Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-drm-fsl-dcu.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54
55 /*
56  * Per flow structure, dynamically allocated
57  */
58 struct fq_flow {
59         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
60         union {
61                 struct sk_buff *tail;   /* last skb in the list */
62                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
63         };
64         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
65         struct sock     *sk;
66         int             qlen;           /* number of packets in flow queue */
67         int             credit;
68         u32             socket_hash;    /* sk_hash */
69         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
70
71         struct rb_node  rate_node;      /* anchor in q->delayed tree */
72         u64             time_next_packet;
73 };
74
75 struct fq_flow_head {
76         struct fq_flow *first;
77         struct fq_flow *last;
78 };
79
80 struct fq_sched_data {
81         struct fq_flow_head new_flows;
82
83         struct fq_flow_head old_flows;
84
85         struct rb_root  delayed;        /* for rate limited flows */
86         u64             time_next_delayed_flow;
87
88         struct fq_flow  internal;       /* for non classified or high prio packets */
89         u32             quantum;
90         u32             initial_quantum;
91         u32             flow_default_rate;/* rate per flow : bytes per second */
92         u32             flow_max_rate;  /* optional max rate per flow */
93         u32             flow_plimit;    /* max packets per flow */
94         struct rb_root  *fq_root;
95         u8              rate_enable;
96         u8              fq_trees_log;
97
98         u32             flows;
99         u32             inactive_flows;
100         u32             throttled_flows;
101
102         u64             stat_gc_flows;
103         u64             stat_internal_packets;
104         u64             stat_tcp_retrans;
105         u64             stat_throttled;
106         u64             stat_flows_plimit;
107         u64             stat_pkts_too_long;
108         u64             stat_allocation_errors;
109         struct qdisc_watchdog watchdog;
110 };
111
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117         f->next = &detached;
118 }
119
120 static bool fq_flow_is_detached(const struct fq_flow *f)
121 {
122         return f->next == &detached;
123 }
124
125 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
126 {
127         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
128
129         while (*p) {
130                 struct fq_flow *aux;
131
132                 parent = *p;
133                 aux = container_of(parent, struct fq_flow, rate_node);
134                 if (f->time_next_packet >= aux->time_next_packet)
135                         p = &parent->rb_right;
136                 else
137                         p = &parent->rb_left;
138         }
139         rb_link_node(&f->rate_node, parent, p);
140         rb_insert_color(&f->rate_node, &q->delayed);
141         q->throttled_flows++;
142         q->stat_throttled++;
143
144         f->next = &throttled;
145         if (q->time_next_delayed_flow > f->time_next_packet)
146                 q->time_next_delayed_flow = f->time_next_packet;
147 }
148
149
150 static struct kmem_cache *fq_flow_cachep __read_mostly;
151
152 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
153 {
154         if (head->first)
155                 head->last->next = flow;
156         else
157                 head->first = flow;
158         head->last = flow;
159         flow->next = NULL;
160 }
161
162 /* limit number of collected flows per round */
163 #define FQ_GC_MAX 8
164 #define FQ_GC_AGE (3*HZ)
165
166 static bool fq_gc_candidate(const struct fq_flow *f)
167 {
168         return fq_flow_is_detached(f) &&
169                time_after(jiffies, f->age + FQ_GC_AGE);
170 }
171
172 static void fq_gc(struct fq_sched_data *q,
173                   struct rb_root *root,
174                   struct sock *sk)
175 {
176         struct fq_flow *f, *tofree[FQ_GC_MAX];
177         struct rb_node **p, *parent;
178         int fcnt = 0;
179
180         p = &root->rb_node;
181         parent = NULL;
182         while (*p) {
183                 parent = *p;
184
185                 f = container_of(parent, struct fq_flow, fq_node);
186                 if (f->sk == sk)
187                         break;
188
189                 if (fq_gc_candidate(f)) {
190                         tofree[fcnt++] = f;
191                         if (fcnt == FQ_GC_MAX)
192                                 break;
193                 }
194
195                 if (f->sk > sk)
196                         p = &parent->rb_right;
197                 else
198                         p = &parent->rb_left;
199         }
200
201         q->flows -= fcnt;
202         q->inactive_flows -= fcnt;
203         q->stat_gc_flows += fcnt;
204         while (fcnt) {
205                 struct fq_flow *f = tofree[--fcnt];
206
207                 rb_erase(&f->fq_node, root);
208                 kmem_cache_free(fq_flow_cachep, f);
209         }
210 }
211
212 static const u8 prio2band[TC_PRIO_MAX + 1] = {
213         1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
214 };
215
216 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217 {
218         struct rb_node **p, *parent;
219         struct sock *sk = skb->sk;
220         struct rb_root *root;
221         struct fq_flow *f;
222         int band;
223
224         /* warning: no starvation prevention... */
225         band = prio2band[skb->priority & TC_PRIO_MAX];
226         if (unlikely(band == 0))
227                 return &q->internal;
228
229         if (unlikely(!sk)) {
230                 /* By forcing low order bit to 1, we make sure to not
231                  * collide with a local flow (socket pointers are word aligned)
232                  */
233                 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
234         }
235
236         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
237
238         if (q->flows >= (2U << q->fq_trees_log) &&
239             q->inactive_flows > q->flows/2)
240                 fq_gc(q, root, sk);
241
242         p = &root->rb_node;
243         parent = NULL;
244         while (*p) {
245                 parent = *p;
246
247                 f = container_of(parent, struct fq_flow, fq_node);
248                 if (f->sk == sk) {
249                         /* socket might have been reallocated, so check
250                          * if its sk_hash is the same.
251                          * It not, we need to refill credit with
252                          * initial quantum
253                          */
254                         if (unlikely(skb->sk &&
255                                      f->socket_hash != sk->sk_hash)) {
256                                 f->credit = q->initial_quantum;
257                                 f->socket_hash = sk->sk_hash;
258                                 f->time_next_packet = 0ULL;
259                         }
260                         return f;
261                 }
262                 if (f->sk > sk)
263                         p = &parent->rb_right;
264                 else
265                         p = &parent->rb_left;
266         }
267
268         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
269         if (unlikely(!f)) {
270                 q->stat_allocation_errors++;
271                 return &q->internal;
272         }
273         fq_flow_set_detached(f);
274         f->sk = sk;
275         if (skb->sk)
276                 f->socket_hash = sk->sk_hash;
277         f->credit = q->initial_quantum;
278
279         rb_link_node(&f->fq_node, parent, p);
280         rb_insert_color(&f->fq_node, root);
281
282         q->flows++;
283         q->inactive_flows++;
284         return f;
285 }
286
287
288 /* remove one skb from head of flow queue */
289 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
290 {
291         struct sk_buff *skb = flow->head;
292
293         if (skb) {
294                 flow->head = skb->next;
295                 skb->next = NULL;
296                 flow->qlen--;
297                 sch->qstats.backlog -= qdisc_pkt_len(skb);
298                 sch->q.qlen--;
299         }
300         return skb;
301 }
302
303 /* We might add in the future detection of retransmits
304  * For the time being, just return false
305  */
306 static bool skb_is_retransmit(struct sk_buff *skb)
307 {
308         return false;
309 }
310
311 /* add skb to flow queue
312  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
313  * We special case tcp retransmits to be transmitted before other packets.
314  * We rely on fact that TCP retransmits are unlikely, so we do not waste
315  * a separate queue or a pointer.
316  * head->  [retrans pkt 1]
317  *         [retrans pkt 2]
318  *         [ normal pkt 1]
319  *         [ normal pkt 2]
320  *         [ normal pkt 3]
321  * tail->  [ normal pkt 4]
322  */
323 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
324 {
325         struct sk_buff *prev, *head = flow->head;
326
327         skb->next = NULL;
328         if (!head) {
329                 flow->head = skb;
330                 flow->tail = skb;
331                 return;
332         }
333         if (likely(!skb_is_retransmit(skb))) {
334                 flow->tail->next = skb;
335                 flow->tail = skb;
336                 return;
337         }
338
339         /* This skb is a tcp retransmit,
340          * find the last retrans packet in the queue
341          */
342         prev = NULL;
343         while (skb_is_retransmit(head)) {
344                 prev = head;
345                 head = head->next;
346                 if (!head)
347                         break;
348         }
349         if (!prev) { /* no rtx packet in queue, become the new head */
350                 skb->next = flow->head;
351                 flow->head = skb;
352         } else {
353                 if (prev == flow->tail)
354                         flow->tail = skb;
355                 else
356                         skb->next = prev->next;
357                 prev->next = skb;
358         }
359 }
360
361 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
362 {
363         struct fq_sched_data *q = qdisc_priv(sch);
364         struct fq_flow *f;
365
366         if (unlikely(sch->q.qlen >= sch->limit))
367                 return qdisc_drop(skb, sch);
368
369         f = fq_classify(skb, q);
370         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
371                 q->stat_flows_plimit++;
372                 return qdisc_drop(skb, sch);
373         }
374
375         f->qlen++;
376         flow_queue_add(f, skb);
377         if (skb_is_retransmit(skb))
378                 q->stat_tcp_retrans++;
379         sch->qstats.backlog += qdisc_pkt_len(skb);
380         if (fq_flow_is_detached(f)) {
381                 fq_flow_add_tail(&q->new_flows, f);
382                 if (q->quantum > f->credit)
383                         f->credit = q->quantum;
384                 q->inactive_flows--;
385                 qdisc_unthrottled(sch);
386         }
387         if (unlikely(f == &q->internal)) {
388                 q->stat_internal_packets++;
389                 qdisc_unthrottled(sch);
390         }
391         sch->q.qlen++;
392
393         return NET_XMIT_SUCCESS;
394 }
395
396 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
397 {
398         struct rb_node *p;
399
400         if (q->time_next_delayed_flow > now)
401                 return;
402
403         q->time_next_delayed_flow = ~0ULL;
404         while ((p = rb_first(&q->delayed)) != NULL) {
405                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
406
407                 if (f->time_next_packet > now) {
408                         q->time_next_delayed_flow = f->time_next_packet;
409                         break;
410                 }
411                 rb_erase(p, &q->delayed);
412                 q->throttled_flows--;
413                 fq_flow_add_tail(&q->old_flows, f);
414         }
415 }
416
417 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
418 {
419         struct fq_sched_data *q = qdisc_priv(sch);
420         u64 now = ktime_to_ns(ktime_get());
421         struct fq_flow_head *head;
422         struct sk_buff *skb;
423         struct fq_flow *f;
424         u32 rate;
425
426         skb = fq_dequeue_head(sch, &q->internal);
427         if (skb)
428                 goto out;
429         fq_check_throttled(q, now);
430 begin:
431         head = &q->new_flows;
432         if (!head->first) {
433                 head = &q->old_flows;
434                 if (!head->first) {
435                         if (q->time_next_delayed_flow != ~0ULL)
436                                 qdisc_watchdog_schedule_ns(&q->watchdog,
437                                                            q->time_next_delayed_flow);
438                         return NULL;
439                 }
440         }
441         f = head->first;
442
443         if (f->credit <= 0) {
444                 f->credit += q->quantum;
445                 head->first = f->next;
446                 fq_flow_add_tail(&q->old_flows, f);
447                 goto begin;
448         }
449
450         if (unlikely(f->head && now < f->time_next_packet)) {
451                 head->first = f->next;
452                 fq_flow_set_throttled(q, f);
453                 goto begin;
454         }
455
456         skb = fq_dequeue_head(sch, f);
457         if (!skb) {
458                 head->first = f->next;
459                 /* force a pass through old_flows to prevent starvation */
460                 if ((head == &q->new_flows) && q->old_flows.first) {
461                         fq_flow_add_tail(&q->old_flows, f);
462                 } else {
463                         fq_flow_set_detached(f);
464                         f->age = jiffies;
465                         q->inactive_flows++;
466                 }
467                 goto begin;
468         }
469         prefetch(&skb->end);
470         f->time_next_packet = now;
471         f->credit -= qdisc_pkt_len(skb);
472
473         if (f->credit > 0 || !q->rate_enable)
474                 goto out;
475
476         rate = q->flow_max_rate;
477         if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
478                 rate = min(skb->sk->sk_pacing_rate, rate);
479
480         if (rate != ~0U) {
481                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
482                 u64 len = (u64)plen * NSEC_PER_SEC;
483
484                 if (likely(rate))
485                         do_div(len, rate);
486                 /* Since socket rate can change later,
487                  * clamp the delay to 125 ms.
488                  * TODO: maybe segment the too big skb, as in commit
489                  * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
490                  */
491                 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
492                         len = 125 * NSEC_PER_MSEC;
493                         q->stat_pkts_too_long++;
494                 }
495
496                 f->time_next_packet = now + len;
497         }
498 out:
499         qdisc_bstats_update(sch, skb);
500         qdisc_unthrottled(sch);
501         return skb;
502 }
503
504 static void fq_reset(struct Qdisc *sch)
505 {
506         struct fq_sched_data *q = qdisc_priv(sch);
507         struct rb_root *root;
508         struct sk_buff *skb;
509         struct rb_node *p;
510         struct fq_flow *f;
511         unsigned int idx;
512
513         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
514                 kfree_skb(skb);
515
516         if (!q->fq_root)
517                 return;
518
519         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
520                 root = &q->fq_root[idx];
521                 while ((p = rb_first(root)) != NULL) {
522                         f = container_of(p, struct fq_flow, fq_node);
523                         rb_erase(p, root);
524
525                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
526                                 kfree_skb(skb);
527
528                         kmem_cache_free(fq_flow_cachep, f);
529                 }
530         }
531         q->new_flows.first      = NULL;
532         q->old_flows.first      = NULL;
533         q->delayed              = RB_ROOT;
534         q->flows                = 0;
535         q->inactive_flows       = 0;
536         q->throttled_flows      = 0;
537 }
538
539 static void fq_rehash(struct fq_sched_data *q,
540                       struct rb_root *old_array, u32 old_log,
541                       struct rb_root *new_array, u32 new_log)
542 {
543         struct rb_node *op, **np, *parent;
544         struct rb_root *oroot, *nroot;
545         struct fq_flow *of, *nf;
546         int fcnt = 0;
547         u32 idx;
548
549         for (idx = 0; idx < (1U << old_log); idx++) {
550                 oroot = &old_array[idx];
551                 while ((op = rb_first(oroot)) != NULL) {
552                         rb_erase(op, oroot);
553                         of = container_of(op, struct fq_flow, fq_node);
554                         if (fq_gc_candidate(of)) {
555                                 fcnt++;
556                                 kmem_cache_free(fq_flow_cachep, of);
557                                 continue;
558                         }
559                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
560
561                         np = &nroot->rb_node;
562                         parent = NULL;
563                         while (*np) {
564                                 parent = *np;
565
566                                 nf = container_of(parent, struct fq_flow, fq_node);
567                                 BUG_ON(nf->sk == of->sk);
568
569                                 if (nf->sk > of->sk)
570                                         np = &parent->rb_right;
571                                 else
572                                         np = &parent->rb_left;
573                         }
574
575                         rb_link_node(&of->fq_node, parent, np);
576                         rb_insert_color(&of->fq_node, nroot);
577                 }
578         }
579         q->flows -= fcnt;
580         q->inactive_flows -= fcnt;
581         q->stat_gc_flows += fcnt;
582 }
583
584 static int fq_resize(struct fq_sched_data *q, u32 log)
585 {
586         struct rb_root *array;
587         u32 idx;
588
589         if (q->fq_root && log == q->fq_trees_log)
590                 return 0;
591
592         array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
593         if (!array)
594                 return -ENOMEM;
595
596         for (idx = 0; idx < (1U << log); idx++)
597                 array[idx] = RB_ROOT;
598
599         if (q->fq_root) {
600                 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
601                 kfree(q->fq_root);
602         }
603         q->fq_root = array;
604         q->fq_trees_log = log;
605
606         return 0;
607 }
608
609 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
610         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
611         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
612         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
613         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
614         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
615         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
616         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
617         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
618 };
619
620 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
621 {
622         struct fq_sched_data *q = qdisc_priv(sch);
623         struct nlattr *tb[TCA_FQ_MAX + 1];
624         int err, drop_count = 0;
625         u32 fq_log;
626
627         if (!opt)
628                 return -EINVAL;
629
630         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
631         if (err < 0)
632                 return err;
633
634         sch_tree_lock(sch);
635
636         fq_log = q->fq_trees_log;
637
638         if (tb[TCA_FQ_BUCKETS_LOG]) {
639                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
640
641                 if (nval >= 1 && nval <= ilog2(256*1024))
642                         fq_log = nval;
643                 else
644                         err = -EINVAL;
645         }
646         if (tb[TCA_FQ_PLIMIT])
647                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
648
649         if (tb[TCA_FQ_FLOW_PLIMIT])
650                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
651
652         if (tb[TCA_FQ_QUANTUM])
653                 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
654
655         if (tb[TCA_FQ_INITIAL_QUANTUM])
656                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
657
658         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
659                 q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
660
661         if (tb[TCA_FQ_FLOW_MAX_RATE])
662                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
663
664         if (tb[TCA_FQ_RATE_ENABLE]) {
665                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
666
667                 if (enable <= 1)
668                         q->rate_enable = enable;
669                 else
670                         err = -EINVAL;
671         }
672
673         if (!err)
674                 err = fq_resize(q, fq_log);
675
676         while (sch->q.qlen > sch->limit) {
677                 struct sk_buff *skb = fq_dequeue(sch);
678
679                 if (!skb)
680                         break;
681                 kfree_skb(skb);
682                 drop_count++;
683         }
684         qdisc_tree_decrease_qlen(sch, drop_count);
685
686         sch_tree_unlock(sch);
687         return err;
688 }
689
690 static void fq_destroy(struct Qdisc *sch)
691 {
692         struct fq_sched_data *q = qdisc_priv(sch);
693
694         fq_reset(sch);
695         kfree(q->fq_root);
696         qdisc_watchdog_cancel(&q->watchdog);
697 }
698
699 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
700 {
701         struct fq_sched_data *q = qdisc_priv(sch);
702         int err;
703
704         sch->limit              = 10000;
705         q->flow_plimit          = 100;
706         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
707         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
708         q->flow_default_rate    = 0;
709         q->flow_max_rate        = ~0U;
710         q->rate_enable          = 1;
711         q->new_flows.first      = NULL;
712         q->old_flows.first      = NULL;
713         q->delayed              = RB_ROOT;
714         q->fq_root              = NULL;
715         q->fq_trees_log         = ilog2(1024);
716         qdisc_watchdog_init(&q->watchdog, sch);
717
718         if (opt)
719                 err = fq_change(sch, opt);
720         else
721                 err = fq_resize(q, q->fq_trees_log);
722
723         return err;
724 }
725
726 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
727 {
728         struct fq_sched_data *q = qdisc_priv(sch);
729         struct nlattr *opts;
730
731         opts = nla_nest_start(skb, TCA_OPTIONS);
732         if (opts == NULL)
733                 goto nla_put_failure;
734
735         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore,
736          * do not bother giving its value
737          */
738         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
739             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
740             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
741             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
742             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
743             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
744             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
745                 goto nla_put_failure;
746
747         nla_nest_end(skb, opts);
748         return skb->len;
749
750 nla_put_failure:
751         return -1;
752 }
753
754 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
755 {
756         struct fq_sched_data *q = qdisc_priv(sch);
757         u64 now = ktime_to_ns(ktime_get());
758         struct tc_fq_qd_stats st = {
759                 .gc_flows               = q->stat_gc_flows,
760                 .highprio_packets       = q->stat_internal_packets,
761                 .tcp_retrans            = q->stat_tcp_retrans,
762                 .throttled              = q->stat_throttled,
763                 .flows_plimit           = q->stat_flows_plimit,
764                 .pkts_too_long          = q->stat_pkts_too_long,
765                 .allocation_errors      = q->stat_allocation_errors,
766                 .flows                  = q->flows,
767                 .inactive_flows         = q->inactive_flows,
768                 .throttled_flows        = q->throttled_flows,
769                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
770         };
771
772         return gnet_stats_copy_app(d, &st, sizeof(st));
773 }
774
775 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
776         .id             =       "fq",
777         .priv_size      =       sizeof(struct fq_sched_data),
778
779         .enqueue        =       fq_enqueue,
780         .dequeue        =       fq_dequeue,
781         .peek           =       qdisc_peek_dequeued,
782         .init           =       fq_init,
783         .reset          =       fq_reset,
784         .destroy        =       fq_destroy,
785         .change         =       fq_change,
786         .dump           =       fq_dump,
787         .dump_stats     =       fq_dump_stats,
788         .owner          =       THIS_MODULE,
789 };
790
791 static int __init fq_module_init(void)
792 {
793         int ret;
794
795         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
796                                            sizeof(struct fq_flow),
797                                            0, 0, NULL);
798         if (!fq_flow_cachep)
799                 return -ENOMEM;
800
801         ret = register_qdisc(&fq_qdisc_ops);
802         if (ret)
803                 kmem_cache_destroy(fq_flow_cachep);
804         return ret;
805 }
806
807 static void __exit fq_module_exit(void)
808 {
809         unregister_qdisc(&fq_qdisc_ops);
810         kmem_cache_destroy(fq_flow_cachep);
811 }
812
813 module_init(fq_module_init)
814 module_exit(fq_module_exit)
815 MODULE_AUTHOR("Eric Dumazet");
816 MODULE_LICENSE("GPL");