Merge tag 'for-linus-4.3-rc0b-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-drm-fsl-dcu.git] / net / openvswitch / flow_netlink.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51
52 #include "flow_netlink.h"
53
54 struct ovs_len_tbl {
55         int len;
56         const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60
61 static void update_range(struct sw_flow_match *match,
62                          size_t offset, size_t size, bool is_mask)
63 {
64         struct sw_flow_key_range *range;
65         size_t start = rounddown(offset, sizeof(long));
66         size_t end = roundup(offset + size, sizeof(long));
67
68         if (!is_mask)
69                 range = &match->range;
70         else
71                 range = &match->mask->range;
72
73         if (range->start == range->end) {
74                 range->start = start;
75                 range->end = end;
76                 return;
77         }
78
79         if (range->start > start)
80                 range->start = start;
81
82         if (range->end < end)
83                 range->end = end;
84 }
85
86 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
87         do { \
88                 update_range(match, offsetof(struct sw_flow_key, field),    \
89                              sizeof((match)->key->field), is_mask);         \
90                 if (is_mask)                                                \
91                         (match)->mask->key.field = value;                   \
92                 else                                                        \
93                         (match)->key->field = value;                        \
94         } while (0)
95
96 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)     \
97         do {                                                                \
98                 update_range(match, offset, len, is_mask);                  \
99                 if (is_mask)                                                \
100                         memcpy((u8 *)&(match)->mask->key + offset, value_p, \
101                                len);                                       \
102                 else                                                        \
103                         memcpy((u8 *)(match)->key + offset, value_p, len);  \
104         } while (0)
105
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)               \
107         SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108                                   value_p, len, is_mask)
109
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)              \
111         do {                                                                \
112                 update_range(match, offsetof(struct sw_flow_key, field),    \
113                              sizeof((match)->key->field), is_mask);         \
114                 if (is_mask)                                                \
115                         memset((u8 *)&(match)->mask->key.field, value,      \
116                                sizeof((match)->mask->key.field));           \
117                 else                                                        \
118                         memset((u8 *)&(match)->key->field, value,           \
119                                sizeof((match)->key->field));                \
120         } while (0)
121
122 static bool match_validate(const struct sw_flow_match *match,
123                            u64 key_attrs, u64 mask_attrs, bool log)
124 {
125         u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
126         u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
127
128         /* The following mask attributes allowed only if they
129          * pass the validation tests. */
130         mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
131                         | (1 << OVS_KEY_ATTR_IPV6)
132                         | (1 << OVS_KEY_ATTR_TCP)
133                         | (1 << OVS_KEY_ATTR_TCP_FLAGS)
134                         | (1 << OVS_KEY_ATTR_UDP)
135                         | (1 << OVS_KEY_ATTR_SCTP)
136                         | (1 << OVS_KEY_ATTR_ICMP)
137                         | (1 << OVS_KEY_ATTR_ICMPV6)
138                         | (1 << OVS_KEY_ATTR_ARP)
139                         | (1 << OVS_KEY_ATTR_ND)
140                         | (1 << OVS_KEY_ATTR_MPLS));
141
142         /* Always allowed mask fields. */
143         mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
144                        | (1 << OVS_KEY_ATTR_IN_PORT)
145                        | (1 << OVS_KEY_ATTR_ETHERTYPE));
146
147         /* Check key attributes. */
148         if (match->key->eth.type == htons(ETH_P_ARP)
149                         || match->key->eth.type == htons(ETH_P_RARP)) {
150                 key_expected |= 1 << OVS_KEY_ATTR_ARP;
151                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
152                         mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
153         }
154
155         if (eth_p_mpls(match->key->eth.type)) {
156                 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
157                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
158                         mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
159         }
160
161         if (match->key->eth.type == htons(ETH_P_IP)) {
162                 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
163                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
164                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
165
166                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
167                         if (match->key->ip.proto == IPPROTO_UDP) {
168                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
169                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
170                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
171                         }
172
173                         if (match->key->ip.proto == IPPROTO_SCTP) {
174                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
175                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
176                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
177                         }
178
179                         if (match->key->ip.proto == IPPROTO_TCP) {
180                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
181                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
182                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
183                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
184                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
185                                 }
186                         }
187
188                         if (match->key->ip.proto == IPPROTO_ICMP) {
189                                 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
190                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
191                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
192                         }
193                 }
194         }
195
196         if (match->key->eth.type == htons(ETH_P_IPV6)) {
197                 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
198                 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
199                         mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
200
201                 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202                         if (match->key->ip.proto == IPPROTO_UDP) {
203                                 key_expected |= 1 << OVS_KEY_ATTR_UDP;
204                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
205                                         mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206                         }
207
208                         if (match->key->ip.proto == IPPROTO_SCTP) {
209                                 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
211                                         mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212                         }
213
214                         if (match->key->ip.proto == IPPROTO_TCP) {
215                                 key_expected |= 1 << OVS_KEY_ATTR_TCP;
216                                 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217                                 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219                                         mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220                                 }
221                         }
222
223                         if (match->key->ip.proto == IPPROTO_ICMPV6) {
224                                 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
225                                 if (match->mask && (match->mask->key.ip.proto == 0xff))
226                                         mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
227
228                                 if (match->key->tp.src ==
229                                                 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
230                                     match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
231                                         key_expected |= 1 << OVS_KEY_ATTR_ND;
232                                         if (match->mask && (match->mask->key.tp.src == htons(0xff)))
233                                                 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
234                                 }
235                         }
236                 }
237         }
238
239         if ((key_attrs & key_expected) != key_expected) {
240                 /* Key attributes check failed. */
241                 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
242                           (unsigned long long)key_attrs,
243                           (unsigned long long)key_expected);
244                 return false;
245         }
246
247         if ((mask_attrs & mask_allowed) != mask_attrs) {
248                 /* Mask attributes check failed. */
249                 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
250                           (unsigned long long)mask_attrs,
251                           (unsigned long long)mask_allowed);
252                 return false;
253         }
254
255         return true;
256 }
257
258 size_t ovs_tun_key_attr_size(void)
259 {
260         /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
261          * updating this function.
262          */
263         return    nla_total_size(8)    /* OVS_TUNNEL_KEY_ATTR_ID */
264                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
265                 + nla_total_size(4)    /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
266                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
267                 + nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
268                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
269                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
270                 + nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
271                 + nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272                 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
273                  * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
274                  */
275                 + nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
276                 + nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
277 }
278
279 size_t ovs_key_attr_size(void)
280 {
281         /* Whenever adding new OVS_KEY_ FIELDS, we should consider
282          * updating this function.
283          */
284         BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
285
286         return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
287                 + nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
288                   + ovs_tun_key_attr_size()
289                 + nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
290                 + nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
291                 + nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
292                 + nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
293                 + nla_total_size(1)   /* OVS_KEY_ATTR_CT_STATE */
294                 + nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
295                 + nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
296                 + nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABEL */
297                 + nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
298                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
299                 + nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
300                 + nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
301                 + nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
302                 + nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
303                 + nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
304                 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
305 }
306
307 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
308         [OVS_TUNNEL_KEY_ATTR_ID]            = { .len = sizeof(u64) },
309         [OVS_TUNNEL_KEY_ATTR_IPV4_SRC]      = { .len = sizeof(u32) },
310         [OVS_TUNNEL_KEY_ATTR_IPV4_DST]      = { .len = sizeof(u32) },
311         [OVS_TUNNEL_KEY_ATTR_TOS]           = { .len = 1 },
312         [OVS_TUNNEL_KEY_ATTR_TTL]           = { .len = 1 },
313         [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
314         [OVS_TUNNEL_KEY_ATTR_CSUM]          = { .len = 0 },
315         [OVS_TUNNEL_KEY_ATTR_TP_SRC]        = { .len = sizeof(u16) },
316         [OVS_TUNNEL_KEY_ATTR_TP_DST]        = { .len = sizeof(u16) },
317         [OVS_TUNNEL_KEY_ATTR_OAM]           = { .len = 0 },
318         [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_NESTED },
319         [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED },
320 };
321
322 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
323 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
324         [OVS_KEY_ATTR_ENCAP]     = { .len = OVS_ATTR_NESTED },
325         [OVS_KEY_ATTR_PRIORITY]  = { .len = sizeof(u32) },
326         [OVS_KEY_ATTR_IN_PORT]   = { .len = sizeof(u32) },
327         [OVS_KEY_ATTR_SKB_MARK]  = { .len = sizeof(u32) },
328         [OVS_KEY_ATTR_ETHERNET]  = { .len = sizeof(struct ovs_key_ethernet) },
329         [OVS_KEY_ATTR_VLAN]      = { .len = sizeof(__be16) },
330         [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
331         [OVS_KEY_ATTR_IPV4]      = { .len = sizeof(struct ovs_key_ipv4) },
332         [OVS_KEY_ATTR_IPV6]      = { .len = sizeof(struct ovs_key_ipv6) },
333         [OVS_KEY_ATTR_TCP]       = { .len = sizeof(struct ovs_key_tcp) },
334         [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
335         [OVS_KEY_ATTR_UDP]       = { .len = sizeof(struct ovs_key_udp) },
336         [OVS_KEY_ATTR_SCTP]      = { .len = sizeof(struct ovs_key_sctp) },
337         [OVS_KEY_ATTR_ICMP]      = { .len = sizeof(struct ovs_key_icmp) },
338         [OVS_KEY_ATTR_ICMPV6]    = { .len = sizeof(struct ovs_key_icmpv6) },
339         [OVS_KEY_ATTR_ARP]       = { .len = sizeof(struct ovs_key_arp) },
340         [OVS_KEY_ATTR_ND]        = { .len = sizeof(struct ovs_key_nd) },
341         [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
342         [OVS_KEY_ATTR_DP_HASH]   = { .len = sizeof(u32) },
343         [OVS_KEY_ATTR_TUNNEL]    = { .len = OVS_ATTR_NESTED,
344                                      .next = ovs_tunnel_key_lens, },
345         [OVS_KEY_ATTR_MPLS]      = { .len = sizeof(struct ovs_key_mpls) },
346         [OVS_KEY_ATTR_CT_STATE]  = { .len = sizeof(u8) },
347         [OVS_KEY_ATTR_CT_ZONE]   = { .len = sizeof(u16) },
348         [OVS_KEY_ATTR_CT_MARK]   = { .len = sizeof(u32) },
349         [OVS_KEY_ATTR_CT_LABEL]  = { .len = sizeof(struct ovs_key_ct_label) },
350 };
351
352 static bool is_all_zero(const u8 *fp, size_t size)
353 {
354         int i;
355
356         if (!fp)
357                 return false;
358
359         for (i = 0; i < size; i++)
360                 if (fp[i])
361                         return false;
362
363         return true;
364 }
365
366 static int __parse_flow_nlattrs(const struct nlattr *attr,
367                                 const struct nlattr *a[],
368                                 u64 *attrsp, bool log, bool nz)
369 {
370         const struct nlattr *nla;
371         u64 attrs;
372         int rem;
373
374         attrs = *attrsp;
375         nla_for_each_nested(nla, attr, rem) {
376                 u16 type = nla_type(nla);
377                 int expected_len;
378
379                 if (type > OVS_KEY_ATTR_MAX) {
380                         OVS_NLERR(log, "Key type %d is out of range max %d",
381                                   type, OVS_KEY_ATTR_MAX);
382                         return -EINVAL;
383                 }
384
385                 if (attrs & (1 << type)) {
386                         OVS_NLERR(log, "Duplicate key (type %d).", type);
387                         return -EINVAL;
388                 }
389
390                 expected_len = ovs_key_lens[type].len;
391                 if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
392                         OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
393                                   type, nla_len(nla), expected_len);
394                         return -EINVAL;
395                 }
396
397                 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
398                         attrs |= 1 << type;
399                         a[type] = nla;
400                 }
401         }
402         if (rem) {
403                 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
404                 return -EINVAL;
405         }
406
407         *attrsp = attrs;
408         return 0;
409 }
410
411 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
412                                    const struct nlattr *a[], u64 *attrsp,
413                                    bool log)
414 {
415         return __parse_flow_nlattrs(attr, a, attrsp, log, true);
416 }
417
418 static int parse_flow_nlattrs(const struct nlattr *attr,
419                               const struct nlattr *a[], u64 *attrsp,
420                               bool log)
421 {
422         return __parse_flow_nlattrs(attr, a, attrsp, log, false);
423 }
424
425 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
426                                      struct sw_flow_match *match, bool is_mask,
427                                      bool log)
428 {
429         unsigned long opt_key_offset;
430
431         if (nla_len(a) > sizeof(match->key->tun_opts)) {
432                 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
433                           nla_len(a), sizeof(match->key->tun_opts));
434                 return -EINVAL;
435         }
436
437         if (nla_len(a) % 4 != 0) {
438                 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
439                           nla_len(a));
440                 return -EINVAL;
441         }
442
443         /* We need to record the length of the options passed
444          * down, otherwise packets with the same format but
445          * additional options will be silently matched.
446          */
447         if (!is_mask) {
448                 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
449                                 false);
450         } else {
451                 /* This is somewhat unusual because it looks at
452                  * both the key and mask while parsing the
453                  * attributes (and by extension assumes the key
454                  * is parsed first). Normally, we would verify
455                  * that each is the correct length and that the
456                  * attributes line up in the validate function.
457                  * However, that is difficult because this is
458                  * variable length and we won't have the
459                  * information later.
460                  */
461                 if (match->key->tun_opts_len != nla_len(a)) {
462                         OVS_NLERR(log, "Geneve option len %d != mask len %d",
463                                   match->key->tun_opts_len, nla_len(a));
464                         return -EINVAL;
465                 }
466
467                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
468         }
469
470         opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
471         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
472                                   nla_len(a), is_mask);
473         return 0;
474 }
475
476 static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
477         [OVS_VXLAN_EXT_GBP]     = { .type = NLA_U32 },
478 };
479
480 static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
481                                      struct sw_flow_match *match, bool is_mask,
482                                      bool log)
483 {
484         struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
485         unsigned long opt_key_offset;
486         struct vxlan_metadata opts;
487         int err;
488
489         BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
490
491         err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
492         if (err < 0)
493                 return err;
494
495         memset(&opts, 0, sizeof(opts));
496
497         if (tb[OVS_VXLAN_EXT_GBP])
498                 opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);
499
500         if (!is_mask)
501                 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
502         else
503                 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
504
505         opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
506         SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
507                                   is_mask);
508         return 0;
509 }
510
511 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
512                                 struct sw_flow_match *match, bool is_mask,
513                                 bool log)
514 {
515         struct nlattr *a;
516         int rem;
517         bool ttl = false;
518         __be16 tun_flags = 0;
519         int opts_type = 0;
520
521         nla_for_each_nested(a, attr, rem) {
522                 int type = nla_type(a);
523                 int err;
524
525                 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
526                         OVS_NLERR(log, "Tunnel attr %d out of range max %d",
527                                   type, OVS_TUNNEL_KEY_ATTR_MAX);
528                         return -EINVAL;
529                 }
530
531                 if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
532                     ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
533                         OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
534                                   type, nla_len(a), ovs_tunnel_key_lens[type].len);
535                         return -EINVAL;
536                 }
537
538                 switch (type) {
539                 case OVS_TUNNEL_KEY_ATTR_ID:
540                         SW_FLOW_KEY_PUT(match, tun_key.tun_id,
541                                         nla_get_be64(a), is_mask);
542                         tun_flags |= TUNNEL_KEY;
543                         break;
544                 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
545                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
546                                         nla_get_in_addr(a), is_mask);
547                         break;
548                 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
549                         SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
550                                         nla_get_in_addr(a), is_mask);
551                         break;
552                 case OVS_TUNNEL_KEY_ATTR_TOS:
553                         SW_FLOW_KEY_PUT(match, tun_key.tos,
554                                         nla_get_u8(a), is_mask);
555                         break;
556                 case OVS_TUNNEL_KEY_ATTR_TTL:
557                         SW_FLOW_KEY_PUT(match, tun_key.ttl,
558                                         nla_get_u8(a), is_mask);
559                         ttl = true;
560                         break;
561                 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
562                         tun_flags |= TUNNEL_DONT_FRAGMENT;
563                         break;
564                 case OVS_TUNNEL_KEY_ATTR_CSUM:
565                         tun_flags |= TUNNEL_CSUM;
566                         break;
567                 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
568                         SW_FLOW_KEY_PUT(match, tun_key.tp_src,
569                                         nla_get_be16(a), is_mask);
570                         break;
571                 case OVS_TUNNEL_KEY_ATTR_TP_DST:
572                         SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
573                                         nla_get_be16(a), is_mask);
574                         break;
575                 case OVS_TUNNEL_KEY_ATTR_OAM:
576                         tun_flags |= TUNNEL_OAM;
577                         break;
578                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
579                         if (opts_type) {
580                                 OVS_NLERR(log, "Multiple metadata blocks provided");
581                                 return -EINVAL;
582                         }
583
584                         err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
585                         if (err)
586                                 return err;
587
588                         tun_flags |= TUNNEL_GENEVE_OPT;
589                         opts_type = type;
590                         break;
591                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
592                         if (opts_type) {
593                                 OVS_NLERR(log, "Multiple metadata blocks provided");
594                                 return -EINVAL;
595                         }
596
597                         err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
598                         if (err)
599                                 return err;
600
601                         tun_flags |= TUNNEL_VXLAN_OPT;
602                         opts_type = type;
603                         break;
604                 default:
605                         OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
606                                   type);
607                         return -EINVAL;
608                 }
609         }
610
611         SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
612
613         if (rem > 0) {
614                 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
615                           rem);
616                 return -EINVAL;
617         }
618
619         if (!is_mask) {
620                 if (!match->key->tun_key.u.ipv4.dst) {
621                         OVS_NLERR(log, "IPv4 tunnel dst address is zero");
622                         return -EINVAL;
623                 }
624
625                 if (!ttl) {
626                         OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
627                         return -EINVAL;
628                 }
629         }
630
631         return opts_type;
632 }
633
634 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
635                                const void *tun_opts, int swkey_tun_opts_len)
636 {
637         const struct vxlan_metadata *opts = tun_opts;
638         struct nlattr *nla;
639
640         nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
641         if (!nla)
642                 return -EMSGSIZE;
643
644         if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
645                 return -EMSGSIZE;
646
647         nla_nest_end(skb, nla);
648         return 0;
649 }
650
651 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
652                                 const struct ip_tunnel_key *output,
653                                 const void *tun_opts, int swkey_tun_opts_len)
654 {
655         if (output->tun_flags & TUNNEL_KEY &&
656             nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
657                 return -EMSGSIZE;
658         if (output->u.ipv4.src &&
659             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
660                             output->u.ipv4.src))
661                 return -EMSGSIZE;
662         if (output->u.ipv4.dst &&
663             nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
664                             output->u.ipv4.dst))
665                 return -EMSGSIZE;
666         if (output->tos &&
667             nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
668                 return -EMSGSIZE;
669         if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
670                 return -EMSGSIZE;
671         if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
672             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
673                 return -EMSGSIZE;
674         if ((output->tun_flags & TUNNEL_CSUM) &&
675             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
676                 return -EMSGSIZE;
677         if (output->tp_src &&
678             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
679                 return -EMSGSIZE;
680         if (output->tp_dst &&
681             nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
682                 return -EMSGSIZE;
683         if ((output->tun_flags & TUNNEL_OAM) &&
684             nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
685                 return -EMSGSIZE;
686         if (tun_opts) {
687                 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
688                     nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
689                             swkey_tun_opts_len, tun_opts))
690                         return -EMSGSIZE;
691                 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
692                          vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
693                         return -EMSGSIZE;
694         }
695
696         return 0;
697 }
698
699 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
700                               const struct ip_tunnel_key *output,
701                               const void *tun_opts, int swkey_tun_opts_len)
702 {
703         struct nlattr *nla;
704         int err;
705
706         nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
707         if (!nla)
708                 return -EMSGSIZE;
709
710         err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
711         if (err)
712                 return err;
713
714         nla_nest_end(skb, nla);
715         return 0;
716 }
717
718 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
719                                   const struct ip_tunnel_info *egress_tun_info,
720                                   const void *egress_tun_opts)
721 {
722         return __ipv4_tun_to_nlattr(skb, &egress_tun_info->key,
723                                     egress_tun_opts,
724                                     egress_tun_info->options_len);
725 }
726
727 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
728                                  u64 *attrs, const struct nlattr **a,
729                                  bool is_mask, bool log)
730 {
731         if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
732                 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
733
734                 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
735                 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
736         }
737
738         if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
739                 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
740
741                 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
742                 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
743         }
744
745         if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
746                 SW_FLOW_KEY_PUT(match, phy.priority,
747                           nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
748                 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
749         }
750
751         if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
752                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
753
754                 if (is_mask) {
755                         in_port = 0xffffffff; /* Always exact match in_port. */
756                 } else if (in_port >= DP_MAX_PORTS) {
757                         OVS_NLERR(log, "Port %d exceeds max allowable %d",
758                                   in_port, DP_MAX_PORTS);
759                         return -EINVAL;
760                 }
761
762                 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
763                 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
764         } else if (!is_mask) {
765                 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
766         }
767
768         if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
769                 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
770
771                 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
772                 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
773         }
774         if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
775                 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
776                                          is_mask, log) < 0)
777                         return -EINVAL;
778                 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
779         }
780
781         if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
782             ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
783                 u8 ct_state = nla_get_u8(a[OVS_KEY_ATTR_CT_STATE]);
784
785                 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
786                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
787         }
788         if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
789             ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
790                 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
791
792                 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
793                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
794         }
795         if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
796             ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
797                 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
798
799                 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
800                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
801         }
802         if (*attrs & (1 << OVS_KEY_ATTR_CT_LABEL) &&
803             ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABEL)) {
804                 const struct ovs_key_ct_label *cl;
805
806                 cl = nla_data(a[OVS_KEY_ATTR_CT_LABEL]);
807                 SW_FLOW_KEY_MEMCPY(match, ct.label, cl->ct_label,
808                                    sizeof(*cl), is_mask);
809                 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABEL);
810         }
811         return 0;
812 }
813
814 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
815                                 u64 attrs, const struct nlattr **a,
816                                 bool is_mask, bool log)
817 {
818         int err;
819
820         err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
821         if (err)
822                 return err;
823
824         if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
825                 const struct ovs_key_ethernet *eth_key;
826
827                 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
828                 SW_FLOW_KEY_MEMCPY(match, eth.src,
829                                 eth_key->eth_src, ETH_ALEN, is_mask);
830                 SW_FLOW_KEY_MEMCPY(match, eth.dst,
831                                 eth_key->eth_dst, ETH_ALEN, is_mask);
832                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
833         }
834
835         if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
836                 __be16 tci;
837
838                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
839                 if (!(tci & htons(VLAN_TAG_PRESENT))) {
840                         if (is_mask)
841                                 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
842                         else
843                                 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
844
845                         return -EINVAL;
846                 }
847
848                 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
849                 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
850         }
851
852         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
853                 __be16 eth_type;
854
855                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
856                 if (is_mask) {
857                         /* Always exact match EtherType. */
858                         eth_type = htons(0xffff);
859                 } else if (!eth_proto_is_802_3(eth_type)) {
860                         OVS_NLERR(log, "EtherType %x is less than min %x",
861                                   ntohs(eth_type), ETH_P_802_3_MIN);
862                         return -EINVAL;
863                 }
864
865                 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
866                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
867         } else if (!is_mask) {
868                 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
869         }
870
871         if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
872                 const struct ovs_key_ipv4 *ipv4_key;
873
874                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
875                 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
876                         OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
877                                   ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
878                         return -EINVAL;
879                 }
880                 SW_FLOW_KEY_PUT(match, ip.proto,
881                                 ipv4_key->ipv4_proto, is_mask);
882                 SW_FLOW_KEY_PUT(match, ip.tos,
883                                 ipv4_key->ipv4_tos, is_mask);
884                 SW_FLOW_KEY_PUT(match, ip.ttl,
885                                 ipv4_key->ipv4_ttl, is_mask);
886                 SW_FLOW_KEY_PUT(match, ip.frag,
887                                 ipv4_key->ipv4_frag, is_mask);
888                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
889                                 ipv4_key->ipv4_src, is_mask);
890                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
891                                 ipv4_key->ipv4_dst, is_mask);
892                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
893         }
894
895         if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
896                 const struct ovs_key_ipv6 *ipv6_key;
897
898                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
899                 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
900                         OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
901                                   ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
902                         return -EINVAL;
903                 }
904
905                 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
906                         OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
907                                   ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
908                         return -EINVAL;
909                 }
910
911                 SW_FLOW_KEY_PUT(match, ipv6.label,
912                                 ipv6_key->ipv6_label, is_mask);
913                 SW_FLOW_KEY_PUT(match, ip.proto,
914                                 ipv6_key->ipv6_proto, is_mask);
915                 SW_FLOW_KEY_PUT(match, ip.tos,
916                                 ipv6_key->ipv6_tclass, is_mask);
917                 SW_FLOW_KEY_PUT(match, ip.ttl,
918                                 ipv6_key->ipv6_hlimit, is_mask);
919                 SW_FLOW_KEY_PUT(match, ip.frag,
920                                 ipv6_key->ipv6_frag, is_mask);
921                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
922                                 ipv6_key->ipv6_src,
923                                 sizeof(match->key->ipv6.addr.src),
924                                 is_mask);
925                 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
926                                 ipv6_key->ipv6_dst,
927                                 sizeof(match->key->ipv6.addr.dst),
928                                 is_mask);
929
930                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
931         }
932
933         if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
934                 const struct ovs_key_arp *arp_key;
935
936                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
937                 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
938                         OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
939                                   arp_key->arp_op);
940                         return -EINVAL;
941                 }
942
943                 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
944                                 arp_key->arp_sip, is_mask);
945                 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
946                         arp_key->arp_tip, is_mask);
947                 SW_FLOW_KEY_PUT(match, ip.proto,
948                                 ntohs(arp_key->arp_op), is_mask);
949                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
950                                 arp_key->arp_sha, ETH_ALEN, is_mask);
951                 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
952                                 arp_key->arp_tha, ETH_ALEN, is_mask);
953
954                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
955         }
956
957         if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
958                 const struct ovs_key_mpls *mpls_key;
959
960                 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
961                 SW_FLOW_KEY_PUT(match, mpls.top_lse,
962                                 mpls_key->mpls_lse, is_mask);
963
964                 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
965          }
966
967         if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
968                 const struct ovs_key_tcp *tcp_key;
969
970                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
971                 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
972                 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
973                 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
974         }
975
976         if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
977                 SW_FLOW_KEY_PUT(match, tp.flags,
978                                 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
979                                 is_mask);
980                 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
981         }
982
983         if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
984                 const struct ovs_key_udp *udp_key;
985
986                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
987                 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
988                 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
989                 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
990         }
991
992         if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
993                 const struct ovs_key_sctp *sctp_key;
994
995                 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
996                 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
997                 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
998                 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
999         }
1000
1001         if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1002                 const struct ovs_key_icmp *icmp_key;
1003
1004                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1005                 SW_FLOW_KEY_PUT(match, tp.src,
1006                                 htons(icmp_key->icmp_type), is_mask);
1007                 SW_FLOW_KEY_PUT(match, tp.dst,
1008                                 htons(icmp_key->icmp_code), is_mask);
1009                 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1010         }
1011
1012         if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1013                 const struct ovs_key_icmpv6 *icmpv6_key;
1014
1015                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1016                 SW_FLOW_KEY_PUT(match, tp.src,
1017                                 htons(icmpv6_key->icmpv6_type), is_mask);
1018                 SW_FLOW_KEY_PUT(match, tp.dst,
1019                                 htons(icmpv6_key->icmpv6_code), is_mask);
1020                 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1021         }
1022
1023         if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1024                 const struct ovs_key_nd *nd_key;
1025
1026                 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1027                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1028                         nd_key->nd_target,
1029                         sizeof(match->key->ipv6.nd.target),
1030                         is_mask);
1031                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1032                         nd_key->nd_sll, ETH_ALEN, is_mask);
1033                 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1034                                 nd_key->nd_tll, ETH_ALEN, is_mask);
1035                 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1036         }
1037
1038         if (attrs != 0) {
1039                 OVS_NLERR(log, "Unknown key attributes %llx",
1040                           (unsigned long long)attrs);
1041                 return -EINVAL;
1042         }
1043
1044         return 0;
1045 }
1046
1047 static void nlattr_set(struct nlattr *attr, u8 val,
1048                        const struct ovs_len_tbl *tbl)
1049 {
1050         struct nlattr *nla;
1051         int rem;
1052
1053         /* The nlattr stream should already have been validated */
1054         nla_for_each_nested(nla, attr, rem) {
1055                 if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1056                         nlattr_set(nla, val, tbl[nla_type(nla)].next);
1057                 else
1058                         memset(nla_data(nla), val, nla_len(nla));
1059         }
1060 }
1061
1062 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1063 {
1064         nlattr_set(attr, val, ovs_key_lens);
1065 }
1066
1067 /**
1068  * ovs_nla_get_match - parses Netlink attributes into a flow key and
1069  * mask. In case the 'mask' is NULL, the flow is treated as exact match
1070  * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1071  * does not include any don't care bit.
1072  * @net: Used to determine per-namespace field support.
1073  * @match: receives the extracted flow match information.
1074  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1075  * sequence. The fields should of the packet that triggered the creation
1076  * of this flow.
1077  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1078  * attribute specifies the mask field of the wildcarded flow.
1079  * @log: Boolean to allow kernel error logging.  Normally true, but when
1080  * probing for feature compatibility this should be passed in as false to
1081  * suppress unnecessary error logging.
1082  */
1083 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1084                       const struct nlattr *nla_key,
1085                       const struct nlattr *nla_mask,
1086                       bool log)
1087 {
1088         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1089         const struct nlattr *encap;
1090         struct nlattr *newmask = NULL;
1091         u64 key_attrs = 0;
1092         u64 mask_attrs = 0;
1093         bool encap_valid = false;
1094         int err;
1095
1096         err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1097         if (err)
1098                 return err;
1099
1100         if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1101             (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1102             (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1103                 __be16 tci;
1104
1105                 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1106                       (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1107                         OVS_NLERR(log, "Invalid Vlan frame.");
1108                         return -EINVAL;
1109                 }
1110
1111                 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1112                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1113                 encap = a[OVS_KEY_ATTR_ENCAP];
1114                 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1115                 encap_valid = true;
1116
1117                 if (tci & htons(VLAN_TAG_PRESENT)) {
1118                         err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1119                         if (err)
1120                                 return err;
1121                 } else if (!tci) {
1122                         /* Corner case for truncated 802.1Q header. */
1123                         if (nla_len(encap)) {
1124                                 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1125                                 return -EINVAL;
1126                         }
1127                 } else {
1128                         OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1129                         return  -EINVAL;
1130                 }
1131         }
1132
1133         err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1134         if (err)
1135                 return err;
1136
1137         if (match->mask) {
1138                 if (!nla_mask) {
1139                         /* Create an exact match mask. We need to set to 0xff
1140                          * all the 'match->mask' fields that have been touched
1141                          * in 'match->key'. We cannot simply memset
1142                          * 'match->mask', because padding bytes and fields not
1143                          * specified in 'match->key' should be left to 0.
1144                          * Instead, we use a stream of netlink attributes,
1145                          * copied from 'key' and set to 0xff.
1146                          * ovs_key_from_nlattrs() will take care of filling
1147                          * 'match->mask' appropriately.
1148                          */
1149                         newmask = kmemdup(nla_key,
1150                                           nla_total_size(nla_len(nla_key)),
1151                                           GFP_KERNEL);
1152                         if (!newmask)
1153                                 return -ENOMEM;
1154
1155                         mask_set_nlattr(newmask, 0xff);
1156
1157                         /* The userspace does not send tunnel attributes that
1158                          * are 0, but we should not wildcard them nonetheless.
1159                          */
1160                         if (match->key->tun_key.u.ipv4.dst)
1161                                 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1162                                                          0xff, true);
1163
1164                         nla_mask = newmask;
1165                 }
1166
1167                 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1168                 if (err)
1169                         goto free_newmask;
1170
1171                 /* Always match on tci. */
1172                 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1173
1174                 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1175                         __be16 eth_type = 0;
1176                         __be16 tci = 0;
1177
1178                         if (!encap_valid) {
1179                                 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1180                                 err = -EINVAL;
1181                                 goto free_newmask;
1182                         }
1183
1184                         mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1185                         if (a[OVS_KEY_ATTR_ETHERTYPE])
1186                                 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1187
1188                         if (eth_type == htons(0xffff)) {
1189                                 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1190                                 encap = a[OVS_KEY_ATTR_ENCAP];
1191                                 err = parse_flow_mask_nlattrs(encap, a,
1192                                                               &mask_attrs, log);
1193                                 if (err)
1194                                         goto free_newmask;
1195                         } else {
1196                                 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1197                                           ntohs(eth_type));
1198                                 err = -EINVAL;
1199                                 goto free_newmask;
1200                         }
1201
1202                         if (a[OVS_KEY_ATTR_VLAN])
1203                                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1204
1205                         if (!(tci & htons(VLAN_TAG_PRESENT))) {
1206                                 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1207                                           ntohs(tci));
1208                                 err = -EINVAL;
1209                                 goto free_newmask;
1210                         }
1211                 }
1212
1213                 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1214                                            log);
1215                 if (err)
1216                         goto free_newmask;
1217         }
1218
1219         if (!match_validate(match, key_attrs, mask_attrs, log))
1220                 err = -EINVAL;
1221
1222 free_newmask:
1223         kfree(newmask);
1224         return err;
1225 }
1226
1227 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1228 {
1229         size_t len;
1230
1231         if (!attr)
1232                 return 0;
1233
1234         len = nla_len(attr);
1235         if (len < 1 || len > MAX_UFID_LENGTH) {
1236                 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1237                           nla_len(attr), MAX_UFID_LENGTH);
1238                 return 0;
1239         }
1240
1241         return len;
1242 }
1243
1244 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1245  * or false otherwise.
1246  */
1247 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1248                       bool log)
1249 {
1250         sfid->ufid_len = get_ufid_len(attr, log);
1251         if (sfid->ufid_len)
1252                 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1253
1254         return sfid->ufid_len;
1255 }
1256
1257 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1258                            const struct sw_flow_key *key, bool log)
1259 {
1260         struct sw_flow_key *new_key;
1261
1262         if (ovs_nla_get_ufid(sfid, ufid, log))
1263                 return 0;
1264
1265         /* If UFID was not provided, use unmasked key. */
1266         new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1267         if (!new_key)
1268                 return -ENOMEM;
1269         memcpy(new_key, key, sizeof(*key));
1270         sfid->unmasked_key = new_key;
1271
1272         return 0;
1273 }
1274
1275 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1276 {
1277         return attr ? nla_get_u32(attr) : 0;
1278 }
1279
1280 /**
1281  * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1282  * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1283  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1284  * sequence.
1285  * @log: Boolean to allow kernel error logging.  Normally true, but when
1286  * probing for feature compatibility this should be passed in as false to
1287  * suppress unnecessary error logging.
1288  *
1289  * This parses a series of Netlink attributes that form a flow key, which must
1290  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1291  * get the metadata, that is, the parts of the flow key that cannot be
1292  * extracted from the packet itself.
1293  */
1294
1295 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1296                               struct sw_flow_key *key,
1297                               bool log)
1298 {
1299         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1300         struct sw_flow_match match;
1301         u64 attrs = 0;
1302         int err;
1303
1304         err = parse_flow_nlattrs(attr, a, &attrs, log);
1305         if (err)
1306                 return -EINVAL;
1307
1308         memset(&match, 0, sizeof(match));
1309         match.key = key;
1310
1311         memset(&key->ct, 0, sizeof(key->ct));
1312         key->phy.in_port = DP_MAX_PORTS;
1313
1314         return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1315 }
1316
1317 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1318                              const struct sw_flow_key *output, bool is_mask,
1319                              struct sk_buff *skb)
1320 {
1321         struct ovs_key_ethernet *eth_key;
1322         struct nlattr *nla, *encap;
1323
1324         if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1325                 goto nla_put_failure;
1326
1327         if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1328                 goto nla_put_failure;
1329
1330         if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1331                 goto nla_put_failure;
1332
1333         if ((swkey->tun_key.u.ipv4.dst || is_mask)) {
1334                 const void *opts = NULL;
1335
1336                 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1337                         opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1338
1339                 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1340                                        swkey->tun_opts_len))
1341                         goto nla_put_failure;
1342         }
1343
1344         if (swkey->phy.in_port == DP_MAX_PORTS) {
1345                 if (is_mask && (output->phy.in_port == 0xffff))
1346                         if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1347                                 goto nla_put_failure;
1348         } else {
1349                 u16 upper_u16;
1350                 upper_u16 = !is_mask ? 0 : 0xffff;
1351
1352                 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1353                                 (upper_u16 << 16) | output->phy.in_port))
1354                         goto nla_put_failure;
1355         }
1356
1357         if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1358                 goto nla_put_failure;
1359
1360         if (ovs_ct_put_key(output, skb))
1361                 goto nla_put_failure;
1362
1363         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1364         if (!nla)
1365                 goto nla_put_failure;
1366
1367         eth_key = nla_data(nla);
1368         ether_addr_copy(eth_key->eth_src, output->eth.src);
1369         ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1370
1371         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1372                 __be16 eth_type;
1373                 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1374                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1375                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1376                         goto nla_put_failure;
1377                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1378                 if (!swkey->eth.tci)
1379                         goto unencap;
1380         } else
1381                 encap = NULL;
1382
1383         if (swkey->eth.type == htons(ETH_P_802_2)) {
1384                 /*
1385                  * Ethertype 802.2 is represented in the netlink with omitted
1386                  * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1387                  * 0xffff in the mask attribute.  Ethertype can also
1388                  * be wildcarded.
1389                  */
1390                 if (is_mask && output->eth.type)
1391                         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1392                                                 output->eth.type))
1393                                 goto nla_put_failure;
1394                 goto unencap;
1395         }
1396
1397         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1398                 goto nla_put_failure;
1399
1400         if (swkey->eth.type == htons(ETH_P_IP)) {
1401                 struct ovs_key_ipv4 *ipv4_key;
1402
1403                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1404                 if (!nla)
1405                         goto nla_put_failure;
1406                 ipv4_key = nla_data(nla);
1407                 ipv4_key->ipv4_src = output->ipv4.addr.src;
1408                 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1409                 ipv4_key->ipv4_proto = output->ip.proto;
1410                 ipv4_key->ipv4_tos = output->ip.tos;
1411                 ipv4_key->ipv4_ttl = output->ip.ttl;
1412                 ipv4_key->ipv4_frag = output->ip.frag;
1413         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1414                 struct ovs_key_ipv6 *ipv6_key;
1415
1416                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1417                 if (!nla)
1418                         goto nla_put_failure;
1419                 ipv6_key = nla_data(nla);
1420                 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1421                                 sizeof(ipv6_key->ipv6_src));
1422                 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1423                                 sizeof(ipv6_key->ipv6_dst));
1424                 ipv6_key->ipv6_label = output->ipv6.label;
1425                 ipv6_key->ipv6_proto = output->ip.proto;
1426                 ipv6_key->ipv6_tclass = output->ip.tos;
1427                 ipv6_key->ipv6_hlimit = output->ip.ttl;
1428                 ipv6_key->ipv6_frag = output->ip.frag;
1429         } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1430                    swkey->eth.type == htons(ETH_P_RARP)) {
1431                 struct ovs_key_arp *arp_key;
1432
1433                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1434                 if (!nla)
1435                         goto nla_put_failure;
1436                 arp_key = nla_data(nla);
1437                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1438                 arp_key->arp_sip = output->ipv4.addr.src;
1439                 arp_key->arp_tip = output->ipv4.addr.dst;
1440                 arp_key->arp_op = htons(output->ip.proto);
1441                 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1442                 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1443         } else if (eth_p_mpls(swkey->eth.type)) {
1444                 struct ovs_key_mpls *mpls_key;
1445
1446                 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1447                 if (!nla)
1448                         goto nla_put_failure;
1449                 mpls_key = nla_data(nla);
1450                 mpls_key->mpls_lse = output->mpls.top_lse;
1451         }
1452
1453         if ((swkey->eth.type == htons(ETH_P_IP) ||
1454              swkey->eth.type == htons(ETH_P_IPV6)) &&
1455              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1456
1457                 if (swkey->ip.proto == IPPROTO_TCP) {
1458                         struct ovs_key_tcp *tcp_key;
1459
1460                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1461                         if (!nla)
1462                                 goto nla_put_failure;
1463                         tcp_key = nla_data(nla);
1464                         tcp_key->tcp_src = output->tp.src;
1465                         tcp_key->tcp_dst = output->tp.dst;
1466                         if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1467                                          output->tp.flags))
1468                                 goto nla_put_failure;
1469                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1470                         struct ovs_key_udp *udp_key;
1471
1472                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1473                         if (!nla)
1474                                 goto nla_put_failure;
1475                         udp_key = nla_data(nla);
1476                         udp_key->udp_src = output->tp.src;
1477                         udp_key->udp_dst = output->tp.dst;
1478                 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1479                         struct ovs_key_sctp *sctp_key;
1480
1481                         nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1482                         if (!nla)
1483                                 goto nla_put_failure;
1484                         sctp_key = nla_data(nla);
1485                         sctp_key->sctp_src = output->tp.src;
1486                         sctp_key->sctp_dst = output->tp.dst;
1487                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1488                            swkey->ip.proto == IPPROTO_ICMP) {
1489                         struct ovs_key_icmp *icmp_key;
1490
1491                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1492                         if (!nla)
1493                                 goto nla_put_failure;
1494                         icmp_key = nla_data(nla);
1495                         icmp_key->icmp_type = ntohs(output->tp.src);
1496                         icmp_key->icmp_code = ntohs(output->tp.dst);
1497                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1498                            swkey->ip.proto == IPPROTO_ICMPV6) {
1499                         struct ovs_key_icmpv6 *icmpv6_key;
1500
1501                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1502                                                 sizeof(*icmpv6_key));
1503                         if (!nla)
1504                                 goto nla_put_failure;
1505                         icmpv6_key = nla_data(nla);
1506                         icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1507                         icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1508
1509                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1510                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1511                                 struct ovs_key_nd *nd_key;
1512
1513                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1514                                 if (!nla)
1515                                         goto nla_put_failure;
1516                                 nd_key = nla_data(nla);
1517                                 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1518                                                         sizeof(nd_key->nd_target));
1519                                 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1520                                 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1521                         }
1522                 }
1523         }
1524
1525 unencap:
1526         if (encap)
1527                 nla_nest_end(skb, encap);
1528
1529         return 0;
1530
1531 nla_put_failure:
1532         return -EMSGSIZE;
1533 }
1534
1535 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1536                     const struct sw_flow_key *output, int attr, bool is_mask,
1537                     struct sk_buff *skb)
1538 {
1539         int err;
1540         struct nlattr *nla;
1541
1542         nla = nla_nest_start(skb, attr);
1543         if (!nla)
1544                 return -EMSGSIZE;
1545         err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1546         if (err)
1547                 return err;
1548         nla_nest_end(skb, nla);
1549
1550         return 0;
1551 }
1552
1553 /* Called with ovs_mutex or RCU read lock. */
1554 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1555 {
1556         if (ovs_identifier_is_ufid(&flow->id))
1557                 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1558                                flow->id.ufid);
1559
1560         return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1561                                OVS_FLOW_ATTR_KEY, false, skb);
1562 }
1563
1564 /* Called with ovs_mutex or RCU read lock. */
1565 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1566 {
1567         return ovs_nla_put_key(&flow->key, &flow->key,
1568                                 OVS_FLOW_ATTR_KEY, false, skb);
1569 }
1570
1571 /* Called with ovs_mutex or RCU read lock. */
1572 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1573 {
1574         return ovs_nla_put_key(&flow->key, &flow->mask->key,
1575                                 OVS_FLOW_ATTR_MASK, true, skb);
1576 }
1577
1578 #define MAX_ACTIONS_BUFSIZE     (32 * 1024)
1579
1580 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1581 {
1582         struct sw_flow_actions *sfa;
1583
1584         if (size > MAX_ACTIONS_BUFSIZE) {
1585                 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1586                 return ERR_PTR(-EINVAL);
1587         }
1588
1589         sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1590         if (!sfa)
1591                 return ERR_PTR(-ENOMEM);
1592
1593         sfa->actions_len = 0;
1594         return sfa;
1595 }
1596
1597 static void ovs_nla_free_set_action(const struct nlattr *a)
1598 {
1599         const struct nlattr *ovs_key = nla_data(a);
1600         struct ovs_tunnel_info *ovs_tun;
1601
1602         switch (nla_type(ovs_key)) {
1603         case OVS_KEY_ATTR_TUNNEL_INFO:
1604                 ovs_tun = nla_data(ovs_key);
1605                 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1606                 break;
1607         }
1608 }
1609
1610 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1611 {
1612         const struct nlattr *a;
1613         int rem;
1614
1615         if (!sf_acts)
1616                 return;
1617
1618         nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1619                 switch (nla_type(a)) {
1620                 case OVS_ACTION_ATTR_SET:
1621                         ovs_nla_free_set_action(a);
1622                         break;
1623                 case OVS_ACTION_ATTR_CT:
1624                         ovs_ct_free_action(a);
1625                         break;
1626                 }
1627         }
1628
1629         kfree(sf_acts);
1630 }
1631
1632 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1633 {
1634         ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1635 }
1636
1637 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1638  * The caller must hold rcu_read_lock for this to be sensible. */
1639 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1640 {
1641         call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1642 }
1643
1644 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1645                                        int attr_len, bool log)
1646 {
1647
1648         struct sw_flow_actions *acts;
1649         int new_acts_size;
1650         int req_size = NLA_ALIGN(attr_len);
1651         int next_offset = offsetof(struct sw_flow_actions, actions) +
1652                                         (*sfa)->actions_len;
1653
1654         if (req_size <= (ksize(*sfa) - next_offset))
1655                 goto out;
1656
1657         new_acts_size = ksize(*sfa) * 2;
1658
1659         if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1660                 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1661                         return ERR_PTR(-EMSGSIZE);
1662                 new_acts_size = MAX_ACTIONS_BUFSIZE;
1663         }
1664
1665         acts = nla_alloc_flow_actions(new_acts_size, log);
1666         if (IS_ERR(acts))
1667                 return (void *)acts;
1668
1669         memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1670         acts->actions_len = (*sfa)->actions_len;
1671         acts->orig_len = (*sfa)->orig_len;
1672         kfree(*sfa);
1673         *sfa = acts;
1674
1675 out:
1676         (*sfa)->actions_len += req_size;
1677         return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1678 }
1679
1680 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1681                                    int attrtype, void *data, int len, bool log)
1682 {
1683         struct nlattr *a;
1684
1685         a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1686         if (IS_ERR(a))
1687                 return a;
1688
1689         a->nla_type = attrtype;
1690         a->nla_len = nla_attr_size(len);
1691
1692         if (data)
1693                 memcpy(nla_data(a), data, len);
1694         memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1695
1696         return a;
1697 }
1698
1699 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1700                        int len, bool log)
1701 {
1702         struct nlattr *a;
1703
1704         a = __add_action(sfa, attrtype, data, len, log);
1705
1706         return PTR_ERR_OR_ZERO(a);
1707 }
1708
1709 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1710                                           int attrtype, bool log)
1711 {
1712         int used = (*sfa)->actions_len;
1713         int err;
1714
1715         err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1716         if (err)
1717                 return err;
1718
1719         return used;
1720 }
1721
1722 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1723                                          int st_offset)
1724 {
1725         struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1726                                                                st_offset);
1727
1728         a->nla_len = sfa->actions_len - st_offset;
1729 }
1730
1731 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1732                                   const struct sw_flow_key *key,
1733                                   int depth, struct sw_flow_actions **sfa,
1734                                   __be16 eth_type, __be16 vlan_tci, bool log);
1735
1736 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1737                                     const struct sw_flow_key *key, int depth,
1738                                     struct sw_flow_actions **sfa,
1739                                     __be16 eth_type, __be16 vlan_tci, bool log)
1740 {
1741         const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1742         const struct nlattr *probability, *actions;
1743         const struct nlattr *a;
1744         int rem, start, err, st_acts;
1745
1746         memset(attrs, 0, sizeof(attrs));
1747         nla_for_each_nested(a, attr, rem) {
1748                 int type = nla_type(a);
1749                 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1750                         return -EINVAL;
1751                 attrs[type] = a;
1752         }
1753         if (rem)
1754                 return -EINVAL;
1755
1756         probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1757         if (!probability || nla_len(probability) != sizeof(u32))
1758                 return -EINVAL;
1759
1760         actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1761         if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1762                 return -EINVAL;
1763
1764         /* validation done, copy sample action. */
1765         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1766         if (start < 0)
1767                 return start;
1768         err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1769                                  nla_data(probability), sizeof(u32), log);
1770         if (err)
1771                 return err;
1772         st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1773         if (st_acts < 0)
1774                 return st_acts;
1775
1776         err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1777                                      eth_type, vlan_tci, log);
1778         if (err)
1779                 return err;
1780
1781         add_nested_action_end(*sfa, st_acts);
1782         add_nested_action_end(*sfa, start);
1783
1784         return 0;
1785 }
1786
1787 void ovs_match_init(struct sw_flow_match *match,
1788                     struct sw_flow_key *key,
1789                     struct sw_flow_mask *mask)
1790 {
1791         memset(match, 0, sizeof(*match));
1792         match->key = key;
1793         match->mask = mask;
1794
1795         memset(key, 0, sizeof(*key));
1796
1797         if (mask) {
1798                 memset(&mask->key, 0, sizeof(mask->key));
1799                 mask->range.start = mask->range.end = 0;
1800         }
1801 }
1802
1803 static int validate_geneve_opts(struct sw_flow_key *key)
1804 {
1805         struct geneve_opt *option;
1806         int opts_len = key->tun_opts_len;
1807         bool crit_opt = false;
1808
1809         option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1810         while (opts_len > 0) {
1811                 int len;
1812
1813                 if (opts_len < sizeof(*option))
1814                         return -EINVAL;
1815
1816                 len = sizeof(*option) + option->length * 4;
1817                 if (len > opts_len)
1818                         return -EINVAL;
1819
1820                 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1821
1822                 option = (struct geneve_opt *)((u8 *)option + len);
1823                 opts_len -= len;
1824         };
1825
1826         key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1827
1828         return 0;
1829 }
1830
1831 static int validate_and_copy_set_tun(const struct nlattr *attr,
1832                                      struct sw_flow_actions **sfa, bool log)
1833 {
1834         struct sw_flow_match match;
1835         struct sw_flow_key key;
1836         struct metadata_dst *tun_dst;
1837         struct ip_tunnel_info *tun_info;
1838         struct ovs_tunnel_info *ovs_tun;
1839         struct nlattr *a;
1840         int err = 0, start, opts_type;
1841
1842         ovs_match_init(&match, &key, NULL);
1843         opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1844         if (opts_type < 0)
1845                 return opts_type;
1846
1847         if (key.tun_opts_len) {
1848                 switch (opts_type) {
1849                 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1850                         err = validate_geneve_opts(&key);
1851                         if (err < 0)
1852                                 return err;
1853                         break;
1854                 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1855                         break;
1856                 }
1857         };
1858
1859         start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1860         if (start < 0)
1861                 return start;
1862
1863         tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1864         if (!tun_dst)
1865                 return -ENOMEM;
1866
1867         a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1868                          sizeof(*ovs_tun), log);
1869         if (IS_ERR(a)) {
1870                 dst_release((struct dst_entry *)tun_dst);
1871                 return PTR_ERR(a);
1872         }
1873
1874         ovs_tun = nla_data(a);
1875         ovs_tun->tun_dst = tun_dst;
1876
1877         tun_info = &tun_dst->u.tun_info;
1878         tun_info->mode = IP_TUNNEL_INFO_TX;
1879         tun_info->key = key.tun_key;
1880
1881         /* We need to store the options in the action itself since
1882          * everything else will go away after flow setup. We can append
1883          * it to tun_info and then point there.
1884          */
1885         ip_tunnel_info_opts_set(tun_info,
1886                                 TUN_METADATA_OPTS(&key, key.tun_opts_len),
1887                                 key.tun_opts_len);
1888         add_nested_action_end(*sfa, start);
1889
1890         return err;
1891 }
1892
1893 /* Return false if there are any non-masked bits set.
1894  * Mask follows data immediately, before any netlink padding.
1895  */
1896 static bool validate_masked(u8 *data, int len)
1897 {
1898         u8 *mask = data + len;
1899
1900         while (len--)
1901                 if (*data++ & ~*mask++)
1902                         return false;
1903
1904         return true;
1905 }
1906
1907 static int validate_set(const struct nlattr *a,
1908                         const struct sw_flow_key *flow_key,
1909                         struct sw_flow_actions **sfa,
1910                         bool *skip_copy, __be16 eth_type, bool masked, bool log)
1911 {
1912         const struct nlattr *ovs_key = nla_data(a);
1913         int key_type = nla_type(ovs_key);
1914         size_t key_len;
1915
1916         /* There can be only one key in a action */
1917         if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1918                 return -EINVAL;
1919
1920         key_len = nla_len(ovs_key);
1921         if (masked)
1922                 key_len /= 2;
1923
1924         if (key_type > OVS_KEY_ATTR_MAX ||
1925             (ovs_key_lens[key_type].len != key_len &&
1926              ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
1927                 return -EINVAL;
1928
1929         if (masked && !validate_masked(nla_data(ovs_key), key_len))
1930                 return -EINVAL;
1931
1932         switch (key_type) {
1933         const struct ovs_key_ipv4 *ipv4_key;
1934         const struct ovs_key_ipv6 *ipv6_key;
1935         int err;
1936
1937         case OVS_KEY_ATTR_PRIORITY:
1938         case OVS_KEY_ATTR_SKB_MARK:
1939         case OVS_KEY_ATTR_CT_MARK:
1940         case OVS_KEY_ATTR_CT_LABEL:
1941         case OVS_KEY_ATTR_ETHERNET:
1942                 break;
1943
1944         case OVS_KEY_ATTR_TUNNEL:
1945                 if (eth_p_mpls(eth_type))
1946                         return -EINVAL;
1947
1948                 if (masked)
1949                         return -EINVAL; /* Masked tunnel set not supported. */
1950
1951                 *skip_copy = true;
1952                 err = validate_and_copy_set_tun(a, sfa, log);
1953                 if (err)
1954                         return err;
1955                 break;
1956
1957         case OVS_KEY_ATTR_IPV4:
1958                 if (eth_type != htons(ETH_P_IP))
1959                         return -EINVAL;
1960
1961                 ipv4_key = nla_data(ovs_key);
1962
1963                 if (masked) {
1964                         const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1965
1966                         /* Non-writeable fields. */
1967                         if (mask->ipv4_proto || mask->ipv4_frag)
1968                                 return -EINVAL;
1969                 } else {
1970                         if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1971                                 return -EINVAL;
1972
1973                         if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1974                                 return -EINVAL;
1975                 }
1976                 break;
1977
1978         case OVS_KEY_ATTR_IPV6:
1979                 if (eth_type != htons(ETH_P_IPV6))
1980                         return -EINVAL;
1981
1982                 ipv6_key = nla_data(ovs_key);
1983
1984                 if (masked) {
1985                         const struct ovs_key_ipv6 *mask = ipv6_key + 1;
1986
1987                         /* Non-writeable fields. */
1988                         if (mask->ipv6_proto || mask->ipv6_frag)
1989                                 return -EINVAL;
1990
1991                         /* Invalid bits in the flow label mask? */
1992                         if (ntohl(mask->ipv6_label) & 0xFFF00000)
1993                                 return -EINVAL;
1994                 } else {
1995                         if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1996                                 return -EINVAL;
1997
1998                         if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1999                                 return -EINVAL;
2000                 }
2001                 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2002                         return -EINVAL;
2003
2004                 break;
2005
2006         case OVS_KEY_ATTR_TCP:
2007                 if ((eth_type != htons(ETH_P_IP) &&
2008                      eth_type != htons(ETH_P_IPV6)) ||
2009                     flow_key->ip.proto != IPPROTO_TCP)
2010                         return -EINVAL;
2011
2012                 break;
2013
2014         case OVS_KEY_ATTR_UDP:
2015                 if ((eth_type != htons(ETH_P_IP) &&
2016                      eth_type != htons(ETH_P_IPV6)) ||
2017                     flow_key->ip.proto != IPPROTO_UDP)
2018                         return -EINVAL;
2019
2020                 break;
2021
2022         case OVS_KEY_ATTR_MPLS:
2023                 if (!eth_p_mpls(eth_type))
2024                         return -EINVAL;
2025                 break;
2026
2027         case OVS_KEY_ATTR_SCTP:
2028                 if ((eth_type != htons(ETH_P_IP) &&
2029                      eth_type != htons(ETH_P_IPV6)) ||
2030                     flow_key->ip.proto != IPPROTO_SCTP)
2031                         return -EINVAL;
2032
2033                 break;
2034
2035         default:
2036                 return -EINVAL;
2037         }
2038
2039         /* Convert non-masked non-tunnel set actions to masked set actions. */
2040         if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2041                 int start, len = key_len * 2;
2042                 struct nlattr *at;
2043
2044                 *skip_copy = true;
2045
2046                 start = add_nested_action_start(sfa,
2047                                                 OVS_ACTION_ATTR_SET_TO_MASKED,
2048                                                 log);
2049                 if (start < 0)
2050                         return start;
2051
2052                 at = __add_action(sfa, key_type, NULL, len, log);
2053                 if (IS_ERR(at))
2054                         return PTR_ERR(at);
2055
2056                 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2057                 memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2058                 /* Clear non-writeable bits from otherwise writeable fields. */
2059                 if (key_type == OVS_KEY_ATTR_IPV6) {
2060                         struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2061
2062                         mask->ipv6_label &= htonl(0x000FFFFF);
2063                 }
2064                 add_nested_action_end(*sfa, start);
2065         }
2066
2067         return 0;
2068 }
2069
2070 static int validate_userspace(const struct nlattr *attr)
2071 {
2072         static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2073                 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2074                 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2075                 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2076         };
2077         struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2078         int error;
2079
2080         error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2081                                  attr, userspace_policy);
2082         if (error)
2083                 return error;
2084
2085         if (!a[OVS_USERSPACE_ATTR_PID] ||
2086             !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2087                 return -EINVAL;
2088
2089         return 0;
2090 }
2091
2092 static int copy_action(const struct nlattr *from,
2093                        struct sw_flow_actions **sfa, bool log)
2094 {
2095         int totlen = NLA_ALIGN(from->nla_len);
2096         struct nlattr *to;
2097
2098         to = reserve_sfa_size(sfa, from->nla_len, log);
2099         if (IS_ERR(to))
2100                 return PTR_ERR(to);
2101
2102         memcpy(to, from, totlen);
2103         return 0;
2104 }
2105
2106 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2107                                   const struct sw_flow_key *key,
2108                                   int depth, struct sw_flow_actions **sfa,
2109                                   __be16 eth_type, __be16 vlan_tci, bool log)
2110 {
2111         const struct nlattr *a;
2112         int rem, err;
2113
2114         if (depth >= SAMPLE_ACTION_DEPTH)
2115                 return -EOVERFLOW;
2116
2117         nla_for_each_nested(a, attr, rem) {
2118                 /* Expected argument lengths, (u32)-1 for variable length. */
2119                 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2120                         [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2121                         [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2122                         [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2123                         [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2124                         [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2125                         [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2126                         [OVS_ACTION_ATTR_POP_VLAN] = 0,
2127                         [OVS_ACTION_ATTR_SET] = (u32)-1,
2128                         [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2129                         [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2130                         [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2131                         [OVS_ACTION_ATTR_CT] = (u32)-1,
2132                 };
2133                 const struct ovs_action_push_vlan *vlan;
2134                 int type = nla_type(a);
2135                 bool skip_copy;
2136
2137                 if (type > OVS_ACTION_ATTR_MAX ||
2138                     (action_lens[type] != nla_len(a) &&
2139                      action_lens[type] != (u32)-1))
2140                         return -EINVAL;
2141
2142                 skip_copy = false;
2143                 switch (type) {
2144                 case OVS_ACTION_ATTR_UNSPEC:
2145                         return -EINVAL;
2146
2147                 case OVS_ACTION_ATTR_USERSPACE:
2148                         err = validate_userspace(a);
2149                         if (err)
2150                                 return err;
2151                         break;
2152
2153                 case OVS_ACTION_ATTR_OUTPUT:
2154                         if (nla_get_u32(a) >= DP_MAX_PORTS)
2155                                 return -EINVAL;
2156                         break;
2157
2158                 case OVS_ACTION_ATTR_HASH: {
2159                         const struct ovs_action_hash *act_hash = nla_data(a);
2160
2161                         switch (act_hash->hash_alg) {
2162                         case OVS_HASH_ALG_L4:
2163                                 break;
2164                         default:
2165                                 return  -EINVAL;
2166                         }
2167
2168                         break;
2169                 }
2170
2171                 case OVS_ACTION_ATTR_POP_VLAN:
2172                         vlan_tci = htons(0);
2173                         break;
2174
2175                 case OVS_ACTION_ATTR_PUSH_VLAN:
2176                         vlan = nla_data(a);
2177                         if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2178                                 return -EINVAL;
2179                         if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2180                                 return -EINVAL;
2181                         vlan_tci = vlan->vlan_tci;
2182                         break;
2183
2184                 case OVS_ACTION_ATTR_RECIRC:
2185                         break;
2186
2187                 case OVS_ACTION_ATTR_PUSH_MPLS: {
2188                         const struct ovs_action_push_mpls *mpls = nla_data(a);
2189
2190                         if (!eth_p_mpls(mpls->mpls_ethertype))
2191                                 return -EINVAL;
2192                         /* Prohibit push MPLS other than to a white list
2193                          * for packets that have a known tag order.
2194                          */
2195                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2196                             (eth_type != htons(ETH_P_IP) &&
2197                              eth_type != htons(ETH_P_IPV6) &&
2198                              eth_type != htons(ETH_P_ARP) &&
2199                              eth_type != htons(ETH_P_RARP) &&
2200                              !eth_p_mpls(eth_type)))
2201                                 return -EINVAL;
2202                         eth_type = mpls->mpls_ethertype;
2203                         break;
2204                 }
2205
2206                 case OVS_ACTION_ATTR_POP_MPLS:
2207                         if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2208                             !eth_p_mpls(eth_type))
2209                                 return -EINVAL;
2210
2211                         /* Disallow subsequent L2.5+ set and mpls_pop actions
2212                          * as there is no check here to ensure that the new
2213                          * eth_type is valid and thus set actions could
2214                          * write off the end of the packet or otherwise
2215                          * corrupt it.
2216                          *
2217                          * Support for these actions is planned using packet
2218                          * recirculation.
2219                          */
2220                         eth_type = htons(0);
2221                         break;
2222
2223                 case OVS_ACTION_ATTR_SET:
2224                         err = validate_set(a, key, sfa,
2225                                            &skip_copy, eth_type, false, log);
2226                         if (err)
2227                                 return err;
2228                         break;
2229
2230                 case OVS_ACTION_ATTR_SET_MASKED:
2231                         err = validate_set(a, key, sfa,
2232                                            &skip_copy, eth_type, true, log);
2233                         if (err)
2234                                 return err;
2235                         break;
2236
2237                 case OVS_ACTION_ATTR_SAMPLE:
2238                         err = validate_and_copy_sample(net, a, key, depth, sfa,
2239                                                        eth_type, vlan_tci, log);
2240                         if (err)
2241                                 return err;
2242                         skip_copy = true;
2243                         break;
2244
2245                 case OVS_ACTION_ATTR_CT:
2246                         err = ovs_ct_copy_action(net, a, key, sfa, log);
2247                         if (err)
2248                                 return err;
2249                         skip_copy = true;
2250                         break;
2251
2252                 default:
2253                         OVS_NLERR(log, "Unknown Action type %d", type);
2254                         return -EINVAL;
2255                 }
2256                 if (!skip_copy) {
2257                         err = copy_action(a, sfa, log);
2258                         if (err)
2259                                 return err;
2260                 }
2261         }
2262
2263         if (rem > 0)
2264                 return -EINVAL;
2265
2266         return 0;
2267 }
2268
2269 /* 'key' must be the masked key. */
2270 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2271                          const struct sw_flow_key *key,
2272                          struct sw_flow_actions **sfa, bool log)
2273 {
2274         int err;
2275
2276         *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2277         if (IS_ERR(*sfa))
2278                 return PTR_ERR(*sfa);
2279
2280         (*sfa)->orig_len = nla_len(attr);
2281         err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2282                                      key->eth.tci, log);
2283         if (err)
2284                 ovs_nla_free_flow_actions(*sfa);
2285
2286         return err;
2287 }
2288
2289 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2290 {
2291         const struct nlattr *a;
2292         struct nlattr *start;
2293         int err = 0, rem;
2294
2295         start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2296         if (!start)
2297                 return -EMSGSIZE;
2298
2299         nla_for_each_nested(a, attr, rem) {
2300                 int type = nla_type(a);
2301                 struct nlattr *st_sample;
2302
2303                 switch (type) {
2304                 case OVS_SAMPLE_ATTR_PROBABILITY:
2305                         if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2306                                     sizeof(u32), nla_data(a)))
2307                                 return -EMSGSIZE;
2308                         break;
2309                 case OVS_SAMPLE_ATTR_ACTIONS:
2310                         st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2311                         if (!st_sample)
2312                                 return -EMSGSIZE;
2313                         err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2314                         if (err)
2315                                 return err;
2316                         nla_nest_end(skb, st_sample);
2317                         break;
2318                 }
2319         }
2320
2321         nla_nest_end(skb, start);
2322         return err;
2323 }
2324
2325 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2326 {
2327         const struct nlattr *ovs_key = nla_data(a);
2328         int key_type = nla_type(ovs_key);
2329         struct nlattr *start;
2330         int err;
2331
2332         switch (key_type) {
2333         case OVS_KEY_ATTR_TUNNEL_INFO: {
2334                 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2335                 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2336
2337                 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2338                 if (!start)
2339                         return -EMSGSIZE;
2340
2341                 err = ipv4_tun_to_nlattr(skb, &tun_info->key,
2342                                          tun_info->options_len ?
2343                                              ip_tunnel_info_opts(tun_info) : NULL,
2344                                          tun_info->options_len);
2345                 if (err)
2346                         return err;
2347                 nla_nest_end(skb, start);
2348                 break;
2349         }
2350         default:
2351                 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2352                         return -EMSGSIZE;
2353                 break;
2354         }
2355
2356         return 0;
2357 }
2358
2359 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2360                                                 struct sk_buff *skb)
2361 {
2362         const struct nlattr *ovs_key = nla_data(a);
2363         struct nlattr *nla;
2364         size_t key_len = nla_len(ovs_key) / 2;
2365
2366         /* Revert the conversion we did from a non-masked set action to
2367          * masked set action.
2368          */
2369         nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2370         if (!nla)
2371                 return -EMSGSIZE;
2372
2373         if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2374                 return -EMSGSIZE;
2375
2376         nla_nest_end(skb, nla);
2377         return 0;
2378 }
2379
2380 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2381 {
2382         const struct nlattr *a;
2383         int rem, err;
2384
2385         nla_for_each_attr(a, attr, len, rem) {
2386                 int type = nla_type(a);
2387
2388                 switch (type) {
2389                 case OVS_ACTION_ATTR_SET:
2390                         err = set_action_to_attr(a, skb);
2391                         if (err)
2392                                 return err;
2393                         break;
2394
2395                 case OVS_ACTION_ATTR_SET_TO_MASKED:
2396                         err = masked_set_action_to_set_action_attr(a, skb);
2397                         if (err)
2398                                 return err;
2399                         break;
2400
2401                 case OVS_ACTION_ATTR_SAMPLE:
2402                         err = sample_action_to_attr(a, skb);
2403                         if (err)
2404                                 return err;
2405                         break;
2406
2407                 case OVS_ACTION_ATTR_CT:
2408                         err = ovs_ct_action_to_attr(nla_data(a), skb);
2409                         if (err)
2410                                 return err;
2411                         break;
2412
2413                 default:
2414                         if (nla_put(skb, type, nla_len(a), nla_data(a)))
2415                                 return -EMSGSIZE;
2416                         break;
2417                 }
2418         }
2419
2420         return 0;
2421 }