Merge branch 'acpi_pad' into release
[linux-drm-fsl-dcu.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91                                                    __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93                                __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 {
98         return NULL;
99 }
100 #endif
101
102 struct inet_hashinfo tcp_hashinfo;
103
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 {
106         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107                                           ip_hdr(skb)->saddr,
108                                           tcp_hdr(skb)->dest,
109                                           tcp_hdr(skb)->source);
110 }
111
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 {
114         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115         struct tcp_sock *tp = tcp_sk(sk);
116
117         /* With PAWS, it is safe from the viewpoint
118            of data integrity. Even without PAWS it is safe provided sequence
119            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120
121            Actually, the idea is close to VJ's one, only timestamp cache is
122            held not per host, but per port pair and TW bucket is used as state
123            holder.
124
125            If TW bucket has been already destroyed we fall back to VJ's scheme
126            and use initial timestamp retrieved from peer table.
127          */
128         if (tcptw->tw_ts_recent_stamp &&
129             (twp == NULL || (sysctl_tcp_tw_reuse &&
130                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132                 if (tp->write_seq == 0)
133                         tp->write_seq = 1;
134                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
135                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136                 sock_hold(sktw);
137                 return 1;
138         }
139
140         return 0;
141 }
142
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 {
148         struct inet_sock *inet = inet_sk(sk);
149         struct tcp_sock *tp = tcp_sk(sk);
150         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151         struct rtable *rt;
152         __be32 daddr, nexthop;
153         int tmp;
154         int err;
155
156         if (addr_len < sizeof(struct sockaddr_in))
157                 return -EINVAL;
158
159         if (usin->sin_family != AF_INET)
160                 return -EAFNOSUPPORT;
161
162         nexthop = daddr = usin->sin_addr.s_addr;
163         if (inet->opt && inet->opt->srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet->opt->faddr;
167         }
168
169         tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
170                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171                                IPPROTO_TCP,
172                                inet->inet_sport, usin->sin_port, sk, 1);
173         if (tmp < 0) {
174                 if (tmp == -ENETUNREACH)
175                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176                 return tmp;
177         }
178
179         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180                 ip_rt_put(rt);
181                 return -ENETUNREACH;
182         }
183
184         if (!inet->opt || !inet->opt->srr)
185                 daddr = rt->rt_dst;
186
187         if (!inet->inet_saddr)
188                 inet->inet_saddr = rt->rt_src;
189         inet->inet_rcv_saddr = inet->inet_saddr;
190
191         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
192                 /* Reset inherited state */
193                 tp->rx_opt.ts_recent       = 0;
194                 tp->rx_opt.ts_recent_stamp = 0;
195                 tp->write_seq              = 0;
196         }
197
198         if (tcp_death_row.sysctl_tw_recycle &&
199             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200                 struct inet_peer *peer = rt_get_peer(rt);
201                 /*
202                  * VJ's idea. We save last timestamp seen from
203                  * the destination in peer table, when entering state
204                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205                  * when trying new connection.
206                  */
207                 if (peer != NULL &&
208                     (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
209                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210                         tp->rx_opt.ts_recent = peer->tcp_ts;
211                 }
212         }
213
214         inet->inet_dport = usin->sin_port;
215         inet->inet_daddr = daddr;
216
217         inet_csk(sk)->icsk_ext_hdr_len = 0;
218         if (inet->opt)
219                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220
221         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222
223         /* Socket identity is still unknown (sport may be zero).
224          * However we set state to SYN-SENT and not releasing socket
225          * lock select source port, enter ourselves into the hash tables and
226          * complete initialization after this.
227          */
228         tcp_set_state(sk, TCP_SYN_SENT);
229         err = inet_hash_connect(&tcp_death_row, sk);
230         if (err)
231                 goto failure;
232
233         err = ip_route_newports(&rt, IPPROTO_TCP,
234                                 inet->inet_sport, inet->inet_dport, sk);
235         if (err)
236                 goto failure;
237
238         /* OK, now commit destination to socket.  */
239         sk->sk_gso_type = SKB_GSO_TCPV4;
240         sk_setup_caps(sk, &rt->u.dst);
241
242         if (!tp->write_seq)
243                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
244                                                            inet->inet_daddr,
245                                                            inet->inet_sport,
246                                                            usin->sin_port);
247
248         inet->inet_id = tp->write_seq ^ jiffies;
249
250         err = tcp_connect(sk);
251         rt = NULL;
252         if (err)
253                 goto failure;
254
255         return 0;
256
257 failure:
258         /*
259          * This unhashes the socket and releases the local port,
260          * if necessary.
261          */
262         tcp_set_state(sk, TCP_CLOSE);
263         ip_rt_put(rt);
264         sk->sk_route_caps = 0;
265         inet->inet_dport = 0;
266         return err;
267 }
268
269 /*
270  * This routine does path mtu discovery as defined in RFC1191.
271  */
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 {
274         struct dst_entry *dst;
275         struct inet_sock *inet = inet_sk(sk);
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         /* We don't check in the destentry if pmtu discovery is forbidden
285          * on this route. We just assume that no packet_to_big packets
286          * are send back when pmtu discovery is not active.
287          * There is a small race when the user changes this flag in the
288          * route, but I think that's acceptable.
289          */
290         if ((dst = __sk_dst_check(sk, 0)) == NULL)
291                 return;
292
293         dst->ops->update_pmtu(dst, mtu);
294
295         /* Something is about to be wrong... Remember soft error
296          * for the case, if this connection will not able to recover.
297          */
298         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299                 sk->sk_err_soft = EMSGSIZE;
300
301         mtu = dst_mtu(dst);
302
303         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305                 tcp_sync_mss(sk, mtu);
306
307                 /* Resend the TCP packet because it's
308                  * clear that the old packet has been
309                  * dropped. This is the new "fast" path mtu
310                  * discovery.
311                  */
312                 tcp_simple_retransmit(sk);
313         } /* else let the usual retransmit timer handle it */
314 }
315
316 /*
317  * This routine is called by the ICMP module when it gets some
318  * sort of error condition.  If err < 0 then the socket should
319  * be closed and the error returned to the user.  If err > 0
320  * it's just the icmp type << 8 | icmp code.  After adjustment
321  * header points to the first 8 bytes of the tcp header.  We need
322  * to find the appropriate port.
323  *
324  * The locking strategy used here is very "optimistic". When
325  * someone else accesses the socket the ICMP is just dropped
326  * and for some paths there is no check at all.
327  * A more general error queue to queue errors for later handling
328  * is probably better.
329  *
330  */
331
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 {
334         struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336         struct inet_connection_sock *icsk;
337         struct tcp_sock *tp;
338         struct inet_sock *inet;
339         const int type = icmp_hdr(icmp_skb)->type;
340         const int code = icmp_hdr(icmp_skb)->code;
341         struct sock *sk;
342         struct sk_buff *skb;
343         __u32 seq;
344         __u32 remaining;
345         int err;
346         struct net *net = dev_net(icmp_skb->dev);
347
348         if (icmp_skb->len < (iph->ihl << 2) + 8) {
349                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350                 return;
351         }
352
353         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354                         iph->saddr, th->source, inet_iif(icmp_skb));
355         if (!sk) {
356                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357                 return;
358         }
359         if (sk->sk_state == TCP_TIME_WAIT) {
360                 inet_twsk_put(inet_twsk(sk));
361                 return;
362         }
363
364         bh_lock_sock(sk);
365         /* If too many ICMPs get dropped on busy
366          * servers this needs to be solved differently.
367          */
368         if (sock_owned_by_user(sk))
369                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370
371         if (sk->sk_state == TCP_CLOSE)
372                 goto out;
373
374         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376                 goto out;
377         }
378
379         icsk = inet_csk(sk);
380         tp = tcp_sk(sk);
381         seq = ntohl(th->seq);
382         if (sk->sk_state != TCP_LISTEN &&
383             !between(seq, tp->snd_una, tp->snd_nxt)) {
384                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385                 goto out;
386         }
387
388         switch (type) {
389         case ICMP_SOURCE_QUENCH:
390                 /* Just silently ignore these. */
391                 goto out;
392         case ICMP_PARAMETERPROB:
393                 err = EPROTO;
394                 break;
395         case ICMP_DEST_UNREACH:
396                 if (code > NR_ICMP_UNREACH)
397                         goto out;
398
399                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
400                         if (!sock_owned_by_user(sk))
401                                 do_pmtu_discovery(sk, iph, info);
402                         goto out;
403                 }
404
405                 err = icmp_err_convert[code].errno;
406                 /* check if icmp_skb allows revert of backoff
407                  * (see draft-zimmermann-tcp-lcd) */
408                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
409                         break;
410                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
411                     !icsk->icsk_backoff)
412                         break;
413
414                 icsk->icsk_backoff--;
415                 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
416                                          icsk->icsk_backoff;
417                 tcp_bound_rto(sk);
418
419                 skb = tcp_write_queue_head(sk);
420                 BUG_ON(!skb);
421
422                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
423                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
424
425                 if (remaining) {
426                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
427                                                   remaining, TCP_RTO_MAX);
428                 } else if (sock_owned_by_user(sk)) {
429                         /* RTO revert clocked out retransmission,
430                          * but socket is locked. Will defer. */
431                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
432                                                   HZ/20, TCP_RTO_MAX);
433                 } else {
434                         /* RTO revert clocked out retransmission.
435                          * Will retransmit now */
436                         tcp_retransmit_timer(sk);
437                 }
438
439                 break;
440         case ICMP_TIME_EXCEEDED:
441                 err = EHOSTUNREACH;
442                 break;
443         default:
444                 goto out;
445         }
446
447         switch (sk->sk_state) {
448                 struct request_sock *req, **prev;
449         case TCP_LISTEN:
450                 if (sock_owned_by_user(sk))
451                         goto out;
452
453                 req = inet_csk_search_req(sk, &prev, th->dest,
454                                           iph->daddr, iph->saddr);
455                 if (!req)
456                         goto out;
457
458                 /* ICMPs are not backlogged, hence we cannot get
459                    an established socket here.
460                  */
461                 WARN_ON(req->sk);
462
463                 if (seq != tcp_rsk(req)->snt_isn) {
464                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
465                         goto out;
466                 }
467
468                 /*
469                  * Still in SYN_RECV, just remove it silently.
470                  * There is no good way to pass the error to the newly
471                  * created socket, and POSIX does not want network
472                  * errors returned from accept().
473                  */
474                 inet_csk_reqsk_queue_drop(sk, req, prev);
475                 goto out;
476
477         case TCP_SYN_SENT:
478         case TCP_SYN_RECV:  /* Cannot happen.
479                                It can f.e. if SYNs crossed.
480                              */
481                 if (!sock_owned_by_user(sk)) {
482                         sk->sk_err = err;
483
484                         sk->sk_error_report(sk);
485
486                         tcp_done(sk);
487                 } else {
488                         sk->sk_err_soft = err;
489                 }
490                 goto out;
491         }
492
493         /* If we've already connected we will keep trying
494          * until we time out, or the user gives up.
495          *
496          * rfc1122 4.2.3.9 allows to consider as hard errors
497          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
498          * but it is obsoleted by pmtu discovery).
499          *
500          * Note, that in modern internet, where routing is unreliable
501          * and in each dark corner broken firewalls sit, sending random
502          * errors ordered by their masters even this two messages finally lose
503          * their original sense (even Linux sends invalid PORT_UNREACHs)
504          *
505          * Now we are in compliance with RFCs.
506          *                                                      --ANK (980905)
507          */
508
509         inet = inet_sk(sk);
510         if (!sock_owned_by_user(sk) && inet->recverr) {
511                 sk->sk_err = err;
512                 sk->sk_error_report(sk);
513         } else  { /* Only an error on timeout */
514                 sk->sk_err_soft = err;
515         }
516
517 out:
518         bh_unlock_sock(sk);
519         sock_put(sk);
520 }
521
522 static void __tcp_v4_send_check(struct sk_buff *skb,
523                                 __be32 saddr, __be32 daddr)
524 {
525         struct tcphdr *th = tcp_hdr(skb);
526
527         if (skb->ip_summed == CHECKSUM_PARTIAL) {
528                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
529                 skb->csum_start = skb_transport_header(skb) - skb->head;
530                 skb->csum_offset = offsetof(struct tcphdr, check);
531         } else {
532                 th->check = tcp_v4_check(skb->len, saddr, daddr,
533                                          csum_partial(th,
534                                                       th->doff << 2,
535                                                       skb->csum));
536         }
537 }
538
539 /* This routine computes an IPv4 TCP checksum. */
540 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
541 {
542         struct inet_sock *inet = inet_sk(sk);
543
544         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
545 }
546
547 int tcp_v4_gso_send_check(struct sk_buff *skb)
548 {
549         const struct iphdr *iph;
550         struct tcphdr *th;
551
552         if (!pskb_may_pull(skb, sizeof(*th)))
553                 return -EINVAL;
554
555         iph = ip_hdr(skb);
556         th = tcp_hdr(skb);
557
558         th->check = 0;
559         skb->ip_summed = CHECKSUM_PARTIAL;
560         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
561         return 0;
562 }
563
564 /*
565  *      This routine will send an RST to the other tcp.
566  *
567  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
568  *                    for reset.
569  *      Answer: if a packet caused RST, it is not for a socket
570  *              existing in our system, if it is matched to a socket,
571  *              it is just duplicate segment or bug in other side's TCP.
572  *              So that we build reply only basing on parameters
573  *              arrived with segment.
574  *      Exception: precedence violation. We do not implement it in any case.
575  */
576
577 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
578 {
579         struct tcphdr *th = tcp_hdr(skb);
580         struct {
581                 struct tcphdr th;
582 #ifdef CONFIG_TCP_MD5SIG
583                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
584 #endif
585         } rep;
586         struct ip_reply_arg arg;
587 #ifdef CONFIG_TCP_MD5SIG
588         struct tcp_md5sig_key *key;
589 #endif
590         struct net *net;
591
592         /* Never send a reset in response to a reset. */
593         if (th->rst)
594                 return;
595
596         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
597                 return;
598
599         /* Swap the send and the receive. */
600         memset(&rep, 0, sizeof(rep));
601         rep.th.dest   = th->source;
602         rep.th.source = th->dest;
603         rep.th.doff   = sizeof(struct tcphdr) / 4;
604         rep.th.rst    = 1;
605
606         if (th->ack) {
607                 rep.th.seq = th->ack_seq;
608         } else {
609                 rep.th.ack = 1;
610                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
611                                        skb->len - (th->doff << 2));
612         }
613
614         memset(&arg, 0, sizeof(arg));
615         arg.iov[0].iov_base = (unsigned char *)&rep;
616         arg.iov[0].iov_len  = sizeof(rep.th);
617
618 #ifdef CONFIG_TCP_MD5SIG
619         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
620         if (key) {
621                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
622                                    (TCPOPT_NOP << 16) |
623                                    (TCPOPT_MD5SIG << 8) |
624                                    TCPOLEN_MD5SIG);
625                 /* Update length and the length the header thinks exists */
626                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
627                 rep.th.doff = arg.iov[0].iov_len / 4;
628
629                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
630                                      key, ip_hdr(skb)->saddr,
631                                      ip_hdr(skb)->daddr, &rep.th);
632         }
633 #endif
634         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
635                                       ip_hdr(skb)->saddr, /* XXX */
636                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
637         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
638         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
639
640         net = dev_net(skb_dst(skb)->dev);
641         ip_send_reply(net->ipv4.tcp_sock, skb,
642                       &arg, arg.iov[0].iov_len);
643
644         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
645         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
646 }
647
648 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
649    outside socket context is ugly, certainly. What can I do?
650  */
651
652 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
653                             u32 win, u32 ts, int oif,
654                             struct tcp_md5sig_key *key,
655                             int reply_flags)
656 {
657         struct tcphdr *th = tcp_hdr(skb);
658         struct {
659                 struct tcphdr th;
660                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
661 #ifdef CONFIG_TCP_MD5SIG
662                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
663 #endif
664                         ];
665         } rep;
666         struct ip_reply_arg arg;
667         struct net *net = dev_net(skb_dst(skb)->dev);
668
669         memset(&rep.th, 0, sizeof(struct tcphdr));
670         memset(&arg, 0, sizeof(arg));
671
672         arg.iov[0].iov_base = (unsigned char *)&rep;
673         arg.iov[0].iov_len  = sizeof(rep.th);
674         if (ts) {
675                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
676                                    (TCPOPT_TIMESTAMP << 8) |
677                                    TCPOLEN_TIMESTAMP);
678                 rep.opt[1] = htonl(tcp_time_stamp);
679                 rep.opt[2] = htonl(ts);
680                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
681         }
682
683         /* Swap the send and the receive. */
684         rep.th.dest    = th->source;
685         rep.th.source  = th->dest;
686         rep.th.doff    = arg.iov[0].iov_len / 4;
687         rep.th.seq     = htonl(seq);
688         rep.th.ack_seq = htonl(ack);
689         rep.th.ack     = 1;
690         rep.th.window  = htons(win);
691
692 #ifdef CONFIG_TCP_MD5SIG
693         if (key) {
694                 int offset = (ts) ? 3 : 0;
695
696                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
697                                           (TCPOPT_NOP << 16) |
698                                           (TCPOPT_MD5SIG << 8) |
699                                           TCPOLEN_MD5SIG);
700                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
701                 rep.th.doff = arg.iov[0].iov_len/4;
702
703                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
704                                     key, ip_hdr(skb)->saddr,
705                                     ip_hdr(skb)->daddr, &rep.th);
706         }
707 #endif
708         arg.flags = reply_flags;
709         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
710                                       ip_hdr(skb)->saddr, /* XXX */
711                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
712         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
713         if (oif)
714                 arg.bound_dev_if = oif;
715
716         ip_send_reply(net->ipv4.tcp_sock, skb,
717                       &arg, arg.iov[0].iov_len);
718
719         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
720 }
721
722 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
723 {
724         struct inet_timewait_sock *tw = inet_twsk(sk);
725         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
726
727         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
728                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
729                         tcptw->tw_ts_recent,
730                         tw->tw_bound_dev_if,
731                         tcp_twsk_md5_key(tcptw),
732                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
733                         );
734
735         inet_twsk_put(tw);
736 }
737
738 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
739                                   struct request_sock *req)
740 {
741         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
742                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
743                         req->ts_recent,
744                         0,
745                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
746                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
747 }
748
749 /*
750  *      Send a SYN-ACK after having received a SYN.
751  *      This still operates on a request_sock only, not on a big
752  *      socket.
753  */
754 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
755                               struct request_sock *req,
756                               struct request_values *rvp)
757 {
758         const struct inet_request_sock *ireq = inet_rsk(req);
759         int err = -1;
760         struct sk_buff * skb;
761
762         /* First, grab a route. */
763         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
764                 return -1;
765
766         skb = tcp_make_synack(sk, dst, req, rvp);
767
768         if (skb) {
769                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
770
771                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
772                                             ireq->rmt_addr,
773                                             ireq->opt);
774                 err = net_xmit_eval(err);
775         }
776
777         dst_release(dst);
778         return err;
779 }
780
781 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
782                               struct request_values *rvp)
783 {
784         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
785         return tcp_v4_send_synack(sk, NULL, req, rvp);
786 }
787
788 /*
789  *      IPv4 request_sock destructor.
790  */
791 static void tcp_v4_reqsk_destructor(struct request_sock *req)
792 {
793         kfree(inet_rsk(req)->opt);
794 }
795
796 #ifdef CONFIG_SYN_COOKIES
797 static void syn_flood_warning(struct sk_buff *skb)
798 {
799         static unsigned long warntime;
800
801         if (time_after(jiffies, (warntime + HZ * 60))) {
802                 warntime = jiffies;
803                 printk(KERN_INFO
804                        "possible SYN flooding on port %d. Sending cookies.\n",
805                        ntohs(tcp_hdr(skb)->dest));
806         }
807 }
808 #endif
809
810 /*
811  * Save and compile IPv4 options into the request_sock if needed.
812  */
813 static struct ip_options *tcp_v4_save_options(struct sock *sk,
814                                               struct sk_buff *skb)
815 {
816         struct ip_options *opt = &(IPCB(skb)->opt);
817         struct ip_options *dopt = NULL;
818
819         if (opt && opt->optlen) {
820                 int opt_size = optlength(opt);
821                 dopt = kmalloc(opt_size, GFP_ATOMIC);
822                 if (dopt) {
823                         if (ip_options_echo(dopt, skb)) {
824                                 kfree(dopt);
825                                 dopt = NULL;
826                         }
827                 }
828         }
829         return dopt;
830 }
831
832 #ifdef CONFIG_TCP_MD5SIG
833 /*
834  * RFC2385 MD5 checksumming requires a mapping of
835  * IP address->MD5 Key.
836  * We need to maintain these in the sk structure.
837  */
838
839 /* Find the Key structure for an address.  */
840 static struct tcp_md5sig_key *
841                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
842 {
843         struct tcp_sock *tp = tcp_sk(sk);
844         int i;
845
846         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
847                 return NULL;
848         for (i = 0; i < tp->md5sig_info->entries4; i++) {
849                 if (tp->md5sig_info->keys4[i].addr == addr)
850                         return &tp->md5sig_info->keys4[i].base;
851         }
852         return NULL;
853 }
854
855 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
856                                          struct sock *addr_sk)
857 {
858         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
859 }
860
861 EXPORT_SYMBOL(tcp_v4_md5_lookup);
862
863 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
864                                                       struct request_sock *req)
865 {
866         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
867 }
868
869 /* This can be called on a newly created socket, from other files */
870 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
871                       u8 *newkey, u8 newkeylen)
872 {
873         /* Add Key to the list */
874         struct tcp_md5sig_key *key;
875         struct tcp_sock *tp = tcp_sk(sk);
876         struct tcp4_md5sig_key *keys;
877
878         key = tcp_v4_md5_do_lookup(sk, addr);
879         if (key) {
880                 /* Pre-existing entry - just update that one. */
881                 kfree(key->key);
882                 key->key = newkey;
883                 key->keylen = newkeylen;
884         } else {
885                 struct tcp_md5sig_info *md5sig;
886
887                 if (!tp->md5sig_info) {
888                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
889                                                   GFP_ATOMIC);
890                         if (!tp->md5sig_info) {
891                                 kfree(newkey);
892                                 return -ENOMEM;
893                         }
894                         sk_nocaps_add(sk, NETIF_F_GSO_MASK);
895                 }
896                 if (tcp_alloc_md5sig_pool(sk) == NULL) {
897                         kfree(newkey);
898                         return -ENOMEM;
899                 }
900                 md5sig = tp->md5sig_info;
901
902                 if (md5sig->alloced4 == md5sig->entries4) {
903                         keys = kmalloc((sizeof(*keys) *
904                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
905                         if (!keys) {
906                                 kfree(newkey);
907                                 tcp_free_md5sig_pool();
908                                 return -ENOMEM;
909                         }
910
911                         if (md5sig->entries4)
912                                 memcpy(keys, md5sig->keys4,
913                                        sizeof(*keys) * md5sig->entries4);
914
915                         /* Free old key list, and reference new one */
916                         kfree(md5sig->keys4);
917                         md5sig->keys4 = keys;
918                         md5sig->alloced4++;
919                 }
920                 md5sig->entries4++;
921                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
922                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
923                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
924         }
925         return 0;
926 }
927
928 EXPORT_SYMBOL(tcp_v4_md5_do_add);
929
930 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
931                                u8 *newkey, u8 newkeylen)
932 {
933         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
934                                  newkey, newkeylen);
935 }
936
937 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
938 {
939         struct tcp_sock *tp = tcp_sk(sk);
940         int i;
941
942         for (i = 0; i < tp->md5sig_info->entries4; i++) {
943                 if (tp->md5sig_info->keys4[i].addr == addr) {
944                         /* Free the key */
945                         kfree(tp->md5sig_info->keys4[i].base.key);
946                         tp->md5sig_info->entries4--;
947
948                         if (tp->md5sig_info->entries4 == 0) {
949                                 kfree(tp->md5sig_info->keys4);
950                                 tp->md5sig_info->keys4 = NULL;
951                                 tp->md5sig_info->alloced4 = 0;
952                         } else if (tp->md5sig_info->entries4 != i) {
953                                 /* Need to do some manipulation */
954                                 memmove(&tp->md5sig_info->keys4[i],
955                                         &tp->md5sig_info->keys4[i+1],
956                                         (tp->md5sig_info->entries4 - i) *
957                                          sizeof(struct tcp4_md5sig_key));
958                         }
959                         tcp_free_md5sig_pool();
960                         return 0;
961                 }
962         }
963         return -ENOENT;
964 }
965
966 EXPORT_SYMBOL(tcp_v4_md5_do_del);
967
968 static void tcp_v4_clear_md5_list(struct sock *sk)
969 {
970         struct tcp_sock *tp = tcp_sk(sk);
971
972         /* Free each key, then the set of key keys,
973          * the crypto element, and then decrement our
974          * hold on the last resort crypto.
975          */
976         if (tp->md5sig_info->entries4) {
977                 int i;
978                 for (i = 0; i < tp->md5sig_info->entries4; i++)
979                         kfree(tp->md5sig_info->keys4[i].base.key);
980                 tp->md5sig_info->entries4 = 0;
981                 tcp_free_md5sig_pool();
982         }
983         if (tp->md5sig_info->keys4) {
984                 kfree(tp->md5sig_info->keys4);
985                 tp->md5sig_info->keys4 = NULL;
986                 tp->md5sig_info->alloced4  = 0;
987         }
988 }
989
990 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
991                                  int optlen)
992 {
993         struct tcp_md5sig cmd;
994         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
995         u8 *newkey;
996
997         if (optlen < sizeof(cmd))
998                 return -EINVAL;
999
1000         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1001                 return -EFAULT;
1002
1003         if (sin->sin_family != AF_INET)
1004                 return -EINVAL;
1005
1006         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1007                 if (!tcp_sk(sk)->md5sig_info)
1008                         return -ENOENT;
1009                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1010         }
1011
1012         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1013                 return -EINVAL;
1014
1015         if (!tcp_sk(sk)->md5sig_info) {
1016                 struct tcp_sock *tp = tcp_sk(sk);
1017                 struct tcp_md5sig_info *p;
1018
1019                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1020                 if (!p)
1021                         return -EINVAL;
1022
1023                 tp->md5sig_info = p;
1024                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1025         }
1026
1027         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1028         if (!newkey)
1029                 return -ENOMEM;
1030         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1031                                  newkey, cmd.tcpm_keylen);
1032 }
1033
1034 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1035                                         __be32 daddr, __be32 saddr, int nbytes)
1036 {
1037         struct tcp4_pseudohdr *bp;
1038         struct scatterlist sg;
1039
1040         bp = &hp->md5_blk.ip4;
1041
1042         /*
1043          * 1. the TCP pseudo-header (in the order: source IP address,
1044          * destination IP address, zero-padded protocol number, and
1045          * segment length)
1046          */
1047         bp->saddr = saddr;
1048         bp->daddr = daddr;
1049         bp->pad = 0;
1050         bp->protocol = IPPROTO_TCP;
1051         bp->len = cpu_to_be16(nbytes);
1052
1053         sg_init_one(&sg, bp, sizeof(*bp));
1054         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1055 }
1056
1057 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1058                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1059 {
1060         struct tcp_md5sig_pool *hp;
1061         struct hash_desc *desc;
1062
1063         hp = tcp_get_md5sig_pool();
1064         if (!hp)
1065                 goto clear_hash_noput;
1066         desc = &hp->md5_desc;
1067
1068         if (crypto_hash_init(desc))
1069                 goto clear_hash;
1070         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1071                 goto clear_hash;
1072         if (tcp_md5_hash_header(hp, th))
1073                 goto clear_hash;
1074         if (tcp_md5_hash_key(hp, key))
1075                 goto clear_hash;
1076         if (crypto_hash_final(desc, md5_hash))
1077                 goto clear_hash;
1078
1079         tcp_put_md5sig_pool();
1080         return 0;
1081
1082 clear_hash:
1083         tcp_put_md5sig_pool();
1084 clear_hash_noput:
1085         memset(md5_hash, 0, 16);
1086         return 1;
1087 }
1088
1089 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1090                         struct sock *sk, struct request_sock *req,
1091                         struct sk_buff *skb)
1092 {
1093         struct tcp_md5sig_pool *hp;
1094         struct hash_desc *desc;
1095         struct tcphdr *th = tcp_hdr(skb);
1096         __be32 saddr, daddr;
1097
1098         if (sk) {
1099                 saddr = inet_sk(sk)->inet_saddr;
1100                 daddr = inet_sk(sk)->inet_daddr;
1101         } else if (req) {
1102                 saddr = inet_rsk(req)->loc_addr;
1103                 daddr = inet_rsk(req)->rmt_addr;
1104         } else {
1105                 const struct iphdr *iph = ip_hdr(skb);
1106                 saddr = iph->saddr;
1107                 daddr = iph->daddr;
1108         }
1109
1110         hp = tcp_get_md5sig_pool();
1111         if (!hp)
1112                 goto clear_hash_noput;
1113         desc = &hp->md5_desc;
1114
1115         if (crypto_hash_init(desc))
1116                 goto clear_hash;
1117
1118         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1119                 goto clear_hash;
1120         if (tcp_md5_hash_header(hp, th))
1121                 goto clear_hash;
1122         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1123                 goto clear_hash;
1124         if (tcp_md5_hash_key(hp, key))
1125                 goto clear_hash;
1126         if (crypto_hash_final(desc, md5_hash))
1127                 goto clear_hash;
1128
1129         tcp_put_md5sig_pool();
1130         return 0;
1131
1132 clear_hash:
1133         tcp_put_md5sig_pool();
1134 clear_hash_noput:
1135         memset(md5_hash, 0, 16);
1136         return 1;
1137 }
1138
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1140
1141 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1142 {
1143         /*
1144          * This gets called for each TCP segment that arrives
1145          * so we want to be efficient.
1146          * We have 3 drop cases:
1147          * o No MD5 hash and one expected.
1148          * o MD5 hash and we're not expecting one.
1149          * o MD5 hash and its wrong.
1150          */
1151         __u8 *hash_location = NULL;
1152         struct tcp_md5sig_key *hash_expected;
1153         const struct iphdr *iph = ip_hdr(skb);
1154         struct tcphdr *th = tcp_hdr(skb);
1155         int genhash;
1156         unsigned char newhash[16];
1157
1158         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1159         hash_location = tcp_parse_md5sig_option(th);
1160
1161         /* We've parsed the options - do we have a hash? */
1162         if (!hash_expected && !hash_location)
1163                 return 0;
1164
1165         if (hash_expected && !hash_location) {
1166                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1167                 return 1;
1168         }
1169
1170         if (!hash_expected && hash_location) {
1171                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1172                 return 1;
1173         }
1174
1175         /* Okay, so this is hash_expected and hash_location -
1176          * so we need to calculate the checksum.
1177          */
1178         genhash = tcp_v4_md5_hash_skb(newhash,
1179                                       hash_expected,
1180                                       NULL, NULL, skb);
1181
1182         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1183                 if (net_ratelimit()) {
1184                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185                                &iph->saddr, ntohs(th->source),
1186                                &iph->daddr, ntohs(th->dest),
1187                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1188                 }
1189                 return 1;
1190         }
1191         return 0;
1192 }
1193
1194 #endif
1195
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1197         .family         =       PF_INET,
1198         .obj_size       =       sizeof(struct tcp_request_sock),
1199         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1200         .send_ack       =       tcp_v4_reqsk_send_ack,
1201         .destructor     =       tcp_v4_reqsk_destructor,
1202         .send_reset     =       tcp_v4_send_reset,
1203         .syn_ack_timeout =      tcp_syn_ack_timeout,
1204 };
1205
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1208         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1209         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1210 };
1211 #endif
1212
1213 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1214         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1215         .twsk_unique    = tcp_twsk_unique,
1216         .twsk_destructor= tcp_twsk_destructor,
1217 };
1218
1219 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1220 {
1221         struct tcp_extend_values tmp_ext;
1222         struct tcp_options_received tmp_opt;
1223         u8 *hash_location;
1224         struct request_sock *req;
1225         struct inet_request_sock *ireq;
1226         struct tcp_sock *tp = tcp_sk(sk);
1227         struct dst_entry *dst = NULL;
1228         __be32 saddr = ip_hdr(skb)->saddr;
1229         __be32 daddr = ip_hdr(skb)->daddr;
1230         __u32 isn = TCP_SKB_CB(skb)->when;
1231 #ifdef CONFIG_SYN_COOKIES
1232         int want_cookie = 0;
1233 #else
1234 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1235 #endif
1236
1237         /* Never answer to SYNs send to broadcast or multicast */
1238         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1239                 goto drop;
1240
1241         /* TW buckets are converted to open requests without
1242          * limitations, they conserve resources and peer is
1243          * evidently real one.
1244          */
1245         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1246 #ifdef CONFIG_SYN_COOKIES
1247                 if (sysctl_tcp_syncookies) {
1248                         want_cookie = 1;
1249                 } else
1250 #endif
1251                 goto drop;
1252         }
1253
1254         /* Accept backlog is full. If we have already queued enough
1255          * of warm entries in syn queue, drop request. It is better than
1256          * clogging syn queue with openreqs with exponentially increasing
1257          * timeout.
1258          */
1259         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1260                 goto drop;
1261
1262         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1263         if (!req)
1264                 goto drop;
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1268 #endif
1269
1270         tcp_clear_options(&tmp_opt);
1271         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1272         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1273         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1274
1275         if (tmp_opt.cookie_plus > 0 &&
1276             tmp_opt.saw_tstamp &&
1277             !tp->rx_opt.cookie_out_never &&
1278             (sysctl_tcp_cookie_size > 0 ||
1279              (tp->cookie_values != NULL &&
1280               tp->cookie_values->cookie_desired > 0))) {
1281                 u8 *c;
1282                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1283                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1284
1285                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1286                         goto drop_and_release;
1287
1288                 /* Secret recipe starts with IP addresses */
1289                 *mess++ ^= (__force u32)daddr;
1290                 *mess++ ^= (__force u32)saddr;
1291
1292                 /* plus variable length Initiator Cookie */
1293                 c = (u8 *)mess;
1294                 while (l-- > 0)
1295                         *c++ ^= *hash_location++;
1296
1297 #ifdef CONFIG_SYN_COOKIES
1298                 want_cookie = 0;        /* not our kind of cookie */
1299 #endif
1300                 tmp_ext.cookie_out_never = 0; /* false */
1301                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1302         } else if (!tp->rx_opt.cookie_in_always) {
1303                 /* redundant indications, but ensure initialization. */
1304                 tmp_ext.cookie_out_never = 1; /* true */
1305                 tmp_ext.cookie_plus = 0;
1306         } else {
1307                 goto drop_and_release;
1308         }
1309         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1310
1311         if (want_cookie && !tmp_opt.saw_tstamp)
1312                 tcp_clear_options(&tmp_opt);
1313
1314         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1315         tcp_openreq_init(req, &tmp_opt, skb);
1316
1317         ireq = inet_rsk(req);
1318         ireq->loc_addr = daddr;
1319         ireq->rmt_addr = saddr;
1320         ireq->no_srccheck = inet_sk(sk)->transparent;
1321         ireq->opt = tcp_v4_save_options(sk, skb);
1322
1323         if (security_inet_conn_request(sk, skb, req))
1324                 goto drop_and_free;
1325
1326         if (!want_cookie)
1327                 TCP_ECN_create_request(req, tcp_hdr(skb));
1328
1329         if (want_cookie) {
1330 #ifdef CONFIG_SYN_COOKIES
1331                 syn_flood_warning(skb);
1332                 req->cookie_ts = tmp_opt.tstamp_ok;
1333 #endif
1334                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1335         } else if (!isn) {
1336                 struct inet_peer *peer = NULL;
1337
1338                 /* VJ's idea. We save last timestamp seen
1339                  * from the destination in peer table, when entering
1340                  * state TIME-WAIT, and check against it before
1341                  * accepting new connection request.
1342                  *
1343                  * If "isn" is not zero, this request hit alive
1344                  * timewait bucket, so that all the necessary checks
1345                  * are made in the function processing timewait state.
1346                  */
1347                 if (tmp_opt.saw_tstamp &&
1348                     tcp_death_row.sysctl_tw_recycle &&
1349                     (dst = inet_csk_route_req(sk, req)) != NULL &&
1350                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1351                     peer->v4daddr == saddr) {
1352                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1353                             (s32)(peer->tcp_ts - req->ts_recent) >
1354                                                         TCP_PAWS_WINDOW) {
1355                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1356                                 goto drop_and_release;
1357                         }
1358                 }
1359                 /* Kill the following clause, if you dislike this way. */
1360                 else if (!sysctl_tcp_syncookies &&
1361                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1362                           (sysctl_max_syn_backlog >> 2)) &&
1363                          (!peer || !peer->tcp_ts_stamp) &&
1364                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1365                         /* Without syncookies last quarter of
1366                          * backlog is filled with destinations,
1367                          * proven to be alive.
1368                          * It means that we continue to communicate
1369                          * to destinations, already remembered
1370                          * to the moment of synflood.
1371                          */
1372                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1373                                        &saddr, ntohs(tcp_hdr(skb)->source));
1374                         goto drop_and_release;
1375                 }
1376
1377                 isn = tcp_v4_init_sequence(skb);
1378         }
1379         tcp_rsk(req)->snt_isn = isn;
1380
1381         if (tcp_v4_send_synack(sk, dst, req,
1382                                (struct request_values *)&tmp_ext) ||
1383             want_cookie)
1384                 goto drop_and_free;
1385
1386         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1387         return 0;
1388
1389 drop_and_release:
1390         dst_release(dst);
1391 drop_and_free:
1392         reqsk_free(req);
1393 drop:
1394         return 0;
1395 }
1396
1397
1398 /*
1399  * The three way handshake has completed - we got a valid synack -
1400  * now create the new socket.
1401  */
1402 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1403                                   struct request_sock *req,
1404                                   struct dst_entry *dst)
1405 {
1406         struct inet_request_sock *ireq;
1407         struct inet_sock *newinet;
1408         struct tcp_sock *newtp;
1409         struct sock *newsk;
1410 #ifdef CONFIG_TCP_MD5SIG
1411         struct tcp_md5sig_key *key;
1412 #endif
1413
1414         if (sk_acceptq_is_full(sk))
1415                 goto exit_overflow;
1416
1417         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1418                 goto exit;
1419
1420         newsk = tcp_create_openreq_child(sk, req, skb);
1421         if (!newsk)
1422                 goto exit;
1423
1424         newsk->sk_gso_type = SKB_GSO_TCPV4;
1425         sk_setup_caps(newsk, dst);
1426
1427         newtp                 = tcp_sk(newsk);
1428         newinet               = inet_sk(newsk);
1429         ireq                  = inet_rsk(req);
1430         newinet->inet_daddr   = ireq->rmt_addr;
1431         newinet->inet_rcv_saddr = ireq->loc_addr;
1432         newinet->inet_saddr           = ireq->loc_addr;
1433         newinet->opt          = ireq->opt;
1434         ireq->opt             = NULL;
1435         newinet->mc_index     = inet_iif(skb);
1436         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1437         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1438         if (newinet->opt)
1439                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1440         newinet->inet_id = newtp->write_seq ^ jiffies;
1441
1442         tcp_mtup_init(newsk);
1443         tcp_sync_mss(newsk, dst_mtu(dst));
1444         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1445         if (tcp_sk(sk)->rx_opt.user_mss &&
1446             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1447                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1448
1449         tcp_initialize_rcv_mss(newsk);
1450
1451 #ifdef CONFIG_TCP_MD5SIG
1452         /* Copy over the MD5 key from the original socket */
1453         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1454         if (key != NULL) {
1455                 /*
1456                  * We're using one, so create a matching key
1457                  * on the newsk structure. If we fail to get
1458                  * memory, then we end up not copying the key
1459                  * across. Shucks.
1460                  */
1461                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1462                 if (newkey != NULL)
1463                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1464                                           newkey, key->keylen);
1465                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1466         }
1467 #endif
1468
1469         __inet_hash_nolisten(newsk, NULL);
1470         __inet_inherit_port(sk, newsk);
1471
1472         return newsk;
1473
1474 exit_overflow:
1475         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1476 exit:
1477         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1478         dst_release(dst);
1479         return NULL;
1480 }
1481
1482 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1483 {
1484         struct tcphdr *th = tcp_hdr(skb);
1485         const struct iphdr *iph = ip_hdr(skb);
1486         struct sock *nsk;
1487         struct request_sock **prev;
1488         /* Find possible connection requests. */
1489         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1490                                                        iph->saddr, iph->daddr);
1491         if (req)
1492                 return tcp_check_req(sk, skb, req, prev);
1493
1494         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1495                         th->source, iph->daddr, th->dest, inet_iif(skb));
1496
1497         if (nsk) {
1498                 if (nsk->sk_state != TCP_TIME_WAIT) {
1499                         bh_lock_sock(nsk);
1500                         return nsk;
1501                 }
1502                 inet_twsk_put(inet_twsk(nsk));
1503                 return NULL;
1504         }
1505
1506 #ifdef CONFIG_SYN_COOKIES
1507         if (!th->rst && !th->syn && th->ack)
1508                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1509 #endif
1510         return sk;
1511 }
1512
1513 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1514 {
1515         const struct iphdr *iph = ip_hdr(skb);
1516
1517         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1518                 if (!tcp_v4_check(skb->len, iph->saddr,
1519                                   iph->daddr, skb->csum)) {
1520                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1521                         return 0;
1522                 }
1523         }
1524
1525         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1526                                        skb->len, IPPROTO_TCP, 0);
1527
1528         if (skb->len <= 76) {
1529                 return __skb_checksum_complete(skb);
1530         }
1531         return 0;
1532 }
1533
1534
1535 /* The socket must have it's spinlock held when we get
1536  * here.
1537  *
1538  * We have a potential double-lock case here, so even when
1539  * doing backlog processing we use the BH locking scheme.
1540  * This is because we cannot sleep with the original spinlock
1541  * held.
1542  */
1543 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1544 {
1545         struct sock *rsk;
1546 #ifdef CONFIG_TCP_MD5SIG
1547         /*
1548          * We really want to reject the packet as early as possible
1549          * if:
1550          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1551          *  o There is an MD5 option and we're not expecting one
1552          */
1553         if (tcp_v4_inbound_md5_hash(sk, skb))
1554                 goto discard;
1555 #endif
1556
1557         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1558                 sock_rps_save_rxhash(sk, skb->rxhash);
1559                 TCP_CHECK_TIMER(sk);
1560                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1561                         rsk = sk;
1562                         goto reset;
1563                 }
1564                 TCP_CHECK_TIMER(sk);
1565                 return 0;
1566         }
1567
1568         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1569                 goto csum_err;
1570
1571         if (sk->sk_state == TCP_LISTEN) {
1572                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1573                 if (!nsk)
1574                         goto discard;
1575
1576                 if (nsk != sk) {
1577                         if (tcp_child_process(sk, nsk, skb)) {
1578                                 rsk = nsk;
1579                                 goto reset;
1580                         }
1581                         return 0;
1582                 }
1583         } else
1584                 sock_rps_save_rxhash(sk, skb->rxhash);
1585
1586
1587         TCP_CHECK_TIMER(sk);
1588         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1589                 rsk = sk;
1590                 goto reset;
1591         }
1592         TCP_CHECK_TIMER(sk);
1593         return 0;
1594
1595 reset:
1596         tcp_v4_send_reset(rsk, skb);
1597 discard:
1598         kfree_skb(skb);
1599         /* Be careful here. If this function gets more complicated and
1600          * gcc suffers from register pressure on the x86, sk (in %ebx)
1601          * might be destroyed here. This current version compiles correctly,
1602          * but you have been warned.
1603          */
1604         return 0;
1605
1606 csum_err:
1607         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1608         goto discard;
1609 }
1610
1611 /*
1612  *      From tcp_input.c
1613  */
1614
1615 int tcp_v4_rcv(struct sk_buff *skb)
1616 {
1617         const struct iphdr *iph;
1618         struct tcphdr *th;
1619         struct sock *sk;
1620         int ret;
1621         struct net *net = dev_net(skb->dev);
1622
1623         if (skb->pkt_type != PACKET_HOST)
1624                 goto discard_it;
1625
1626         /* Count it even if it's bad */
1627         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1628
1629         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1630                 goto discard_it;
1631
1632         th = tcp_hdr(skb);
1633
1634         if (th->doff < sizeof(struct tcphdr) / 4)
1635                 goto bad_packet;
1636         if (!pskb_may_pull(skb, th->doff * 4))
1637                 goto discard_it;
1638
1639         /* An explanation is required here, I think.
1640          * Packet length and doff are validated by header prediction,
1641          * provided case of th->doff==0 is eliminated.
1642          * So, we defer the checks. */
1643         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1644                 goto bad_packet;
1645
1646         th = tcp_hdr(skb);
1647         iph = ip_hdr(skb);
1648         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1649         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1650                                     skb->len - th->doff * 4);
1651         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1652         TCP_SKB_CB(skb)->when    = 0;
1653         TCP_SKB_CB(skb)->flags   = iph->tos;
1654         TCP_SKB_CB(skb)->sacked  = 0;
1655
1656         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1657         if (!sk)
1658                 goto no_tcp_socket;
1659
1660 process:
1661         if (sk->sk_state == TCP_TIME_WAIT)
1662                 goto do_time_wait;
1663
1664         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1665                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1666                 goto discard_and_relse;
1667         }
1668
1669         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1670                 goto discard_and_relse;
1671         nf_reset(skb);
1672
1673         if (sk_filter(sk, skb))
1674                 goto discard_and_relse;
1675
1676         skb->dev = NULL;
1677
1678         bh_lock_sock_nested(sk);
1679         ret = 0;
1680         if (!sock_owned_by_user(sk)) {
1681 #ifdef CONFIG_NET_DMA
1682                 struct tcp_sock *tp = tcp_sk(sk);
1683                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1684                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1685                 if (tp->ucopy.dma_chan)
1686                         ret = tcp_v4_do_rcv(sk, skb);
1687                 else
1688 #endif
1689                 {
1690                         if (!tcp_prequeue(sk, skb))
1691                                 ret = tcp_v4_do_rcv(sk, skb);
1692                 }
1693         } else if (unlikely(sk_add_backlog(sk, skb))) {
1694                 bh_unlock_sock(sk);
1695                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1696                 goto discard_and_relse;
1697         }
1698         bh_unlock_sock(sk);
1699
1700         sock_put(sk);
1701
1702         return ret;
1703
1704 no_tcp_socket:
1705         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1706                 goto discard_it;
1707
1708         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1709 bad_packet:
1710                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1711         } else {
1712                 tcp_v4_send_reset(NULL, skb);
1713         }
1714
1715 discard_it:
1716         /* Discard frame. */
1717         kfree_skb(skb);
1718         return 0;
1719
1720 discard_and_relse:
1721         sock_put(sk);
1722         goto discard_it;
1723
1724 do_time_wait:
1725         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1726                 inet_twsk_put(inet_twsk(sk));
1727                 goto discard_it;
1728         }
1729
1730         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1731                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1732                 inet_twsk_put(inet_twsk(sk));
1733                 goto discard_it;
1734         }
1735         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1736         case TCP_TW_SYN: {
1737                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1738                                                         &tcp_hashinfo,
1739                                                         iph->daddr, th->dest,
1740                                                         inet_iif(skb));
1741                 if (sk2) {
1742                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1743                         inet_twsk_put(inet_twsk(sk));
1744                         sk = sk2;
1745                         goto process;
1746                 }
1747                 /* Fall through to ACK */
1748         }
1749         case TCP_TW_ACK:
1750                 tcp_v4_timewait_ack(sk, skb);
1751                 break;
1752         case TCP_TW_RST:
1753                 goto no_tcp_socket;
1754         case TCP_TW_SUCCESS:;
1755         }
1756         goto discard_it;
1757 }
1758
1759 /* VJ's idea. Save last timestamp seen from this destination
1760  * and hold it at least for normal timewait interval to use for duplicate
1761  * segment detection in subsequent connections, before they enter synchronized
1762  * state.
1763  */
1764
1765 int tcp_v4_remember_stamp(struct sock *sk)
1766 {
1767         struct inet_sock *inet = inet_sk(sk);
1768         struct tcp_sock *tp = tcp_sk(sk);
1769         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1770         struct inet_peer *peer = NULL;
1771         int release_it = 0;
1772
1773         if (!rt || rt->rt_dst != inet->inet_daddr) {
1774                 peer = inet_getpeer(inet->inet_daddr, 1);
1775                 release_it = 1;
1776         } else {
1777                 if (!rt->peer)
1778                         rt_bind_peer(rt, 1);
1779                 peer = rt->peer;
1780         }
1781
1782         if (peer) {
1783                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1784                     ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1785                      peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1786                         peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1787                         peer->tcp_ts = tp->rx_opt.ts_recent;
1788                 }
1789                 if (release_it)
1790                         inet_putpeer(peer);
1791                 return 1;
1792         }
1793
1794         return 0;
1795 }
1796
1797 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1798 {
1799         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1800
1801         if (peer) {
1802                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1803
1804                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1805                     ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1806                      peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1807                         peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1808                         peer->tcp_ts       = tcptw->tw_ts_recent;
1809                 }
1810                 inet_putpeer(peer);
1811                 return 1;
1812         }
1813
1814         return 0;
1815 }
1816
1817 const struct inet_connection_sock_af_ops ipv4_specific = {
1818         .queue_xmit        = ip_queue_xmit,
1819         .send_check        = tcp_v4_send_check,
1820         .rebuild_header    = inet_sk_rebuild_header,
1821         .conn_request      = tcp_v4_conn_request,
1822         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1823         .remember_stamp    = tcp_v4_remember_stamp,
1824         .net_header_len    = sizeof(struct iphdr),
1825         .setsockopt        = ip_setsockopt,
1826         .getsockopt        = ip_getsockopt,
1827         .addr2sockaddr     = inet_csk_addr2sockaddr,
1828         .sockaddr_len      = sizeof(struct sockaddr_in),
1829         .bind_conflict     = inet_csk_bind_conflict,
1830 #ifdef CONFIG_COMPAT
1831         .compat_setsockopt = compat_ip_setsockopt,
1832         .compat_getsockopt = compat_ip_getsockopt,
1833 #endif
1834 };
1835
1836 #ifdef CONFIG_TCP_MD5SIG
1837 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1838         .md5_lookup             = tcp_v4_md5_lookup,
1839         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1840         .md5_add                = tcp_v4_md5_add_func,
1841         .md5_parse              = tcp_v4_parse_md5_keys,
1842 };
1843 #endif
1844
1845 /* NOTE: A lot of things set to zero explicitly by call to
1846  *       sk_alloc() so need not be done here.
1847  */
1848 static int tcp_v4_init_sock(struct sock *sk)
1849 {
1850         struct inet_connection_sock *icsk = inet_csk(sk);
1851         struct tcp_sock *tp = tcp_sk(sk);
1852
1853         skb_queue_head_init(&tp->out_of_order_queue);
1854         tcp_init_xmit_timers(sk);
1855         tcp_prequeue_init(tp);
1856
1857         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1858         tp->mdev = TCP_TIMEOUT_INIT;
1859
1860         /* So many TCP implementations out there (incorrectly) count the
1861          * initial SYN frame in their delayed-ACK and congestion control
1862          * algorithms that we must have the following bandaid to talk
1863          * efficiently to them.  -DaveM
1864          */
1865         tp->snd_cwnd = 2;
1866
1867         /* See draft-stevens-tcpca-spec-01 for discussion of the
1868          * initialization of these values.
1869          */
1870         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1871         tp->snd_cwnd_clamp = ~0;
1872         tp->mss_cache = TCP_MSS_DEFAULT;
1873
1874         tp->reordering = sysctl_tcp_reordering;
1875         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1876
1877         sk->sk_state = TCP_CLOSE;
1878
1879         sk->sk_write_space = sk_stream_write_space;
1880         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1881
1882         icsk->icsk_af_ops = &ipv4_specific;
1883         icsk->icsk_sync_mss = tcp_sync_mss;
1884 #ifdef CONFIG_TCP_MD5SIG
1885         tp->af_specific = &tcp_sock_ipv4_specific;
1886 #endif
1887
1888         /* TCP Cookie Transactions */
1889         if (sysctl_tcp_cookie_size > 0) {
1890                 /* Default, cookies without s_data_payload. */
1891                 tp->cookie_values =
1892                         kzalloc(sizeof(*tp->cookie_values),
1893                                 sk->sk_allocation);
1894                 if (tp->cookie_values != NULL)
1895                         kref_init(&tp->cookie_values->kref);
1896         }
1897         /* Presumed zeroed, in order of appearance:
1898          *      cookie_in_always, cookie_out_never,
1899          *      s_data_constant, s_data_in, s_data_out
1900          */
1901         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1902         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1903
1904         local_bh_disable();
1905         percpu_counter_inc(&tcp_sockets_allocated);
1906         local_bh_enable();
1907
1908         return 0;
1909 }
1910
1911 void tcp_v4_destroy_sock(struct sock *sk)
1912 {
1913         struct tcp_sock *tp = tcp_sk(sk);
1914
1915         tcp_clear_xmit_timers(sk);
1916
1917         tcp_cleanup_congestion_control(sk);
1918
1919         /* Cleanup up the write buffer. */
1920         tcp_write_queue_purge(sk);
1921
1922         /* Cleans up our, hopefully empty, out_of_order_queue. */
1923         __skb_queue_purge(&tp->out_of_order_queue);
1924
1925 #ifdef CONFIG_TCP_MD5SIG
1926         /* Clean up the MD5 key list, if any */
1927         if (tp->md5sig_info) {
1928                 tcp_v4_clear_md5_list(sk);
1929                 kfree(tp->md5sig_info);
1930                 tp->md5sig_info = NULL;
1931         }
1932 #endif
1933
1934 #ifdef CONFIG_NET_DMA
1935         /* Cleans up our sk_async_wait_queue */
1936         __skb_queue_purge(&sk->sk_async_wait_queue);
1937 #endif
1938
1939         /* Clean prequeue, it must be empty really */
1940         __skb_queue_purge(&tp->ucopy.prequeue);
1941
1942         /* Clean up a referenced TCP bind bucket. */
1943         if (inet_csk(sk)->icsk_bind_hash)
1944                 inet_put_port(sk);
1945
1946         /*
1947          * If sendmsg cached page exists, toss it.
1948          */
1949         if (sk->sk_sndmsg_page) {
1950                 __free_page(sk->sk_sndmsg_page);
1951                 sk->sk_sndmsg_page = NULL;
1952         }
1953
1954         /* TCP Cookie Transactions */
1955         if (tp->cookie_values != NULL) {
1956                 kref_put(&tp->cookie_values->kref,
1957                          tcp_cookie_values_release);
1958                 tp->cookie_values = NULL;
1959         }
1960
1961         percpu_counter_dec(&tcp_sockets_allocated);
1962 }
1963
1964 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1965
1966 #ifdef CONFIG_PROC_FS
1967 /* Proc filesystem TCP sock list dumping. */
1968
1969 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1970 {
1971         return hlist_nulls_empty(head) ? NULL :
1972                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1973 }
1974
1975 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1976 {
1977         return !is_a_nulls(tw->tw_node.next) ?
1978                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1979 }
1980
1981 static void *listening_get_next(struct seq_file *seq, void *cur)
1982 {
1983         struct inet_connection_sock *icsk;
1984         struct hlist_nulls_node *node;
1985         struct sock *sk = cur;
1986         struct inet_listen_hashbucket *ilb;
1987         struct tcp_iter_state *st = seq->private;
1988         struct net *net = seq_file_net(seq);
1989
1990         if (!sk) {
1991                 st->bucket = 0;
1992                 ilb = &tcp_hashinfo.listening_hash[0];
1993                 spin_lock_bh(&ilb->lock);
1994                 sk = sk_nulls_head(&ilb->head);
1995                 goto get_sk;
1996         }
1997         ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998         ++st->num;
1999
2000         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2001                 struct request_sock *req = cur;
2002
2003                 icsk = inet_csk(st->syn_wait_sk);
2004                 req = req->dl_next;
2005                 while (1) {
2006                         while (req) {
2007                                 if (req->rsk_ops->family == st->family) {
2008                                         cur = req;
2009                                         goto out;
2010                                 }
2011                                 req = req->dl_next;
2012                         }
2013                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2014                                 break;
2015 get_req:
2016                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2017                 }
2018                 sk        = sk_next(st->syn_wait_sk);
2019                 st->state = TCP_SEQ_STATE_LISTENING;
2020                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2021         } else {
2022                 icsk = inet_csk(sk);
2023                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2025                         goto start_req;
2026                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2027                 sk = sk_next(sk);
2028         }
2029 get_sk:
2030         sk_nulls_for_each_from(sk, node) {
2031                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2032                         cur = sk;
2033                         goto out;
2034                 }
2035                 icsk = inet_csk(sk);
2036                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2038 start_req:
2039                         st->uid         = sock_i_uid(sk);
2040                         st->syn_wait_sk = sk;
2041                         st->state       = TCP_SEQ_STATE_OPENREQ;
2042                         st->sbucket     = 0;
2043                         goto get_req;
2044                 }
2045                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046         }
2047         spin_unlock_bh(&ilb->lock);
2048         if (++st->bucket < INET_LHTABLE_SIZE) {
2049                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2050                 spin_lock_bh(&ilb->lock);
2051                 sk = sk_nulls_head(&ilb->head);
2052                 goto get_sk;
2053         }
2054         cur = NULL;
2055 out:
2056         return cur;
2057 }
2058
2059 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2060 {
2061         void *rc = listening_get_next(seq, NULL);
2062
2063         while (rc && *pos) {
2064                 rc = listening_get_next(seq, rc);
2065                 --*pos;
2066         }
2067         return rc;
2068 }
2069
2070 static inline int empty_bucket(struct tcp_iter_state *st)
2071 {
2072         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2073                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2074 }
2075
2076 static void *established_get_first(struct seq_file *seq)
2077 {
2078         struct tcp_iter_state *st = seq->private;
2079         struct net *net = seq_file_net(seq);
2080         void *rc = NULL;
2081
2082         for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2083                 struct sock *sk;
2084                 struct hlist_nulls_node *node;
2085                 struct inet_timewait_sock *tw;
2086                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2087
2088                 /* Lockless fast path for the common case of empty buckets */
2089                 if (empty_bucket(st))
2090                         continue;
2091
2092                 spin_lock_bh(lock);
2093                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2094                         if (sk->sk_family != st->family ||
2095                             !net_eq(sock_net(sk), net)) {
2096                                 continue;
2097                         }
2098                         rc = sk;
2099                         goto out;
2100                 }
2101                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2102                 inet_twsk_for_each(tw, node,
2103                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2104                         if (tw->tw_family != st->family ||
2105                             !net_eq(twsk_net(tw), net)) {
2106                                 continue;
2107                         }
2108                         rc = tw;
2109                         goto out;
2110                 }
2111                 spin_unlock_bh(lock);
2112                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2113         }
2114 out:
2115         return rc;
2116 }
2117
2118 static void *established_get_next(struct seq_file *seq, void *cur)
2119 {
2120         struct sock *sk = cur;
2121         struct inet_timewait_sock *tw;
2122         struct hlist_nulls_node *node;
2123         struct tcp_iter_state *st = seq->private;
2124         struct net *net = seq_file_net(seq);
2125
2126         ++st->num;
2127
2128         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2129                 tw = cur;
2130                 tw = tw_next(tw);
2131 get_tw:
2132                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2133                         tw = tw_next(tw);
2134                 }
2135                 if (tw) {
2136                         cur = tw;
2137                         goto out;
2138                 }
2139                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2140                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2141
2142                 /* Look for next non empty bucket */
2143                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2144                                 empty_bucket(st))
2145                         ;
2146                 if (st->bucket > tcp_hashinfo.ehash_mask)
2147                         return NULL;
2148
2149                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2150                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2151         } else
2152                 sk = sk_nulls_next(sk);
2153
2154         sk_nulls_for_each_from(sk, node) {
2155                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2156                         goto found;
2157         }
2158
2159         st->state = TCP_SEQ_STATE_TIME_WAIT;
2160         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2161         goto get_tw;
2162 found:
2163         cur = sk;
2164 out:
2165         return cur;
2166 }
2167
2168 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2169 {
2170         void *rc = established_get_first(seq);
2171
2172         while (rc && pos) {
2173                 rc = established_get_next(seq, rc);
2174                 --pos;
2175         }
2176         return rc;
2177 }
2178
2179 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2180 {
2181         void *rc;
2182         struct tcp_iter_state *st = seq->private;
2183
2184         st->state = TCP_SEQ_STATE_LISTENING;
2185         rc        = listening_get_idx(seq, &pos);
2186
2187         if (!rc) {
2188                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2189                 rc        = established_get_idx(seq, pos);
2190         }
2191
2192         return rc;
2193 }
2194
2195 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2196 {
2197         struct tcp_iter_state *st = seq->private;
2198         st->state = TCP_SEQ_STATE_LISTENING;
2199         st->num = 0;
2200         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2201 }
2202
2203 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2204 {
2205         void *rc = NULL;
2206         struct tcp_iter_state *st;
2207
2208         if (v == SEQ_START_TOKEN) {
2209                 rc = tcp_get_idx(seq, 0);
2210                 goto out;
2211         }
2212         st = seq->private;
2213
2214         switch (st->state) {
2215         case TCP_SEQ_STATE_OPENREQ:
2216         case TCP_SEQ_STATE_LISTENING:
2217                 rc = listening_get_next(seq, v);
2218                 if (!rc) {
2219                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2220                         rc        = established_get_first(seq);
2221                 }
2222                 break;
2223         case TCP_SEQ_STATE_ESTABLISHED:
2224         case TCP_SEQ_STATE_TIME_WAIT:
2225                 rc = established_get_next(seq, v);
2226                 break;
2227         }
2228 out:
2229         ++*pos;
2230         return rc;
2231 }
2232
2233 static void tcp_seq_stop(struct seq_file *seq, void *v)
2234 {
2235         struct tcp_iter_state *st = seq->private;
2236
2237         switch (st->state) {
2238         case TCP_SEQ_STATE_OPENREQ:
2239                 if (v) {
2240                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2241                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2242                 }
2243         case TCP_SEQ_STATE_LISTENING:
2244                 if (v != SEQ_START_TOKEN)
2245                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2246                 break;
2247         case TCP_SEQ_STATE_TIME_WAIT:
2248         case TCP_SEQ_STATE_ESTABLISHED:
2249                 if (v)
2250                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2251                 break;
2252         }
2253 }
2254
2255 static int tcp_seq_open(struct inode *inode, struct file *file)
2256 {
2257         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2258         struct tcp_iter_state *s;
2259         int err;
2260
2261         err = seq_open_net(inode, file, &afinfo->seq_ops,
2262                           sizeof(struct tcp_iter_state));
2263         if (err < 0)
2264                 return err;
2265
2266         s = ((struct seq_file *)file->private_data)->private;
2267         s->family               = afinfo->family;
2268         return 0;
2269 }
2270
2271 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2272 {
2273         int rc = 0;
2274         struct proc_dir_entry *p;
2275
2276         afinfo->seq_fops.open           = tcp_seq_open;
2277         afinfo->seq_fops.read           = seq_read;
2278         afinfo->seq_fops.llseek         = seq_lseek;
2279         afinfo->seq_fops.release        = seq_release_net;
2280
2281         afinfo->seq_ops.start           = tcp_seq_start;
2282         afinfo->seq_ops.next            = tcp_seq_next;
2283         afinfo->seq_ops.stop            = tcp_seq_stop;
2284
2285         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2286                              &afinfo->seq_fops, afinfo);
2287         if (!p)
2288                 rc = -ENOMEM;
2289         return rc;
2290 }
2291
2292 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2293 {
2294         proc_net_remove(net, afinfo->name);
2295 }
2296
2297 static void get_openreq4(struct sock *sk, struct request_sock *req,
2298                          struct seq_file *f, int i, int uid, int *len)
2299 {
2300         const struct inet_request_sock *ireq = inet_rsk(req);
2301         int ttd = req->expires - jiffies;
2302
2303         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2304                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2305                 i,
2306                 ireq->loc_addr,
2307                 ntohs(inet_sk(sk)->inet_sport),
2308                 ireq->rmt_addr,
2309                 ntohs(ireq->rmt_port),
2310                 TCP_SYN_RECV,
2311                 0, 0, /* could print option size, but that is af dependent. */
2312                 1,    /* timers active (only the expire timer) */
2313                 jiffies_to_clock_t(ttd),
2314                 req->retrans,
2315                 uid,
2316                 0,  /* non standard timer */
2317                 0, /* open_requests have no inode */
2318                 atomic_read(&sk->sk_refcnt),
2319                 req,
2320                 len);
2321 }
2322
2323 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2324 {
2325         int timer_active;
2326         unsigned long timer_expires;
2327         struct tcp_sock *tp = tcp_sk(sk);
2328         const struct inet_connection_sock *icsk = inet_csk(sk);
2329         struct inet_sock *inet = inet_sk(sk);
2330         __be32 dest = inet->inet_daddr;
2331         __be32 src = inet->inet_rcv_saddr;
2332         __u16 destp = ntohs(inet->inet_dport);
2333         __u16 srcp = ntohs(inet->inet_sport);
2334         int rx_queue;
2335
2336         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2337                 timer_active    = 1;
2338                 timer_expires   = icsk->icsk_timeout;
2339         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2340                 timer_active    = 4;
2341                 timer_expires   = icsk->icsk_timeout;
2342         } else if (timer_pending(&sk->sk_timer)) {
2343                 timer_active    = 2;
2344                 timer_expires   = sk->sk_timer.expires;
2345         } else {
2346                 timer_active    = 0;
2347                 timer_expires = jiffies;
2348         }
2349
2350         if (sk->sk_state == TCP_LISTEN)
2351                 rx_queue = sk->sk_ack_backlog;
2352         else
2353                 /*
2354                  * because we dont lock socket, we might find a transient negative value
2355                  */
2356                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2357
2358         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2359                         "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2360                 i, src, srcp, dest, destp, sk->sk_state,
2361                 tp->write_seq - tp->snd_una,
2362                 rx_queue,
2363                 timer_active,
2364                 jiffies_to_clock_t(timer_expires - jiffies),
2365                 icsk->icsk_retransmits,
2366                 sock_i_uid(sk),
2367                 icsk->icsk_probes_out,
2368                 sock_i_ino(sk),
2369                 atomic_read(&sk->sk_refcnt), sk,
2370                 jiffies_to_clock_t(icsk->icsk_rto),
2371                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2372                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2373                 tp->snd_cwnd,
2374                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2375                 len);
2376 }
2377
2378 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2379                                struct seq_file *f, int i, int *len)
2380 {
2381         __be32 dest, src;
2382         __u16 destp, srcp;
2383         int ttd = tw->tw_ttd - jiffies;
2384
2385         if (ttd < 0)
2386                 ttd = 0;
2387
2388         dest  = tw->tw_daddr;
2389         src   = tw->tw_rcv_saddr;
2390         destp = ntohs(tw->tw_dport);
2391         srcp  = ntohs(tw->tw_sport);
2392
2393         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2394                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2395                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2396                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2397                 atomic_read(&tw->tw_refcnt), tw, len);
2398 }
2399
2400 #define TMPSZ 150
2401
2402 static int tcp4_seq_show(struct seq_file *seq, void *v)
2403 {
2404         struct tcp_iter_state *st;
2405         int len;
2406
2407         if (v == SEQ_START_TOKEN) {
2408                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2409                            "  sl  local_address rem_address   st tx_queue "
2410                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2411                            "inode");
2412                 goto out;
2413         }
2414         st = seq->private;
2415
2416         switch (st->state) {
2417         case TCP_SEQ_STATE_LISTENING:
2418         case TCP_SEQ_STATE_ESTABLISHED:
2419                 get_tcp4_sock(v, seq, st->num, &len);
2420                 break;
2421         case TCP_SEQ_STATE_OPENREQ:
2422                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2423                 break;
2424         case TCP_SEQ_STATE_TIME_WAIT:
2425                 get_timewait4_sock(v, seq, st->num, &len);
2426                 break;
2427         }
2428         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2429 out:
2430         return 0;
2431 }
2432
2433 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2434         .name           = "tcp",
2435         .family         = AF_INET,
2436         .seq_fops       = {
2437                 .owner          = THIS_MODULE,
2438         },
2439         .seq_ops        = {
2440                 .show           = tcp4_seq_show,
2441         },
2442 };
2443
2444 static int __net_init tcp4_proc_init_net(struct net *net)
2445 {
2446         return tcp_proc_register(net, &tcp4_seq_afinfo);
2447 }
2448
2449 static void __net_exit tcp4_proc_exit_net(struct net *net)
2450 {
2451         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2452 }
2453
2454 static struct pernet_operations tcp4_net_ops = {
2455         .init = tcp4_proc_init_net,
2456         .exit = tcp4_proc_exit_net,
2457 };
2458
2459 int __init tcp4_proc_init(void)
2460 {
2461         return register_pernet_subsys(&tcp4_net_ops);
2462 }
2463
2464 void tcp4_proc_exit(void)
2465 {
2466         unregister_pernet_subsys(&tcp4_net_ops);
2467 }
2468 #endif /* CONFIG_PROC_FS */
2469
2470 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2471 {
2472         struct iphdr *iph = skb_gro_network_header(skb);
2473
2474         switch (skb->ip_summed) {
2475         case CHECKSUM_COMPLETE:
2476                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2477                                   skb->csum)) {
2478                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2479                         break;
2480                 }
2481
2482                 /* fall through */
2483         case CHECKSUM_NONE:
2484                 NAPI_GRO_CB(skb)->flush = 1;
2485                 return NULL;
2486         }
2487
2488         return tcp_gro_receive(head, skb);
2489 }
2490 EXPORT_SYMBOL(tcp4_gro_receive);
2491
2492 int tcp4_gro_complete(struct sk_buff *skb)
2493 {
2494         struct iphdr *iph = ip_hdr(skb);
2495         struct tcphdr *th = tcp_hdr(skb);
2496
2497         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2498                                   iph->saddr, iph->daddr, 0);
2499         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2500
2501         return tcp_gro_complete(skb);
2502 }
2503 EXPORT_SYMBOL(tcp4_gro_complete);
2504
2505 struct proto tcp_prot = {
2506         .name                   = "TCP",
2507         .owner                  = THIS_MODULE,
2508         .close                  = tcp_close,
2509         .connect                = tcp_v4_connect,
2510         .disconnect             = tcp_disconnect,
2511         .accept                 = inet_csk_accept,
2512         .ioctl                  = tcp_ioctl,
2513         .init                   = tcp_v4_init_sock,
2514         .destroy                = tcp_v4_destroy_sock,
2515         .shutdown               = tcp_shutdown,
2516         .setsockopt             = tcp_setsockopt,
2517         .getsockopt             = tcp_getsockopt,
2518         .recvmsg                = tcp_recvmsg,
2519         .backlog_rcv            = tcp_v4_do_rcv,
2520         .hash                   = inet_hash,
2521         .unhash                 = inet_unhash,
2522         .get_port               = inet_csk_get_port,
2523         .enter_memory_pressure  = tcp_enter_memory_pressure,
2524         .sockets_allocated      = &tcp_sockets_allocated,
2525         .orphan_count           = &tcp_orphan_count,
2526         .memory_allocated       = &tcp_memory_allocated,
2527         .memory_pressure        = &tcp_memory_pressure,
2528         .sysctl_mem             = sysctl_tcp_mem,
2529         .sysctl_wmem            = sysctl_tcp_wmem,
2530         .sysctl_rmem            = sysctl_tcp_rmem,
2531         .max_header             = MAX_TCP_HEADER,
2532         .obj_size               = sizeof(struct tcp_sock),
2533         .slab_flags             = SLAB_DESTROY_BY_RCU,
2534         .twsk_prot              = &tcp_timewait_sock_ops,
2535         .rsk_prot               = &tcp_request_sock_ops,
2536         .h.hashinfo             = &tcp_hashinfo,
2537 #ifdef CONFIG_COMPAT
2538         .compat_setsockopt      = compat_tcp_setsockopt,
2539         .compat_getsockopt      = compat_tcp_getsockopt,
2540 #endif
2541 };
2542
2543
2544 static int __net_init tcp_sk_init(struct net *net)
2545 {
2546         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2547                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2548 }
2549
2550 static void __net_exit tcp_sk_exit(struct net *net)
2551 {
2552         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2553 }
2554
2555 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2556 {
2557         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2558 }
2559
2560 static struct pernet_operations __net_initdata tcp_sk_ops = {
2561        .init       = tcp_sk_init,
2562        .exit       = tcp_sk_exit,
2563        .exit_batch = tcp_sk_exit_batch,
2564 };
2565
2566 void __init tcp_v4_init(void)
2567 {
2568         inet_hashinfo_init(&tcp_hashinfo);
2569         if (register_pernet_subsys(&tcp_sk_ops))
2570                 panic("Failed to create the TCP control socket.\n");
2571 }
2572
2573 EXPORT_SYMBOL(ipv4_specific);
2574 EXPORT_SYMBOL(tcp_hashinfo);
2575 EXPORT_SYMBOL(tcp_prot);
2576 EXPORT_SYMBOL(tcp_v4_conn_request);
2577 EXPORT_SYMBOL(tcp_v4_connect);
2578 EXPORT_SYMBOL(tcp_v4_do_rcv);
2579 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2580 EXPORT_SYMBOL(tcp_v4_send_check);
2581 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2582
2583 #ifdef CONFIG_PROC_FS
2584 EXPORT_SYMBOL(tcp_proc_register);
2585 EXPORT_SYMBOL(tcp_proc_unregister);
2586 #endif
2587 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2588