_unlock(&reg_regdb_search_mutex);
380
381         schedule_work(&reg_regdb_work);
382 }
383 #else
384 static inline void reg_regdb_query(const char *alpha2) {}
385 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
386
387 /*
388  * This lets us keep regulatory code which is updated on a regulatory
389  * basis in userspace.
390  */
391 static int call_crda(const char *alpha2)
392 {
393         char country_env[9 + 2] = "COUNTRY=";
394         char *envp[] = {
395                 country_env,
396                 NULL
397         };
398
399         if (!is_world_regdom((char *) alpha2))
400                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
401                         alpha2[0], alpha2[1]);
402         else
403                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
404                         "regulatory domain\n");
405
406         /* query internal regulatory database (if it exists) */
407         reg_regdb_query(alpha2);
408
409         country_env[8] = alpha2[0];
410         country_env[9] = alpha2[1];
411
412         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
413 }
414
415 /* Used by nl80211 before kmalloc'ing our regulatory domain */
416 bool reg_is_valid_request(const char *alpha2)
417 {
418         assert_cfg80211_lock();
419
420         if (!last_request)
421                 return false;
422
423         return alpha2_equal(last_request->alpha2, alpha2);
424 }
425
426 /* Sanity check on a regulatory rule */
427 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
428 {
429         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
430         u32 freq_diff;
431
432         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
433                 return false;
434
435         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
436                 return false;
437
438         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
439
440         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
441                         freq_range->max_bandwidth_khz > freq_diff)
442                 return false;
443
444         return true;
445 }
446
447 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
448 {
449         const struct ieee80211_reg_rule *reg_rule = NULL;
450         unsigned int i;
451
452         if (!rd->n_reg_rules)
453                 return false;
454
455         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
456                 return false;
457
458         for (i = 0; i < rd->n_reg_rules; i++) {
459                 reg_rule = &rd->reg_rules[i];
460                 if (!is_valid_reg_rule(reg_rule))
461                         return false;
462         }
463
464         return true;
465 }
466
467 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
468                             u32 center_freq_khz,
469                             u32 bw_khz)
470 {
471         u32 start_freq_khz, end_freq_khz;
472
473         start_freq_khz = center_freq_khz - (bw_khz/2);
474         end_freq_khz = center_freq_khz + (bw_khz/2);
475
476         if (start_freq_khz >= freq_range->start_freq_khz &&
477             end_freq_khz <= freq_range->end_freq_khz)
478                 return true;
479
480         return false;
481 }
482
483 /**
484  * freq_in_rule_band - tells us if a frequency is in a frequency band
485  * @freq_range: frequency rule we want to query
486  * @freq_khz: frequency we are inquiring about
487  *
488  * This lets us know if a specific frequency rule is or is not relevant to
489  * a specific frequency's band. Bands are device specific and artificial
490  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
491  * safe for now to assume that a frequency rule should not be part of a
492  * frequency's band if the start freq or end freq are off by more than 2 GHz.
493  * This resolution can be lowered and should be considered as we add
494  * regulatory rule support for other "bands".
495  **/
496 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
497         u32 freq_khz)
498 {
499 #define ONE_GHZ_IN_KHZ  1000000
500         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
501                 return true;
502         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
503                 return true;
504         return false;
505 #undef ONE_GHZ_IN_KHZ
506 }
507
508 /*
509  * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
510  * work. ieee80211_channel_to_frequency() can for example currently provide a
511  * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
512  * an AP providing channel 8 on a country IE triplet when it sent this on the
513  * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
514  * channel.
515  *
516  * This can be removed once ieee80211_channel_to_frequency() takes in a band.
517  */
518 static bool chan_in_band(int chan, enum ieee80211_band band)
519 {
520         int center_freq = ieee80211_channel_to_frequency(chan);
521
522         switch (band) {
523         case IEEE80211_BAND_2GHZ:
524                 if (center_freq <= 2484)
525                         return true;
526                 return false;
527         case IEEE80211_BAND_5GHZ:
528                 if (center_freq >= 5005)
529                         return true;
530                 return false;
531         default:
532                 return false;
533         }
534 }
535
536 /*
537  * Some APs may send a country IE triplet for each channel they
538  * support and while this is completely overkill and silly we still
539  * need to support it. We avoid making a single rule for each channel
540  * though and to help us with this we use this helper to find the
541  * actual subband end channel. These type of country IE triplet
542  * scenerios are handled then, all yielding two regulaotry rules from
543  * parsing a country IE:
544  *
545  * [1]
546  * [2]
547  * [36]
548  * [40]
549  *
550  * [1]
551  * [2-4]
552  * [5-12]
553  * [36]
554  * [40-44]
555  *
556  * [1-4]
557  * [5-7]
558  * [36-44]
559  * [48-64]
560  *
561  * [36-36]
562  * [40-40]
563  * [44-44]
564  * [48-48]
565  * [52-52]
566  * [56-56]
567  * [60-60]
568  * [64-64]
569  * [100-100]
570  * [104-104]
571  * [108-108]
572  * [112-112]
573  * [116-116]
574  * [120-120]
575  * [124-124]
576  * [128-128]
577  * [132-132]
578  * [136-136]
579  * [140-140]
580  *
581  * Returns 0 if the IE has been found to be invalid in the middle
582  * somewhere.
583  */
584 static int max_subband_chan(enum ieee80211_band band,
585                             int orig_cur_chan,
586                             int orig_end_channel,
587                             s8 orig_max_power,
588                             u8 **country_ie,
589                             u8 *country_ie_len)
590 {
591         u8 *triplets_start = *country_ie;
592         u8 len_at_triplet = *country_ie_len;
593         int end_subband_chan = orig_end_channel;
594
595         /*
596          * We'll deal with padding for the caller unless
597          * its not immediate and we don't process any channels
598          */
599         if (*country_ie_len == 1) {
600                 *country_ie += 1;
601                 *country_ie_len -= 1;
602                 return orig_end_channel;
603         }
604
605         /* Move to the next triplet and then start search */
606         *country_ie += 3;
607         *country_ie_len -= 3;
608
609         if (!chan_in_band(orig_cur_chan, band))
610                 return 0;
611
612         while (*country_ie_len >= 3) {
613                 int end_channel = 0;
614                 struct ieee80211_country_ie_triplet *triplet =
615                         (struct ieee80211_country_ie_triplet *) *country_ie;
616                 int cur_channel = 0, next_expected_chan;
617
618                 /* means last triplet is completely unrelated to this one */
619                 if (triplet->ext.reg_extension_id >=
620                                 IEEE80211_COUNTRY_EXTENSION_ID) {
621                         *country_ie -= 3;
622                         *country_ie_len += 3;
623                         break;
624                 }
625
626                 if (triplet->chans.first_channel == 0) {
627                         *country_ie += 1;
628                         *country_ie_len -= 1;
629                         if (*country_ie_len != 0)
630                                 return 0;
631                         break;
632                 }
633
634                 if (triplet->chans.num_channels == 0)
635                         return 0;
636
637                 /* Monitonically increasing channel order */
638                 if (triplet->chans.first_channel <= end_subband_chan)
639                         return 0;
640
641                 if (!chan_in_band(triplet->chans.first_channel, band))
642                         return 0;
643
644                 /* 2 GHz */
645                 if (triplet->chans.first_channel <= 14) {
646                         end_channel = triplet->chans.first_channel +
647                                 triplet->chans.num_channels - 1;
648                 }
649                 else {
650                         end_channel =  triplet->chans.first_channel +
651                                 (4 * (triplet->chans.num_channels - 1));
652                 }
653
654                 if (!chan_in_band(end_channel, band))
655                         return 0;
656
657                 if (orig_max_power != triplet->chans.max_power) {
658                         *country_ie -= 3;
659                         *country_ie_len += 3;
660                         break;
661                 }
662
663                 cur_channel = triplet->chans.first_channel;
664
665                 /* The key is finding the right next expected channel */
666                 if (band == IEEE80211_BAND_2GHZ)
667                         next_expected_chan = end_subband_chan + 1;
668                  else
669                         next_expected_chan = end_subband_chan + 4;
670
671                 if (cur_channel != next_expected_chan) {
672                         *country_ie -= 3;
673                         *country_ie_len += 3;
674                         break;
675                 }
676
677                 end_subband_chan = end_channel;
678
679                 /* Move to the next one */
680                 *country_ie += 3;
681                 *country_ie_len -= 3;
682
683                 /*
684                  * Padding needs to be dealt with if we processed
685                  * some channels.
686                  */
687                 if (*country_ie_len == 1) {
688                         *country_ie += 1;
689                         *country_ie_len -= 1;
690                         break;
691                 }
692
693                 /* If seen, the IE is invalid */
694                 if (*country_ie_len == 2)
695                         return 0;
696         }
697
698         if (end_subband_chan == orig_end_channel) {
699                 *country_ie = triplets_start;
700                 *country_ie_len = len_at_triplet;
701                 return orig_end_channel;
702         }
703
704         return end_subband_chan;
705 }
706
707 /*
708  * Converts a country IE to a regulatory domain. A regulatory domain
709  * structure has a lot of information which the IE doesn't yet have,
710  * so for the other values we use upper max values as we will intersect
711  * with our userspace regulatory agent to get lower bounds.
712  */
713 static struct ieee80211_regdomain *country_ie_2_rd(
714                                 enum ieee80211_band band,
715                                 u8 *country_ie,
716                                 u8 country_ie_len,
717                                 u32 *checksum)
718 {
719         struct ieee80211_regdomain *rd = NULL;
720         unsigned int i = 0;
721         char alpha2[2];
722         u32 flags = 0;
723         u32 num_rules = 0, size_of_regd = 0;
724         u8 *triplets_start = NULL;
725         u8 len_at_triplet = 0;
726         /* the last channel we have registered in a subband (triplet) */
727         int last_sub_max_channel = 0;
728
729         *checksum = 0xDEADBEEF;
730
731         /* Country IE requirements */
732         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
733                 country_ie_len & 0x01);
734
735         alpha2[0] = country_ie[0];
736         alpha2[1] = country_ie[1];
737
738         /*
739          * Third octet can be:
740          *    'I' - Indoor
741          *    'O' - Outdoor
742          *
743          *  anything else we assume is no restrictions
744          */
745         if (country_ie[2] == 'I')
746                 flags = NL80211_RRF_NO_OUTDOOR;
747         else if (country_ie[2] == 'O')
748                 flags = NL80211_RRF_NO_INDOOR;
749
750         country_ie += 3;
751         country_ie_len -= 3;
752
753         triplets_start = country_ie;
754         len_at_triplet = country_ie_len;
755
756         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
757
758         /*
759          * We need to build a reg rule for each triplet, but first we must
760          * calculate the number of reg rules we will need. We will need one
761          * for each channel subband
762          */
763         while (country_ie_len >= 3) {
764                 int end_channel = 0;
765                 struct ieee80211_country_ie_triplet *triplet =
766                         (struct ieee80211_country_ie_triplet *) country_ie;
767                 int cur_sub_max_channel = 0, cur_channel = 0;
768
769                 if (triplet->ext.reg_extension_id >=
770                                 IEEE80211_COUNTRY_EXTENSION_ID) {
771                         country_ie += 3;
772                         country_ie_len -= 3;
773                         continue;
774                 }
775
776                 /*
777                  * APs can add padding to make length divisible
778                  * by two, required by the spec.
779                  */
780                 if (triplet->chans.first_channel == 0) {
781                         country_ie++;
782                         country_ie_len--;
783                         /* This is expected to be at the very end only */
784                         if (country_ie_len != 0)
785                                 return NULL;
786                         break;
787                 }
788
789                 if (triplet->chans.num_channels == 0)
790                         return NULL;
791
792                 if (!chan_in_band(triplet->chans.first_channel, band))
793                         return NULL;
794
795                 /* 2 GHz */
796                 if (band == IEEE80211_BAND_2GHZ)
797                         end_channel = triplet->chans.first_channel +
798                                 triplet->chans.num_channels - 1;
799                 else
800                         /*
801                          * 5 GHz -- For example in country IEs if the first
802                          * channel given is 36 and the number of channels is 4
803                          * then the individual channel numbers defined for the
804                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
805                          * and not 36, 37, 38, 39.
806                          *
807                          * See: http://tinyurl.com/11d-clarification
808                          */
809                         end_channel =  triplet->chans.first_channel +
810                                 (4 * (triplet->chans.num_channels - 1));
811
812                 cur_channel = triplet->chans.first_channel;
813
814                 /*
815                  * Enhancement for APs that send a triplet for every channel
816                  * or for whatever reason sends triplets with multiple channels
817                  * separated when in fact they should be together.
818                  */
819                 end_channel = max_subband_chan(band,
820                                                cur_channel,
821                                                end_channel,
822                                                triplet->chans.max_power,
823                                                &country_ie,
824                                                &country_ie_len);
825                 if (!end_channel)
826                         return NULL;
827
828                 if (!chan_in_band(end_channel, band))
829                         return NULL;
830
831                 cur_sub_max_channel = end_channel;
832
833                 /* Basic sanity check */
834                 if (cur_sub_max_channel < cur_channel)
835                         return NULL;
836
837                 /*
838                  * Do not allow overlapping channels. Also channels
839                  * passed in each subband must be monotonically
840                  * increasing
841                  */
842                 if (last_sub_max_channel) {
843                         if (cur_channel <= last_sub_max_channel)
844                                 return NULL;
845                         if (cur_sub_max_channel <= last_sub_max_channel)
846                                 return NULL;
847                 }
848
849                 /*
850                  * When dot11RegulatoryClassesRequired is supported
851                  * we can throw ext triplets as part of this soup,
852                  * for now we don't care when those change as we
853                  * don't support them
854                  */
855                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
856                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
857                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
858
859                 last_sub_max_channel = cur_sub_max_channel;
860
861                 num_rules++;
862
863                 if (country_ie_len >= 3) {
864                         country_ie += 3;
865                         country_ie_len -= 3;
866                 }
867
868                 /*
869                  * Note: this is not a IEEE requirement but
870                  * simply a memory requirement
871                  */
872                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
873                         return NULL;
874         }
875
876         country_ie = triplets_start;
877         country_ie_len = len_at_triplet;
878
879         size_of_regd = sizeof(struct ieee80211_regdomain) +
880                 (num_rules * sizeof(struct ieee80211_reg_rule));
881
882         rd = kzalloc(size_of_regd, GFP_KERNEL);
883         if (!rd)
884                 return NULL;
885
886         rd->n_reg_rules = num_rules;
887         rd->alpha2[0] = alpha2[0];
888         rd->alpha2[1] = alpha2[1];
889
890         /* This time around we fill in the rd */
891         while (country_ie_len >= 3) {
892                 int end_channel = 0;
893                 struct ieee80211_country_ie_triplet *triplet =
894                         (struct ieee80211_country_ie_triplet *) country_ie;
895                 struct ieee80211_reg_rule *reg_rule = NULL;
896                 struct ieee80211_freq_range *freq_range = NULL;
897                 struct ieee80211_power_rule *power_rule = NULL;
898
899                 /*
900                  * Must parse if dot11RegulatoryClassesRequired is true,
901                  * we don't support this yet
902                  */
903                 if (triplet->ext.reg_extension_id >=
904                                 IEEE80211_COUNTRY_EXTENSION_ID) {
905                         country_ie += 3;
906                         country_ie_len -= 3;
907                         continue;
908                 }
909
910                 if (triplet->chans.first_channel == 0) {
911                         country_ie++;
912                         country_ie_len--;
913                         break;
914                 }
915
916                 reg_rule = &rd->reg_rules[i];
917                 freq_range = &reg_rule->freq_range;
918                 power_rule = &reg_rule->power_rule;
919
920                 reg_rule->flags = flags;
921
922                 /* 2 GHz */
923                 if (band == IEEE80211_BAND_2GHZ)
924                         end_channel = triplet->chans.first_channel +
925                                 triplet->chans.num_channels -1;
926                 else
927                         end_channel =  triplet->chans.first_channel +
928                                 (4 * (triplet->chans.num_channels - 1));
929
930                 end_channel = max_subband_chan(band,
931                                                triplet->chans.first_channel,
932                                                end_channel,
933                                                triplet->chans.max_power,
934                                                &country_ie,
935                                                &country_ie_len);
936
937                 /*
938                  * The +10 is since the regulatory domain expects
939                  * the actual band edge, not the center of freq for
940                  * its start and end freqs, assuming 20 MHz bandwidth on
941                  * the channels passed
942                  */
943                 freq_range->start_freq_khz =
944                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
945                                 triplet->chans.first_channel) - 10);
946                 freq_range->end_freq_khz =
947                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
948                                 end_channel) + 10);
949
950                 /*
951                  * These are large arbitrary values we use to intersect later.
952                  * Increment this if we ever support >= 40 MHz channels
953                  * in IEEE 802.11
954                  */
955                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
956                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
957                 power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
958
959                 i++;
960
961                 if (country_ie_len >= 3) {
962                         country_ie += 3;
963                         country_ie_len -= 3;
964                 }
965
966                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
967         }
968
969         return rd;
970 }
971
972
973 /*
974  * Helper for regdom_intersect(), this does the real
975  * mathematical intersection fun
976  */
977 static int reg_rules_intersect(
978         const struct ieee80211_reg_rule *rule1,
979         const struct ieee80211_reg_rule *rule2,
980         struct ieee80211_reg_rule *intersected_rule)
981 {
982         const struct ieee80211_freq_range *freq_range1, *freq_range2;
983         struct ieee80211_freq_range *freq_range;
984         const struct ieee80211_power_rule *power_rule1, *power_rule2;
985         struct ieee80211_power_rule *power_rule;
986         u32 freq_diff;
987
988         freq_range1 = &rule1->freq_range;
989         freq_range2 = &rule2->freq_range;
990         freq_range = &intersected_rule->freq_range;
991
992         power_rule1 = &rule1->power_rule;
993         power_rule2 = &rule2->power_rule;
994         power_rule = &intersected_rule->power_rule;
995
996         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
997                 freq_range2->start_freq_khz);
998         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
999                 freq_range2->end_freq_khz);
1000         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
1001                 freq_range2->max_bandwidth_khz);
1002
1003         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1004         if (freq_range->max_bandwidth_khz > freq_diff)
1005                 freq_range->max_bandwidth_khz = freq_diff;
1006
1007         power_rule->max_eirp = min(power_rule1->max_eirp,
1008                 power_rule2->max_eirp);
1009         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1010                 power_rule2->max_antenna_gain);
1011
1012         intersected_rule->flags = (rule1->flags | rule2->flags);
1013
1014         if (!is_valid_reg_rule(intersected_rule))
1015                 return -EINVAL;
1016
1017         return 0;
1018 }
1019
1020 /**
1021  * regdom_intersect - do the intersection between two regulatory domains
1022  * @rd1: first regulatory domain
1023  * @rd2: second regulatory domain
1024  *
1025  * Use this function to get the intersection between two regulatory domains.
1026  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1027  * as no one single alpha2 can represent this regulatory domain.
1028  *
1029  * Returns a pointer to the regulatory domain structure which will hold the
1030  * resulting intersection of rules between rd1 and rd2. We will
1031  * kzalloc() this structure for you.
1032  */
1033 static struct ieee80211_regdomain *regdom_intersect(
1034         const struct ieee80211_regdomain *rd1,
1035         const struct ieee80211_regdomain *rd2)
1036 {
1037         int r, size_of_regd;
1038         unsigned int x, y;
1039         unsigned int num_rules = 0, rule_idx = 0;
1040         const struct ieee80211_reg_rule *rule1, *rule2;
1041         struct ieee80211_reg_rule *intersected_rule;
1042         struct ieee80211_regdomain *rd;
1043         /* This is just a dummy holder to help us count */
1044         struct ieee80211_reg_rule irule;
1045
1046         /* Uses the stack temporarily for counter arithmetic */
1047         intersected_rule = &irule;
1048
1049         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
1050
1051         if (!rd1 || !rd2)
1052                 return NULL;
1053
1054         /*
1055          * First we get a count of the rules we'll need, then we actually
1056          * build them. This is to so we can malloc() and free() a
1057          * regdomain once. The reason we use reg_rules_intersect() here
1058          * is it will return -EINVAL if the rule computed makes no sense.
1059          * All rules that do check out OK are valid.
1060          */
1061
1062         for (x = 0; x < rd1->n_reg_rules; x++) {
1063                 rule1 = &rd1->reg_rules[x];
1064                 for (y = 0; y < rd2->n_reg_rules; y++) {
1065                         rule2 = &rd2->reg_rules[y];
1066                         if (!reg_rules_intersect(rule1, rule2,
1067                                         intersected_rule))
1068                                 num_rules++;
1069                         memset(intersected_rule, 0,
1070                                         sizeof(struct ieee80211_reg_rule));
1071                 }
1072         }
1073
1074         if (!num_rules)
1075                 return NULL;
1076
1077         size_of_regd = sizeof(struct ieee80211_regdomain) +
1078                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
1079
1080         rd = kzalloc(size_of_regd, GFP_KERNEL);
1081         if (!rd)
1082                 return NULL;
1083
1084         for (x = 0; x < rd1->n_reg_rules; x++) {
1085                 rule1 = &rd1->reg_rules[x];
1086                 for (y = 0; y < rd2->n_reg_rules; y++) {
1087                         rule2 = &rd2->reg_rules[y];
1088                         /*
1089                          * This time around instead of using the stack lets
1090                          * write to the target rule directly saving ourselves
1091                          * a memcpy()
1092                          */
1093                         intersected_rule = &rd->reg_rules[rule_idx];
1094                         r = reg_rules_intersect(rule1, rule2,
1095                                 intersected_rule);
1096                         /*
1097                          * No need to memset here the intersected rule here as
1098                          * we're not using the stack anymore
1099                          */
1100                         if (r)
1101                                 continue;
1102                         rule_idx++;
1103                 }
1104         }
1105
1106         if (rule_idx != num_rules) {
1107                 kfree(rd);
1108                 return NULL;
1109         }
1110
1111         rd->n_reg_rules = num_rules;
1112         rd->alpha2[0] = '9';
1113         rd->alpha2[1] = '8';
1114
1115         return rd;
1116 }
1117
1118 /*
1119  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1120  * want to just have the channel structure use these
1121  */
1122 static u32 map_regdom_flags(u32 rd_flags)
1123 {
1124         u32 channel_flags = 0;
1125         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
1126                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1127         if (rd_flags & NL80211_RRF_NO_IBSS)
1128                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
1129         if (rd_flags & NL80211_RRF_DFS)
1130                 channel_flags |= IEEE80211_CHAN_RADAR;
1131         return channel_flags;
1132 }
1133
1134 static int freq_reg_info_regd(struct wiphy *wiphy,
1135                               u32 center_freq,
1136                               u32 desired_bw_khz,
1137                               const struct ieee80211_reg_rule **reg_rule,
1138                               const struct ieee80211_regdomain *custom_regd)
1139 {
1140         int i;
1141         bool band_rule_found = false;
1142         const struct ieee80211_regdomain *regd;
1143         bool bw_fits = false;
1144
1145         if (!desired_bw_khz)
1146                 desired_bw_khz = MHZ_TO_KHZ(20);
1147
1148         regd = custom_regd ? custom_regd : cfg80211_regdomain;
1149
1150         /*
1151          * Follow the driver's regulatory domain, if present, unless a country
1152          * IE has been processed or a user wants to help complaince further
1153          */
1154         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1155             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1156             wiphy->regd)
1157                 regd = wiphy->regd;
1158
1159         if (!regd)
1160                 return -EINVAL;
1161
1162         for (i = 0; i < regd->n_reg_rules; i++) {
1163                 const struct ieee80211_reg_rule *rr;
1164                 const struct ieee80211_freq_range *fr = NULL;
1165                 const struct ieee80211_power_rule *pr = NULL;
1166
1167                 rr = &regd->reg_rules[i];
1168                 fr = &rr->freq_range;
1169                 pr = &rr->power_rule;
1170
1171                 /*
1172                  * We only need to know if one frequency rule was
1173                  * was in center_freq's band, that's enough, so lets
1174                  * not overwrite it once found
1175                  */
1176                 if (!band_rule_found)
1177                         band_rule_found = freq_in_rule_band(fr, center_freq);
1178
1179                 bw_fits = reg_does_bw_fit(fr,
1180                                           center_freq,
1181                                           desired_bw_khz);
1182
1183                 if (band_rule_found && bw_fits) {
1184                         *reg_rule = rr;
1185                         return 0;
1186                 }
1187         }
1188
1189         if (!band_rule_found)
1190                 return -ERANGE;
1191
1192         return -EINVAL;
1193 }
1194 EXPORT_SYMBOL(freq_reg_info);
1195
1196 int freq_reg_info(struct wiphy *wiphy,
1197                   u32 center_freq,
1198                   u32 desired_bw_khz,
1199                   const struct ieee80211_reg_rule **reg_rule)
1200 {
1201         assert_cfg80211_lock();
1202         return freq_reg_info_regd(wiphy,
1203                                   center_freq,
1204                                   desired_bw_khz,
1205                                   reg_rule,
1206                                   NULL);
1207 }
1208
1209 /*
1210  * Note that right now we assume the desired channel bandwidth
1211  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1212  * per channel, the primary and the extension channel). To support
1213  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1214  * new ieee80211_channel.target_bw and re run the regulatory check
1215  * on the wiphy with the target_bw specified. Then we can simply use
1216  * that below for the desired_bw_khz below.
1217  */
1218 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
1219                            unsigned int chan_idx)
1220 {
1221         int r;
1222         u32 flags, bw_flags = 0;
1223         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1224         const struct ieee80211_reg_rule *reg_rule = NULL;
1225         const struct ieee80211_power_rule *power_rule = NULL;
1226         const struct ieee80211_freq_range *freq_range = NULL;
1227         struct ieee80211_supported_band *sband;
1228         struct ieee80211_channel *chan;
1229         struct wiphy *request_wiphy = NULL;
1230
1231         assert_cfg80211_lock();
1232
1233         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1234
1235         sband = wiphy->bands[band];
1236         BUG_ON(chan_idx >= sband->n_channels);
1237         chan = &sband->channels[chan_idx];
1238
1239         flags = chan->orig_flags;
1240
1241         r = freq_reg_info(wiphy,
1242                           MHZ_TO_KHZ(chan->center_freq),
1243                           desired_bw_khz,
1244                           &reg_rule);
1245
1246         if (r) {
1247                 /*
1248                  * This means no regulatory rule was found in the country IE
1249                  * with a frequency range on the center_freq's band, since
1250                  * IEEE-802.11 allows for a country IE to have a subset of the
1251                  * regulatory information provided in a country we ignore
1252                  * disabling the channel unless at least one reg rule was
1253                  * found on the center_freq's band. For details see this
1254                  * clarification:
1255                  *
1256                  * http://tinyurl.com/11d-clarification
1257                  */
1258                 if (r == -ERANGE &&
1259                     last_request->initiator ==
1260                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1261                         REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1262                                 "intact on %s - no rule found in band on "
1263                                 "Country IE\n",
1264                         chan->center_freq, wiphy_name(wiphy));
1265                 } else {
1266                 /*
1267                  * In this case we know the country IE has at least one reg rule
1268                  * for the band so we respect its band definitions
1269                  */
1270                         if (last_request->initiator ==
1271                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
1272                                 REG_DBG_PRINT("cfg80211: Disabling "
1273                                         "channel %d MHz on %s due to "
1274                                         "Country IE\n",
1275                                         chan->center_freq, wiphy_name(wiphy));
1276                         flags |= IEEE80211_CHAN_DISABLED;
1277                         chan->flags = flags;
1278                 }
1279                 return;
1280         }
1281
1282         power_rule = &reg_rule->power_rule;
1283         freq_range = &reg_rule->freq_range;
1284
1285         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1286                 bw_flags = IEEE80211_CHAN_NO_HT40;
1287
1288         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289             request_wiphy && request_wiphy == wiphy &&
1290             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1291                 /*
1292                  * This gaurantees the driver's requested regulatory domain
1293                  * will always be used as a base for further regulatory
1294                  * settings
1295                  */
1296                 chan->flags = chan->orig_flags =
1297                         map_regdom_flags(reg_rule->flags) | bw_flags;
1298                 chan->max_antenna_gain = chan->orig_mag =
1299                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1300                 chan->max_power = chan->orig_mpwr =
1301                         (int) MBM_TO_DBM(power_rule->max_eirp);
1302                 return;
1303         }
1304
1305         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1306         chan->max_antenna_gain = min(chan->orig_mag,
1307                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1308         if (chan->orig_mpwr)
1309                 chan->max_power = min(chan->orig_mpwr,
1310                         (int) MBM_TO_DBM(power_rule->max_eirp));
1311         else
1312                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1313 }
1314
1315 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1316 {
1317         unsigned int i;
1318         struct ieee80211_supported_band *sband;
1319
1320         BUG_ON(!wiphy->bands[band]);
1321         sband = wiphy->bands[band];
1322
1323         for (i = 0; i < sband->n_channels; i++)
1324                 handle_channel(wiphy, band, i);
1325 }
1326
1327 static bool ignore_reg_update(struct wiphy *wiphy,
1328                               enum nl80211_reg_initiator initiator)
1329 {
1330         if (!last_request)
1331                 return true;
1332         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1333             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1334                 return true;
1335         /*
1336          * wiphy->regd will be set once the device has its own
1337          * desired regulatory domain set
1338          */
1339         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1340             !is_world_regdom(last_request->alpha2))
1341                 return true;
1342         return false;
1343 }
1344
1345 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1346 {
1347         struct cfg80211_registered_device *rdev;
1348
1349         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1350                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1351 }
1352
1353 static void handle_reg_beacon(struct wiphy *wiphy,
1354                               unsigned int chan_idx,
1355                               struct reg_beacon *reg_beacon)
1356 {
1357         struct ieee80211_supported_band *sband;
1358         struct ieee80211_channel *chan;
1359         bool channel_changed = false;
1360         struct ieee80211_channel chan_before;
1361
1362         assert_cfg80211_lock();
1363
1364         sband = wiphy->bands[reg_beacon->chan.band];
1365         chan = &sband->channels[chan_idx];
1366
1367         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1368                 return;
1369
1370         if (chan->beacon_found)
1371                 return;
1372
1373         chan->beacon_found = true;
1374
1375         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1376                 return;
1377
1378         chan_before.center_freq = chan->center_freq;
1379         chan_before.flags = chan->flags;
1380
1381         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1382                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1383                 channel_changed = true;
1384         }
1385
1386         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1387                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1388                 channel_changed = true;
1389         }
1390
1391         if (channel_changed)
1392                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1393 }
1394
1395 /*
1396  * Called when a scan on a wiphy finds a beacon on
1397  * new channel
1398  */
1399 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1400                                     struct reg_beacon *reg_beacon)
1401 {
1402         unsigned int i;
1403         struct ieee80211_supported_band *sband;
1404
1405         assert_cfg80211_lock();
1406
1407         if (!wiphy->bands[reg_beacon->chan.band])
1408                 return;
1409
1410         sband = wiphy->bands[reg_beacon->chan.band];
1411
1412         for (i = 0; i < sband->n_channels; i++)
1413                 handle_reg_beacon(wiphy, i, reg_beacon);
1414 }
1415
1416 /*
1417  * Called upon reg changes or a new wiphy is added
1418  */
1419 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1420 {
1421         unsigned int i;
1422         struct ieee80211_supported_band *sband;
1423         struct reg_beacon *reg_beacon;
1424
1425         assert_cfg80211_lock();
1426
1427         if (list_empty(&reg_beacon_list))
1428                 return;
1429
1430         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1431                 if (!wiphy->bands[reg_beacon->chan.band])
1432                         continue;
1433                 sband = wiphy->bands[reg_beacon->chan.band];
1434                 for (i = 0; i < sband->n_channels; i++)
1435                         handle_reg_beacon(wiphy, i, reg_beacon);
1436         }
1437 }
1438
1439 static bool reg_is_world_roaming(struct wiphy *wiphy)
1440 {
1441         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1442             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1443                 return true;
1444         if (last_request &&
1445             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1446             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1447                 return true;
1448         return false;
1449 }
1450
1451 /* Reap the advantages of previously found beacons */
1452 static void reg_process_beacons(struct wiphy *wiphy)
1453 {
1454         /*
1455          * Means we are just firing up cfg80211, so no beacons would
1456          * have been processed yet.
1457          */
1458         if (!last_request)
1459                 return;
1460         if (!reg_is_world_roaming(wiphy))
1461                 return;
1462         wiphy_update_beacon_reg(wiphy);
1463 }
1464
1465 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1466 {
1467         if (!chan)
1468                 return true;
1469         if (chan->flags & IEEE80211_CHAN_DISABLED)
1470                 return true;
1471         /* This would happen when regulatory rules disallow HT40 completely */
1472         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1473                 return true;
1474         return false;
1475 }
1476
1477 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1478                                          enum ieee80211_band band,
1479                                          unsigned int chan_idx)
1480 {
1481         struct ieee80211_supported_band *sband;
1482         struct ieee80211_channel *channel;
1483         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1484         unsigned int i;
1485
1486         assert_cfg80211_lock();
1487
1488         sband = wiphy->bands[band];
1489         BUG_ON(chan_idx >= sband->n_channels);
1490         channel = &sband->channels[chan_idx];
1491
1492         if (is_ht40_not_allowed(channel)) {
1493                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1494                 return;
1495         }
1496
1497         /*
1498          * We need to ensure the extension channels exist to
1499          * be able to use HT40- or HT40+, this finds them (or not)
1500          */
1501         for (i = 0; i < sband->n_channels; i++) {
1502                 struct ieee80211_channel *c = &sband->channels[i];
1503                 if (c->center_freq == (channel->center_freq - 20))
1504                         channel_before = c;
1505                 if (c->center_freq == (channel->center_freq + 20))
1506                         channel_after = c;
1507         }
1508
1509         /*
1510          * Please note that this assumes target bandwidth is 20 MHz,
1511          * if that ever changes we also need to change the below logic
1512          * to include that as well.
1513          */
1514         if (is_ht40_not_allowed(channel_before))
1515                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1516         else
1517                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1518
1519         if (is_ht40_not_allowed(channel_after))
1520                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1521         else
1522                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1523 }
1524
1525 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1526                                       enum ieee80211_band band)
1527 {
1528         unsigned int i;
1529         struct ieee80211_supported_band *sband;
1530
1531         BUG_ON(!wiphy->bands[band]);
1532         sband = wiphy->bands[band];
1533
1534         for (i = 0; i < sband->n_channels; i++)
1535                 reg_process_ht_flags_channel(wiphy, band, i);
1536 }
1537
1538 static void reg_process_ht_flags(struct wiphy *wiphy)
1539 {
1540         enum ieee80211_band band;
1541
1542         if (!wiphy)
1543                 return;
1544
1545         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1546                 if (wiphy->bands[band])
1547                         reg_process_ht_flags_band(wiphy, band);
1548         }
1549
1550 }
1551
1552 void wiphy_update_regulatory(struct wiphy *wiphy,
1553                              enum nl80211_reg_initiator initiator)
1554 {
1555         enum ieee80211_band band;
1556
1557         if (ignore_reg_update(wiphy, initiator))
1558                 goto out;
1559         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1560                 if (wiphy->bands[band])
1561                         handle_band(wiphy, band);
1562         }
1563 out:
1564         reg_process_beacons(wiphy);
1565         reg_process_ht_flags(wiphy);
1566         if (wiphy->reg_notifier)
1567                 wiphy->reg_notifier(wiphy, last_request);
1568 }
1569
1570 static void handle_channel_custom(struct wiphy *wiphy,
1571                                   enum ieee80211_band band,
1572                                   unsigned int chan_idx,
1573                                   const struct ieee80211_regdomain *regd)
1574 {
1575         int r;
1576         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1577         u32 bw_flags = 0;
1578         const struct ieee80211_reg_rule *reg_rule = NULL;
1579         const struct ieee80211_power_rule *power_rule = NULL;
1580         const struct ieee80211_freq_range *freq_range = NULL;
1581         struct ieee80211_supported_band *sband;
1582         struct ieee80211_channel *chan;
1583
1584         assert_reg_lock();
1585
1586         sband = wiphy->bands[band];
1587         BUG_ON(chan_idx >= sband->n_channels);
1588         chan = &sband->channels[chan_idx];
1589
1590         r = freq_reg_info_regd(wiphy,
1591                                MHZ_TO_KHZ(chan->center_freq),
1592                                desired_bw_khz,
1593                                &reg_rule,
1594                                regd);
1595
1596         if (r) {
1597                 chan->flags = IEEE80211_CHAN_DISABLED;
1598                 return;
1599         }
1600
1601         power_rule = &reg_rule->power_rule;
1602         freq_range = &reg_rule->freq_range;
1603
1604         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1605                 bw_flags = IEEE80211_CHAN_NO_HT40;
1606
1607         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1608         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1609         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1610 }
1611
1612 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1613                                const struct ieee80211_regdomain *regd)
1614 {
1615         unsigned int i;
1616         struct ieee80211_supported_band *sband;
1617
1618         BUG_ON(!wiphy->bands[band]);
1619         sband = wiphy->bands[band];
1620
1621         for (i = 0; i < sband->n_channels; i++)
1622                 handle_channel_custom(wiphy, band, i, regd);
1623 }
1624
1625 /* Used by drivers prior to wiphy registration */
1626 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1627                                    const struct ieee80211_regdomain *regd)
1628 {
1629         enum ieee80211_band band;
1630         unsigned int bands_set = 0;
1631
1632         mutex_lock(&reg_mutex);
1633         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1634                 if (!wiphy->bands[band])
1635                         continue;
1636                 handle_band_custom(wiphy, band, regd);
1637                 bands_set++;
1638         }
1639         mutex_unlock(&reg_mutex);
1640
1641         /*
1642          * no point in calling this if it won't have any effect
1643          * on your device's supportd bands.
1644          */
1645         WARN_ON(!bands_set);
1646 }
1647 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1648
1649 /*
1650  * Return value which can be used by ignore_request() to indicate
1651  * it has been determined we should intersect two regulatory domains
1652  */
1653 #define REG_INTERSECT   1
1654
1655 /* This has the logic which determines when a new request
1656  * should be ignored. */
1657 static int ignore_request(struct wiphy *wiphy,
1658                           struct regulatory_request *pending_request)
1659 {
1660         struct wiphy *last_wiphy = NULL;
1661
1662         assert_cfg80211_lock();
1663
1664         /* All initial requests are respected */
1665         if (!last_request)
1666                 return 0;
1667
1668         switch (pending_request->initiator) {
1669         case NL80211_REGDOM_SET_BY_CORE:
1670                 return 0;
1671         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1672
1673                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1674
1675                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1676                         return -EINVAL;
1677                 if (last_request->initiator ==
1678                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1679                         if (last_wiphy != wiphy) {
1680                                 /*
1681                                  * Two cards with two APs claiming different
1682                                  * Country IE alpha2s. We could
1683                                  * intersect them, but that seems unlikely
1684                                  * to be correct. Reject second one for now.
1685                                  */
1686                                 if (regdom_changes(pending_request->alpha2))
1687                                         return -EOPNOTSUPP;
1688                                 return -EALREADY;
1689                         }
1690                         /*
1691                          * Two consecutive Country IE hints on the same wiphy.
1692                          * This should be picked up early by the driver/stack
1693                          */
1694                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1695                                 return 0;
1696                         return -EALREADY;
1697                 }
1698                 return REG_INTERSECT;
1699         case NL80211_REGDOM_SET_BY_DRIVER:
1700                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1701                         if (regdom_changes(pending_request->alpha2))
1702                                 return 0;
1703                         return -EALREADY;
1704                 }
1705
1706                 /*
1707                  * This would happen if you unplug and plug your card
1708                  * back in or if you add a new device for which the previously
1709                  * loaded card also agrees on the regulatory domain.
1710                  */
1711                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1712                     !regdom_changes(pending_request->alpha2))
1713                         return -EALREADY;
1714
1715                 return REG_INTERSECT;
1716         case NL80211_REGDOM_SET_BY_USER:
1717                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1718                         return REG_INTERSECT;
1719                 /*
1720                  * If the user knows better the user should set the regdom
1721                  * to their country before the IE is picked up
1722                  */
1723                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1724                           last_request->intersect)
1725                         return -EOPNOTSUPP;
1726                 /*
1727                  * Process user requests only after previous user/driver/core
1728                  * requests have been processed
1729                  */
1730                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1731                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1732                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1733                         if (regdom_changes(last_request->alpha2))
1734                                 return -EAGAIN;
1735                 }
1736
1737                 if (!regdom_changes(pending_request->alpha2))
1738                         return -EALREADY;
1739
1740                 return 0;
1741         }
1742
1743         return -EINVAL;
1744 }
1745
1746 /**
1747  * __regulatory_hint - hint to the wireless core a regulatory domain
1748  * @wiphy: if the hint comes from country information from an AP, this
1749  *      is required to be set to the wiphy that received the information
1750  * @pending_request: the regulatory request currently being processed
1751  *
1752  * The Wireless subsystem can use this function to hint to the wireless core
1753  * what it believes should be the current regulatory domain.
1754  *
1755  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1756  * already been set or other standard error codes.
1757  *
1758  * Caller must hold &cfg80211_mutex and &reg_mutex
1759  */
1760 static int __regulatory_hint(struct wiphy *wiphy,
1761                              struct regulatory_request *pending_request)
1762 {
1763         bool intersect = false;
1764         int r = 0;
1765
1766         assert_cfg80211_lock();
1767
1768         r = ignore_request(wiphy, pending_request);
1769
1770         if (r == REG_INTERSECT) {
1771                 if (pending_request->initiator ==
1772                     NL80211_REGDOM_SET_BY_DRIVER) {
1773                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1774                         if (r) {
1775                                 kfree(pending_request);
1776                                 return r;
1777                         }
1778                 }
1779                 intersect = true;
1780         } else if (r) {
1781                 /*
1782                  * If the regulatory domain being requested by the
1783                  * driver has already been set just copy it to the
1784                  * wiphy
1785                  */
1786                 if (r == -EALREADY &&
1787                     pending_request->initiator ==
1788                     NL80211_REGDOM_SET_BY_DRIVER) {
1789                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1790                         if (r) {
1791                                 kfree(pending_request);
1792                                 return r;
1793                         }
1794                         r = -EALREADY;
1795                         goto new_request;
1796                 }
1797                 kfree(pending_request);
1798                 return r;
1799         }
1800
1801 new_request:
1802         kfree(last_request);
1803
1804         last_request = pending_request;
1805         last_request->intersect = intersect;
1806
1807         pending_request = NULL;
1808
1809         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1810                 user_alpha2[0] = last_request->alpha2[0];
1811                 user_alpha2[1] = last_request->alpha2[1];
1812         }
1813
1814         /* When r == REG_INTERSECT we do need to call CRDA */
1815         if (r < 0) {
1816                 /*
1817                  * Since CRDA will not be called in this case as we already
1818                  * have applied the requested regulatory domain before we just
1819                  * inform userspace we have processed the request
1820                  */
1821                 if (r == -EALREADY)
1822                         nl80211_send_reg_change_event(last_request);
1823                 return r;
1824         }
1825
1826         return call_crda(last_request->alpha2);
1827 }
1828
1829 /* This processes *all* regulatory hints */
1830 static void reg_process_hint(struct regulatory_request *reg_request)
1831 {
1832         int r = 0;
1833         struct wiphy *wiphy = NULL;
1834
1835         BUG_ON(!reg_request->alpha2);
1836
1837         mutex_lock(&cfg80211_mutex);
1838         mutex_lock(&reg_mutex);
1839
1840         if (wiphy_idx_valid(reg_request->wiphy_idx))
1841                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1842
1843         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1844             !wiphy) {
1845                 kfree(reg_request);
1846                 goto out;
1847         }
1848
1849         r = __regulatory_hint(wiphy, reg_request);
1850         /* This is required so that the orig_* parameters are saved */
1851         if (r == -EALREADY && wiphy &&
1852             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1853                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1854 out:
1855         mutex_unlock(&reg_mutex);
1856         mutex_unlock(&cfg80211_mutex);
1857 }
1858
1859 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1860 static void reg_process_pending_hints(void)
1861         {
1862         struct regulatory_request *reg_request;
1863
1864         spin_lock(&reg_requests_lock);
1865         while (!list_empty(&reg_requests_list)) {
1866                 reg_request = list_first_entry(&reg_requests_list,
1867                                                struct regulatory_request,
1868                                                list);
1869                 list_del_init(&reg_request->list);
1870
1871                 spin_unlock(&reg_requests_lock);
1872                 reg_process_hint(reg_request);
1873                 spin_lock(&reg_requests_lock);
1874         }
1875         spin_unlock(&reg_requests_lock);
1876 }
1877
1878 /* Processes beacon hints -- this has nothing to do with country IEs */
1879 static void reg_process_pending_beacon_hints(void)
1880 {
1881         struct cfg80211_registered_device *rdev;
1882         struct reg_beacon *pending_beacon, *tmp;
1883
1884         /*
1885          * No need to hold the reg_mutex here as we just touch wiphys
1886          * and do not read or access regulatory variables.
1887          */
1888         mutex_lock(&cfg80211_mutex);
1889
1890         /* This goes through the _pending_ beacon list */
1891         spin_lock_bh(&reg_pending_beacons_lock);
1892
1893         if (list_empty(&reg_pending_beacons)) {
1894                 spin_unlock_bh(&reg_pending_beacons_lock);
1895                 goto out;
1896         }
1897
1898         list_for_each_entry_safe(pending_beacon, tmp,
1899                                  &reg_pending_beacons, list) {
1900
1901                 list_del_init(&pending_beacon->list);
1902
1903                 /* Applies the beacon hint to current wiphys */
1904                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1905                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1906
1907                 /* Remembers the beacon hint for new wiphys or reg changes */
1908                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1909         }
1910
1911         spin_unlock_bh(&reg_pending_beacons_lock);
1912 out:
1913         mutex_unlock(&cfg80211_mutex);
1914 }
1915
1916 static void reg_todo(struct work_struct *work)
1917 {
1918         reg_process_pending_hints();
1919         reg_process_pending_beacon_hints();
1920 }
1921
1922 static DECLARE_WORK(reg_work, reg_todo);
1923
1924 static void queue_regulatory_request(struct regulatory_request *request)
1925 {
1926         spin_lock(&reg_requests_lock);
1927         list_add_tail(&request->list, &reg_requests_list);
1928         spin_unlock(&reg_requests_lock);
1929
1930         schedule_work(&reg_work);
1931 }
1932
1933 /*
1934  * Core regulatory hint -- happens during cfg80211_init()
1935  * and when we restore regulatory settings.
1936  */
1937 static int regulatory_hint_core(const char *alpha2)
1938 {
1939         struct regulatory_request *request;
1940
1941         kfree(last_request);
1942         last_request = NULL;
1943
1944         request = kzalloc(sizeof(struct regulatory_request),
1945                           GFP_KERNEL);
1946         if (!request)
1947                 return -ENOMEM;
1948
1949         request->alpha2[0] = alpha2[0];
1950         request->alpha2[1] = alpha2[1];
1951         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1952
1953         /*
1954          * This ensures last_request is populated once modules
1955          * come swinging in and calling regulatory hints and
1956          * wiphy_apply_custom_regulatory().
1957          */
1958         reg_process_hint(request);
1959
1960         return 0;
1961 }
1962
1963 /* User hints */
1964 int regulatory_hint_user(const char *alpha2)
1965 {
1966         struct regulatory_request *request;
1967
1968         BUG_ON(!alpha2);
1969
1970         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1971         if (!request)
1972                 return -ENOMEM;
1973
1974         request->wiphy_idx = WIPHY_IDX_STALE;
1975         request->alpha2[0] = alpha2[0];
1976         request->alpha2[1] = alpha2[1];
1977         request->initiator = NL80211_REGDOM_SET_BY_USER;
1978
1979         queue_regulatory_request(request);
1980
1981         return 0;
1982 }
1983
1984 /* Driver hints */
1985 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1986 {
1987         struct regulatory_request *request;
1988
1989         BUG_ON(!alpha2);
1990         BUG_ON(!wiphy);
1991
1992         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1993         if (!request)
1994                 return -ENOMEM;
1995
1996         request->wiphy_idx = get_wiphy_idx(wiphy);
1997
1998         /* Must have registered wiphy first */
1999         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
2000
2001         request->alpha2[0] = alpha2[0];
2002         request->alpha2[1] = alpha2[1];
2003         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2004
2005         queue_regulatory_request(request);
2006
2007         return 0;
2008 }
2009 EXPORT_SYMBOL(regulatory_hint);
2010
2011 /* Caller must hold reg_mutex */
2012 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
2013                         u32 country_ie_checksum)
2014 {
2015         struct wiphy *request_wiphy;
2016
2017         assert_reg_lock();
2018
2019         if (unlikely(last_request->initiator !=
2020             NL80211_REGDOM_SET_BY_COUNTRY_IE))
2021                 return false;
2022
2023         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2024
2025         if (!request_wiphy)
2026                 return false;
2027
2028         if (likely(request_wiphy != wiphy))
2029                 return !country_ie_integrity_changes(country_ie_checksum);
2030         /*
2031          * We should not have let these through at this point, they
2032          * should have been picked up earlier by the first alpha2 check
2033          * on the device
2034          */
2035         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
2036                 return true;
2037         return false;
2038 }
2039
2040 /*
2041  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2042  * therefore cannot iterate over the rdev list here.
2043  */
2044 void regulatory_hint_11d(struct wiphy *wiphy,
2045                          enum ieee80211_band band,
2046                          u8 *country_ie,
2047                          u8 country_ie_len)
2048 {
2049         struct ieee80211_regdomain *rd = NULL;
2050         char alpha2[2];
2051         u32 checksum = 0;
2052         enum environment_cap env = ENVIRON_ANY;
2053         struct regulatory_request *request;
2054
2055         mutex_lock(&reg_mutex);
2056
2057         if (unlikely(!last_request))
2058                 goto out;
2059
2060         /* IE len must be evenly divisible by 2 */
2061         if (country_ie_len & 0x01)
2062                 goto out;
2063
2064         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2065                 goto out;
2066
2067         /*
2068          * Pending country IE processing, this can happen after we
2069          * call CRDA and wait for a response if a beacon was received before
2070          * we were able to process the last regulatory_hint_11d() call
2071          */
2072         if (country_ie_regdomain)
2073                 goto out;
2074
2075         alpha2[0] = country_ie[0];
2076         alpha2[1] = country_ie[1];
2077
2078         if (country_ie[2] == 'I')
2079                 env = ENVIRON_INDOOR;
2080         else if (country_ie[2] == 'O')
2081                 env = ENVIRON_OUTDOOR;
2082
2083         /*
2084          * We will run this only upon a successful connection on cfg80211.
2085          * We leave conflict resolution to the workqueue, where can hold
2086          * cfg80211_mutex.
2087          */
2088         if (likely(last_request->initiator ==
2089             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2090             wiphy_idx_valid(last_request->wiphy_idx)))
2091                 goto out;
2092
2093         rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2094         if (!rd) {
2095                 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2096                 goto out;
2097         }
2098
2099         /*
2100          * This will not happen right now but we leave it here for the
2101          * the future when we want to add suspend/resume support and having
2102          * the user move to another country after doing so, or having the user
2103          * move to another AP. Right now we just trust the first AP.
2104          *
2105          * If we hit this before we add this support we want to be informed of
2106          * it as it would indicate a mistake in the current design
2107          */
2108         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2109                 goto free_rd_out;
2110
2111         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2112         if (!request)
2113                 goto free_rd_out;
2114
2115         /*
2116          * We keep this around for when CRDA comes back with a response so
2117          * we can intersect with that
2118          */
2119         country_ie_regdomain = rd;
2120
2121         request->wiphy_idx = get_wiphy_idx(wiphy);
2122         request->alpha2[0] = rd->alpha2[0];
2123         request->alpha2[1] = rd->alpha2[1];
2124         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2125         request->country_ie_checksum = checksum;
2126         request->country_ie_env = env;
2127
2128         mutex_unlock(&reg_mutex);
2129
2130         queue_regulatory_request(request);
2131
2132         return;
2133
2134 free_rd_out:
2135         kfree(rd);
2136 out:
2137         mutex_unlock(&reg_mutex);
2138 }
2139
2140 static void restore_alpha2(char *alpha2, bool reset_user)
2141 {
2142         /* indicates there is no alpha2 to consider for restoration */
2143         alpha2[0] = '9';
2144         alpha2[1] = '7';
2145
2146         /* The user setting has precedence over the module parameter */
2147         if (is_user_regdom_saved()) {
2148                 /* Unless we're asked to ignore it and reset it */
2149                 if (reset_user) {
2150                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2151                                "including user preference\n");
2152                         user_alpha2[0] = '9';
2153                         user_alpha2[1] = '7';
2154
2155                         /*
2156                          * If we're ignoring user settings, we still need to
2157                          * check the module parameter to ensure we put things
2158                          * back as they were for a full restore.
2159                          */
2160                         if (!is_world_regdom(ieee80211_regdom)) {
2161                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
2162                                        "module parameter ieee80211_regdom: %c%c\n",
2163                                        ieee80211_regdom[0],
2164                                        ieee80211_regdom[1]);
2165                                 alpha2[0] = ieee80211_regdom[0];
2166                                 alpha2[1] = ieee80211_regdom[1];
2167                         }
2168                 } else {
2169                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2170                                "while preserving user preference for: %c%c\n",
2171                                user_alpha2[0],
2172                                user_alpha2[1]);
2173                         alpha2[0] = user_alpha2[0];
2174                         alpha2[1] = user_alpha2[1];
2175                 }
2176         } else if (!is_world_regdom(ieee80211_regdom)) {
2177                 REG_DBG_PRINT("cfg80211: Keeping preference on "
2178                        "module parameter ieee80211_regdom: %c%c\n",
2179                        ieee80211_regdom[0],
2180                        ieee80211_regdom[1]);
2181                 alpha2[0] = ieee80211_regdom[0];
2182                 alpha2[1] = ieee80211_regdom[1];
2183         } else
2184                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
2185 }
2186
2187 /*
2188  * Restoring regulatory settings involves ingoring any
2189  * possibly stale country IE information and user regulatory
2190  * settings if so desired, this includes any beacon hints
2191  * learned as we could have traveled outside to another country
2192  * after disconnection. To restore regulatory settings we do
2193  * exactly what we did at bootup:
2194  *
2195  *   - send a core regulatory hint
2196  *   - send a user regulatory hint if applicable
2197  *
2198  * Device drivers that send a regulatory hint for a specific country
2199  * keep their own regulatory domain on wiphy->regd so that does does
2200  * not need to be remembered.
2201  */
2202 static void restore_regulatory_settings(bool reset_user)
2203 {
2204         char alpha2[2];
2205         struct reg_beacon *reg_beacon, *btmp;
2206
2207         mutex_lock(&cfg80211_mutex);
2208         mutex_lock(&reg_mutex);
2209
2210         reset_regdomains();
2211         restore_alpha2(alpha2, reset_user);
2212
2213         /* Clear beacon hints */
2214         spin_lock_bh(&reg_pending_beacons_lock);
2215         if (!list_empty(&reg_pending_beacons)) {
2216                 list_for_each_entry_safe(reg_beacon, btmp,
2217                                          &reg_pending_beacons, list) {
2218                         list_del(&reg_beacon->list);
2219                         kfree(reg_beacon);
2220                 }
2221         }
2222         spin_unlock_bh(&reg_pending_beacons_lock);
2223
2224         if (!list_empty(&reg_beacon_list)) {
2225                 list_for_each_entry_safe(reg_beacon, btmp,
2226                                          &reg_beacon_list, list) {
2227                         list_del(&reg_beacon->list);
2228                         kfree(reg_beacon);
2229                 }
2230         }
2231
2232         /* First restore to the basic regulatory settings */
2233         cfg80211_regdomain = cfg80211_world_regdom;
2234
2235         mutex_unlock(&reg_mutex);
2236         mutex_unlock(&cfg80211_mutex);
2237
2238         regulatory_hint_core(cfg80211_regdomain->alpha2);
2239
2240         /*
2241          * This restores the ieee80211_regdom module parameter
2242          * preference or the last user requested regulatory
2243          * settings, user regulatory settings takes precedence.
2244          */
2245         if (is_an_alpha2(alpha2))
2246                 regulatory_hint_user(user_alpha2);
2247 }
2248
2249
2250 void regulatory_hint_disconnect(void)
2251 {
2252         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
2253                       "restore regulatory settings\n");
2254         restore_regulatory_settings(false);
2255 }
2256
2257 static bool freq_is_chan_12_13_14(u16 freq)
2258 {
2259         if (freq == ieee80211_channel_to_frequency(12) ||
2260             freq == ieee80211_channel_to_frequency(13) ||
2261             freq == ieee80211_channel_to_frequency(14))
2262                 return true;
2263         return false;
2264 }
2265
2266 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2267                                  struct ieee80211_channel *beacon_chan,
2268                                  gfp_t gfp)
2269 {
2270         struct reg_beacon *reg_beacon;
2271
2272         if (likely((beacon_chan->beacon_found ||
2273             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2274             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2275              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2276                 return 0;
2277
2278         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2279         if (!reg_beacon)
2280                 return -ENOMEM;
2281
2282         REG_DBG_PRINT("cfg80211: Found new beacon on "
2283                       "frequency: %d MHz (Ch %d) on %s\n",
2284                       beacon_chan->center_freq,
2285                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2286                       wiphy_name(wiphy));
2287
2288         memcpy(&reg_beacon->chan, beacon_chan,
2289                 sizeof(struct ieee80211_channel));
2290
2291
2292         /*
2293          * Since we can be called from BH or and non-BH context
2294          * we must use spin_lock_bh()
2295          */
2296         spin_lock_bh(&reg_pending_beacons_lock);
2297         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2298         spin_unlock_bh(&reg_pending_beacons_lock);
2299
2300         schedule_work(&reg_work);
2301
2302         return 0;
2303 }
2304
2305 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2306 {
2307         unsigned int i;
2308         const struct ieee80211_reg_rule *reg_rule = NULL;
2309         const struct ieee80211_freq_range *freq_range = NULL;
2310         const struct ieee80211_power_rule *power_rule = NULL;
2311
2312         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2313                 "(max_antenna_gain, max_eirp)\n");
2314
2315         for (i = 0; i < rd->n_reg_rules; i++) {
2316                 reg_rule = &rd->reg_rules[i];
2317                 freq_range = &reg_rule->freq_range;
2318                 power_rule = &reg_rule->power_rule;
2319
2320                 /*
2321                  * There may not be documentation for max antenna gain
2322                  * in certain regions
2323                  */
2324                 if (power_rule->max_antenna_gain)
2325                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2326                                 "(%d mBi, %d mBm)\n",
2327                                 freq_range->start_freq_khz,
2328                                 freq_range->end_freq_khz,
2329                                 freq_range->max_bandwidth_khz,
2330                                 power_rule->max_antenna_gain,
2331                                 power_rule->max_eirp);
2332                 else
2333                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2334                                 "(N/A, %d mBm)\n",
2335                                 freq_range->start_freq_khz,
2336                                 freq_range->end_freq_khz,
2337                                 freq_range->max_bandwidth_khz,
2338                                 power_rule->max_eirp);
2339         }
2340 }
2341
2342 static void print_regdomain(const struct ieee80211_regdomain *rd)
2343 {
2344
2345         if (is_intersected_alpha2(rd->alpha2)) {
2346
2347                 if (last_request->initiator ==
2348                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2349                         struct cfg80211_registered_device *rdev;
2350                         rdev = cfg80211_rdev_by_wiphy_idx(
2351                                 last_request->wiphy_idx);
2352                         if (rdev) {
2353                                 printk(KERN_INFO "cfg80211: Current regulatory "
2354                                         "domain updated by AP to: %c%c\n",
2355                                         rdev->country_ie_alpha2[0],
2356                                         rdev->country_ie_alpha2[1]);
2357                         } else
2358                                 printk(KERN_INFO "cfg80211: Current regulatory "
2359                                         "domain intersected:\n");
2360                 } else
2361                         printk(KERN_INFO "cfg80211: Current regulatory "
2362                                 "domain intersected:\n");
2363         } else if (is_world_regdom(rd->alpha2))
2364                 printk(KERN_INFO "cfg80211: World regulatory "
2365                         "domain updated:\n");
2366         else {
2367                 if (is_unknown_alpha2(rd->alpha2))
2368                         printk(KERN_INFO "cfg80211: Regulatory domain "
2369                                 "changed to driver built-in settings "
2370                                 "(unknown country)\n");
2371                 else
2372                         printk(KERN_INFO "cfg80211: Regulatory domain "
2373                                 "changed to country: %c%c\n",
2374                                 rd->alpha2[0], rd->alpha2[1]);
2375         }
2376         print_rd_rules(rd);
2377 }
2378
2379 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2380 {
2381         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2382                 rd->alpha2[0], rd->alpha2[1]);
2383         print_rd_rules(rd);
2384 }
2385
2386 #ifdef CONFIG_CFG80211_REG_DEBUG
2387 static void reg_country_ie_process_debug(
2388         const struct ieee80211_regdomain *rd,
2389         const struct ieee80211_regdomain *country_ie_regdomain,
2390         const struct ieee80211_regdomain *intersected_rd)
2391 {
2392         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2393         print_regdomain_info(country_ie_regdomain);
2394         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2395         print_regdomain_info(rd);
2396         if (intersected_rd) {
2397                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2398                         "and get:\n");
2399                 print_regdomain_info(intersected_rd);
2400                 return;
2401         }
2402         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2403 }
2404 #else
2405 static inline void reg_country_ie_process_debug(
2406         const struct ieee80211_regdomain *rd,
2407         const struct ieee80211_regdomain *country_ie_regdomain,
2408         const struct ieee80211_regdomain *intersected_rd)
2409 {
2410 }
2411 #endif
2412
2413 /* Takes ownership of rd only if it doesn't fail */
2414 static int __set_regdom(const struct ieee80211_regdomain *rd)
2415 {
2416         const struct ieee80211_regdomain *intersected_rd = NULL;
2417         struct cfg80211_registered_device *rdev = NULL;
2418         struct wiphy *request_wiphy;
2419         /* Some basic sanity checks first */
2420
2421         if (is_world_regdom(rd->alpha2)) {
2422                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2423                         return -EINVAL;
2424                 update_world_regdomain(rd);
2425                 return 0;
2426         }
2427
2428         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2429                         !is_unknown_alpha2(rd->alpha2))
2430                 return -EINVAL;
2431
2432         if (!last_request)
2433                 return -EINVAL;
2434
2435         /*
2436          * Lets only bother proceeding on the same alpha2 if the current
2437          * rd is non static (it means CRDA was present and was used last)
2438          * and the pending request came in from a country IE
2439          */
2440         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2441                 /*
2442                  * If someone else asked us to change the rd lets only bother
2443                  * checking if the alpha2 changes if CRDA was already called
2444                  */
2445                 if (!regdom_changes(rd->alpha2))
2446                         return -EINVAL;
2447         }
2448
2449         /*
2450          * Now lets set the regulatory domain, update all driver channels
2451          * and finally inform them of what we have done, in case they want
2452          * to review or adjust their own settings based on their own
2453          * internal EEPROM data
2454          */
2455
2456         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2457                 return -EINVAL;
2458
2459         if (!is_valid_rd(rd)) {
2460                 printk(KERN_ERR "cfg80211: Invalid "
2461                         "regulatory domain detected:\n");
2462                 print_regdomain_info(rd);
2463                 return -EINVAL;
2464         }
2465
2466         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2467
2468         if (!last_request->intersect) {
2469                 int r;
2470
2471                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2472                         reset_regdomains();
2473                         cfg80211_regdomain = rd;
2474                         return 0;
2475                 }
2476
2477                 /*
2478                  * For a driver hint, lets copy the regulatory domain the
2479                  * driver wanted to the wiphy to deal with conflicts
2480                  */
2481
2482                 /*
2483                  * Userspace could have sent two replies with only
2484                  * one kernel request.
2485                  */
2486                 if (request_wiphy->regd)
2487                         return -EALREADY;
2488
2489                 r = reg_copy_regd(&request_wiphy->regd, rd);
2490                 if (r)
2491                         return r;
2492
2493                 reset_regdomains();
2494                 cfg80211_regdomain = rd;
2495                 return 0;
2496         }
2497
2498         /* Intersection requires a bit more work */
2499
2500         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2501
2502                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2503                 if (!intersected_rd)
2504                         return -EINVAL;
2505
2506                 /*
2507                  * We can trash what CRDA provided now.
2508                  * However if a driver requested this specific regulatory
2509                  * domain we keep it for its private use
2510                  */
2511                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2512                         request_wiphy->regd = rd;
2513                 else
2514                         kfree(rd);
2515
2516                 rd = NULL;
2517
2518                 reset_regdomains();
2519                 cfg80211_regdomain = intersected_rd;
2520
2521                 return 0;
2522         }
2523
2524         /*
2525          * Country IE requests are handled a bit differently, we intersect
2526          * the country IE rd with what CRDA believes that country should have
2527          */
2528
2529         /*
2530          * Userspace could have sent two replies with only
2531          * one kernel request. By the second reply we would have
2532          * already processed and consumed the country_ie_regdomain.
2533          */
2534         if (!country_ie_regdomain)
2535                 return -EALREADY;
2536         BUG_ON(rd == country_ie_regdomain);
2537
2538         /*
2539          * Intersect what CRDA returned and our what we
2540          * had built from the Country IE received
2541          */
2542
2543         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2544
2545         reg_country_ie_process_debug(rd,
2546                                      country_ie_regdomain,
2547                                      intersected_rd);
2548
2549         kfree(country_ie_regdomain);
2550         country_ie_regdomain = NULL;
2551
2552         if (!intersected_rd)
2553                 return -EINVAL;
2554
2555         rdev = wiphy_to_dev(request_wiphy);
2556
2557         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2558         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2559         rdev->env = last_request->country_ie_env;
2560
2561         BUG_ON(intersected_rd == rd);
2562
2563         kfree(rd);
2564         rd = NULL;
2565
2566         reset_regdomains();
2567         cfg80211_regdomain = intersected_rd;
2568
2569         return 0;
2570 }
2571
2572
2573 /*
2574  * Use this call to set the current regulatory domain. Conflicts with
2575  * multiple drivers can be ironed out later. Caller must've already
2576  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2577  */
2578 int set_regdom(const struct ieee80211_regdomain *rd)
2579 {
2580         int r;
2581
2582         assert_cfg80211_lock();
2583
2584         mutex_lock(&reg_mutex);
2585
2586         /* Note that this doesn't update the wiphys, this is done below */
2587         r = __set_regdom(rd);
2588         if (r) {
2589                 kfree(rd);
2590                 mutex_unlock(&reg_mutex);
2591                 return r;
2592         }
2593
2594         /* This would make this whole thing pointless */
2595         if (!last_request->intersect)
2596                 BUG_ON(rd != cfg80211_regdomain);
2597
2598         /* update all wiphys now with the new established regulatory domain */
2599         update_all_wiphy_regulatory(last_request->initiator);
2600
2601         print_regdomain(cfg80211_regdomain);
2602
2603         nl80211_send_reg_change_event(last_request);
2604
2605         mutex_unlock(&reg_mutex);
2606
2607         return r;
2608 }
2609
2610 /* Caller must hold cfg80211_mutex */
2611 void reg_device_remove(struct wiphy *wiphy)
2612 {
2613         struct wiphy *request_wiphy = NULL;
2614
2615         assert_cfg80211_lock();
2616
2617         mutex_lock(&reg_mutex);
2618
2619         kfree(wiphy->regd);
2620
2621         if (last_request)
2622                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2623
2624         if (!request_wiphy || request_wiphy != wiphy)
2625                 goto out;
2626
2627         last_request->wiphy_idx = WIPHY_IDX_STALE;
2628         last_request->country_ie_env = ENVIRON_ANY;
2629 out:
2630         mutex_unlock(&reg_mutex);
2631 }
2632
2633 int regulatory_init(void)
2634 {
2635         int err = 0;
2636
2637         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2638         if (IS_ERR(reg_pdev))
2639                 return PTR_ERR(reg_pdev);
2640
2641         spin_lock_init(&reg_requests_lock);
2642         spin_lock_init(&reg_pending_beacons_lock);
2643
2644         cfg80211_regdomain = cfg80211_world_regdom;
2645
2646         user_alpha2[0] = '9';
2647         user_alpha2[1] = '7';
2648
2649         /* We always try to get an update for the static regdomain */
2650         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2651         if (err) {
2652                 if (err == -ENOMEM)
2653                         return err;
2654                 /*
2655                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2656                  * memory which is handled and propagated appropriately above
2657                  * but it can also fail during a netlink_broadcast() or during
2658                  * early boot for call_usermodehelper(). For now treat these
2659                  * errors as non-fatal.
2660                  */
2661                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2662                         "to call CRDA during init");
2663 #ifdef CONFIG_CFG80211_REG_DEBUG
2664                 /* We want to find out exactly why when debugging */
2665                 WARN_ON(err);
2666 #endif
2667         }
2668
2669         /*
2670          * Finally, if the user set the module parameter treat it
2671          * as a user hint.
2672          */
2673         if (!is_world_regdom(ieee80211_regdom))
2674                 regulatory_hint_user(ieee80211_regdom);
2675
2676         return 0;
2677 }
2678
2679 void regulatory_exit(void)
2680 {
2681         struct regulatory_request *reg_request, *tmp;
2682         struct reg_beacon *reg_beacon, *btmp;
2683
2684         cancel_work_sync(&reg_work);
2685
2686         mutex_lock(&cfg80211_mutex);
2687         mutex_lock(&reg_mutex);
2688
2689         reset_regdomains();
2690
2691         kfree(country_ie_regdomain);
2692         country_ie_regdomain = NULL;
2693
2694         kfree(last_request);
2695
2696         platform_device_unregister(reg_pdev);
2697
2698         spin_lock_bh(&reg_pending_beacons_lock);
2699         if (!list_empty(&reg_pending_beacons)) {
2700                 list_for_each_entry_safe(reg_beacon, btmp,
2701                                          &reg_pending_beacons, list) {
2702                         list_del(&reg_beacon->list);
2703                         kfree(reg_beacon);
2704                 }
2705         }
2706         spin_unlock_bh(&reg_pending_beacons_lock);
2707
2708         if (!list_empty(&reg_beacon_list)) {
2709                 list_for_each_entry_safe(reg_beacon, btmp,
2710                                          &reg_beacon_list, list) {
2711                         list_del(&reg_beacon->list);
2712                         kfree(reg_beacon);
2713                 }
2714         }
2715
2716         spin_lock(&reg_requests_lock);
2717         if (!list_empty(&reg_requests_list)) {
2718                 list_for_each_entry_safe(reg_request, tmp,
2719                                          &reg_requests_list, list) {
2720                         list_del(&reg_request->list);
2721                         kfree(reg_request);
2722                 }
2723         }
2724         spin_unlock(&reg_requests_lock);
2725
2726         mutex_unlock(&reg_mutex);
2727         mutex_unlock(&cfg80211_mutex);
2728 }