Merge branch 'drm-fixes-4.3' of git://people.freedesktop.org/~agd5f/linux into drm...
[linux-drm-fsl-dcu.git] / net / rds / ib_rdma.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/rculist.h>
36 #include <linux/llist.h>
37
38 #include "rds.h"
39 #include "ib.h"
40
41 static DEFINE_PER_CPU(unsigned long, clean_list_grace);
42 #define CLEAN_LIST_BUSY_BIT 0
43
44 /*
45  * This is stored as mr->r_trans_private.
46  */
47 struct rds_ib_mr {
48         struct rds_ib_device    *device;
49         struct rds_ib_mr_pool   *pool;
50         struct ib_fmr           *fmr;
51
52         struct llist_node       llnode;
53
54         /* unmap_list is for freeing */
55         struct list_head        unmap_list;
56         unsigned int            remap_count;
57
58         struct scatterlist      *sg;
59         unsigned int            sg_len;
60         u64                     *dma;
61         int                     sg_dma_len;
62 };
63
64 /*
65  * Our own little FMR pool
66  */
67 struct rds_ib_mr_pool {
68         struct mutex            flush_lock;             /* serialize fmr invalidate */
69         struct delayed_work     flush_worker;           /* flush worker */
70
71         atomic_t                item_count;             /* total # of MRs */
72         atomic_t                dirty_count;            /* # dirty of MRs */
73
74         struct llist_head       drop_list;              /* MRs that have reached their max_maps limit */
75         struct llist_head       free_list;              /* unused MRs */
76         struct llist_head       clean_list;             /* global unused & unamapped MRs */
77         wait_queue_head_t       flush_wait;
78
79         atomic_t                free_pinned;            /* memory pinned by free MRs */
80         unsigned long           max_items;
81         unsigned long           max_items_soft;
82         unsigned long           max_free_pinned;
83         struct ib_fmr_attr      fmr_attr;
84 };
85
86 struct workqueue_struct *rds_ib_fmr_wq;
87
88 int rds_ib_fmr_init(void)
89 {
90         rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
91         if (!rds_ib_fmr_wq)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 /* By the time this is called all the IB devices should have been torn down and
97  * had their pools freed.  As each pool is freed its work struct is waited on,
98  * so the pool flushing work queue should be idle by the time we get here.
99  */
100 void rds_ib_fmr_exit(void)
101 {
102         destroy_workqueue(rds_ib_fmr_wq);
103 }
104
105 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
106 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
107 static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
108
109 static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
110 {
111         struct rds_ib_device *rds_ibdev;
112         struct rds_ib_ipaddr *i_ipaddr;
113
114         rcu_read_lock();
115         list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
116                 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
117                         if (i_ipaddr->ipaddr == ipaddr) {
118                                 atomic_inc(&rds_ibdev->refcount);
119                                 rcu_read_unlock();
120                                 return rds_ibdev;
121                         }
122                 }
123         }
124         rcu_read_unlock();
125
126         return NULL;
127 }
128
129 static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
130 {
131         struct rds_ib_ipaddr *i_ipaddr;
132
133         i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
134         if (!i_ipaddr)
135                 return -ENOMEM;
136
137         i_ipaddr->ipaddr = ipaddr;
138
139         spin_lock_irq(&rds_ibdev->spinlock);
140         list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
141         spin_unlock_irq(&rds_ibdev->spinlock);
142
143         return 0;
144 }
145
146 static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
147 {
148         struct rds_ib_ipaddr *i_ipaddr;
149         struct rds_ib_ipaddr *to_free = NULL;
150
151
152         spin_lock_irq(&rds_ibdev->spinlock);
153         list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
154                 if (i_ipaddr->ipaddr == ipaddr) {
155                         list_del_rcu(&i_ipaddr->list);
156                         to_free = i_ipaddr;
157                         break;
158                 }
159         }
160         spin_unlock_irq(&rds_ibdev->spinlock);
161
162         if (to_free) {
163                 synchronize_rcu();
164                 kfree(to_free);
165         }
166 }
167
168 int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
169 {
170         struct rds_ib_device *rds_ibdev_old;
171
172         rds_ibdev_old = rds_ib_get_device(ipaddr);
173         if (!rds_ibdev_old)
174                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
175
176         if (rds_ibdev_old != rds_ibdev) {
177                 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
178                 rds_ib_dev_put(rds_ibdev_old);
179                 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
180         }
181         rds_ib_dev_put(rds_ibdev_old);
182
183         return 0;
184 }
185
186 void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
187 {
188         struct rds_ib_connection *ic = conn->c_transport_data;
189
190         /* conn was previously on the nodev_conns_list */
191         spin_lock_irq(&ib_nodev_conns_lock);
192         BUG_ON(list_empty(&ib_nodev_conns));
193         BUG_ON(list_empty(&ic->ib_node));
194         list_del(&ic->ib_node);
195
196         spin_lock(&rds_ibdev->spinlock);
197         list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
198         spin_unlock(&rds_ibdev->spinlock);
199         spin_unlock_irq(&ib_nodev_conns_lock);
200
201         ic->rds_ibdev = rds_ibdev;
202         atomic_inc(&rds_ibdev->refcount);
203 }
204
205 void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
206 {
207         struct rds_ib_connection *ic = conn->c_transport_data;
208
209         /* place conn on nodev_conns_list */
210         spin_lock(&ib_nodev_conns_lock);
211
212         spin_lock_irq(&rds_ibdev->spinlock);
213         BUG_ON(list_empty(&ic->ib_node));
214         list_del(&ic->ib_node);
215         spin_unlock_irq(&rds_ibdev->spinlock);
216
217         list_add_tail(&ic->ib_node, &ib_nodev_conns);
218
219         spin_unlock(&ib_nodev_conns_lock);
220
221         ic->rds_ibdev = NULL;
222         rds_ib_dev_put(rds_ibdev);
223 }
224
225 void rds_ib_destroy_nodev_conns(void)
226 {
227         struct rds_ib_connection *ic, *_ic;
228         LIST_HEAD(tmp_list);
229
230         /* avoid calling conn_destroy with irqs off */
231         spin_lock_irq(&ib_nodev_conns_lock);
232         list_splice(&ib_nodev_conns, &tmp_list);
233         spin_unlock_irq(&ib_nodev_conns_lock);
234
235         list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
236                 rds_conn_destroy(ic->conn);
237 }
238
239 struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
240 {
241         struct rds_ib_mr_pool *pool;
242
243         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
244         if (!pool)
245                 return ERR_PTR(-ENOMEM);
246
247         init_llist_head(&pool->free_list);
248         init_llist_head(&pool->drop_list);
249         init_llist_head(&pool->clean_list);
250         mutex_init(&pool->flush_lock);
251         init_waitqueue_head(&pool->flush_wait);
252         INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
253
254         pool->fmr_attr.max_pages = fmr_message_size;
255         pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
256         pool->fmr_attr.page_shift = PAGE_SHIFT;
257         pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
258
259         /* We never allow more than max_items MRs to be allocated.
260          * When we exceed more than max_items_soft, we start freeing
261          * items more aggressively.
262          * Make sure that max_items > max_items_soft > max_items / 2
263          */
264         pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
265         pool->max_items = rds_ibdev->max_fmrs;
266
267         return pool;
268 }
269
270 void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
271 {
272         struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
273
274         iinfo->rdma_mr_max = pool->max_items;
275         iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
276 }
277
278 void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
279 {
280         cancel_delayed_work_sync(&pool->flush_worker);
281         rds_ib_flush_mr_pool(pool, 1, NULL);
282         WARN_ON(atomic_read(&pool->item_count));
283         WARN_ON(atomic_read(&pool->free_pinned));
284         kfree(pool);
285 }
286
287 static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
288 {
289         struct rds_ib_mr *ibmr = NULL;
290         struct llist_node *ret;
291         unsigned long *flag;
292
293         preempt_disable();
294         flag = this_cpu_ptr(&clean_list_grace);
295         set_bit(CLEAN_LIST_BUSY_BIT, flag);
296         ret = llist_del_first(&pool->clean_list);
297         if (ret)
298                 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
299
300         clear_bit(CLEAN_LIST_BUSY_BIT, flag);
301         preempt_enable();
302         return ibmr;
303 }
304
305 static inline void wait_clean_list_grace(void)
306 {
307         int cpu;
308         unsigned long *flag;
309
310         for_each_online_cpu(cpu) {
311                 flag = &per_cpu(clean_list_grace, cpu);
312                 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
313                         cpu_relax();
314         }
315 }
316
317 static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
318 {
319         struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
320         struct rds_ib_mr *ibmr = NULL;
321         int err = 0, iter = 0;
322
323         if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
324                 schedule_delayed_work(&pool->flush_worker, 10);
325
326         while (1) {
327                 ibmr = rds_ib_reuse_fmr(pool);
328                 if (ibmr)
329                         return ibmr;
330
331                 /* No clean MRs - now we have the choice of either
332                  * allocating a fresh MR up to the limit imposed by the
333                  * driver, or flush any dirty unused MRs.
334                  * We try to avoid stalling in the send path if possible,
335                  * so we allocate as long as we're allowed to.
336                  *
337                  * We're fussy with enforcing the FMR limit, though. If the driver
338                  * tells us we can't use more than N fmrs, we shouldn't start
339                  * arguing with it */
340                 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
341                         break;
342
343                 atomic_dec(&pool->item_count);
344
345                 if (++iter > 2) {
346                         rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
347                         return ERR_PTR(-EAGAIN);
348                 }
349
350                 /* We do have some empty MRs. Flush them out. */
351                 rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
352                 rds_ib_flush_mr_pool(pool, 0, &ibmr);
353                 if (ibmr)
354                         return ibmr;
355         }
356
357         ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
358         if (!ibmr) {
359                 err = -ENOMEM;
360                 goto out_no_cigar;
361         }
362
363         ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
364                         (IB_ACCESS_LOCAL_WRITE |
365                          IB_ACCESS_REMOTE_READ |
366                          IB_ACCESS_REMOTE_WRITE|
367                          IB_ACCESS_REMOTE_ATOMIC),
368                         &pool->fmr_attr);
369         if (IS_ERR(ibmr->fmr)) {
370                 err = PTR_ERR(ibmr->fmr);
371                 ibmr->fmr = NULL;
372                 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
373                 goto out_no_cigar;
374         }
375
376         rds_ib_stats_inc(s_ib_rdma_mr_alloc);
377         return ibmr;
378
379 out_no_cigar:
380         if (ibmr) {
381                 if (ibmr->fmr)
382                         ib_dealloc_fmr(ibmr->fmr);
383                 kfree(ibmr);
384         }
385         atomic_dec(&pool->item_count);
386         return ERR_PTR(err);
387 }
388
389 static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
390                struct scatterlist *sg, unsigned int nents)
391 {
392         struct ib_device *dev = rds_ibdev->dev;
393         struct scatterlist *scat = sg;
394         u64 io_addr = 0;
395         u64 *dma_pages;
396         u32 len;
397         int page_cnt, sg_dma_len;
398         int i, j;
399         int ret;
400
401         sg_dma_len = ib_dma_map_sg(dev, sg, nents,
402                                  DMA_BIDIRECTIONAL);
403         if (unlikely(!sg_dma_len)) {
404                 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
405                 return -EBUSY;
406         }
407
408         len = 0;
409         page_cnt = 0;
410
411         for (i = 0; i < sg_dma_len; ++i) {
412                 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
413                 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
414
415                 if (dma_addr & ~PAGE_MASK) {
416                         if (i > 0)
417                                 return -EINVAL;
418                         else
419                                 ++page_cnt;
420                 }
421                 if ((dma_addr + dma_len) & ~PAGE_MASK) {
422                         if (i < sg_dma_len - 1)
423                                 return -EINVAL;
424                         else
425                                 ++page_cnt;
426                 }
427
428                 len += dma_len;
429         }
430
431         page_cnt += len >> PAGE_SHIFT;
432         if (page_cnt > fmr_message_size)
433                 return -EINVAL;
434
435         dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
436                                  rdsibdev_to_node(rds_ibdev));
437         if (!dma_pages)
438                 return -ENOMEM;
439
440         page_cnt = 0;
441         for (i = 0; i < sg_dma_len; ++i) {
442                 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
443                 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
444
445                 for (j = 0; j < dma_len; j += PAGE_SIZE)
446                         dma_pages[page_cnt++] =
447                                 (dma_addr & PAGE_MASK) + j;
448         }
449
450         ret = ib_map_phys_fmr(ibmr->fmr,
451                                    dma_pages, page_cnt, io_addr);
452         if (ret)
453                 goto out;
454
455         /* Success - we successfully remapped the MR, so we can
456          * safely tear down the old mapping. */
457         rds_ib_teardown_mr(ibmr);
458
459         ibmr->sg = scat;
460         ibmr->sg_len = nents;
461         ibmr->sg_dma_len = sg_dma_len;
462         ibmr->remap_count++;
463
464         rds_ib_stats_inc(s_ib_rdma_mr_used);
465         ret = 0;
466
467 out:
468         kfree(dma_pages);
469
470         return ret;
471 }
472
473 void rds_ib_sync_mr(void *trans_private, int direction)
474 {
475         struct rds_ib_mr *ibmr = trans_private;
476         struct rds_ib_device *rds_ibdev = ibmr->device;
477
478         switch (direction) {
479         case DMA_FROM_DEVICE:
480                 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
481                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
482                 break;
483         case DMA_TO_DEVICE:
484                 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
485                         ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
486                 break;
487         }
488 }
489
490 static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
491 {
492         struct rds_ib_device *rds_ibdev = ibmr->device;
493
494         if (ibmr->sg_dma_len) {
495                 ib_dma_unmap_sg(rds_ibdev->dev,
496                                 ibmr->sg, ibmr->sg_len,
497                                 DMA_BIDIRECTIONAL);
498                 ibmr->sg_dma_len = 0;
499         }
500
501         /* Release the s/g list */
502         if (ibmr->sg_len) {
503                 unsigned int i;
504
505                 for (i = 0; i < ibmr->sg_len; ++i) {
506                         struct page *page = sg_page(&ibmr->sg[i]);
507
508                         /* FIXME we need a way to tell a r/w MR
509                          * from a r/o MR */
510                         WARN_ON(!page->mapping && irqs_disabled());
511                         set_page_dirty(page);
512                         put_page(page);
513                 }
514                 kfree(ibmr->sg);
515
516                 ibmr->sg = NULL;
517                 ibmr->sg_len = 0;
518         }
519 }
520
521 static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
522 {
523         unsigned int pinned = ibmr->sg_len;
524
525         __rds_ib_teardown_mr(ibmr);
526         if (pinned) {
527                 struct rds_ib_device *rds_ibdev = ibmr->device;
528                 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
529
530                 atomic_sub(pinned, &pool->free_pinned);
531         }
532 }
533
534 static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
535 {
536         unsigned int item_count;
537
538         item_count = atomic_read(&pool->item_count);
539         if (free_all)
540                 return item_count;
541
542         return 0;
543 }
544
545 /*
546  * given an llist of mrs, put them all into the list_head for more processing
547  */
548 static unsigned int llist_append_to_list(struct llist_head *llist,
549                                          struct list_head *list)
550 {
551         struct rds_ib_mr *ibmr;
552         struct llist_node *node;
553         struct llist_node *next;
554         unsigned int count = 0;
555
556         node = llist_del_all(llist);
557         while (node) {
558                 next = node->next;
559                 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
560                 list_add_tail(&ibmr->unmap_list, list);
561                 node = next;
562                 count++;
563         }
564         return count;
565 }
566
567 /*
568  * this takes a list head of mrs and turns it into linked llist nodes
569  * of clusters.  Each cluster has linked llist nodes of
570  * MR_CLUSTER_SIZE mrs that are ready for reuse.
571  */
572 static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
573                                 struct list_head *list,
574                                 struct llist_node **nodes_head,
575                                 struct llist_node **nodes_tail)
576 {
577         struct rds_ib_mr *ibmr;
578         struct llist_node *cur = NULL;
579         struct llist_node **next = nodes_head;
580
581         list_for_each_entry(ibmr, list, unmap_list) {
582                 cur = &ibmr->llnode;
583                 *next = cur;
584                 next = &cur->next;
585         }
586         *next = NULL;
587         *nodes_tail = cur;
588 }
589
590 /*
591  * Flush our pool of MRs.
592  * At a minimum, all currently unused MRs are unmapped.
593  * If the number of MRs allocated exceeds the limit, we also try
594  * to free as many MRs as needed to get back to this limit.
595  */
596 static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
597                                 int free_all, struct rds_ib_mr **ibmr_ret)
598 {
599         struct rds_ib_mr *ibmr, *next;
600         struct llist_node *clean_nodes;
601         struct llist_node *clean_tail;
602         LIST_HEAD(unmap_list);
603         LIST_HEAD(fmr_list);
604         unsigned long unpinned = 0;
605         unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
606         int ret = 0;
607
608         rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
609
610         if (ibmr_ret) {
611                 DEFINE_WAIT(wait);
612                 while(!mutex_trylock(&pool->flush_lock)) {
613                         ibmr = rds_ib_reuse_fmr(pool);
614                         if (ibmr) {
615                                 *ibmr_ret = ibmr;
616                                 finish_wait(&pool->flush_wait, &wait);
617                                 goto out_nolock;
618                         }
619
620                         prepare_to_wait(&pool->flush_wait, &wait,
621                                         TASK_UNINTERRUPTIBLE);
622                         if (llist_empty(&pool->clean_list))
623                                 schedule();
624
625                         ibmr = rds_ib_reuse_fmr(pool);
626                         if (ibmr) {
627                                 *ibmr_ret = ibmr;
628                                 finish_wait(&pool->flush_wait, &wait);
629                                 goto out_nolock;
630                         }
631                 }
632                 finish_wait(&pool->flush_wait, &wait);
633         } else
634                 mutex_lock(&pool->flush_lock);
635
636         if (ibmr_ret) {
637                 ibmr = rds_ib_reuse_fmr(pool);
638                 if (ibmr) {
639                         *ibmr_ret = ibmr;
640                         goto out;
641                 }
642         }
643
644         /* Get the list of all MRs to be dropped. Ordering matters -
645          * we want to put drop_list ahead of free_list.
646          */
647         dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
648         dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
649         if (free_all)
650                 llist_append_to_list(&pool->clean_list, &unmap_list);
651
652         free_goal = rds_ib_flush_goal(pool, free_all);
653
654         if (list_empty(&unmap_list))
655                 goto out;
656
657         /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
658         list_for_each_entry(ibmr, &unmap_list, unmap_list)
659                 list_add(&ibmr->fmr->list, &fmr_list);
660
661         ret = ib_unmap_fmr(&fmr_list);
662         if (ret)
663                 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
664
665         /* Now we can destroy the DMA mapping and unpin any pages */
666         list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
667                 unpinned += ibmr->sg_len;
668                 __rds_ib_teardown_mr(ibmr);
669                 if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
670                         rds_ib_stats_inc(s_ib_rdma_mr_free);
671                         list_del(&ibmr->unmap_list);
672                         ib_dealloc_fmr(ibmr->fmr);
673                         kfree(ibmr);
674                         nfreed++;
675                 }
676         }
677
678         if (!list_empty(&unmap_list)) {
679                 /* we have to make sure that none of the things we're about
680                  * to put on the clean list would race with other cpus trying
681                  * to pull items off.  The llist would explode if we managed to
682                  * remove something from the clean list and then add it back again
683                  * while another CPU was spinning on that same item in llist_del_first.
684                  *
685                  * This is pretty unlikely, but just in case  wait for an llist grace period
686                  * here before adding anything back into the clean list.
687                  */
688                 wait_clean_list_grace();
689
690                 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
691                 if (ibmr_ret)
692                         *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
693
694                 /* more than one entry in llist nodes */
695                 if (clean_nodes->next)
696                         llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
697
698         }
699
700         atomic_sub(unpinned, &pool->free_pinned);
701         atomic_sub(dirty_to_clean, &pool->dirty_count);
702         atomic_sub(nfreed, &pool->item_count);
703
704 out:
705         mutex_unlock(&pool->flush_lock);
706         if (waitqueue_active(&pool->flush_wait))
707                 wake_up(&pool->flush_wait);
708 out_nolock:
709         return ret;
710 }
711
712 static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
713 {
714         struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
715
716         rds_ib_flush_mr_pool(pool, 0, NULL);
717 }
718
719 void rds_ib_free_mr(void *trans_private, int invalidate)
720 {
721         struct rds_ib_mr *ibmr = trans_private;
722         struct rds_ib_device *rds_ibdev = ibmr->device;
723         struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
724
725         rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
726
727         /* Return it to the pool's free list */
728         if (ibmr->remap_count >= pool->fmr_attr.max_maps)
729                 llist_add(&ibmr->llnode, &pool->drop_list);
730         else
731                 llist_add(&ibmr->llnode, &pool->free_list);
732
733         atomic_add(ibmr->sg_len, &pool->free_pinned);
734         atomic_inc(&pool->dirty_count);
735
736         /* If we've pinned too many pages, request a flush */
737         if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
738             atomic_read(&pool->dirty_count) >= pool->max_items / 5)
739                 queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
740
741         if (invalidate) {
742                 if (likely(!in_interrupt())) {
743                         rds_ib_flush_mr_pool(pool, 0, NULL);
744                 } else {
745                         /* We get here if the user created a MR marked
746                          * as use_once and invalidate at the same time.
747                          */
748                         queue_delayed_work(rds_ib_fmr_wq,
749                                            &pool->flush_worker, 10);
750                 }
751         }
752
753         rds_ib_dev_put(rds_ibdev);
754 }
755
756 void rds_ib_flush_mrs(void)
757 {
758         struct rds_ib_device *rds_ibdev;
759
760         down_read(&rds_ib_devices_lock);
761         list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
762                 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
763
764                 if (pool)
765                         rds_ib_flush_mr_pool(pool, 0, NULL);
766         }
767         up_read(&rds_ib_devices_lock);
768 }
769
770 void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
771                     struct rds_sock *rs, u32 *key_ret)
772 {
773         struct rds_ib_device *rds_ibdev;
774         struct rds_ib_mr *ibmr = NULL;
775         int ret;
776
777         rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
778         if (!rds_ibdev) {
779                 ret = -ENODEV;
780                 goto out;
781         }
782
783         if (!rds_ibdev->mr_pool) {
784                 ret = -ENODEV;
785                 goto out;
786         }
787
788         ibmr = rds_ib_alloc_fmr(rds_ibdev);
789         if (IS_ERR(ibmr)) {
790                 rds_ib_dev_put(rds_ibdev);
791                 return ibmr;
792         }
793
794         ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
795         if (ret == 0)
796                 *key_ret = ibmr->fmr->rkey;
797         else
798                 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
799
800         ibmr->device = rds_ibdev;
801         rds_ibdev = NULL;
802
803  out:
804         if (ret) {
805                 if (ibmr)
806                         rds_ib_free_mr(ibmr, 0);
807                 ibmr = ERR_PTR(ret);
808         }
809         if (rds_ibdev)
810                 rds_ib_dev_put(rds_ibdev);
811         return ibmr;
812 }
813