MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / mm / zswap.c
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zpool.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Total bytes used by the compressed storage */
49 static u64 zswap_pool_total_size;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */
79 static bool zswap_enabled __read_mostly;
80 module_param_named(enabled, zswap_enabled, bool, 0444);
81
82 /* Compressor to be used by zswap (fixed at boot for now) */
83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85 module_param_named(compressor, zswap_compressor, charp, 0444);
86
87 /* The maximum percentage of memory that the compressed pool can occupy */
88 static unsigned int zswap_max_pool_percent = 20;
89 module_param_named(max_pool_percent,
90                         zswap_max_pool_percent, uint, 0644);
91
92 /* Compressed storage to use */
93 #define ZSWAP_ZPOOL_DEFAULT "zbud"
94 static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
95 module_param_named(zpool, zswap_zpool_type, charp, 0444);
96
97 /* zpool is shared by all of zswap backend  */
98 static struct zpool *zswap_pool;
99
100 /*********************************
101 * compression functions
102 **********************************/
103 /* per-cpu compression transforms */
104 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
105
106 enum comp_op {
107         ZSWAP_COMPOP_COMPRESS,
108         ZSWAP_COMPOP_DECOMPRESS
109 };
110
111 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
112                                 u8 *dst, unsigned int *dlen)
113 {
114         struct crypto_comp *tfm;
115         int ret;
116
117         tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
118         switch (op) {
119         case ZSWAP_COMPOP_COMPRESS:
120                 ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
121                 break;
122         case ZSWAP_COMPOP_DECOMPRESS:
123                 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
124                 break;
125         default:
126                 ret = -EINVAL;
127         }
128
129         put_cpu();
130         return ret;
131 }
132
133 static int __init zswap_comp_init(void)
134 {
135         if (!crypto_has_comp(zswap_compressor, 0, 0)) {
136                 pr_info("%s compressor not available\n", zswap_compressor);
137                 /* fall back to default compressor */
138                 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
139                 if (!crypto_has_comp(zswap_compressor, 0, 0))
140                         /* can't even load the default compressor */
141                         return -ENODEV;
142         }
143         pr_info("using %s compressor\n", zswap_compressor);
144
145         /* alloc percpu transforms */
146         zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
147         if (!zswap_comp_pcpu_tfms)
148                 return -ENOMEM;
149         return 0;
150 }
151
152 static void __init zswap_comp_exit(void)
153 {
154         /* free percpu transforms */
155         free_percpu(zswap_comp_pcpu_tfms);
156 }
157
158 /*********************************
159 * data structures
160 **********************************/
161 /*
162  * struct zswap_entry
163  *
164  * This structure contains the metadata for tracking a single compressed
165  * page within zswap.
166  *
167  * rbnode - links the entry into red-black tree for the appropriate swap type
168  * refcount - the number of outstanding reference to the entry. This is needed
169  *            to protect against premature freeing of the entry by code
170  *            concurrent calls to load, invalidate, and writeback.  The lock
171  *            for the zswap_tree structure that contains the entry must
172  *            be held while changing the refcount.  Since the lock must
173  *            be held, there is no reason to also make refcount atomic.
174  * offset - the swap offset for the entry.  Index into the red-black tree.
175  * handle - zpool allocation handle that stores the compressed page data
176  * length - the length in bytes of the compressed page data.  Needed during
177  *          decompression
178  */
179 struct zswap_entry {
180         struct rb_node rbnode;
181         pgoff_t offset;
182         int refcount;
183         unsigned int length;
184         unsigned long handle;
185 };
186
187 struct zswap_header {
188         swp_entry_t swpentry;
189 };
190
191 /*
192  * The tree lock in the zswap_tree struct protects a few things:
193  * - the rbtree
194  * - the refcount field of each entry in the tree
195  */
196 struct zswap_tree {
197         struct rb_root rbroot;
198         spinlock_t lock;
199 };
200
201 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
202
203 /*********************************
204 * zswap entry functions
205 **********************************/
206 static struct kmem_cache *zswap_entry_cache;
207
208 static int __init zswap_entry_cache_create(void)
209 {
210         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
211         return zswap_entry_cache == NULL;
212 }
213
214 static void __init zswap_entry_cache_destroy(void)
215 {
216         kmem_cache_destroy(zswap_entry_cache);
217 }
218
219 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
220 {
221         struct zswap_entry *entry;
222         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
223         if (!entry)
224                 return NULL;
225         entry->refcount = 1;
226         RB_CLEAR_NODE(&entry->rbnode);
227         return entry;
228 }
229
230 static void zswap_entry_cache_free(struct zswap_entry *entry)
231 {
232         kmem_cache_free(zswap_entry_cache, entry);
233 }
234
235 /*********************************
236 * rbtree functions
237 **********************************/
238 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
239 {
240         struct rb_node *node = root->rb_node;
241         struct zswap_entry *entry;
242
243         while (node) {
244                 entry = rb_entry(node, struct zswap_entry, rbnode);
245                 if (entry->offset > offset)
246                         node = node->rb_left;
247                 else if (entry->offset < offset)
248                         node = node->rb_right;
249                 else
250                         return entry;
251         }
252         return NULL;
253 }
254
255 /*
256  * In the case that a entry with the same offset is found, a pointer to
257  * the existing entry is stored in dupentry and the function returns -EEXIST
258  */
259 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
260                         struct zswap_entry **dupentry)
261 {
262         struct rb_node **link = &root->rb_node, *parent = NULL;
263         struct zswap_entry *myentry;
264
265         while (*link) {
266                 parent = *link;
267                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
268                 if (myentry->offset > entry->offset)
269                         link = &(*link)->rb_left;
270                 else if (myentry->offset < entry->offset)
271                         link = &(*link)->rb_right;
272                 else {
273                         *dupentry = myentry;
274                         return -EEXIST;
275                 }
276         }
277         rb_link_node(&entry->rbnode, parent, link);
278         rb_insert_color(&entry->rbnode, root);
279         return 0;
280 }
281
282 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
283 {
284         if (!RB_EMPTY_NODE(&entry->rbnode)) {
285                 rb_erase(&entry->rbnode, root);
286                 RB_CLEAR_NODE(&entry->rbnode);
287         }
288 }
289
290 /*
291  * Carries out the common pattern of freeing and entry's zpool allocation,
292  * freeing the entry itself, and decrementing the number of stored pages.
293  */
294 static void zswap_free_entry(struct zswap_entry *entry)
295 {
296         zpool_free(zswap_pool, entry->handle);
297         zswap_entry_cache_free(entry);
298         atomic_dec(&zswap_stored_pages);
299         zswap_pool_total_size = zpool_get_total_size(zswap_pool);
300 }
301
302 /* caller must hold the tree lock */
303 static void zswap_entry_get(struct zswap_entry *entry)
304 {
305         entry->refcount++;
306 }
307
308 /* caller must hold the tree lock
309 * remove from the tree and free it, if nobody reference the entry
310 */
311 static void zswap_entry_put(struct zswap_tree *tree,
312                         struct zswap_entry *entry)
313 {
314         int refcount = --entry->refcount;
315
316         BUG_ON(refcount < 0);
317         if (refcount == 0) {
318                 zswap_rb_erase(&tree->rbroot, entry);
319                 zswap_free_entry(entry);
320         }
321 }
322
323 /* caller must hold the tree lock */
324 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
325                                 pgoff_t offset)
326 {
327         struct zswap_entry *entry = NULL;
328
329         entry = zswap_rb_search(root, offset);
330         if (entry)
331                 zswap_entry_get(entry);
332
333         return entry;
334 }
335
336 /*********************************
337 * per-cpu code
338 **********************************/
339 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
340
341 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
342 {
343         struct crypto_comp *tfm;
344         u8 *dst;
345
346         switch (action) {
347         case CPU_UP_PREPARE:
348                 tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
349                 if (IS_ERR(tfm)) {
350                         pr_err("can't allocate compressor transform\n");
351                         return NOTIFY_BAD;
352                 }
353                 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
354                 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
355                 if (!dst) {
356                         pr_err("can't allocate compressor buffer\n");
357                         crypto_free_comp(tfm);
358                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
359                         return NOTIFY_BAD;
360                 }
361                 per_cpu(zswap_dstmem, cpu) = dst;
362                 break;
363         case CPU_DEAD:
364         case CPU_UP_CANCELED:
365                 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
366                 if (tfm) {
367                         crypto_free_comp(tfm);
368                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
369                 }
370                 dst = per_cpu(zswap_dstmem, cpu);
371                 kfree(dst);
372                 per_cpu(zswap_dstmem, cpu) = NULL;
373                 break;
374         default:
375                 break;
376         }
377         return NOTIFY_OK;
378 }
379
380 static int zswap_cpu_notifier(struct notifier_block *nb,
381                                 unsigned long action, void *pcpu)
382 {
383         unsigned long cpu = (unsigned long)pcpu;
384         return __zswap_cpu_notifier(action, cpu);
385 }
386
387 static struct notifier_block zswap_cpu_notifier_block = {
388         .notifier_call = zswap_cpu_notifier
389 };
390
391 static int __init zswap_cpu_init(void)
392 {
393         unsigned long cpu;
394
395         cpu_notifier_register_begin();
396         for_each_online_cpu(cpu)
397                 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
398                         goto cleanup;
399         __register_cpu_notifier(&zswap_cpu_notifier_block);
400         cpu_notifier_register_done();
401         return 0;
402
403 cleanup:
404         for_each_online_cpu(cpu)
405                 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
406         cpu_notifier_register_done();
407         return -ENOMEM;
408 }
409
410 /*********************************
411 * helpers
412 **********************************/
413 static bool zswap_is_full(void)
414 {
415         return totalram_pages * zswap_max_pool_percent / 100 <
416                 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
417 }
418
419 /*********************************
420 * writeback code
421 **********************************/
422 /* return enum for zswap_get_swap_cache_page */
423 enum zswap_get_swap_ret {
424         ZSWAP_SWAPCACHE_NEW,
425         ZSWAP_SWAPCACHE_EXIST,
426         ZSWAP_SWAPCACHE_FAIL,
427 };
428
429 /*
430  * zswap_get_swap_cache_page
431  *
432  * This is an adaption of read_swap_cache_async()
433  *
434  * This function tries to find a page with the given swap entry
435  * in the swapper_space address space (the swap cache).  If the page
436  * is found, it is returned in retpage.  Otherwise, a page is allocated,
437  * added to the swap cache, and returned in retpage.
438  *
439  * If success, the swap cache page is returned in retpage
440  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
441  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
442  *     the new page is added to swapcache and locked
443  * Returns ZSWAP_SWAPCACHE_FAIL on error
444  */
445 static int zswap_get_swap_cache_page(swp_entry_t entry,
446                                 struct page **retpage)
447 {
448         struct page *found_page, *new_page = NULL;
449         struct address_space *swapper_space = swap_address_space(entry);
450         int err;
451
452         *retpage = NULL;
453         do {
454                 /*
455                  * First check the swap cache.  Since this is normally
456                  * called after lookup_swap_cache() failed, re-calling
457                  * that would confuse statistics.
458                  */
459                 found_page = find_get_page(swapper_space, entry.val);
460                 if (found_page)
461                         break;
462
463                 /*
464                  * Get a new page to read into from swap.
465                  */
466                 if (!new_page) {
467                         new_page = alloc_page(GFP_KERNEL);
468                         if (!new_page)
469                                 break; /* Out of memory */
470                 }
471
472                 /*
473                  * call radix_tree_preload() while we can wait.
474                  */
475                 err = radix_tree_preload(GFP_KERNEL);
476                 if (err)
477                         break;
478
479                 /*
480                  * Swap entry may have been freed since our caller observed it.
481                  */
482                 err = swapcache_prepare(entry);
483                 if (err == -EEXIST) { /* seems racy */
484                         radix_tree_preload_end();
485                         continue;
486                 }
487                 if (err) { /* swp entry is obsolete ? */
488                         radix_tree_preload_end();
489                         break;
490                 }
491
492                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
493                 __set_page_locked(new_page);
494                 SetPageSwapBacked(new_page);
495                 err = __add_to_swap_cache(new_page, entry);
496                 if (likely(!err)) {
497                         radix_tree_preload_end();
498                         lru_cache_add_anon(new_page);
499                         *retpage = new_page;
500                         return ZSWAP_SWAPCACHE_NEW;
501                 }
502                 radix_tree_preload_end();
503                 ClearPageSwapBacked(new_page);
504                 __clear_page_locked(new_page);
505                 /*
506                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
507                  * clear SWAP_HAS_CACHE flag.
508                  */
509                 swapcache_free(entry);
510         } while (err != -ENOMEM);
511
512         if (new_page)
513                 page_cache_release(new_page);
514         if (!found_page)
515                 return ZSWAP_SWAPCACHE_FAIL;
516         *retpage = found_page;
517         return ZSWAP_SWAPCACHE_EXIST;
518 }
519
520 /*
521  * Attempts to free an entry by adding a page to the swap cache,
522  * decompressing the entry data into the page, and issuing a
523  * bio write to write the page back to the swap device.
524  *
525  * This can be thought of as a "resumed writeback" of the page
526  * to the swap device.  We are basically resuming the same swap
527  * writeback path that was intercepted with the frontswap_store()
528  * in the first place.  After the page has been decompressed into
529  * the swap cache, the compressed version stored by zswap can be
530  * freed.
531  */
532 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
533 {
534         struct zswap_header *zhdr;
535         swp_entry_t swpentry;
536         struct zswap_tree *tree;
537         pgoff_t offset;
538         struct zswap_entry *entry;
539         struct page *page;
540         u8 *src, *dst;
541         unsigned int dlen;
542         int ret;
543         struct writeback_control wbc = {
544                 .sync_mode = WB_SYNC_NONE,
545         };
546
547         /* extract swpentry from data */
548         zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
549         swpentry = zhdr->swpentry; /* here */
550         zpool_unmap_handle(pool, handle);
551         tree = zswap_trees[swp_type(swpentry)];
552         offset = swp_offset(swpentry);
553
554         /* find and ref zswap entry */
555         spin_lock(&tree->lock);
556         entry = zswap_entry_find_get(&tree->rbroot, offset);
557         if (!entry) {
558                 /* entry was invalidated */
559                 spin_unlock(&tree->lock);
560                 return 0;
561         }
562         spin_unlock(&tree->lock);
563         BUG_ON(offset != entry->offset);
564
565         /* try to allocate swap cache page */
566         switch (zswap_get_swap_cache_page(swpentry, &page)) {
567         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
568                 ret = -ENOMEM;
569                 goto fail;
570
571         case ZSWAP_SWAPCACHE_EXIST:
572                 /* page is already in the swap cache, ignore for now */
573                 page_cache_release(page);
574                 ret = -EEXIST;
575                 goto fail;
576
577         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
578                 /* decompress */
579                 dlen = PAGE_SIZE;
580                 src = (u8 *)zpool_map_handle(zswap_pool, entry->handle,
581                                 ZPOOL_MM_RO) + sizeof(struct zswap_header);
582                 dst = kmap_atomic(page);
583                 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
584                                 entry->length, dst, &dlen);
585                 kunmap_atomic(dst);
586                 zpool_unmap_handle(zswap_pool, entry->handle);
587                 BUG_ON(ret);
588                 BUG_ON(dlen != PAGE_SIZE);
589
590                 /* page is up to date */
591                 SetPageUptodate(page);
592         }
593
594         /* move it to the tail of the inactive list after end_writeback */
595         SetPageReclaim(page);
596
597         /* start writeback */
598         __swap_writepage(page, &wbc, end_swap_bio_write);
599         page_cache_release(page);
600         zswap_written_back_pages++;
601
602         spin_lock(&tree->lock);
603         /* drop local reference */
604         zswap_entry_put(tree, entry);
605
606         /*
607         * There are two possible situations for entry here:
608         * (1) refcount is 1(normal case),  entry is valid and on the tree
609         * (2) refcount is 0, entry is freed and not on the tree
610         *     because invalidate happened during writeback
611         *  search the tree and free the entry if find entry
612         */
613         if (entry == zswap_rb_search(&tree->rbroot, offset))
614                 zswap_entry_put(tree, entry);
615         spin_unlock(&tree->lock);
616
617         goto end;
618
619         /*
620         * if we get here due to ZSWAP_SWAPCACHE_EXIST
621         * a load may happening concurrently
622         * it is safe and okay to not free the entry
623         * if we free the entry in the following put
624         * it it either okay to return !0
625         */
626 fail:
627         spin_lock(&tree->lock);
628         zswap_entry_put(tree, entry);
629         spin_unlock(&tree->lock);
630
631 end:
632         return ret;
633 }
634
635 /*********************************
636 * frontswap hooks
637 **********************************/
638 /* attempts to compress and store an single page */
639 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
640                                 struct page *page)
641 {
642         struct zswap_tree *tree = zswap_trees[type];
643         struct zswap_entry *entry, *dupentry;
644         int ret;
645         unsigned int dlen = PAGE_SIZE, len;
646         unsigned long handle;
647         char *buf;
648         u8 *src, *dst;
649         struct zswap_header *zhdr;
650
651         if (!tree) {
652                 ret = -ENODEV;
653                 goto reject;
654         }
655
656         /* reclaim space if needed */
657         if (zswap_is_full()) {
658                 zswap_pool_limit_hit++;
659                 if (zpool_shrink(zswap_pool, 1, NULL)) {
660                         zswap_reject_reclaim_fail++;
661                         ret = -ENOMEM;
662                         goto reject;
663                 }
664         }
665
666         /* allocate entry */
667         entry = zswap_entry_cache_alloc(GFP_KERNEL);
668         if (!entry) {
669                 zswap_reject_kmemcache_fail++;
670                 ret = -ENOMEM;
671                 goto reject;
672         }
673
674         /* compress */
675         dst = get_cpu_var(zswap_dstmem);
676         src = kmap_atomic(page);
677         ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
678         kunmap_atomic(src);
679         if (ret) {
680                 ret = -EINVAL;
681                 goto freepage;
682         }
683
684         /* store */
685         len = dlen + sizeof(struct zswap_header);
686         ret = zpool_malloc(zswap_pool, len, __GFP_NORETRY | __GFP_NOWARN,
687                 &handle);
688         if (ret == -ENOSPC) {
689                 zswap_reject_compress_poor++;
690                 goto freepage;
691         }
692         if (ret) {
693                 zswap_reject_alloc_fail++;
694                 goto freepage;
695         }
696         zhdr = zpool_map_handle(zswap_pool, handle, ZPOOL_MM_RW);
697         zhdr->swpentry = swp_entry(type, offset);
698         buf = (u8 *)(zhdr + 1);
699         memcpy(buf, dst, dlen);
700         zpool_unmap_handle(zswap_pool, handle);
701         put_cpu_var(zswap_dstmem);
702
703         /* populate entry */
704         entry->offset = offset;
705         entry->handle = handle;
706         entry->length = dlen;
707
708         /* map */
709         spin_lock(&tree->lock);
710         do {
711                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
712                 if (ret == -EEXIST) {
713                         zswap_duplicate_entry++;
714                         /* remove from rbtree */
715                         zswap_rb_erase(&tree->rbroot, dupentry);
716                         zswap_entry_put(tree, dupentry);
717                 }
718         } while (ret == -EEXIST);
719         spin_unlock(&tree->lock);
720
721         /* update stats */
722         atomic_inc(&zswap_stored_pages);
723         zswap_pool_total_size = zpool_get_total_size(zswap_pool);
724
725         return 0;
726
727 freepage:
728         put_cpu_var(zswap_dstmem);
729         zswap_entry_cache_free(entry);
730 reject:
731         return ret;
732 }
733
734 /*
735  * returns 0 if the page was successfully decompressed
736  * return -1 on entry not found or error
737 */
738 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
739                                 struct page *page)
740 {
741         struct zswap_tree *tree = zswap_trees[type];
742         struct zswap_entry *entry;
743         u8 *src, *dst;
744         unsigned int dlen;
745         int ret;
746
747         /* find */
748         spin_lock(&tree->lock);
749         entry = zswap_entry_find_get(&tree->rbroot, offset);
750         if (!entry) {
751                 /* entry was written back */
752                 spin_unlock(&tree->lock);
753                 return -1;
754         }
755         spin_unlock(&tree->lock);
756
757         /* decompress */
758         dlen = PAGE_SIZE;
759         src = (u8 *)zpool_map_handle(zswap_pool, entry->handle,
760                         ZPOOL_MM_RO) + sizeof(struct zswap_header);
761         dst = kmap_atomic(page);
762         ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
763                 dst, &dlen);
764         kunmap_atomic(dst);
765         zpool_unmap_handle(zswap_pool, entry->handle);
766         BUG_ON(ret);
767
768         spin_lock(&tree->lock);
769         zswap_entry_put(tree, entry);
770         spin_unlock(&tree->lock);
771
772         return 0;
773 }
774
775 /* frees an entry in zswap */
776 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
777 {
778         struct zswap_tree *tree = zswap_trees[type];
779         struct zswap_entry *entry;
780
781         /* find */
782         spin_lock(&tree->lock);
783         entry = zswap_rb_search(&tree->rbroot, offset);
784         if (!entry) {
785                 /* entry was written back */
786                 spin_unlock(&tree->lock);
787                 return;
788         }
789
790         /* remove from rbtree */
791         zswap_rb_erase(&tree->rbroot, entry);
792
793         /* drop the initial reference from entry creation */
794         zswap_entry_put(tree, entry);
795
796         spin_unlock(&tree->lock);
797 }
798
799 /* frees all zswap entries for the given swap type */
800 static void zswap_frontswap_invalidate_area(unsigned type)
801 {
802         struct zswap_tree *tree = zswap_trees[type];
803         struct zswap_entry *entry, *n;
804
805         if (!tree)
806                 return;
807
808         /* walk the tree and free everything */
809         spin_lock(&tree->lock);
810         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
811                 zswap_free_entry(entry);
812         tree->rbroot = RB_ROOT;
813         spin_unlock(&tree->lock);
814         kfree(tree);
815         zswap_trees[type] = NULL;
816 }
817
818 static struct zpool_ops zswap_zpool_ops = {
819         .evict = zswap_writeback_entry
820 };
821
822 static void zswap_frontswap_init(unsigned type)
823 {
824         struct zswap_tree *tree;
825
826         tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
827         if (!tree) {
828                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
829                 return;
830         }
831
832         tree->rbroot = RB_ROOT;
833         spin_lock_init(&tree->lock);
834         zswap_trees[type] = tree;
835 }
836
837 static struct frontswap_ops zswap_frontswap_ops = {
838         .store = zswap_frontswap_store,
839         .load = zswap_frontswap_load,
840         .invalidate_page = zswap_frontswap_invalidate_page,
841         .invalidate_area = zswap_frontswap_invalidate_area,
842         .init = zswap_frontswap_init
843 };
844
845 /*********************************
846 * debugfs functions
847 **********************************/
848 #ifdef CONFIG_DEBUG_FS
849 #include <linux/debugfs.h>
850
851 static struct dentry *zswap_debugfs_root;
852
853 static int __init zswap_debugfs_init(void)
854 {
855         if (!debugfs_initialized())
856                 return -ENODEV;
857
858         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
859         if (!zswap_debugfs_root)
860                 return -ENOMEM;
861
862         debugfs_create_u64("pool_limit_hit", S_IRUGO,
863                         zswap_debugfs_root, &zswap_pool_limit_hit);
864         debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
865                         zswap_debugfs_root, &zswap_reject_reclaim_fail);
866         debugfs_create_u64("reject_alloc_fail", S_IRUGO,
867                         zswap_debugfs_root, &zswap_reject_alloc_fail);
868         debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
869                         zswap_debugfs_root, &zswap_reject_kmemcache_fail);
870         debugfs_create_u64("reject_compress_poor", S_IRUGO,
871                         zswap_debugfs_root, &zswap_reject_compress_poor);
872         debugfs_create_u64("written_back_pages", S_IRUGO,
873                         zswap_debugfs_root, &zswap_written_back_pages);
874         debugfs_create_u64("duplicate_entry", S_IRUGO,
875                         zswap_debugfs_root, &zswap_duplicate_entry);
876         debugfs_create_u64("pool_total_size", S_IRUGO,
877                         zswap_debugfs_root, &zswap_pool_total_size);
878         debugfs_create_atomic_t("stored_pages", S_IRUGO,
879                         zswap_debugfs_root, &zswap_stored_pages);
880
881         return 0;
882 }
883
884 static void __exit zswap_debugfs_exit(void)
885 {
886         debugfs_remove_recursive(zswap_debugfs_root);
887 }
888 #else
889 static int __init zswap_debugfs_init(void)
890 {
891         return 0;
892 }
893
894 static void __exit zswap_debugfs_exit(void) { }
895 #endif
896
897 /*********************************
898 * module init and exit
899 **********************************/
900 static int __init init_zswap(void)
901 {
902         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN;
903
904         if (!zswap_enabled)
905                 return 0;
906
907         pr_info("loading zswap\n");
908
909         zswap_pool = zpool_create_pool(zswap_zpool_type, "zswap", gfp,
910                                         &zswap_zpool_ops);
911         if (!zswap_pool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
912                 pr_info("%s zpool not available\n", zswap_zpool_type);
913                 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
914                 zswap_pool = zpool_create_pool(zswap_zpool_type, "zswap", gfp,
915                                         &zswap_zpool_ops);
916         }
917         if (!zswap_pool) {
918                 pr_err("%s zpool not available\n", zswap_zpool_type);
919                 pr_err("zpool creation failed\n");
920                 goto error;
921         }
922         pr_info("using %s pool\n", zswap_zpool_type);
923
924         if (zswap_entry_cache_create()) {
925                 pr_err("entry cache creation failed\n");
926                 goto cachefail;
927         }
928         if (zswap_comp_init()) {
929                 pr_err("compressor initialization failed\n");
930                 goto compfail;
931         }
932         if (zswap_cpu_init()) {
933                 pr_err("per-cpu initialization failed\n");
934                 goto pcpufail;
935         }
936
937         frontswap_register_ops(&zswap_frontswap_ops);
938         if (zswap_debugfs_init())
939                 pr_warn("debugfs initialization failed\n");
940         return 0;
941 pcpufail:
942         zswap_comp_exit();
943 compfail:
944         zswap_entry_cache_destroy();
945 cachefail:
946         zpool_destroy_pool(zswap_pool);
947 error:
948         return -ENOMEM;
949 }
950 /* must be late so crypto has time to come up */
951 late_initcall(init_zswap);
952
953 MODULE_LICENSE("GPL");
954 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
955 MODULE_DESCRIPTION("Compressed cache for swap pages");