Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88...
[linux-drm-fsl-dcu.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for localy generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <net/netlink.h>
51 #include <net/pkt_sched.h>
52 #include <net/sock.h>
53 #include <net/tcp_states.h>
54
55 /*
56  * Per flow structure, dynamically allocated
57  */
58 struct fq_flow {
59         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
60         union {
61                 struct sk_buff *tail;   /* last skb in the list */
62                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
63         };
64         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
65         struct sock     *sk;
66         int             qlen;           /* number of packets in flow queue */
67         int             credit;
68         u32             socket_hash;    /* sk_hash */
69         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
70
71         struct rb_node  rate_node;      /* anchor in q->delayed tree */
72         u64             time_next_packet;
73 };
74
75 struct fq_flow_head {
76         struct fq_flow *first;
77         struct fq_flow *last;
78 };
79
80 struct fq_sched_data {
81         struct fq_flow_head new_flows;
82
83         struct fq_flow_head old_flows;
84
85         struct rb_root  delayed;        /* for rate limited flows */
86         u64             time_next_delayed_flow;
87
88         struct fq_flow  internal;       /* for non classified or high prio packets */
89         u32             quantum;
90         u32             initial_quantum;
91         u32             flow_refill_delay;
92         u32             flow_max_rate;  /* optional max rate per flow */
93         u32             flow_plimit;    /* max packets per flow */
94         struct rb_root  *fq_root;
95         u8              rate_enable;
96         u8              fq_trees_log;
97
98         u32             flows;
99         u32             inactive_flows;
100         u32             throttled_flows;
101
102         u64             stat_gc_flows;
103         u64             stat_internal_packets;
104         u64             stat_tcp_retrans;
105         u64             stat_throttled;
106         u64             stat_flows_plimit;
107         u64             stat_pkts_too_long;
108         u64             stat_allocation_errors;
109         struct qdisc_watchdog watchdog;
110 };
111
112 /* special value to mark a detached flow (not on old/new list) */
113 static struct fq_flow detached, throttled;
114
115 static void fq_flow_set_detached(struct fq_flow *f)
116 {
117         f->next = &detached;
118         f->age = jiffies;
119 }
120
121 static bool fq_flow_is_detached(const struct fq_flow *f)
122 {
123         return f->next == &detached;
124 }
125
126 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
127 {
128         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
129
130         while (*p) {
131                 struct fq_flow *aux;
132
133                 parent = *p;
134                 aux = container_of(parent, struct fq_flow, rate_node);
135                 if (f->time_next_packet >= aux->time_next_packet)
136                         p = &parent->rb_right;
137                 else
138                         p = &parent->rb_left;
139         }
140         rb_link_node(&f->rate_node, parent, p);
141         rb_insert_color(&f->rate_node, &q->delayed);
142         q->throttled_flows++;
143         q->stat_throttled++;
144
145         f->next = &throttled;
146         if (q->time_next_delayed_flow > f->time_next_packet)
147                 q->time_next_delayed_flow = f->time_next_packet;
148 }
149
150
151 static struct kmem_cache *fq_flow_cachep __read_mostly;
152
153 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
154 {
155         if (head->first)
156                 head->last->next = flow;
157         else
158                 head->first = flow;
159         head->last = flow;
160         flow->next = NULL;
161 }
162
163 /* limit number of collected flows per round */
164 #define FQ_GC_MAX 8
165 #define FQ_GC_AGE (3*HZ)
166
167 static bool fq_gc_candidate(const struct fq_flow *f)
168 {
169         return fq_flow_is_detached(f) &&
170                time_after(jiffies, f->age + FQ_GC_AGE);
171 }
172
173 static void fq_gc(struct fq_sched_data *q,
174                   struct rb_root *root,
175                   struct sock *sk)
176 {
177         struct fq_flow *f, *tofree[FQ_GC_MAX];
178         struct rb_node **p, *parent;
179         int fcnt = 0;
180
181         p = &root->rb_node;
182         parent = NULL;
183         while (*p) {
184                 parent = *p;
185
186                 f = container_of(parent, struct fq_flow, fq_node);
187                 if (f->sk == sk)
188                         break;
189
190                 if (fq_gc_candidate(f)) {
191                         tofree[fcnt++] = f;
192                         if (fcnt == FQ_GC_MAX)
193                                 break;
194                 }
195
196                 if (f->sk > sk)
197                         p = &parent->rb_right;
198                 else
199                         p = &parent->rb_left;
200         }
201
202         q->flows -= fcnt;
203         q->inactive_flows -= fcnt;
204         q->stat_gc_flows += fcnt;
205         while (fcnt) {
206                 struct fq_flow *f = tofree[--fcnt];
207
208                 rb_erase(&f->fq_node, root);
209                 kmem_cache_free(fq_flow_cachep, f);
210         }
211 }
212
213 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
214 {
215         struct rb_node **p, *parent;
216         struct sock *sk = skb->sk;
217         struct rb_root *root;
218         struct fq_flow *f;
219
220         /* warning: no starvation prevention... */
221         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
222                 return &q->internal;
223
224         if (unlikely(!sk)) {
225                 /* By forcing low order bit to 1, we make sure to not
226                  * collide with a local flow (socket pointers are word aligned)
227                  */
228                 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
229         }
230
231         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
232
233         if (q->flows >= (2U << q->fq_trees_log) &&
234             q->inactive_flows > q->flows/2)
235                 fq_gc(q, root, sk);
236
237         p = &root->rb_node;
238         parent = NULL;
239         while (*p) {
240                 parent = *p;
241
242                 f = container_of(parent, struct fq_flow, fq_node);
243                 if (f->sk == sk) {
244                         /* socket might have been reallocated, so check
245                          * if its sk_hash is the same.
246                          * It not, we need to refill credit with
247                          * initial quantum
248                          */
249                         if (unlikely(skb->sk &&
250                                      f->socket_hash != sk->sk_hash)) {
251                                 f->credit = q->initial_quantum;
252                                 f->socket_hash = sk->sk_hash;
253                                 f->time_next_packet = 0ULL;
254                         }
255                         return f;
256                 }
257                 if (f->sk > sk)
258                         p = &parent->rb_right;
259                 else
260                         p = &parent->rb_left;
261         }
262
263         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
264         if (unlikely(!f)) {
265                 q->stat_allocation_errors++;
266                 return &q->internal;
267         }
268         fq_flow_set_detached(f);
269         f->sk = sk;
270         if (skb->sk)
271                 f->socket_hash = sk->sk_hash;
272         f->credit = q->initial_quantum;
273
274         rb_link_node(&f->fq_node, parent, p);
275         rb_insert_color(&f->fq_node, root);
276
277         q->flows++;
278         q->inactive_flows++;
279         return f;
280 }
281
282
283 /* remove one skb from head of flow queue */
284 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
285 {
286         struct sk_buff *skb = flow->head;
287
288         if (skb) {
289                 flow->head = skb->next;
290                 skb->next = NULL;
291                 flow->qlen--;
292                 sch->qstats.backlog -= qdisc_pkt_len(skb);
293                 sch->q.qlen--;
294         }
295         return skb;
296 }
297
298 /* We might add in the future detection of retransmits
299  * For the time being, just return false
300  */
301 static bool skb_is_retransmit(struct sk_buff *skb)
302 {
303         return false;
304 }
305
306 /* add skb to flow queue
307  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
308  * We special case tcp retransmits to be transmitted before other packets.
309  * We rely on fact that TCP retransmits are unlikely, so we do not waste
310  * a separate queue or a pointer.
311  * head->  [retrans pkt 1]
312  *         [retrans pkt 2]
313  *         [ normal pkt 1]
314  *         [ normal pkt 2]
315  *         [ normal pkt 3]
316  * tail->  [ normal pkt 4]
317  */
318 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
319 {
320         struct sk_buff *prev, *head = flow->head;
321
322         skb->next = NULL;
323         if (!head) {
324                 flow->head = skb;
325                 flow->tail = skb;
326                 return;
327         }
328         if (likely(!skb_is_retransmit(skb))) {
329                 flow->tail->next = skb;
330                 flow->tail = skb;
331                 return;
332         }
333
334         /* This skb is a tcp retransmit,
335          * find the last retrans packet in the queue
336          */
337         prev = NULL;
338         while (skb_is_retransmit(head)) {
339                 prev = head;
340                 head = head->next;
341                 if (!head)
342                         break;
343         }
344         if (!prev) { /* no rtx packet in queue, become the new head */
345                 skb->next = flow->head;
346                 flow->head = skb;
347         } else {
348                 if (prev == flow->tail)
349                         flow->tail = skb;
350                 else
351                         skb->next = prev->next;
352                 prev->next = skb;
353         }
354 }
355
356 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
357 {
358         struct fq_sched_data *q = qdisc_priv(sch);
359         struct fq_flow *f;
360
361         if (unlikely(sch->q.qlen >= sch->limit))
362                 return qdisc_drop(skb, sch);
363
364         f = fq_classify(skb, q);
365         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
366                 q->stat_flows_plimit++;
367                 return qdisc_drop(skb, sch);
368         }
369
370         f->qlen++;
371         if (skb_is_retransmit(skb))
372                 q->stat_tcp_retrans++;
373         sch->qstats.backlog += qdisc_pkt_len(skb);
374         if (fq_flow_is_detached(f)) {
375                 fq_flow_add_tail(&q->new_flows, f);
376                 if (time_after(jiffies, f->age + q->flow_refill_delay))
377                         f->credit = max_t(u32, f->credit, q->quantum);
378                 q->inactive_flows--;
379                 qdisc_unthrottled(sch);
380         }
381
382         /* Note: this overwrites f->age */
383         flow_queue_add(f, skb);
384
385         if (unlikely(f == &q->internal)) {
386                 q->stat_internal_packets++;
387                 qdisc_unthrottled(sch);
388         }
389         sch->q.qlen++;
390
391         return NET_XMIT_SUCCESS;
392 }
393
394 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
395 {
396         struct rb_node *p;
397
398         if (q->time_next_delayed_flow > now)
399                 return;
400
401         q->time_next_delayed_flow = ~0ULL;
402         while ((p = rb_first(&q->delayed)) != NULL) {
403                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
404
405                 if (f->time_next_packet > now) {
406                         q->time_next_delayed_flow = f->time_next_packet;
407                         break;
408                 }
409                 rb_erase(p, &q->delayed);
410                 q->throttled_flows--;
411                 fq_flow_add_tail(&q->old_flows, f);
412         }
413 }
414
415 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
416 {
417         struct fq_sched_data *q = qdisc_priv(sch);
418         u64 now = ktime_to_ns(ktime_get());
419         struct fq_flow_head *head;
420         struct sk_buff *skb;
421         struct fq_flow *f;
422         u32 rate;
423
424         skb = fq_dequeue_head(sch, &q->internal);
425         if (skb)
426                 goto out;
427         fq_check_throttled(q, now);
428 begin:
429         head = &q->new_flows;
430         if (!head->first) {
431                 head = &q->old_flows;
432                 if (!head->first) {
433                         if (q->time_next_delayed_flow != ~0ULL)
434                                 qdisc_watchdog_schedule_ns(&q->watchdog,
435                                                            q->time_next_delayed_flow);
436                         return NULL;
437                 }
438         }
439         f = head->first;
440
441         if (f->credit <= 0) {
442                 f->credit += q->quantum;
443                 head->first = f->next;
444                 fq_flow_add_tail(&q->old_flows, f);
445                 goto begin;
446         }
447
448         if (unlikely(f->head && now < f->time_next_packet)) {
449                 head->first = f->next;
450                 fq_flow_set_throttled(q, f);
451                 goto begin;
452         }
453
454         skb = fq_dequeue_head(sch, f);
455         if (!skb) {
456                 head->first = f->next;
457                 /* force a pass through old_flows to prevent starvation */
458                 if ((head == &q->new_flows) && q->old_flows.first) {
459                         fq_flow_add_tail(&q->old_flows, f);
460                 } else {
461                         fq_flow_set_detached(f);
462                         q->inactive_flows++;
463                 }
464                 goto begin;
465         }
466         prefetch(&skb->end);
467         f->time_next_packet = now;
468         f->credit -= qdisc_pkt_len(skb);
469
470         if (f->credit > 0 || !q->rate_enable)
471                 goto out;
472
473         rate = q->flow_max_rate;
474         if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
475                 rate = min(skb->sk->sk_pacing_rate, rate);
476
477         if (rate != ~0U) {
478                 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
479                 u64 len = (u64)plen * NSEC_PER_SEC;
480
481                 if (likely(rate))
482                         do_div(len, rate);
483                 /* Since socket rate can change later,
484                  * clamp the delay to 125 ms.
485                  * TODO: maybe segment the too big skb, as in commit
486                  * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
487                  */
488                 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
489                         len = 125 * NSEC_PER_MSEC;
490                         q->stat_pkts_too_long++;
491                 }
492
493                 f->time_next_packet = now + len;
494         }
495 out:
496         qdisc_bstats_update(sch, skb);
497         qdisc_unthrottled(sch);
498         return skb;
499 }
500
501 static void fq_reset(struct Qdisc *sch)
502 {
503         struct fq_sched_data *q = qdisc_priv(sch);
504         struct rb_root *root;
505         struct sk_buff *skb;
506         struct rb_node *p;
507         struct fq_flow *f;
508         unsigned int idx;
509
510         while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
511                 kfree_skb(skb);
512
513         if (!q->fq_root)
514                 return;
515
516         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
517                 root = &q->fq_root[idx];
518                 while ((p = rb_first(root)) != NULL) {
519                         f = container_of(p, struct fq_flow, fq_node);
520                         rb_erase(p, root);
521
522                         while ((skb = fq_dequeue_head(sch, f)) != NULL)
523                                 kfree_skb(skb);
524
525                         kmem_cache_free(fq_flow_cachep, f);
526                 }
527         }
528         q->new_flows.first      = NULL;
529         q->old_flows.first      = NULL;
530         q->delayed              = RB_ROOT;
531         q->flows                = 0;
532         q->inactive_flows       = 0;
533         q->throttled_flows      = 0;
534 }
535
536 static void fq_rehash(struct fq_sched_data *q,
537                       struct rb_root *old_array, u32 old_log,
538                       struct rb_root *new_array, u32 new_log)
539 {
540         struct rb_node *op, **np, *parent;
541         struct rb_root *oroot, *nroot;
542         struct fq_flow *of, *nf;
543         int fcnt = 0;
544         u32 idx;
545
546         for (idx = 0; idx < (1U << old_log); idx++) {
547                 oroot = &old_array[idx];
548                 while ((op = rb_first(oroot)) != NULL) {
549                         rb_erase(op, oroot);
550                         of = container_of(op, struct fq_flow, fq_node);
551                         if (fq_gc_candidate(of)) {
552                                 fcnt++;
553                                 kmem_cache_free(fq_flow_cachep, of);
554                                 continue;
555                         }
556                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
557
558                         np = &nroot->rb_node;
559                         parent = NULL;
560                         while (*np) {
561                                 parent = *np;
562
563                                 nf = container_of(parent, struct fq_flow, fq_node);
564                                 BUG_ON(nf->sk == of->sk);
565
566                                 if (nf->sk > of->sk)
567                                         np = &parent->rb_right;
568                                 else
569                                         np = &parent->rb_left;
570                         }
571
572                         rb_link_node(&of->fq_node, parent, np);
573                         rb_insert_color(&of->fq_node, nroot);
574                 }
575         }
576         q->flows -= fcnt;
577         q->inactive_flows -= fcnt;
578         q->stat_gc_flows += fcnt;
579 }
580
581 static int fq_resize(struct fq_sched_data *q, u32 log)
582 {
583         struct rb_root *array;
584         u32 idx;
585
586         if (q->fq_root && log == q->fq_trees_log)
587                 return 0;
588
589         array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
590         if (!array)
591                 return -ENOMEM;
592
593         for (idx = 0; idx < (1U << log); idx++)
594                 array[idx] = RB_ROOT;
595
596         if (q->fq_root) {
597                 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
598                 kfree(q->fq_root);
599         }
600         q->fq_root = array;
601         q->fq_trees_log = log;
602
603         return 0;
604 }
605
606 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
607         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
608         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
609         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
610         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
611         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
612         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
613         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
614         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
615         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
616 };
617
618 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
619 {
620         struct fq_sched_data *q = qdisc_priv(sch);
621         struct nlattr *tb[TCA_FQ_MAX + 1];
622         int err, drop_count = 0;
623         u32 fq_log;
624
625         if (!opt)
626                 return -EINVAL;
627
628         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
629         if (err < 0)
630                 return err;
631
632         sch_tree_lock(sch);
633
634         fq_log = q->fq_trees_log;
635
636         if (tb[TCA_FQ_BUCKETS_LOG]) {
637                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
638
639                 if (nval >= 1 && nval <= ilog2(256*1024))
640                         fq_log = nval;
641                 else
642                         err = -EINVAL;
643         }
644         if (tb[TCA_FQ_PLIMIT])
645                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
646
647         if (tb[TCA_FQ_FLOW_PLIMIT])
648                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
649
650         if (tb[TCA_FQ_QUANTUM])
651                 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
652
653         if (tb[TCA_FQ_INITIAL_QUANTUM])
654                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
655
656         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
657                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
658                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
659
660         if (tb[TCA_FQ_FLOW_MAX_RATE])
661                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
662
663         if (tb[TCA_FQ_RATE_ENABLE]) {
664                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
665
666                 if (enable <= 1)
667                         q->rate_enable = enable;
668                 else
669                         err = -EINVAL;
670         }
671
672         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
673                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
674
675                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
676         }
677
678         if (!err)
679                 err = fq_resize(q, fq_log);
680
681         while (sch->q.qlen > sch->limit) {
682                 struct sk_buff *skb = fq_dequeue(sch);
683
684                 if (!skb)
685                         break;
686                 kfree_skb(skb);
687                 drop_count++;
688         }
689         qdisc_tree_decrease_qlen(sch, drop_count);
690
691         sch_tree_unlock(sch);
692         return err;
693 }
694
695 static void fq_destroy(struct Qdisc *sch)
696 {
697         struct fq_sched_data *q = qdisc_priv(sch);
698
699         fq_reset(sch);
700         kfree(q->fq_root);
701         qdisc_watchdog_cancel(&q->watchdog);
702 }
703
704 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
705 {
706         struct fq_sched_data *q = qdisc_priv(sch);
707         int err;
708
709         sch->limit              = 10000;
710         q->flow_plimit          = 100;
711         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
712         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
713         q->flow_refill_delay    = msecs_to_jiffies(40);
714         q->flow_max_rate        = ~0U;
715         q->rate_enable          = 1;
716         q->new_flows.first      = NULL;
717         q->old_flows.first      = NULL;
718         q->delayed              = RB_ROOT;
719         q->fq_root              = NULL;
720         q->fq_trees_log         = ilog2(1024);
721         qdisc_watchdog_init(&q->watchdog, sch);
722
723         if (opt)
724                 err = fq_change(sch, opt);
725         else
726                 err = fq_resize(q, q->fq_trees_log);
727
728         return err;
729 }
730
731 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
732 {
733         struct fq_sched_data *q = qdisc_priv(sch);
734         struct nlattr *opts;
735
736         opts = nla_nest_start(skb, TCA_OPTIONS);
737         if (opts == NULL)
738                 goto nla_put_failure;
739
740         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
741
742         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
743             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
744             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
745             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
746             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
747             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
748             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
749                         jiffies_to_usecs(q->flow_refill_delay)) ||
750             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
751                 goto nla_put_failure;
752
753         nla_nest_end(skb, opts);
754         return skb->len;
755
756 nla_put_failure:
757         return -1;
758 }
759
760 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
761 {
762         struct fq_sched_data *q = qdisc_priv(sch);
763         u64 now = ktime_to_ns(ktime_get());
764         struct tc_fq_qd_stats st = {
765                 .gc_flows               = q->stat_gc_flows,
766                 .highprio_packets       = q->stat_internal_packets,
767                 .tcp_retrans            = q->stat_tcp_retrans,
768                 .throttled              = q->stat_throttled,
769                 .flows_plimit           = q->stat_flows_plimit,
770                 .pkts_too_long          = q->stat_pkts_too_long,
771                 .allocation_errors      = q->stat_allocation_errors,
772                 .flows                  = q->flows,
773                 .inactive_flows         = q->inactive_flows,
774                 .throttled_flows        = q->throttled_flows,
775                 .time_next_delayed_flow = q->time_next_delayed_flow - now,
776         };
777
778         return gnet_stats_copy_app(d, &st, sizeof(st));
779 }
780
781 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
782         .id             =       "fq",
783         .priv_size      =       sizeof(struct fq_sched_data),
784
785         .enqueue        =       fq_enqueue,
786         .dequeue        =       fq_dequeue,
787         .peek           =       qdisc_peek_dequeued,
788         .init           =       fq_init,
789         .reset          =       fq_reset,
790         .destroy        =       fq_destroy,
791         .change         =       fq_change,
792         .dump           =       fq_dump,
793         .dump_stats     =       fq_dump_stats,
794         .owner          =       THIS_MODULE,
795 };
796
797 static int __init fq_module_init(void)
798 {
799         int ret;
800
801         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
802                                            sizeof(struct fq_flow),
803                                            0, 0, NULL);
804         if (!fq_flow_cachep)
805                 return -ENOMEM;
806
807         ret = register_qdisc(&fq_qdisc_ops);
808         if (ret)
809                 kmem_cache_destroy(fq_flow_cachep);
810         return ret;
811 }
812
813 static void __exit fq_module_exit(void)
814 {
815         unregister_qdisc(&fq_qdisc_ops);
816         kmem_cache_destroy(fq_flow_cachep);
817 }
818
819 module_init(fq_module_init)
820 module_exit(fq_module_exit)
821 MODULE_AUTHOR("Eric Dumazet");
822 MODULE_LICENSE("GPL");