initramfs: fix initramfs size calculation
[linux-drm-fsl-dcu.git] / net / rds / ib_recv.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38
39 #include "rds.h"
40 #include "ib.h"
41
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
45
46 static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
47 {
48         rdsdebug("frag %p page %p\n", frag, frag->f_page);
49         __free_page(frag->f_page);
50         frag->f_page = NULL;
51 }
52
53 static void rds_ib_frag_free(struct rds_page_frag *frag)
54 {
55         rdsdebug("frag %p page %p\n", frag, frag->f_page);
56         BUG_ON(frag->f_page != NULL);
57         kmem_cache_free(rds_ib_frag_slab, frag);
58 }
59
60 /*
61  * We map a page at a time.  Its fragments are posted in order.  This
62  * is called in fragment order as the fragments get send completion events.
63  * Only the last frag in the page performs the unmapping.
64  *
65  * It's OK for ring cleanup to call this in whatever order it likes because
66  * DMA is not in flight and so we can unmap while other ring entries still
67  * hold page references in their frags.
68  */
69 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
70                                    struct rds_ib_recv_work *recv)
71 {
72         struct rds_page_frag *frag = recv->r_frag;
73
74         rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75         if (frag->f_mapped)
76                 ib_dma_unmap_page(ic->i_cm_id->device,
77                                frag->f_mapped,
78                                RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79         frag->f_mapped = 0;
80 }
81
82 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
83 {
84         struct rds_ib_recv_work *recv;
85         u32 i;
86
87         for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88                 struct ib_sge *sge;
89
90                 recv->r_ibinc = NULL;
91                 recv->r_frag = NULL;
92
93                 recv->r_wr.next = NULL;
94                 recv->r_wr.wr_id = i;
95                 recv->r_wr.sg_list = recv->r_sge;
96                 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
97
98                 sge = rds_ib_data_sge(ic, recv->r_sge);
99                 sge->addr = 0;
100                 sge->length = RDS_FRAG_SIZE;
101                 sge->lkey = ic->i_mr->lkey;
102
103                 sge = rds_ib_header_sge(ic, recv->r_sge);
104                 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105                 sge->length = sizeof(struct rds_header);
106                 sge->lkey = ic->i_mr->lkey;
107         }
108 }
109
110 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
111                                   struct rds_ib_recv_work *recv)
112 {
113         if (recv->r_ibinc) {
114                 rds_inc_put(&recv->r_ibinc->ii_inc);
115                 recv->r_ibinc = NULL;
116         }
117         if (recv->r_frag) {
118                 rds_ib_recv_unmap_page(ic, recv);
119                 if (recv->r_frag->f_page)
120                         rds_ib_frag_drop_page(recv->r_frag);
121                 rds_ib_frag_free(recv->r_frag);
122                 recv->r_frag = NULL;
123         }
124 }
125
126 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
127 {
128         u32 i;
129
130         for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131                 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
132
133         if (ic->i_frag.f_page)
134                 rds_ib_frag_drop_page(&ic->i_frag);
135 }
136
137 static int rds_ib_recv_refill_one(struct rds_connection *conn,
138                                   struct rds_ib_recv_work *recv,
139                                   gfp_t kptr_gfp, gfp_t page_gfp)
140 {
141         struct rds_ib_connection *ic = conn->c_transport_data;
142         dma_addr_t dma_addr;
143         struct ib_sge *sge;
144         int ret = -ENOMEM;
145
146         if (recv->r_ibinc == NULL) {
147                 if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
148                         rds_ib_stats_inc(s_ib_rx_alloc_limit);
149                         goto out;
150                 }
151                 recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
152                                                  kptr_gfp);
153                 if (recv->r_ibinc == NULL) {
154                         atomic_dec(&rds_ib_allocation);
155                         goto out;
156                 }
157                 INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
158                 rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
159         }
160
161         if (recv->r_frag == NULL) {
162                 recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
163                 if (recv->r_frag == NULL)
164                         goto out;
165                 INIT_LIST_HEAD(&recv->r_frag->f_item);
166                 recv->r_frag->f_page = NULL;
167         }
168
169         if (ic->i_frag.f_page == NULL) {
170                 ic->i_frag.f_page = alloc_page(page_gfp);
171                 if (ic->i_frag.f_page == NULL)
172                         goto out;
173                 ic->i_frag.f_offset = 0;
174         }
175
176         dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177                                   ic->i_frag.f_page,
178                                   ic->i_frag.f_offset,
179                                   RDS_FRAG_SIZE,
180                                   DMA_FROM_DEVICE);
181         if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182                 goto out;
183
184         /*
185          * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
186          * must be called on this recv.  This happens as completions hit
187          * in order or on connection shutdown.
188          */
189         recv->r_frag->f_page = ic->i_frag.f_page;
190         recv->r_frag->f_offset = ic->i_frag.f_offset;
191         recv->r_frag->f_mapped = dma_addr;
192
193         sge = rds_ib_data_sge(ic, recv->r_sge);
194         sge->addr = dma_addr;
195         sge->length = RDS_FRAG_SIZE;
196
197         sge = rds_ib_header_sge(ic, recv->r_sge);
198         sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199         sge->length = sizeof(struct rds_header);
200
201         get_page(recv->r_frag->f_page);
202
203         if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204                 ic->i_frag.f_offset += RDS_FRAG_SIZE;
205         } else {
206                 put_page(ic->i_frag.f_page);
207                 ic->i_frag.f_page = NULL;
208                 ic->i_frag.f_offset = 0;
209         }
210
211         ret = 0;
212 out:
213         return ret;
214 }
215
216 /*
217  * This tries to allocate and post unused work requests after making sure that
218  * they have all the allocations they need to queue received fragments into
219  * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
220  * pairs don't go unmatched.
221  *
222  * -1 is returned if posting fails due to temporary resource exhaustion.
223  */
224 int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225                        gfp_t page_gfp, int prefill)
226 {
227         struct rds_ib_connection *ic = conn->c_transport_data;
228         struct rds_ib_recv_work *recv;
229         struct ib_recv_wr *failed_wr;
230         unsigned int posted = 0;
231         int ret = 0;
232         u32 pos;
233
234         while ((prefill || rds_conn_up(conn)) &&
235                rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236                 if (pos >= ic->i_recv_ring.w_nr) {
237                         printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238                                         pos);
239                         ret = -EINVAL;
240                         break;
241                 }
242
243                 recv = &ic->i_recvs[pos];
244                 ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245                 if (ret) {
246                         ret = -1;
247                         break;
248                 }
249
250                 /* XXX when can this fail? */
251                 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252                 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
253                          recv->r_ibinc, recv->r_frag->f_page,
254                          (long) recv->r_frag->f_mapped, ret);
255                 if (ret) {
256                         rds_ib_conn_error(conn, "recv post on "
257                                "%pI4 returned %d, disconnecting and "
258                                "reconnecting\n", &conn->c_faddr,
259                                ret);
260                         ret = -1;
261                         break;
262                 }
263
264                 posted++;
265         }
266
267         /* We're doing flow control - update the window. */
268         if (ic->i_flowctl && posted)
269                 rds_ib_advertise_credits(conn, posted);
270
271         if (ret)
272                 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
273         return ret;
274 }
275
276 void rds_ib_inc_purge(struct rds_incoming *inc)
277 {
278         struct rds_ib_incoming *ibinc;
279         struct rds_page_frag *frag;
280         struct rds_page_frag *pos;
281
282         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
283         rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
284
285         list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
286                 list_del_init(&frag->f_item);
287                 rds_ib_frag_drop_page(frag);
288                 rds_ib_frag_free(frag);
289         }
290 }
291
292 void rds_ib_inc_free(struct rds_incoming *inc)
293 {
294         struct rds_ib_incoming *ibinc;
295
296         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
297
298         rds_ib_inc_purge(inc);
299         rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
300         BUG_ON(!list_empty(&ibinc->ii_frags));
301         kmem_cache_free(rds_ib_incoming_slab, ibinc);
302         atomic_dec(&rds_ib_allocation);
303         BUG_ON(atomic_read(&rds_ib_allocation) < 0);
304 }
305
306 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307                             size_t size)
308 {
309         struct rds_ib_incoming *ibinc;
310         struct rds_page_frag *frag;
311         struct iovec *iov = first_iov;
312         unsigned long to_copy;
313         unsigned long frag_off = 0;
314         unsigned long iov_off = 0;
315         int copied = 0;
316         int ret;
317         u32 len;
318
319         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
320         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
321         len = be32_to_cpu(inc->i_hdr.h_len);
322
323         while (copied < size && copied < len) {
324                 if (frag_off == RDS_FRAG_SIZE) {
325                         frag = list_entry(frag->f_item.next,
326                                           struct rds_page_frag, f_item);
327                         frag_off = 0;
328                 }
329                 while (iov_off == iov->iov_len) {
330                         iov_off = 0;
331                         iov++;
332                 }
333
334                 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335                 to_copy = min_t(size_t, to_copy, size - copied);
336                 to_copy = min_t(unsigned long, to_copy, len - copied);
337
338                 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339                          "[%p, %lu] + %lu\n",
340                          to_copy, iov->iov_base, iov->iov_len, iov_off,
341                          frag->f_page, frag->f_offset, frag_off);
342
343                 /* XXX needs + offset for multiple recvs per page */
344                 ret = rds_page_copy_to_user(frag->f_page,
345                                             frag->f_offset + frag_off,
346                                             iov->iov_base + iov_off,
347                                             to_copy);
348                 if (ret) {
349                         copied = ret;
350                         break;
351                 }
352
353                 iov_off += to_copy;
354                 frag_off += to_copy;
355                 copied += to_copy;
356         }
357
358         return copied;
359 }
360
361 /* ic starts out kzalloc()ed */
362 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
363 {
364         struct ib_send_wr *wr = &ic->i_ack_wr;
365         struct ib_sge *sge = &ic->i_ack_sge;
366
367         sge->addr = ic->i_ack_dma;
368         sge->length = sizeof(struct rds_header);
369         sge->lkey = ic->i_mr->lkey;
370
371         wr->sg_list = sge;
372         wr->num_sge = 1;
373         wr->opcode = IB_WR_SEND;
374         wr->wr_id = RDS_IB_ACK_WR_ID;
375         wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
376 }
377
378 /*
379  * You'd think that with reliable IB connections you wouldn't need to ack
380  * messages that have been received.  The problem is that IB hardware generates
381  * an ack message before it has DMAed the message into memory.  This creates a
382  * potential message loss if the HCA is disabled for any reason between when it
383  * sends the ack and before the message is DMAed and processed.  This is only a
384  * potential issue if another HCA is available for fail-over.
385  *
386  * When the remote host receives our ack they'll free the sent message from
387  * their send queue.  To decrease the latency of this we always send an ack
388  * immediately after we've received messages.
389  *
390  * For simplicity, we only have one ack in flight at a time.  This puts
391  * pressure on senders to have deep enough send queues to absorb the latency of
392  * a single ack frame being in flight.  This might not be good enough.
393  *
394  * This is implemented by have a long-lived send_wr and sge which point to a
395  * statically allocated ack frame.  This ack wr does not fall under the ring
396  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
397  * room for it beyond the ring size.  Send completion notices its special
398  * wr_id and avoids working with the ring in that case.
399  */
400 #ifndef KERNEL_HAS_ATOMIC64
401 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
402                                 int ack_required)
403 {
404         unsigned long flags;
405
406         spin_lock_irqsave(&ic->i_ack_lock, flags);
407         ic->i_ack_next = seq;
408         if (ack_required)
409                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411 }
412
413 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
414 {
415         unsigned long flags;
416         u64 seq;
417
418         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
419
420         spin_lock_irqsave(&ic->i_ack_lock, flags);
421         seq = ic->i_ack_next;
422         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
423
424         return seq;
425 }
426 #else
427 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
428                                 int ack_required)
429 {
430         atomic64_set(&ic->i_ack_next, seq);
431         if (ack_required) {
432                 smp_mb__before_clear_bit();
433                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
434         }
435 }
436
437 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
438 {
439         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
440         smp_mb__after_clear_bit();
441
442         return atomic64_read(&ic->i_ack_next);
443 }
444 #endif
445
446
447 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
448 {
449         struct rds_header *hdr = ic->i_ack;
450         struct ib_send_wr *failed_wr;
451         u64 seq;
452         int ret;
453
454         seq = rds_ib_get_ack(ic);
455
456         rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457         rds_message_populate_header(hdr, 0, 0, 0);
458         hdr->h_ack = cpu_to_be64(seq);
459         hdr->h_credit = adv_credits;
460         rds_message_make_checksum(hdr);
461         ic->i_ack_queued = jiffies;
462
463         ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464         if (unlikely(ret)) {
465                 /* Failed to send. Release the WR, and
466                  * force another ACK.
467                  */
468                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
469                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
470
471                 rds_ib_stats_inc(s_ib_ack_send_failure);
472
473                 rds_ib_conn_error(ic->conn, "sending ack failed\n");
474         } else
475                 rds_ib_stats_inc(s_ib_ack_sent);
476 }
477
478 /*
479  * There are 3 ways of getting acknowledgements to the peer:
480  *  1.  We call rds_ib_attempt_ack from the recv completion handler
481  *      to send an ACK-only frame.
482  *      However, there can be only one such frame in the send queue
483  *      at any time, so we may have to postpone it.
484  *  2.  When another (data) packet is transmitted while there's
485  *      an ACK in the queue, we piggyback the ACK sequence number
486  *      on the data packet.
487  *  3.  If the ACK WR is done sending, we get called from the
488  *      send queue completion handler, and check whether there's
489  *      another ACK pending (postponed because the WR was on the
490  *      queue). If so, we transmit it.
491  *
492  * We maintain 2 variables:
493  *  -   i_ack_flags, which keeps track of whether the ACK WR
494  *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495  *  -   i_ack_next, which is the last sequence number we received
496  *
497  * Potentially, send queue and receive queue handlers can run concurrently.
498  * It would be nice to not have to use a spinlock to synchronize things,
499  * but the one problem that rules this out is that 64bit updates are
500  * not atomic on all platforms. Things would be a lot simpler if
501  * we had atomic64 or maybe cmpxchg64 everywhere.
502  *
503  * Reconnecting complicates this picture just slightly. When we
504  * reconnect, we may be seeing duplicate packets. The peer
505  * is retransmitting them, because it hasn't seen an ACK for
506  * them. It is important that we ACK these.
507  *
508  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509  * this flag set *MUST* be acknowledged immediately.
510  */
511
512 /*
513  * When we get here, we're called from the recv queue handler.
514  * Check whether we ought to transmit an ACK.
515  */
516 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
517 {
518         unsigned int adv_credits;
519
520         if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
521                 return;
522
523         if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
524                 rds_ib_stats_inc(s_ib_ack_send_delayed);
525                 return;
526         }
527
528         /* Can we get a send credit? */
529         if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530                 rds_ib_stats_inc(s_ib_tx_throttle);
531                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
532                 return;
533         }
534
535         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
536         rds_ib_send_ack(ic, adv_credits);
537 }
538
539 /*
540  * We get here from the send completion handler, when the
541  * adapter tells us the ACK frame was sent.
542  */
543 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
544 {
545         clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
546         rds_ib_attempt_ack(ic);
547 }
548
549 /*
550  * This is called by the regular xmit code when it wants to piggyback
551  * an ACK on an outgoing frame.
552  */
553 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
554 {
555         if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
556                 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
557         return rds_ib_get_ack(ic);
558 }
559
560 static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
561                                             struct rds_ib_recv_work *recv,
562                                             u32 data_len)
563 {
564         struct rds_ib_connection *ic = conn->c_transport_data;
565         void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
566         void *addr;
567         u32 misplaced_hdr_bytes;
568
569         /*
570          * Support header at the front (RDS 3.1+) as well as header-at-end.
571          *
572          * Cases:
573          * 1) header all in header buff (great!)
574          * 2) header all in data page (copy all to header buff)
575          * 3) header split across hdr buf + data page
576          *    (move bit in hdr buff to end before copying other bit from data page)
577          */
578         if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
579                 return hdr_buff;
580
581         if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
582                 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
583                 memcpy(hdr_buff,
584                        addr + recv->r_frag->f_offset + data_len,
585                        sizeof(struct rds_header));
586                 kunmap_atomic(addr, KM_SOFTIRQ0);
587                 return hdr_buff;
588         }
589
590         misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
591
592         memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
593
594         addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
595         memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
596                sizeof(struct rds_header) - misplaced_hdr_bytes);
597         kunmap_atomic(addr, KM_SOFTIRQ0);
598         return hdr_buff;
599 }
600
601 /*
602  * It's kind of lame that we're copying from the posted receive pages into
603  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
604  * them.  But receiving new congestion bitmaps should be a *rare* event, so
605  * hopefully we won't need to invest that complexity in making it more
606  * efficient.  By copying we can share a simpler core with TCP which has to
607  * copy.
608  */
609 static void rds_ib_cong_recv(struct rds_connection *conn,
610                               struct rds_ib_incoming *ibinc)
611 {
612         struct rds_cong_map *map;
613         unsigned int map_off;
614         unsigned int map_page;
615         struct rds_page_frag *frag;
616         unsigned long frag_off;
617         unsigned long to_copy;
618         unsigned long copied;
619         uint64_t uncongested = 0;
620         void *addr;
621
622         /* catch completely corrupt packets */
623         if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
624                 return;
625
626         map = conn->c_fcong;
627         map_page = 0;
628         map_off = 0;
629
630         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
631         frag_off = 0;
632
633         copied = 0;
634
635         while (copied < RDS_CONG_MAP_BYTES) {
636                 uint64_t *src, *dst;
637                 unsigned int k;
638
639                 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
640                 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
641
642                 addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
643
644                 src = addr + frag_off;
645                 dst = (void *)map->m_page_addrs[map_page] + map_off;
646                 for (k = 0; k < to_copy; k += 8) {
647                         /* Record ports that became uncongested, ie
648                          * bits that changed from 0 to 1. */
649                         uncongested |= ~(*src) & *dst;
650                         *dst++ = *src++;
651                 }
652                 kunmap_atomic(addr, KM_SOFTIRQ0);
653
654                 copied += to_copy;
655
656                 map_off += to_copy;
657                 if (map_off == PAGE_SIZE) {
658                         map_off = 0;
659                         map_page++;
660                 }
661
662                 frag_off += to_copy;
663                 if (frag_off == RDS_FRAG_SIZE) {
664                         frag = list_entry(frag->f_item.next,
665                                           struct rds_page_frag, f_item);
666                         frag_off = 0;
667                 }
668         }
669
670         /* the congestion map is in little endian order */
671         uncongested = le64_to_cpu(uncongested);
672
673         rds_cong_map_updated(map, uncongested);
674 }
675
676 /*
677  * Rings are posted with all the allocations they'll need to queue the
678  * incoming message to the receiving socket so this can't fail.
679  * All fragments start with a header, so we can make sure we're not receiving
680  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
681  */
682 struct rds_ib_ack_state {
683         u64             ack_next;
684         u64             ack_recv;
685         unsigned int    ack_required:1;
686         unsigned int    ack_next_valid:1;
687         unsigned int    ack_recv_valid:1;
688 };
689
690 static void rds_ib_process_recv(struct rds_connection *conn,
691                                 struct rds_ib_recv_work *recv, u32 data_len,
692                                 struct rds_ib_ack_state *state)
693 {
694         struct rds_ib_connection *ic = conn->c_transport_data;
695         struct rds_ib_incoming *ibinc = ic->i_ibinc;
696         struct rds_header *ihdr, *hdr;
697
698         /* XXX shut down the connection if port 0,0 are seen? */
699
700         rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
701                  data_len);
702
703         if (data_len < sizeof(struct rds_header)) {
704                 rds_ib_conn_error(conn, "incoming message "
705                        "from %pI4 didn't inclue a "
706                        "header, disconnecting and "
707                        "reconnecting\n",
708                        &conn->c_faddr);
709                 return;
710         }
711         data_len -= sizeof(struct rds_header);
712
713         ihdr = rds_ib_get_header(conn, recv, data_len);
714
715         /* Validate the checksum. */
716         if (!rds_message_verify_checksum(ihdr)) {
717                 rds_ib_conn_error(conn, "incoming message "
718                        "from %pI4 has corrupted header - "
719                        "forcing a reconnect\n",
720                        &conn->c_faddr);
721                 rds_stats_inc(s_recv_drop_bad_checksum);
722                 return;
723         }
724
725         /* Process the ACK sequence which comes with every packet */
726         state->ack_recv = be64_to_cpu(ihdr->h_ack);
727         state->ack_recv_valid = 1;
728
729         /* Process the credits update if there was one */
730         if (ihdr->h_credit)
731                 rds_ib_send_add_credits(conn, ihdr->h_credit);
732
733         if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
734                 /* This is an ACK-only packet. The fact that it gets
735                  * special treatment here is that historically, ACKs
736                  * were rather special beasts.
737                  */
738                 rds_ib_stats_inc(s_ib_ack_received);
739
740                 /*
741                  * Usually the frags make their way on to incs and are then freed as
742                  * the inc is freed.  We don't go that route, so we have to drop the
743                  * page ref ourselves.  We can't just leave the page on the recv
744                  * because that confuses the dma mapping of pages and each recv's use
745                  * of a partial page.  We can leave the frag, though, it will be
746                  * reused.
747                  *
748                  * FIXME: Fold this into the code path below.
749                  */
750                 rds_ib_frag_drop_page(recv->r_frag);
751                 return;
752         }
753
754         /*
755          * If we don't already have an inc on the connection then this
756          * fragment has a header and starts a message.. copy its header
757          * into the inc and save the inc so we can hang upcoming fragments
758          * off its list.
759          */
760         if (ibinc == NULL) {
761                 ibinc = recv->r_ibinc;
762                 recv->r_ibinc = NULL;
763                 ic->i_ibinc = ibinc;
764
765                 hdr = &ibinc->ii_inc.i_hdr;
766                 memcpy(hdr, ihdr, sizeof(*hdr));
767                 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
768
769                 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
770                          ic->i_recv_data_rem, hdr->h_flags);
771         } else {
772                 hdr = &ibinc->ii_inc.i_hdr;
773                 /* We can't just use memcmp here; fragments of a
774                  * single message may carry different ACKs */
775                 if (hdr->h_sequence != ihdr->h_sequence ||
776                     hdr->h_len != ihdr->h_len ||
777                     hdr->h_sport != ihdr->h_sport ||
778                     hdr->h_dport != ihdr->h_dport) {
779                         rds_ib_conn_error(conn,
780                                 "fragment header mismatch; forcing reconnect\n");
781                         return;
782                 }
783         }
784
785         list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
786         recv->r_frag = NULL;
787
788         if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
789                 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
790         else {
791                 ic->i_recv_data_rem = 0;
792                 ic->i_ibinc = NULL;
793
794                 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
795                         rds_ib_cong_recv(conn, ibinc);
796                 else {
797                         rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
798                                           &ibinc->ii_inc, GFP_ATOMIC,
799                                           KM_SOFTIRQ0);
800                         state->ack_next = be64_to_cpu(hdr->h_sequence);
801                         state->ack_next_valid = 1;
802                 }
803
804                 /* Evaluate the ACK_REQUIRED flag *after* we received
805                  * the complete frame, and after bumping the next_rx
806                  * sequence. */
807                 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
808                         rds_stats_inc(s_recv_ack_required);
809                         state->ack_required = 1;
810                 }
811
812                 rds_inc_put(&ibinc->ii_inc);
813         }
814 }
815
816 /*
817  * Plucking the oldest entry from the ring can be done concurrently with
818  * the thread refilling the ring.  Each ring operation is protected by
819  * spinlocks and the transient state of refilling doesn't change the
820  * recording of which entry is oldest.
821  *
822  * This relies on IB only calling one cq comp_handler for each cq so that
823  * there will only be one caller of rds_recv_incoming() per RDS connection.
824  */
825 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
826 {
827         struct rds_connection *conn = context;
828         struct rds_ib_connection *ic = conn->c_transport_data;
829
830         rdsdebug("conn %p cq %p\n", conn, cq);
831
832         rds_ib_stats_inc(s_ib_rx_cq_call);
833
834         tasklet_schedule(&ic->i_recv_tasklet);
835 }
836
837 static inline void rds_poll_cq(struct rds_ib_connection *ic,
838                                struct rds_ib_ack_state *state)
839 {
840         struct rds_connection *conn = ic->conn;
841         struct ib_wc wc;
842         struct rds_ib_recv_work *recv;
843
844         while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
845                 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
846                          (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
847                          be32_to_cpu(wc.ex.imm_data));
848                 rds_ib_stats_inc(s_ib_rx_cq_event);
849
850                 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
851
852                 rds_ib_recv_unmap_page(ic, recv);
853
854                 /*
855                  * Also process recvs in connecting state because it is possible
856                  * to get a recv completion _before_ the rdmacm ESTABLISHED
857                  * event is processed.
858                  */
859                 if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
860                         /* We expect errors as the qp is drained during shutdown */
861                         if (wc.status == IB_WC_SUCCESS) {
862                                 rds_ib_process_recv(conn, recv, wc.byte_len, state);
863                         } else {
864                                 rds_ib_conn_error(conn, "recv completion on "
865                                        "%pI4 had status %u, disconnecting and "
866                                        "reconnecting\n", &conn->c_faddr,
867                                        wc.status);
868                         }
869                 }
870
871                 rds_ib_ring_free(&ic->i_recv_ring, 1);
872         }
873 }
874
875 void rds_ib_recv_tasklet_fn(unsigned long data)
876 {
877         struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
878         struct rds_connection *conn = ic->conn;
879         struct rds_ib_ack_state state = { 0, };
880
881         rds_poll_cq(ic, &state);
882         ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
883         rds_poll_cq(ic, &state);
884
885         if (state.ack_next_valid)
886                 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
887         if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
888                 rds_send_drop_acked(conn, state.ack_recv, NULL);
889                 ic->i_ack_recv = state.ack_recv;
890         }
891         if (rds_conn_up(conn))
892                 rds_ib_attempt_ack(ic);
893
894         /* If we ever end up with a really empty receive ring, we're
895          * in deep trouble, as the sender will definitely see RNR
896          * timeouts. */
897         if (rds_ib_ring_empty(&ic->i_recv_ring))
898                 rds_ib_stats_inc(s_ib_rx_ring_empty);
899
900         /*
901          * If the ring is running low, then schedule the thread to refill.
902          */
903         if (rds_ib_ring_low(&ic->i_recv_ring))
904                 queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
905 }
906
907 int rds_ib_recv(struct rds_connection *conn)
908 {
909         struct rds_ib_connection *ic = conn->c_transport_data;
910         int ret = 0;
911
912         rdsdebug("conn %p\n", conn);
913
914         /*
915          * If we get a temporary posting failure in this context then
916          * we're really low and we want the caller to back off for a bit.
917          */
918         mutex_lock(&ic->i_recv_mutex);
919         if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
920                 ret = -ENOMEM;
921         else
922                 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
923         mutex_unlock(&ic->i_recv_mutex);
924
925         if (rds_conn_up(conn))
926                 rds_ib_attempt_ack(ic);
927
928         return ret;
929 }
930
931 int __init rds_ib_recv_init(void)
932 {
933         struct sysinfo si;
934         int ret = -ENOMEM;
935
936         /* Default to 30% of all available RAM for recv memory */
937         si_meminfo(&si);
938         rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
939
940         rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
941                                         sizeof(struct rds_ib_incoming),
942                                         0, 0, NULL);
943         if (rds_ib_incoming_slab == NULL)
944                 goto out;
945
946         rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
947                                         sizeof(struct rds_page_frag),
948                                         0, 0, NULL);
949         if (rds_ib_frag_slab == NULL)
950                 kmem_cache_destroy(rds_ib_incoming_slab);
951         else
952                 ret = 0;
953 out:
954         return ret;
955 }
956
957 void rds_ib_recv_exit(void)
958 {
959         kmem_cache_destroy(rds_ib_incoming_slab);
960         kmem_cache_destroy(rds_ib_frag_slab);
961 }