Merge remote-tracking branches 'asoc/fix/adsp', 'asoc/fix/arizona', 'asoc/fix/atmel...
[linux-drm-fsl-dcu.git] / net / ipv4 / tcp_memcontrol.c
1 #include <net/tcp.h>
2 #include <net/tcp_memcontrol.h>
3 #include <net/sock.h>
4 #include <net/ip.h>
5 #include <linux/nsproxy.h>
6 #include <linux/memcontrol.h>
7 #include <linux/module.h>
8
9 int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
10 {
11         /*
12          * The root cgroup does not use res_counters, but rather,
13          * rely on the data already collected by the network
14          * subsystem
15          */
16         struct res_counter *res_parent = NULL;
17         struct cg_proto *cg_proto, *parent_cg;
18         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
19
20         cg_proto = tcp_prot.proto_cgroup(memcg);
21         if (!cg_proto)
22                 return 0;
23
24         cg_proto->sysctl_mem[0] = sysctl_tcp_mem[0];
25         cg_proto->sysctl_mem[1] = sysctl_tcp_mem[1];
26         cg_proto->sysctl_mem[2] = sysctl_tcp_mem[2];
27         cg_proto->memory_pressure = 0;
28         cg_proto->memcg = memcg;
29
30         parent_cg = tcp_prot.proto_cgroup(parent);
31         if (parent_cg)
32                 res_parent = &parent_cg->memory_allocated;
33
34         res_counter_init(&cg_proto->memory_allocated, res_parent);
35         percpu_counter_init(&cg_proto->sockets_allocated, 0);
36
37         return 0;
38 }
39 EXPORT_SYMBOL(tcp_init_cgroup);
40
41 void tcp_destroy_cgroup(struct mem_cgroup *memcg)
42 {
43         struct cg_proto *cg_proto;
44
45         cg_proto = tcp_prot.proto_cgroup(memcg);
46         if (!cg_proto)
47                 return;
48
49         percpu_counter_destroy(&cg_proto->sockets_allocated);
50 }
51 EXPORT_SYMBOL(tcp_destroy_cgroup);
52
53 static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
54 {
55         struct cg_proto *cg_proto;
56         int i;
57         int ret;
58
59         cg_proto = tcp_prot.proto_cgroup(memcg);
60         if (!cg_proto)
61                 return -EINVAL;
62
63         if (val > RES_COUNTER_MAX)
64                 val = RES_COUNTER_MAX;
65
66         ret = res_counter_set_limit(&cg_proto->memory_allocated, val);
67         if (ret)
68                 return ret;
69
70         for (i = 0; i < 3; i++)
71                 cg_proto->sysctl_mem[i] = min_t(long, val >> PAGE_SHIFT,
72                                                 sysctl_tcp_mem[i]);
73
74         if (val == RES_COUNTER_MAX)
75                 clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
76         else if (val != RES_COUNTER_MAX) {
77                 /*
78                  * The active bit needs to be written after the static_key
79                  * update. This is what guarantees that the socket activation
80                  * function is the last one to run. See sock_update_memcg() for
81                  * details, and note that we don't mark any socket as belonging
82                  * to this memcg until that flag is up.
83                  *
84                  * We need to do this, because static_keys will span multiple
85                  * sites, but we can't control their order. If we mark a socket
86                  * as accounted, but the accounting functions are not patched in
87                  * yet, we'll lose accounting.
88                  *
89                  * We never race with the readers in sock_update_memcg(),
90                  * because when this value change, the code to process it is not
91                  * patched in yet.
92                  *
93                  * The activated bit is used to guarantee that no two writers
94                  * will do the update in the same memcg. Without that, we can't
95                  * properly shutdown the static key.
96                  */
97                 if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
98                         static_key_slow_inc(&memcg_socket_limit_enabled);
99                 set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
100         }
101
102         return 0;
103 }
104
105 static int tcp_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
106                             const char *buffer)
107 {
108         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
109         unsigned long long val;
110         int ret = 0;
111
112         switch (cft->private) {
113         case RES_LIMIT:
114                 /* see memcontrol.c */
115                 ret = res_counter_memparse_write_strategy(buffer, &val);
116                 if (ret)
117                         break;
118                 ret = tcp_update_limit(memcg, val);
119                 break;
120         default:
121                 ret = -EINVAL;
122                 break;
123         }
124         return ret;
125 }
126
127 static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
128 {
129         struct cg_proto *cg_proto;
130
131         cg_proto = tcp_prot.proto_cgroup(memcg);
132         if (!cg_proto)
133                 return default_val;
134
135         return res_counter_read_u64(&cg_proto->memory_allocated, type);
136 }
137
138 static u64 tcp_read_usage(struct mem_cgroup *memcg)
139 {
140         struct cg_proto *cg_proto;
141
142         cg_proto = tcp_prot.proto_cgroup(memcg);
143         if (!cg_proto)
144                 return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
145
146         return res_counter_read_u64(&cg_proto->memory_allocated, RES_USAGE);
147 }
148
149 static u64 tcp_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft)
150 {
151         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
152         u64 val;
153
154         switch (cft->private) {
155         case RES_LIMIT:
156                 val = tcp_read_stat(memcg, RES_LIMIT, RES_COUNTER_MAX);
157                 break;
158         case RES_USAGE:
159                 val = tcp_read_usage(memcg);
160                 break;
161         case RES_FAILCNT:
162         case RES_MAX_USAGE:
163                 val = tcp_read_stat(memcg, cft->private, 0);
164                 break;
165         default:
166                 BUG();
167         }
168         return val;
169 }
170
171 static int tcp_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
172 {
173         struct mem_cgroup *memcg;
174         struct cg_proto *cg_proto;
175
176         memcg = mem_cgroup_from_css(css);
177         cg_proto = tcp_prot.proto_cgroup(memcg);
178         if (!cg_proto)
179                 return 0;
180
181         switch (event) {
182         case RES_MAX_USAGE:
183                 res_counter_reset_max(&cg_proto->memory_allocated);
184                 break;
185         case RES_FAILCNT:
186                 res_counter_reset_failcnt(&cg_proto->memory_allocated);
187                 break;
188         }
189
190         return 0;
191 }
192
193 static struct cftype tcp_files[] = {
194         {
195                 .name = "kmem.tcp.limit_in_bytes",
196                 .write_string = tcp_cgroup_write,
197                 .read_u64 = tcp_cgroup_read,
198                 .private = RES_LIMIT,
199         },
200         {
201                 .name = "kmem.tcp.usage_in_bytes",
202                 .read_u64 = tcp_cgroup_read,
203                 .private = RES_USAGE,
204         },
205         {
206                 .name = "kmem.tcp.failcnt",
207                 .private = RES_FAILCNT,
208                 .trigger = tcp_cgroup_reset,
209                 .read_u64 = tcp_cgroup_read,
210         },
211         {
212                 .name = "kmem.tcp.max_usage_in_bytes",
213                 .private = RES_MAX_USAGE,
214                 .trigger = tcp_cgroup_reset,
215                 .read_u64 = tcp_cgroup_read,
216         },
217         { }     /* terminate */
218 };
219
220 static int __init tcp_memcontrol_init(void)
221 {
222         WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
223         return 0;
224 }
225 __initcall(tcp_memcontrol_init);