mm, dax: convert vmf_insert_pfn_pmd() to pfn_t
[linux-drm-fsl-dcu.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98         swp_entry_t entry = swp_entry(si->type, offset);
99         struct page *page;
100         int ret = 0;
101
102         page = find_get_page(swap_address_space(entry), entry.val);
103         if (!page)
104                 return 0;
105         /*
106          * This function is called from scan_swap_map() and it's called
107          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108          * We have to use trylock for avoiding deadlock. This is a special
109          * case and you should use try_to_free_swap() with explicit lock_page()
110          * in usual operations.
111          */
112         if (trylock_page(page)) {
113                 ret = try_to_free_swap(page);
114                 unlock_page(page);
115         }
116         page_cache_release(page);
117         return ret;
118 }
119
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126         struct swap_extent *se;
127         sector_t start_block;
128         sector_t nr_blocks;
129         int err = 0;
130
131         /* Do not discard the swap header page! */
132         se = &si->first_swap_extent;
133         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135         if (nr_blocks) {
136                 err = blkdev_issue_discard(si->bdev, start_block,
137                                 nr_blocks, GFP_KERNEL, 0);
138                 if (err)
139                         return err;
140                 cond_resched();
141         }
142
143         list_for_each_entry(se, &si->first_swap_extent.list, list) {
144                 start_block = se->start_block << (PAGE_SHIFT - 9);
145                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147                 err = blkdev_issue_discard(si->bdev, start_block,
148                                 nr_blocks, GFP_KERNEL, 0);
149                 if (err)
150                         break;
151
152                 cond_resched();
153         }
154         return err;             /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162                                  pgoff_t start_page, pgoff_t nr_pages)
163 {
164         struct swap_extent *se = si->curr_swap_extent;
165         int found_extent = 0;
166
167         while (nr_pages) {
168                 if (se->start_page <= start_page &&
169                     start_page < se->start_page + se->nr_pages) {
170                         pgoff_t offset = start_page - se->start_page;
171                         sector_t start_block = se->start_block + offset;
172                         sector_t nr_blocks = se->nr_pages - offset;
173
174                         if (nr_blocks > nr_pages)
175                                 nr_blocks = nr_pages;
176                         start_page += nr_blocks;
177                         nr_pages -= nr_blocks;
178
179                         if (!found_extent++)
180                                 si->curr_swap_extent = se;
181
182                         start_block <<= PAGE_SHIFT - 9;
183                         nr_blocks <<= PAGE_SHIFT - 9;
184                         if (blkdev_issue_discard(si->bdev, start_block,
185                                     nr_blocks, GFP_NOIO, 0))
186                                 break;
187                 }
188
189                 se = list_next_entry(se, list);
190         }
191 }
192
193 #define SWAPFILE_CLUSTER        256
194 #define LATENCY_LIMIT           256
195
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197         unsigned int flag)
198 {
199         info->flags = flag;
200 }
201
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
203 {
204         return info->data;
205 }
206
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208                                      unsigned int c)
209 {
210         info->data = c;
211 }
212
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214                                          unsigned int c, unsigned int f)
215 {
216         info->flags = f;
217         info->data = c;
218 }
219
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
221 {
222         return info->data;
223 }
224
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226                                     unsigned int n)
227 {
228         info->data = n;
229 }
230
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232                                          unsigned int n, unsigned int f)
233 {
234         info->flags = f;
235         info->data = n;
236 }
237
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
239 {
240         return info->flags & CLUSTER_FLAG_FREE;
241 }
242
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
244 {
245         return info->flags & CLUSTER_FLAG_NEXT_NULL;
246 }
247
248 static inline void cluster_set_null(struct swap_cluster_info *info)
249 {
250         info->flags = CLUSTER_FLAG_NEXT_NULL;
251         info->data = 0;
252 }
253
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256                 unsigned int idx)
257 {
258         /*
259          * If scan_swap_map() can't find a free cluster, it will check
260          * si->swap_map directly. To make sure the discarding cluster isn't
261          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262          * will be cleared after discard
263          */
264         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267         if (cluster_is_null(&si->discard_cluster_head)) {
268                 cluster_set_next_flag(&si->discard_cluster_head,
269                                                 idx, 0);
270                 cluster_set_next_flag(&si->discard_cluster_tail,
271                                                 idx, 0);
272         } else {
273                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274                 cluster_set_next(&si->cluster_info[tail], idx);
275                 cluster_set_next_flag(&si->discard_cluster_tail,
276                                                 idx, 0);
277         }
278
279         schedule_work(&si->discard_work);
280 }
281
282 /*
283  * Doing discard actually. After a cluster discard is finished, the cluster
284  * will be added to free cluster list. caller should hold si->lock.
285 */
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
287 {
288         struct swap_cluster_info *info;
289         unsigned int idx;
290
291         info = si->cluster_info;
292
293         while (!cluster_is_null(&si->discard_cluster_head)) {
294                 idx = cluster_next(&si->discard_cluster_head);
295
296                 cluster_set_next_flag(&si->discard_cluster_head,
297                                                 cluster_next(&info[idx]), 0);
298                 if (cluster_next(&si->discard_cluster_tail) == idx) {
299                         cluster_set_null(&si->discard_cluster_head);
300                         cluster_set_null(&si->discard_cluster_tail);
301                 }
302                 spin_unlock(&si->lock);
303
304                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305                                 SWAPFILE_CLUSTER);
306
307                 spin_lock(&si->lock);
308                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309                 if (cluster_is_null(&si->free_cluster_head)) {
310                         cluster_set_next_flag(&si->free_cluster_head,
311                                                 idx, 0);
312                         cluster_set_next_flag(&si->free_cluster_tail,
313                                                 idx, 0);
314                 } else {
315                         unsigned int tail;
316
317                         tail = cluster_next(&si->free_cluster_tail);
318                         cluster_set_next(&info[tail], idx);
319                         cluster_set_next_flag(&si->free_cluster_tail,
320                                                 idx, 0);
321                 }
322                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323                                 0, SWAPFILE_CLUSTER);
324         }
325 }
326
327 static void swap_discard_work(struct work_struct *work)
328 {
329         struct swap_info_struct *si;
330
331         si = container_of(work, struct swap_info_struct, discard_work);
332
333         spin_lock(&si->lock);
334         swap_do_scheduled_discard(si);
335         spin_unlock(&si->lock);
336 }
337
338 /*
339  * The cluster corresponding to page_nr will be used. The cluster will be
340  * removed from free cluster list and its usage counter will be increased.
341  */
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343         struct swap_cluster_info *cluster_info, unsigned long page_nr)
344 {
345         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347         if (!cluster_info)
348                 return;
349         if (cluster_is_free(&cluster_info[idx])) {
350                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351                 cluster_set_next_flag(&p->free_cluster_head,
352                         cluster_next(&cluster_info[idx]), 0);
353                 if (cluster_next(&p->free_cluster_tail) == idx) {
354                         cluster_set_null(&p->free_cluster_tail);
355                         cluster_set_null(&p->free_cluster_head);
356                 }
357                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358         }
359
360         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361         cluster_set_count(&cluster_info[idx],
362                 cluster_count(&cluster_info[idx]) + 1);
363 }
364
365 /*
366  * The cluster corresponding to page_nr decreases one usage. If the usage
367  * counter becomes 0, which means no page in the cluster is in using, we can
368  * optionally discard the cluster and add it to free cluster list.
369  */
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371         struct swap_cluster_info *cluster_info, unsigned long page_nr)
372 {
373         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375         if (!cluster_info)
376                 return;
377
378         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379         cluster_set_count(&cluster_info[idx],
380                 cluster_count(&cluster_info[idx]) - 1);
381
382         if (cluster_count(&cluster_info[idx]) == 0) {
383                 /*
384                  * If the swap is discardable, prepare discard the cluster
385                  * instead of free it immediately. The cluster will be freed
386                  * after discard.
387                  */
388                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390                         swap_cluster_schedule_discard(p, idx);
391                         return;
392                 }
393
394                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395                 if (cluster_is_null(&p->free_cluster_head)) {
396                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398                 } else {
399                         unsigned int tail = cluster_next(&p->free_cluster_tail);
400                         cluster_set_next(&cluster_info[tail], idx);
401                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402                 }
403         }
404 }
405
406 /*
407  * It's possible scan_swap_map() uses a free cluster in the middle of free
408  * cluster list. Avoiding such abuse to avoid list corruption.
409  */
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412         unsigned long offset)
413 {
414         struct percpu_cluster *percpu_cluster;
415         bool conflict;
416
417         offset /= SWAPFILE_CLUSTER;
418         conflict = !cluster_is_null(&si->free_cluster_head) &&
419                 offset != cluster_next(&si->free_cluster_head) &&
420                 cluster_is_free(&si->cluster_info[offset]);
421
422         if (!conflict)
423                 return false;
424
425         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426         cluster_set_null(&percpu_cluster->index);
427         return true;
428 }
429
430 /*
431  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432  * might involve allocating a new cluster for current CPU too.
433  */
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435         unsigned long *offset, unsigned long *scan_base)
436 {
437         struct percpu_cluster *cluster;
438         bool found_free;
439         unsigned long tmp;
440
441 new_cluster:
442         cluster = this_cpu_ptr(si->percpu_cluster);
443         if (cluster_is_null(&cluster->index)) {
444                 if (!cluster_is_null(&si->free_cluster_head)) {
445                         cluster->index = si->free_cluster_head;
446                         cluster->next = cluster_next(&cluster->index) *
447                                         SWAPFILE_CLUSTER;
448                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449                         /*
450                          * we don't have free cluster but have some clusters in
451                          * discarding, do discard now and reclaim them
452                          */
453                         swap_do_scheduled_discard(si);
454                         *scan_base = *offset = si->cluster_next;
455                         goto new_cluster;
456                 } else
457                         return;
458         }
459
460         found_free = false;
461
462         /*
463          * Other CPUs can use our cluster if they can't find a free cluster,
464          * check if there is still free entry in the cluster
465          */
466         tmp = cluster->next;
467         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468                SWAPFILE_CLUSTER) {
469                 if (!si->swap_map[tmp]) {
470                         found_free = true;
471                         break;
472                 }
473                 tmp++;
474         }
475         if (!found_free) {
476                 cluster_set_null(&cluster->index);
477                 goto new_cluster;
478         }
479         cluster->next = tmp + 1;
480         *offset = tmp;
481         *scan_base = tmp;
482 }
483
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485                                    unsigned char usage)
486 {
487         unsigned long offset;
488         unsigned long scan_base;
489         unsigned long last_in_cluster = 0;
490         int latency_ration = LATENCY_LIMIT;
491
492         /*
493          * We try to cluster swap pages by allocating them sequentially
494          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
495          * way, however, we resort to first-free allocation, starting
496          * a new cluster.  This prevents us from scattering swap pages
497          * all over the entire swap partition, so that we reduce
498          * overall disk seek times between swap pages.  -- sct
499          * But we do now try to find an empty cluster.  -Andrea
500          * And we let swap pages go all over an SSD partition.  Hugh
501          */
502
503         si->flags += SWP_SCANNING;
504         scan_base = offset = si->cluster_next;
505
506         /* SSD algorithm */
507         if (si->cluster_info) {
508                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509                 goto checks;
510         }
511
512         if (unlikely(!si->cluster_nr--)) {
513                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
515                         goto checks;
516                 }
517
518                 spin_unlock(&si->lock);
519
520                 /*
521                  * If seek is expensive, start searching for new cluster from
522                  * start of partition, to minimize the span of allocated swap.
523                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
525                  */
526                 scan_base = offset = si->lowest_bit;
527                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529                 /* Locate the first empty (unaligned) cluster */
530                 for (; last_in_cluster <= si->highest_bit; offset++) {
531                         if (si->swap_map[offset])
532                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
533                         else if (offset == last_in_cluster) {
534                                 spin_lock(&si->lock);
535                                 offset -= SWAPFILE_CLUSTER - 1;
536                                 si->cluster_next = offset;
537                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
538                                 goto checks;
539                         }
540                         if (unlikely(--latency_ration < 0)) {
541                                 cond_resched();
542                                 latency_ration = LATENCY_LIMIT;
543                         }
544                 }
545
546                 offset = scan_base;
547                 spin_lock(&si->lock);
548                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549         }
550
551 checks:
552         if (si->cluster_info) {
553                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555         }
556         if (!(si->flags & SWP_WRITEOK))
557                 goto no_page;
558         if (!si->highest_bit)
559                 goto no_page;
560         if (offset > si->highest_bit)
561                 scan_base = offset = si->lowest_bit;
562
563         /* reuse swap entry of cache-only swap if not busy. */
564         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565                 int swap_was_freed;
566                 spin_unlock(&si->lock);
567                 swap_was_freed = __try_to_reclaim_swap(si, offset);
568                 spin_lock(&si->lock);
569                 /* entry was freed successfully, try to use this again */
570                 if (swap_was_freed)
571                         goto checks;
572                 goto scan; /* check next one */
573         }
574
575         if (si->swap_map[offset])
576                 goto scan;
577
578         if (offset == si->lowest_bit)
579                 si->lowest_bit++;
580         if (offset == si->highest_bit)
581                 si->highest_bit--;
582         si->inuse_pages++;
583         if (si->inuse_pages == si->pages) {
584                 si->lowest_bit = si->max;
585                 si->highest_bit = 0;
586                 spin_lock(&swap_avail_lock);
587                 plist_del(&si->avail_list, &swap_avail_head);
588                 spin_unlock(&swap_avail_lock);
589         }
590         si->swap_map[offset] = usage;
591         inc_cluster_info_page(si, si->cluster_info, offset);
592         si->cluster_next = offset + 1;
593         si->flags -= SWP_SCANNING;
594
595         return offset;
596
597 scan:
598         spin_unlock(&si->lock);
599         while (++offset <= si->highest_bit) {
600                 if (!si->swap_map[offset]) {
601                         spin_lock(&si->lock);
602                         goto checks;
603                 }
604                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605                         spin_lock(&si->lock);
606                         goto checks;
607                 }
608                 if (unlikely(--latency_ration < 0)) {
609                         cond_resched();
610                         latency_ration = LATENCY_LIMIT;
611                 }
612         }
613         offset = si->lowest_bit;
614         while (offset < scan_base) {
615                 if (!si->swap_map[offset]) {
616                         spin_lock(&si->lock);
617                         goto checks;
618                 }
619                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620                         spin_lock(&si->lock);
621                         goto checks;
622                 }
623                 if (unlikely(--latency_ration < 0)) {
624                         cond_resched();
625                         latency_ration = LATENCY_LIMIT;
626                 }
627                 offset++;
628         }
629         spin_lock(&si->lock);
630
631 no_page:
632         si->flags -= SWP_SCANNING;
633         return 0;
634 }
635
636 swp_entry_t get_swap_page(void)
637 {
638         struct swap_info_struct *si, *next;
639         pgoff_t offset;
640
641         if (atomic_long_read(&nr_swap_pages) <= 0)
642                 goto noswap;
643         atomic_long_dec(&nr_swap_pages);
644
645         spin_lock(&swap_avail_lock);
646
647 start_over:
648         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649                 /* requeue si to after same-priority siblings */
650                 plist_requeue(&si->avail_list, &swap_avail_head);
651                 spin_unlock(&swap_avail_lock);
652                 spin_lock(&si->lock);
653                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654                         spin_lock(&swap_avail_lock);
655                         if (plist_node_empty(&si->avail_list)) {
656                                 spin_unlock(&si->lock);
657                                 goto nextsi;
658                         }
659                         WARN(!si->highest_bit,
660                              "swap_info %d in list but !highest_bit\n",
661                              si->type);
662                         WARN(!(si->flags & SWP_WRITEOK),
663                              "swap_info %d in list but !SWP_WRITEOK\n",
664                              si->type);
665                         plist_del(&si->avail_list, &swap_avail_head);
666                         spin_unlock(&si->lock);
667                         goto nextsi;
668                 }
669
670                 /* This is called for allocating swap entry for cache */
671                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
672                 spin_unlock(&si->lock);
673                 if (offset)
674                         return swp_entry(si->type, offset);
675                 pr_debug("scan_swap_map of si %d failed to find offset\n",
676                        si->type);
677                 spin_lock(&swap_avail_lock);
678 nextsi:
679                 /*
680                  * if we got here, it's likely that si was almost full before,
681                  * and since scan_swap_map() can drop the si->lock, multiple
682                  * callers probably all tried to get a page from the same si
683                  * and it filled up before we could get one; or, the si filled
684                  * up between us dropping swap_avail_lock and taking si->lock.
685                  * Since we dropped the swap_avail_lock, the swap_avail_head
686                  * list may have been modified; so if next is still in the
687                  * swap_avail_head list then try it, otherwise start over.
688                  */
689                 if (plist_node_empty(&next->avail_list))
690                         goto start_over;
691         }
692
693         spin_unlock(&swap_avail_lock);
694
695         atomic_long_inc(&nr_swap_pages);
696 noswap:
697         return (swp_entry_t) {0};
698 }
699
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
702 {
703         struct swap_info_struct *si;
704         pgoff_t offset;
705
706         si = swap_info[type];
707         spin_lock(&si->lock);
708         if (si && (si->flags & SWP_WRITEOK)) {
709                 atomic_long_dec(&nr_swap_pages);
710                 /* This is called for allocating swap entry, not cache */
711                 offset = scan_swap_map(si, 1);
712                 if (offset) {
713                         spin_unlock(&si->lock);
714                         return swp_entry(type, offset);
715                 }
716                 atomic_long_inc(&nr_swap_pages);
717         }
718         spin_unlock(&si->lock);
719         return (swp_entry_t) {0};
720 }
721
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
723 {
724         struct swap_info_struct *p;
725         unsigned long offset, type;
726
727         if (!entry.val)
728                 goto out;
729         type = swp_type(entry);
730         if (type >= nr_swapfiles)
731                 goto bad_nofile;
732         p = swap_info[type];
733         if (!(p->flags & SWP_USED))
734                 goto bad_device;
735         offset = swp_offset(entry);
736         if (offset >= p->max)
737                 goto bad_offset;
738         if (!p->swap_map[offset])
739                 goto bad_free;
740         spin_lock(&p->lock);
741         return p;
742
743 bad_free:
744         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745         goto out;
746 bad_offset:
747         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748         goto out;
749 bad_device:
750         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751         goto out;
752 bad_nofile:
753         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755         return NULL;
756 }
757
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759                                      swp_entry_t entry, unsigned char usage)
760 {
761         unsigned long offset = swp_offset(entry);
762         unsigned char count;
763         unsigned char has_cache;
764
765         count = p->swap_map[offset];
766         has_cache = count & SWAP_HAS_CACHE;
767         count &= ~SWAP_HAS_CACHE;
768
769         if (usage == SWAP_HAS_CACHE) {
770                 VM_BUG_ON(!has_cache);
771                 has_cache = 0;
772         } else if (count == SWAP_MAP_SHMEM) {
773                 /*
774                  * Or we could insist on shmem.c using a special
775                  * swap_shmem_free() and free_shmem_swap_and_cache()...
776                  */
777                 count = 0;
778         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779                 if (count == COUNT_CONTINUED) {
780                         if (swap_count_continued(p, offset, count))
781                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782                         else
783                                 count = SWAP_MAP_MAX;
784                 } else
785                         count--;
786         }
787
788         if (!count)
789                 mem_cgroup_uncharge_swap(entry);
790
791         usage = count | has_cache;
792         p->swap_map[offset] = usage;
793
794         /* free if no reference */
795         if (!usage) {
796                 dec_cluster_info_page(p, p->cluster_info, offset);
797                 if (offset < p->lowest_bit)
798                         p->lowest_bit = offset;
799                 if (offset > p->highest_bit) {
800                         bool was_full = !p->highest_bit;
801                         p->highest_bit = offset;
802                         if (was_full && (p->flags & SWP_WRITEOK)) {
803                                 spin_lock(&swap_avail_lock);
804                                 WARN_ON(!plist_node_empty(&p->avail_list));
805                                 if (plist_node_empty(&p->avail_list))
806                                         plist_add(&p->avail_list,
807                                                   &swap_avail_head);
808                                 spin_unlock(&swap_avail_lock);
809                         }
810                 }
811                 atomic_long_inc(&nr_swap_pages);
812                 p->inuse_pages--;
813                 frontswap_invalidate_page(p->type, offset);
814                 if (p->flags & SWP_BLKDEV) {
815                         struct gendisk *disk = p->bdev->bd_disk;
816                         if (disk->fops->swap_slot_free_notify)
817                                 disk->fops->swap_slot_free_notify(p->bdev,
818                                                                   offset);
819                 }
820         }
821
822         return usage;
823 }
824
825 /*
826  * Caller has made sure that the swap device corresponding to entry
827  * is still around or has not been recycled.
828  */
829 void swap_free(swp_entry_t entry)
830 {
831         struct swap_info_struct *p;
832
833         p = swap_info_get(entry);
834         if (p) {
835                 swap_entry_free(p, entry, 1);
836                 spin_unlock(&p->lock);
837         }
838 }
839
840 /*
841  * Called after dropping swapcache to decrease refcnt to swap entries.
842  */
843 void swapcache_free(swp_entry_t entry)
844 {
845         struct swap_info_struct *p;
846
847         p = swap_info_get(entry);
848         if (p) {
849                 swap_entry_free(p, entry, SWAP_HAS_CACHE);
850                 spin_unlock(&p->lock);
851         }
852 }
853
854 /*
855  * How many references to page are currently swapped out?
856  * This does not give an exact answer when swap count is continued,
857  * but does include the high COUNT_CONTINUED flag to allow for that.
858  */
859 int page_swapcount(struct page *page)
860 {
861         int count = 0;
862         struct swap_info_struct *p;
863         swp_entry_t entry;
864
865         entry.val = page_private(page);
866         p = swap_info_get(entry);
867         if (p) {
868                 count = swap_count(p->swap_map[swp_offset(entry)]);
869                 spin_unlock(&p->lock);
870         }
871         return count;
872 }
873
874 /*
875  * How many references to @entry are currently swapped out?
876  * This considers COUNT_CONTINUED so it returns exact answer.
877  */
878 int swp_swapcount(swp_entry_t entry)
879 {
880         int count, tmp_count, n;
881         struct swap_info_struct *p;
882         struct page *page;
883         pgoff_t offset;
884         unsigned char *map;
885
886         p = swap_info_get(entry);
887         if (!p)
888                 return 0;
889
890         count = swap_count(p->swap_map[swp_offset(entry)]);
891         if (!(count & COUNT_CONTINUED))
892                 goto out;
893
894         count &= ~COUNT_CONTINUED;
895         n = SWAP_MAP_MAX + 1;
896
897         offset = swp_offset(entry);
898         page = vmalloc_to_page(p->swap_map + offset);
899         offset &= ~PAGE_MASK;
900         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
901
902         do {
903                 page = list_next_entry(page, lru);
904                 map = kmap_atomic(page);
905                 tmp_count = map[offset];
906                 kunmap_atomic(map);
907
908                 count += (tmp_count & ~COUNT_CONTINUED) * n;
909                 n *= (SWAP_CONT_MAX + 1);
910         } while (tmp_count & COUNT_CONTINUED);
911 out:
912         spin_unlock(&p->lock);
913         return count;
914 }
915
916 /*
917  * We can write to an anon page without COW if there are no other references
918  * to it.  And as a side-effect, free up its swap: because the old content
919  * on disk will never be read, and seeking back there to write new content
920  * later would only waste time away from clustering.
921  */
922 int reuse_swap_page(struct page *page)
923 {
924         int count;
925
926         VM_BUG_ON_PAGE(!PageLocked(page), page);
927         if (unlikely(PageKsm(page)))
928                 return 0;
929         /* The page is part of THP and cannot be reused */
930         if (PageTransCompound(page))
931                 return 0;
932         count = page_mapcount(page);
933         if (count <= 1 && PageSwapCache(page)) {
934                 count += page_swapcount(page);
935                 if (count == 1 && !PageWriteback(page)) {
936                         delete_from_swap_cache(page);
937                         SetPageDirty(page);
938                 }
939         }
940         return count <= 1;
941 }
942
943 /*
944  * If swap is getting full, or if there are no more mappings of this page,
945  * then try_to_free_swap is called to free its swap space.
946  */
947 int try_to_free_swap(struct page *page)
948 {
949         VM_BUG_ON_PAGE(!PageLocked(page), page);
950
951         if (!PageSwapCache(page))
952                 return 0;
953         if (PageWriteback(page))
954                 return 0;
955         if (page_swapcount(page))
956                 return 0;
957
958         /*
959          * Once hibernation has begun to create its image of memory,
960          * there's a danger that one of the calls to try_to_free_swap()
961          * - most probably a call from __try_to_reclaim_swap() while
962          * hibernation is allocating its own swap pages for the image,
963          * but conceivably even a call from memory reclaim - will free
964          * the swap from a page which has already been recorded in the
965          * image as a clean swapcache page, and then reuse its swap for
966          * another page of the image.  On waking from hibernation, the
967          * original page might be freed under memory pressure, then
968          * later read back in from swap, now with the wrong data.
969          *
970          * Hibernation suspends storage while it is writing the image
971          * to disk so check that here.
972          */
973         if (pm_suspended_storage())
974                 return 0;
975
976         delete_from_swap_cache(page);
977         SetPageDirty(page);
978         return 1;
979 }
980
981 /*
982  * Free the swap entry like above, but also try to
983  * free the page cache entry if it is the last user.
984  */
985 int free_swap_and_cache(swp_entry_t entry)
986 {
987         struct swap_info_struct *p;
988         struct page *page = NULL;
989
990         if (non_swap_entry(entry))
991                 return 1;
992
993         p = swap_info_get(entry);
994         if (p) {
995                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
996                         page = find_get_page(swap_address_space(entry),
997                                                 entry.val);
998                         if (page && !trylock_page(page)) {
999                                 page_cache_release(page);
1000                                 page = NULL;
1001                         }
1002                 }
1003                 spin_unlock(&p->lock);
1004         }
1005         if (page) {
1006                 /*
1007                  * Not mapped elsewhere, or swap space full? Free it!
1008                  * Also recheck PageSwapCache now page is locked (above).
1009                  */
1010                 if (PageSwapCache(page) && !PageWriteback(page) &&
1011                                 (!page_mapped(page) || vm_swap_full())) {
1012                         delete_from_swap_cache(page);
1013                         SetPageDirty(page);
1014                 }
1015                 unlock_page(page);
1016                 page_cache_release(page);
1017         }
1018         return p != NULL;
1019 }
1020
1021 #ifdef CONFIG_HIBERNATION
1022 /*
1023  * Find the swap type that corresponds to given device (if any).
1024  *
1025  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1026  * from 0, in which the swap header is expected to be located.
1027  *
1028  * This is needed for the suspend to disk (aka swsusp).
1029  */
1030 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1031 {
1032         struct block_device *bdev = NULL;
1033         int type;
1034
1035         if (device)
1036                 bdev = bdget(device);
1037
1038         spin_lock(&swap_lock);
1039         for (type = 0; type < nr_swapfiles; type++) {
1040                 struct swap_info_struct *sis = swap_info[type];
1041
1042                 if (!(sis->flags & SWP_WRITEOK))
1043                         continue;
1044
1045                 if (!bdev) {
1046                         if (bdev_p)
1047                                 *bdev_p = bdgrab(sis->bdev);
1048
1049                         spin_unlock(&swap_lock);
1050                         return type;
1051                 }
1052                 if (bdev == sis->bdev) {
1053                         struct swap_extent *se = &sis->first_swap_extent;
1054
1055                         if (se->start_block == offset) {
1056                                 if (bdev_p)
1057                                         *bdev_p = bdgrab(sis->bdev);
1058
1059                                 spin_unlock(&swap_lock);
1060                                 bdput(bdev);
1061                                 return type;
1062                         }
1063                 }
1064         }
1065         spin_unlock(&swap_lock);
1066         if (bdev)
1067                 bdput(bdev);
1068
1069         return -ENODEV;
1070 }
1071
1072 /*
1073  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1074  * corresponding to given index in swap_info (swap type).
1075  */
1076 sector_t swapdev_block(int type, pgoff_t offset)
1077 {
1078         struct block_device *bdev;
1079
1080         if ((unsigned int)type >= nr_swapfiles)
1081                 return 0;
1082         if (!(swap_info[type]->flags & SWP_WRITEOK))
1083                 return 0;
1084         return map_swap_entry(swp_entry(type, offset), &bdev);
1085 }
1086
1087 /*
1088  * Return either the total number of swap pages of given type, or the number
1089  * of free pages of that type (depending on @free)
1090  *
1091  * This is needed for software suspend
1092  */
1093 unsigned int count_swap_pages(int type, int free)
1094 {
1095         unsigned int n = 0;
1096
1097         spin_lock(&swap_lock);
1098         if ((unsigned int)type < nr_swapfiles) {
1099                 struct swap_info_struct *sis = swap_info[type];
1100
1101                 spin_lock(&sis->lock);
1102                 if (sis->flags & SWP_WRITEOK) {
1103                         n = sis->pages;
1104                         if (free)
1105                                 n -= sis->inuse_pages;
1106                 }
1107                 spin_unlock(&sis->lock);
1108         }
1109         spin_unlock(&swap_lock);
1110         return n;
1111 }
1112 #endif /* CONFIG_HIBERNATION */
1113
1114 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1115 {
1116 #ifdef CONFIG_MEM_SOFT_DIRTY
1117         /*
1118          * When pte keeps soft dirty bit the pte generated
1119          * from swap entry does not has it, still it's same
1120          * pte from logical point of view.
1121          */
1122         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1123         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1124 #else
1125         return pte_same(pte, swp_pte);
1126 #endif
1127 }
1128
1129 /*
1130  * No need to decide whether this PTE shares the swap entry with others,
1131  * just let do_wp_page work it out if a write is requested later - to
1132  * force COW, vm_page_prot omits write permission from any private vma.
1133  */
1134 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1135                 unsigned long addr, swp_entry_t entry, struct page *page)
1136 {
1137         struct page *swapcache;
1138         struct mem_cgroup *memcg;
1139         spinlock_t *ptl;
1140         pte_t *pte;
1141         int ret = 1;
1142
1143         swapcache = page;
1144         page = ksm_might_need_to_copy(page, vma, addr);
1145         if (unlikely(!page))
1146                 return -ENOMEM;
1147
1148         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1149                                 &memcg, false)) {
1150                 ret = -ENOMEM;
1151                 goto out_nolock;
1152         }
1153
1154         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1155         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1156                 mem_cgroup_cancel_charge(page, memcg, false);
1157                 ret = 0;
1158                 goto out;
1159         }
1160
1161         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1162         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1163         get_page(page);
1164         set_pte_at(vma->vm_mm, addr, pte,
1165                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1166         if (page == swapcache) {
1167                 page_add_anon_rmap(page, vma, addr, false);
1168                 mem_cgroup_commit_charge(page, memcg, true, false);
1169         } else { /* ksm created a completely new copy */
1170                 page_add_new_anon_rmap(page, vma, addr, false);
1171                 mem_cgroup_commit_charge(page, memcg, false, false);
1172                 lru_cache_add_active_or_unevictable(page, vma);
1173         }
1174         swap_free(entry);
1175         /*
1176          * Move the page to the active list so it is not
1177          * immediately swapped out again after swapon.
1178          */
1179         activate_page(page);
1180 out:
1181         pte_unmap_unlock(pte, ptl);
1182 out_nolock:
1183         if (page != swapcache) {
1184                 unlock_page(page);
1185                 put_page(page);
1186         }
1187         return ret;
1188 }
1189
1190 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1191                                 unsigned long addr, unsigned long end,
1192                                 swp_entry_t entry, struct page *page)
1193 {
1194         pte_t swp_pte = swp_entry_to_pte(entry);
1195         pte_t *pte;
1196         int ret = 0;
1197
1198         /*
1199          * We don't actually need pte lock while scanning for swp_pte: since
1200          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1201          * page table while we're scanning; though it could get zapped, and on
1202          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1203          * of unmatched parts which look like swp_pte, so unuse_pte must
1204          * recheck under pte lock.  Scanning without pte lock lets it be
1205          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1206          */
1207         pte = pte_offset_map(pmd, addr);
1208         do {
1209                 /*
1210                  * swapoff spends a _lot_ of time in this loop!
1211                  * Test inline before going to call unuse_pte.
1212                  */
1213                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1214                         pte_unmap(pte);
1215                         ret = unuse_pte(vma, pmd, addr, entry, page);
1216                         if (ret)
1217                                 goto out;
1218                         pte = pte_offset_map(pmd, addr);
1219                 }
1220         } while (pte++, addr += PAGE_SIZE, addr != end);
1221         pte_unmap(pte - 1);
1222 out:
1223         return ret;
1224 }
1225
1226 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1227                                 unsigned long addr, unsigned long end,
1228                                 swp_entry_t entry, struct page *page)
1229 {
1230         pmd_t *pmd;
1231         unsigned long next;
1232         int ret;
1233
1234         pmd = pmd_offset(pud, addr);
1235         do {
1236                 next = pmd_addr_end(addr, end);
1237                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1238                         continue;
1239                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1240                 if (ret)
1241                         return ret;
1242         } while (pmd++, addr = next, addr != end);
1243         return 0;
1244 }
1245
1246 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1247                                 unsigned long addr, unsigned long end,
1248                                 swp_entry_t entry, struct page *page)
1249 {
1250         pud_t *pud;
1251         unsigned long next;
1252         int ret;
1253
1254         pud = pud_offset(pgd, addr);
1255         do {
1256                 next = pud_addr_end(addr, end);
1257                 if (pud_none_or_clear_bad(pud))
1258                         continue;
1259                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1260                 if (ret)
1261                         return ret;
1262         } while (pud++, addr = next, addr != end);
1263         return 0;
1264 }
1265
1266 static int unuse_vma(struct vm_area_struct *vma,
1267                                 swp_entry_t entry, struct page *page)
1268 {
1269         pgd_t *pgd;
1270         unsigned long addr, end, next;
1271         int ret;
1272
1273         if (page_anon_vma(page)) {
1274                 addr = page_address_in_vma(page, vma);
1275                 if (addr == -EFAULT)
1276                         return 0;
1277                 else
1278                         end = addr + PAGE_SIZE;
1279         } else {
1280                 addr = vma->vm_start;
1281                 end = vma->vm_end;
1282         }
1283
1284         pgd = pgd_offset(vma->vm_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(pgd))
1288                         continue;
1289                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1290                 if (ret)
1291                         return ret;
1292         } while (pgd++, addr = next, addr != end);
1293         return 0;
1294 }
1295
1296 static int unuse_mm(struct mm_struct *mm,
1297                                 swp_entry_t entry, struct page *page)
1298 {
1299         struct vm_area_struct *vma;
1300         int ret = 0;
1301
1302         if (!down_read_trylock(&mm->mmap_sem)) {
1303                 /*
1304                  * Activate page so shrink_inactive_list is unlikely to unmap
1305                  * its ptes while lock is dropped, so swapoff can make progress.
1306                  */
1307                 activate_page(page);
1308                 unlock_page(page);
1309                 down_read(&mm->mmap_sem);
1310                 lock_page(page);
1311         }
1312         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1313                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1314                         break;
1315         }
1316         up_read(&mm->mmap_sem);
1317         return (ret < 0)? ret: 0;
1318 }
1319
1320 /*
1321  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1322  * from current position to next entry still in use.
1323  * Recycle to start on reaching the end, returning 0 when empty.
1324  */
1325 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1326                                         unsigned int prev, bool frontswap)
1327 {
1328         unsigned int max = si->max;
1329         unsigned int i = prev;
1330         unsigned char count;
1331
1332         /*
1333          * No need for swap_lock here: we're just looking
1334          * for whether an entry is in use, not modifying it; false
1335          * hits are okay, and sys_swapoff() has already prevented new
1336          * allocations from this area (while holding swap_lock).
1337          */
1338         for (;;) {
1339                 if (++i >= max) {
1340                         if (!prev) {
1341                                 i = 0;
1342                                 break;
1343                         }
1344                         /*
1345                          * No entries in use at top of swap_map,
1346                          * loop back to start and recheck there.
1347                          */
1348                         max = prev + 1;
1349                         prev = 0;
1350                         i = 1;
1351                 }
1352                 if (frontswap) {
1353                         if (frontswap_test(si, i))
1354                                 break;
1355                         else
1356                                 continue;
1357                 }
1358                 count = READ_ONCE(si->swap_map[i]);
1359                 if (count && swap_count(count) != SWAP_MAP_BAD)
1360                         break;
1361         }
1362         return i;
1363 }
1364
1365 /*
1366  * We completely avoid races by reading each swap page in advance,
1367  * and then search for the process using it.  All the necessary
1368  * page table adjustments can then be made atomically.
1369  *
1370  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1371  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1372  */
1373 int try_to_unuse(unsigned int type, bool frontswap,
1374                  unsigned long pages_to_unuse)
1375 {
1376         struct swap_info_struct *si = swap_info[type];
1377         struct mm_struct *start_mm;
1378         volatile unsigned char *swap_map; /* swap_map is accessed without
1379                                            * locking. Mark it as volatile
1380                                            * to prevent compiler doing
1381                                            * something odd.
1382                                            */
1383         unsigned char swcount;
1384         struct page *page;
1385         swp_entry_t entry;
1386         unsigned int i = 0;
1387         int retval = 0;
1388
1389         /*
1390          * When searching mms for an entry, a good strategy is to
1391          * start at the first mm we freed the previous entry from
1392          * (though actually we don't notice whether we or coincidence
1393          * freed the entry).  Initialize this start_mm with a hold.
1394          *
1395          * A simpler strategy would be to start at the last mm we
1396          * freed the previous entry from; but that would take less
1397          * advantage of mmlist ordering, which clusters forked mms
1398          * together, child after parent.  If we race with dup_mmap(), we
1399          * prefer to resolve parent before child, lest we miss entries
1400          * duplicated after we scanned child: using last mm would invert
1401          * that.
1402          */
1403         start_mm = &init_mm;
1404         atomic_inc(&init_mm.mm_users);
1405
1406         /*
1407          * Keep on scanning until all entries have gone.  Usually,
1408          * one pass through swap_map is enough, but not necessarily:
1409          * there are races when an instance of an entry might be missed.
1410          */
1411         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1412                 if (signal_pending(current)) {
1413                         retval = -EINTR;
1414                         break;
1415                 }
1416
1417                 /*
1418                  * Get a page for the entry, using the existing swap
1419                  * cache page if there is one.  Otherwise, get a clean
1420                  * page and read the swap into it.
1421                  */
1422                 swap_map = &si->swap_map[i];
1423                 entry = swp_entry(type, i);
1424                 page = read_swap_cache_async(entry,
1425                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1426                 if (!page) {
1427                         /*
1428                          * Either swap_duplicate() failed because entry
1429                          * has been freed independently, and will not be
1430                          * reused since sys_swapoff() already disabled
1431                          * allocation from here, or alloc_page() failed.
1432                          */
1433                         swcount = *swap_map;
1434                         /*
1435                          * We don't hold lock here, so the swap entry could be
1436                          * SWAP_MAP_BAD (when the cluster is discarding).
1437                          * Instead of fail out, We can just skip the swap
1438                          * entry because swapoff will wait for discarding
1439                          * finish anyway.
1440                          */
1441                         if (!swcount || swcount == SWAP_MAP_BAD)
1442                                 continue;
1443                         retval = -ENOMEM;
1444                         break;
1445                 }
1446
1447                 /*
1448                  * Don't hold on to start_mm if it looks like exiting.
1449                  */
1450                 if (atomic_read(&start_mm->mm_users) == 1) {
1451                         mmput(start_mm);
1452                         start_mm = &init_mm;
1453                         atomic_inc(&init_mm.mm_users);
1454                 }
1455
1456                 /*
1457                  * Wait for and lock page.  When do_swap_page races with
1458                  * try_to_unuse, do_swap_page can handle the fault much
1459                  * faster than try_to_unuse can locate the entry.  This
1460                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1461                  * defer to do_swap_page in such a case - in some tests,
1462                  * do_swap_page and try_to_unuse repeatedly compete.
1463                  */
1464                 wait_on_page_locked(page);
1465                 wait_on_page_writeback(page);
1466                 lock_page(page);
1467                 wait_on_page_writeback(page);
1468
1469                 /*
1470                  * Remove all references to entry.
1471                  */
1472                 swcount = *swap_map;
1473                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1474                         retval = shmem_unuse(entry, page);
1475                         /* page has already been unlocked and released */
1476                         if (retval < 0)
1477                                 break;
1478                         continue;
1479                 }
1480                 if (swap_count(swcount) && start_mm != &init_mm)
1481                         retval = unuse_mm(start_mm, entry, page);
1482
1483                 if (swap_count(*swap_map)) {
1484                         int set_start_mm = (*swap_map >= swcount);
1485                         struct list_head *p = &start_mm->mmlist;
1486                         struct mm_struct *new_start_mm = start_mm;
1487                         struct mm_struct *prev_mm = start_mm;
1488                         struct mm_struct *mm;
1489
1490                         atomic_inc(&new_start_mm->mm_users);
1491                         atomic_inc(&prev_mm->mm_users);
1492                         spin_lock(&mmlist_lock);
1493                         while (swap_count(*swap_map) && !retval &&
1494                                         (p = p->next) != &start_mm->mmlist) {
1495                                 mm = list_entry(p, struct mm_struct, mmlist);
1496                                 if (!atomic_inc_not_zero(&mm->mm_users))
1497                                         continue;
1498                                 spin_unlock(&mmlist_lock);
1499                                 mmput(prev_mm);
1500                                 prev_mm = mm;
1501
1502                                 cond_resched();
1503
1504                                 swcount = *swap_map;
1505                                 if (!swap_count(swcount)) /* any usage ? */
1506                                         ;
1507                                 else if (mm == &init_mm)
1508                                         set_start_mm = 1;
1509                                 else
1510                                         retval = unuse_mm(mm, entry, page);
1511
1512                                 if (set_start_mm && *swap_map < swcount) {
1513                                         mmput(new_start_mm);
1514                                         atomic_inc(&mm->mm_users);
1515                                         new_start_mm = mm;
1516                                         set_start_mm = 0;
1517                                 }
1518                                 spin_lock(&mmlist_lock);
1519                         }
1520                         spin_unlock(&mmlist_lock);
1521                         mmput(prev_mm);
1522                         mmput(start_mm);
1523                         start_mm = new_start_mm;
1524                 }
1525                 if (retval) {
1526                         unlock_page(page);
1527                         page_cache_release(page);
1528                         break;
1529                 }
1530
1531                 /*
1532                  * If a reference remains (rare), we would like to leave
1533                  * the page in the swap cache; but try_to_unmap could
1534                  * then re-duplicate the entry once we drop page lock,
1535                  * so we might loop indefinitely; also, that page could
1536                  * not be swapped out to other storage meanwhile.  So:
1537                  * delete from cache even if there's another reference,
1538                  * after ensuring that the data has been saved to disk -
1539                  * since if the reference remains (rarer), it will be
1540                  * read from disk into another page.  Splitting into two
1541                  * pages would be incorrect if swap supported "shared
1542                  * private" pages, but they are handled by tmpfs files.
1543                  *
1544                  * Given how unuse_vma() targets one particular offset
1545                  * in an anon_vma, once the anon_vma has been determined,
1546                  * this splitting happens to be just what is needed to
1547                  * handle where KSM pages have been swapped out: re-reading
1548                  * is unnecessarily slow, but we can fix that later on.
1549                  */
1550                 if (swap_count(*swap_map) &&
1551                      PageDirty(page) && PageSwapCache(page)) {
1552                         struct writeback_control wbc = {
1553                                 .sync_mode = WB_SYNC_NONE,
1554                         };
1555
1556                         swap_writepage(page, &wbc);
1557                         lock_page(page);
1558                         wait_on_page_writeback(page);
1559                 }
1560
1561                 /*
1562                  * It is conceivable that a racing task removed this page from
1563                  * swap cache just before we acquired the page lock at the top,
1564                  * or while we dropped it in unuse_mm().  The page might even
1565                  * be back in swap cache on another swap area: that we must not
1566                  * delete, since it may not have been written out to swap yet.
1567                  */
1568                 if (PageSwapCache(page) &&
1569                     likely(page_private(page) == entry.val))
1570                         delete_from_swap_cache(page);
1571
1572                 /*
1573                  * So we could skip searching mms once swap count went
1574                  * to 1, we did not mark any present ptes as dirty: must
1575                  * mark page dirty so shrink_page_list will preserve it.
1576                  */
1577                 SetPageDirty(page);
1578                 unlock_page(page);
1579                 page_cache_release(page);
1580
1581                 /*
1582                  * Make sure that we aren't completely killing
1583                  * interactive performance.
1584                  */
1585                 cond_resched();
1586                 if (frontswap && pages_to_unuse > 0) {
1587                         if (!--pages_to_unuse)
1588                                 break;
1589                 }
1590         }
1591
1592         mmput(start_mm);
1593         return retval;
1594 }
1595
1596 /*
1597  * After a successful try_to_unuse, if no swap is now in use, we know
1598  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1599  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1600  * added to the mmlist just after page_duplicate - before would be racy.
1601  */
1602 static void drain_mmlist(void)
1603 {
1604         struct list_head *p, *next;
1605         unsigned int type;
1606
1607         for (type = 0; type < nr_swapfiles; type++)
1608                 if (swap_info[type]->inuse_pages)
1609                         return;
1610         spin_lock(&mmlist_lock);
1611         list_for_each_safe(p, next, &init_mm.mmlist)
1612                 list_del_init(p);
1613         spin_unlock(&mmlist_lock);
1614 }
1615
1616 /*
1617  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1618  * corresponds to page offset for the specified swap entry.
1619  * Note that the type of this function is sector_t, but it returns page offset
1620  * into the bdev, not sector offset.
1621  */
1622 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1623 {
1624         struct swap_info_struct *sis;
1625         struct swap_extent *start_se;
1626         struct swap_extent *se;
1627         pgoff_t offset;
1628
1629         sis = swap_info[swp_type(entry)];
1630         *bdev = sis->bdev;
1631
1632         offset = swp_offset(entry);
1633         start_se = sis->curr_swap_extent;
1634         se = start_se;
1635
1636         for ( ; ; ) {
1637                 if (se->start_page <= offset &&
1638                                 offset < (se->start_page + se->nr_pages)) {
1639                         return se->start_block + (offset - se->start_page);
1640                 }
1641                 se = list_next_entry(se, list);
1642                 sis->curr_swap_extent = se;
1643                 BUG_ON(se == start_se);         /* It *must* be present */
1644         }
1645 }
1646
1647 /*
1648  * Returns the page offset into bdev for the specified page's swap entry.
1649  */
1650 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1651 {
1652         swp_entry_t entry;
1653         entry.val = page_private(page);
1654         return map_swap_entry(entry, bdev);
1655 }
1656
1657 /*
1658  * Free all of a swapdev's extent information
1659  */
1660 static void destroy_swap_extents(struct swap_info_struct *sis)
1661 {
1662         while (!list_empty(&sis->first_swap_extent.list)) {
1663                 struct swap_extent *se;
1664
1665                 se = list_first_entry(&sis->first_swap_extent.list,
1666                                 struct swap_extent, list);
1667                 list_del(&se->list);
1668                 kfree(se);
1669         }
1670
1671         if (sis->flags & SWP_FILE) {
1672                 struct file *swap_file = sis->swap_file;
1673                 struct address_space *mapping = swap_file->f_mapping;
1674
1675                 sis->flags &= ~SWP_FILE;
1676                 mapping->a_ops->swap_deactivate(swap_file);
1677         }
1678 }
1679
1680 /*
1681  * Add a block range (and the corresponding page range) into this swapdev's
1682  * extent list.  The extent list is kept sorted in page order.
1683  *
1684  * This function rather assumes that it is called in ascending page order.
1685  */
1686 int
1687 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1688                 unsigned long nr_pages, sector_t start_block)
1689 {
1690         struct swap_extent *se;
1691         struct swap_extent *new_se;
1692         struct list_head *lh;
1693
1694         if (start_page == 0) {
1695                 se = &sis->first_swap_extent;
1696                 sis->curr_swap_extent = se;
1697                 se->start_page = 0;
1698                 se->nr_pages = nr_pages;
1699                 se->start_block = start_block;
1700                 return 1;
1701         } else {
1702                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1703                 se = list_entry(lh, struct swap_extent, list);
1704                 BUG_ON(se->start_page + se->nr_pages != start_page);
1705                 if (se->start_block + se->nr_pages == start_block) {
1706                         /* Merge it */
1707                         se->nr_pages += nr_pages;
1708                         return 0;
1709                 }
1710         }
1711
1712         /*
1713          * No merge.  Insert a new extent, preserving ordering.
1714          */
1715         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1716         if (new_se == NULL)
1717                 return -ENOMEM;
1718         new_se->start_page = start_page;
1719         new_se->nr_pages = nr_pages;
1720         new_se->start_block = start_block;
1721
1722         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1723         return 1;
1724 }
1725
1726 /*
1727  * A `swap extent' is a simple thing which maps a contiguous range of pages
1728  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1729  * is built at swapon time and is then used at swap_writepage/swap_readpage
1730  * time for locating where on disk a page belongs.
1731  *
1732  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1733  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1734  * swap files identically.
1735  *
1736  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1737  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1738  * swapfiles are handled *identically* after swapon time.
1739  *
1740  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1741  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1742  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1743  * requirements, they are simply tossed out - we will never use those blocks
1744  * for swapping.
1745  *
1746  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1747  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1748  * which will scribble on the fs.
1749  *
1750  * The amount of disk space which a single swap extent represents varies.
1751  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1752  * extents in the list.  To avoid much list walking, we cache the previous
1753  * search location in `curr_swap_extent', and start new searches from there.
1754  * This is extremely effective.  The average number of iterations in
1755  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1756  */
1757 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1758 {
1759         struct file *swap_file = sis->swap_file;
1760         struct address_space *mapping = swap_file->f_mapping;
1761         struct inode *inode = mapping->host;
1762         int ret;
1763
1764         if (S_ISBLK(inode->i_mode)) {
1765                 ret = add_swap_extent(sis, 0, sis->max, 0);
1766                 *span = sis->pages;
1767                 return ret;
1768         }
1769
1770         if (mapping->a_ops->swap_activate) {
1771                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1772                 if (!ret) {
1773                         sis->flags |= SWP_FILE;
1774                         ret = add_swap_extent(sis, 0, sis->max, 0);
1775                         *span = sis->pages;
1776                 }
1777                 return ret;
1778         }
1779
1780         return generic_swapfile_activate(sis, swap_file, span);
1781 }
1782
1783 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1784                                 unsigned char *swap_map,
1785                                 struct swap_cluster_info *cluster_info)
1786 {
1787         if (prio >= 0)
1788                 p->prio = prio;
1789         else
1790                 p->prio = --least_priority;
1791         /*
1792          * the plist prio is negated because plist ordering is
1793          * low-to-high, while swap ordering is high-to-low
1794          */
1795         p->list.prio = -p->prio;
1796         p->avail_list.prio = -p->prio;
1797         p->swap_map = swap_map;
1798         p->cluster_info = cluster_info;
1799         p->flags |= SWP_WRITEOK;
1800         atomic_long_add(p->pages, &nr_swap_pages);
1801         total_swap_pages += p->pages;
1802
1803         assert_spin_locked(&swap_lock);
1804         /*
1805          * both lists are plists, and thus priority ordered.
1806          * swap_active_head needs to be priority ordered for swapoff(),
1807          * which on removal of any swap_info_struct with an auto-assigned
1808          * (i.e. negative) priority increments the auto-assigned priority
1809          * of any lower-priority swap_info_structs.
1810          * swap_avail_head needs to be priority ordered for get_swap_page(),
1811          * which allocates swap pages from the highest available priority
1812          * swap_info_struct.
1813          */
1814         plist_add(&p->list, &swap_active_head);
1815         spin_lock(&swap_avail_lock);
1816         plist_add(&p->avail_list, &swap_avail_head);
1817         spin_unlock(&swap_avail_lock);
1818 }
1819
1820 static void enable_swap_info(struct swap_info_struct *p, int prio,
1821                                 unsigned char *swap_map,
1822                                 struct swap_cluster_info *cluster_info,
1823                                 unsigned long *frontswap_map)
1824 {
1825         frontswap_init(p->type, frontswap_map);
1826         spin_lock(&swap_lock);
1827         spin_lock(&p->lock);
1828          _enable_swap_info(p, prio, swap_map, cluster_info);
1829         spin_unlock(&p->lock);
1830         spin_unlock(&swap_lock);
1831 }
1832
1833 static void reinsert_swap_info(struct swap_info_struct *p)
1834 {
1835         spin_lock(&swap_lock);
1836         spin_lock(&p->lock);
1837         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1838         spin_unlock(&p->lock);
1839         spin_unlock(&swap_lock);
1840 }
1841
1842 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1843 {
1844         struct swap_info_struct *p = NULL;
1845         unsigned char *swap_map;
1846         struct swap_cluster_info *cluster_info;
1847         unsigned long *frontswap_map;
1848         struct file *swap_file, *victim;
1849         struct address_space *mapping;
1850         struct inode *inode;
1851         struct filename *pathname;
1852         int err, found = 0;
1853         unsigned int old_block_size;
1854
1855         if (!capable(CAP_SYS_ADMIN))
1856                 return -EPERM;
1857
1858         BUG_ON(!current->mm);
1859
1860         pathname = getname(specialfile);
1861         if (IS_ERR(pathname))
1862                 return PTR_ERR(pathname);
1863
1864         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1865         err = PTR_ERR(victim);
1866         if (IS_ERR(victim))
1867                 goto out;
1868
1869         mapping = victim->f_mapping;
1870         spin_lock(&swap_lock);
1871         plist_for_each_entry(p, &swap_active_head, list) {
1872                 if (p->flags & SWP_WRITEOK) {
1873                         if (p->swap_file->f_mapping == mapping) {
1874                                 found = 1;
1875                                 break;
1876                         }
1877                 }
1878         }
1879         if (!found) {
1880                 err = -EINVAL;
1881                 spin_unlock(&swap_lock);
1882                 goto out_dput;
1883         }
1884         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1885                 vm_unacct_memory(p->pages);
1886         else {
1887                 err = -ENOMEM;
1888                 spin_unlock(&swap_lock);
1889                 goto out_dput;
1890         }
1891         spin_lock(&swap_avail_lock);
1892         plist_del(&p->avail_list, &swap_avail_head);
1893         spin_unlock(&swap_avail_lock);
1894         spin_lock(&p->lock);
1895         if (p->prio < 0) {
1896                 struct swap_info_struct *si = p;
1897
1898                 plist_for_each_entry_continue(si, &swap_active_head, list) {
1899                         si->prio++;
1900                         si->list.prio--;
1901                         si->avail_list.prio--;
1902                 }
1903                 least_priority++;
1904         }
1905         plist_del(&p->list, &swap_active_head);
1906         atomic_long_sub(p->pages, &nr_swap_pages);
1907         total_swap_pages -= p->pages;
1908         p->flags &= ~SWP_WRITEOK;
1909         spin_unlock(&p->lock);
1910         spin_unlock(&swap_lock);
1911
1912         set_current_oom_origin();
1913         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1914         clear_current_oom_origin();
1915
1916         if (err) {
1917                 /* re-insert swap space back into swap_list */
1918                 reinsert_swap_info(p);
1919                 goto out_dput;
1920         }
1921
1922         flush_work(&p->discard_work);
1923
1924         destroy_swap_extents(p);
1925         if (p->flags & SWP_CONTINUED)
1926                 free_swap_count_continuations(p);
1927
1928         mutex_lock(&swapon_mutex);
1929         spin_lock(&swap_lock);
1930         spin_lock(&p->lock);
1931         drain_mmlist();
1932
1933         /* wait for anyone still in scan_swap_map */
1934         p->highest_bit = 0;             /* cuts scans short */
1935         while (p->flags >= SWP_SCANNING) {
1936                 spin_unlock(&p->lock);
1937                 spin_unlock(&swap_lock);
1938                 schedule_timeout_uninterruptible(1);
1939                 spin_lock(&swap_lock);
1940                 spin_lock(&p->lock);
1941         }
1942
1943         swap_file = p->swap_file;
1944         old_block_size = p->old_block_size;
1945         p->swap_file = NULL;
1946         p->max = 0;
1947         swap_map = p->swap_map;
1948         p->swap_map = NULL;
1949         cluster_info = p->cluster_info;
1950         p->cluster_info = NULL;
1951         frontswap_map = frontswap_map_get(p);
1952         spin_unlock(&p->lock);
1953         spin_unlock(&swap_lock);
1954         frontswap_invalidate_area(p->type);
1955         frontswap_map_set(p, NULL);
1956         mutex_unlock(&swapon_mutex);
1957         free_percpu(p->percpu_cluster);
1958         p->percpu_cluster = NULL;
1959         vfree(swap_map);
1960         vfree(cluster_info);
1961         vfree(frontswap_map);
1962         /* Destroy swap account information */
1963         swap_cgroup_swapoff(p->type);
1964
1965         inode = mapping->host;
1966         if (S_ISBLK(inode->i_mode)) {
1967                 struct block_device *bdev = I_BDEV(inode);
1968                 set_blocksize(bdev, old_block_size);
1969                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1970         } else {
1971                 mutex_lock(&inode->i_mutex);
1972                 inode->i_flags &= ~S_SWAPFILE;
1973                 mutex_unlock(&inode->i_mutex);
1974         }
1975         filp_close(swap_file, NULL);
1976
1977         /*
1978          * Clear the SWP_USED flag after all resources are freed so that swapon
1979          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1980          * not hold p->lock after we cleared its SWP_WRITEOK.
1981          */
1982         spin_lock(&swap_lock);
1983         p->flags = 0;
1984         spin_unlock(&swap_lock);
1985
1986         err = 0;
1987         atomic_inc(&proc_poll_event);
1988         wake_up_interruptible(&proc_poll_wait);
1989
1990 out_dput:
1991         filp_close(victim, NULL);
1992 out:
1993         putname(pathname);
1994         return err;
1995 }
1996
1997 #ifdef CONFIG_PROC_FS
1998 static unsigned swaps_poll(struct file *file, poll_table *wait)
1999 {
2000         struct seq_file *seq = file->private_data;
2001
2002         poll_wait(file, &proc_poll_wait, wait);
2003
2004         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2005                 seq->poll_event = atomic_read(&proc_poll_event);
2006                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2007         }
2008
2009         return POLLIN | POLLRDNORM;
2010 }
2011
2012 /* iterator */
2013 static void *swap_start(struct seq_file *swap, loff_t *pos)
2014 {
2015         struct swap_info_struct *si;
2016         int type;
2017         loff_t l = *pos;
2018
2019         mutex_lock(&swapon_mutex);
2020
2021         if (!l)
2022                 return SEQ_START_TOKEN;
2023
2024         for (type = 0; type < nr_swapfiles; type++) {
2025                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2026                 si = swap_info[type];
2027                 if (!(si->flags & SWP_USED) || !si->swap_map)
2028                         continue;
2029                 if (!--l)
2030                         return si;
2031         }
2032
2033         return NULL;
2034 }
2035
2036 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2037 {
2038         struct swap_info_struct *si = v;
2039         int type;
2040
2041         if (v == SEQ_START_TOKEN)
2042                 type = 0;
2043         else
2044                 type = si->type + 1;
2045
2046         for (; type < nr_swapfiles; type++) {
2047                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2048                 si = swap_info[type];
2049                 if (!(si->flags & SWP_USED) || !si->swap_map)
2050                         continue;
2051                 ++*pos;
2052                 return si;
2053         }
2054
2055         return NULL;
2056 }
2057
2058 static void swap_stop(struct seq_file *swap, void *v)
2059 {
2060         mutex_unlock(&swapon_mutex);
2061 }
2062
2063 static int swap_show(struct seq_file *swap, void *v)
2064 {
2065         struct swap_info_struct *si = v;
2066         struct file *file;
2067         int len;
2068
2069         if (si == SEQ_START_TOKEN) {
2070                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2071                 return 0;
2072         }
2073
2074         file = si->swap_file;
2075         len = seq_file_path(swap, file, " \t\n\\");
2076         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2077                         len < 40 ? 40 - len : 1, " ",
2078                         S_ISBLK(file_inode(file)->i_mode) ?
2079                                 "partition" : "file\t",
2080                         si->pages << (PAGE_SHIFT - 10),
2081                         si->inuse_pages << (PAGE_SHIFT - 10),
2082                         si->prio);
2083         return 0;
2084 }
2085
2086 static const struct seq_operations swaps_op = {
2087         .start =        swap_start,
2088         .next =         swap_next,
2089         .stop =         swap_stop,
2090         .show =         swap_show
2091 };
2092
2093 static int swaps_open(struct inode *inode, struct file *file)
2094 {
2095         struct seq_file *seq;
2096         int ret;
2097
2098         ret = seq_open(file, &swaps_op);
2099         if (ret)
2100                 return ret;
2101
2102         seq = file->private_data;
2103         seq->poll_event = atomic_read(&proc_poll_event);
2104         return 0;
2105 }
2106
2107 static const struct file_operations proc_swaps_operations = {
2108         .open           = swaps_open,
2109         .read           = seq_read,
2110         .llseek         = seq_lseek,
2111         .release        = seq_release,
2112         .poll           = swaps_poll,
2113 };
2114
2115 static int __init procswaps_init(void)
2116 {
2117         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2118         return 0;
2119 }
2120 __initcall(procswaps_init);
2121 #endif /* CONFIG_PROC_FS */
2122
2123 #ifdef MAX_SWAPFILES_CHECK
2124 static int __init max_swapfiles_check(void)
2125 {
2126         MAX_SWAPFILES_CHECK();
2127         return 0;
2128 }
2129 late_initcall(max_swapfiles_check);
2130 #endif
2131
2132 static struct swap_info_struct *alloc_swap_info(void)
2133 {
2134         struct swap_info_struct *p;
2135         unsigned int type;
2136
2137         p = kzalloc(sizeof(*p), GFP_KERNEL);
2138         if (!p)
2139                 return ERR_PTR(-ENOMEM);
2140
2141         spin_lock(&swap_lock);
2142         for (type = 0; type < nr_swapfiles; type++) {
2143                 if (!(swap_info[type]->flags & SWP_USED))
2144                         break;
2145         }
2146         if (type >= MAX_SWAPFILES) {
2147                 spin_unlock(&swap_lock);
2148                 kfree(p);
2149                 return ERR_PTR(-EPERM);
2150         }
2151         if (type >= nr_swapfiles) {
2152                 p->type = type;
2153                 swap_info[type] = p;
2154                 /*
2155                  * Write swap_info[type] before nr_swapfiles, in case a
2156                  * racing procfs swap_start() or swap_next() is reading them.
2157                  * (We never shrink nr_swapfiles, we never free this entry.)
2158                  */
2159                 smp_wmb();
2160                 nr_swapfiles++;
2161         } else {
2162                 kfree(p);
2163                 p = swap_info[type];
2164                 /*
2165                  * Do not memset this entry: a racing procfs swap_next()
2166                  * would be relying on p->type to remain valid.
2167                  */
2168         }
2169         INIT_LIST_HEAD(&p->first_swap_extent.list);
2170         plist_node_init(&p->list, 0);
2171         plist_node_init(&p->avail_list, 0);
2172         p->flags = SWP_USED;
2173         spin_unlock(&swap_lock);
2174         spin_lock_init(&p->lock);
2175
2176         return p;
2177 }
2178
2179 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2180 {
2181         int error;
2182
2183         if (S_ISBLK(inode->i_mode)) {
2184                 p->bdev = bdgrab(I_BDEV(inode));
2185                 error = blkdev_get(p->bdev,
2186                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2187                 if (error < 0) {
2188                         p->bdev = NULL;
2189                         return error;
2190                 }
2191                 p->old_block_size = block_size(p->bdev);
2192                 error = set_blocksize(p->bdev, PAGE_SIZE);
2193                 if (error < 0)
2194                         return error;
2195                 p->flags |= SWP_BLKDEV;
2196         } else if (S_ISREG(inode->i_mode)) {
2197                 p->bdev = inode->i_sb->s_bdev;
2198                 mutex_lock(&inode->i_mutex);
2199                 if (IS_SWAPFILE(inode))
2200                         return -EBUSY;
2201         } else
2202                 return -EINVAL;
2203
2204         return 0;
2205 }
2206
2207 static unsigned long read_swap_header(struct swap_info_struct *p,
2208                                         union swap_header *swap_header,
2209                                         struct inode *inode)
2210 {
2211         int i;
2212         unsigned long maxpages;
2213         unsigned long swapfilepages;
2214         unsigned long last_page;
2215
2216         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2217                 pr_err("Unable to find swap-space signature\n");
2218                 return 0;
2219         }
2220
2221         /* swap partition endianess hack... */
2222         if (swab32(swap_header->info.version) == 1) {
2223                 swab32s(&swap_header->info.version);
2224                 swab32s(&swap_header->info.last_page);
2225                 swab32s(&swap_header->info.nr_badpages);
2226                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2227                         swab32s(&swap_header->info.badpages[i]);
2228         }
2229         /* Check the swap header's sub-version */
2230         if (swap_header->info.version != 1) {
2231                 pr_warn("Unable to handle swap header version %d\n",
2232                         swap_header->info.version);
2233                 return 0;
2234         }
2235
2236         p->lowest_bit  = 1;
2237         p->cluster_next = 1;
2238         p->cluster_nr = 0;
2239
2240         /*
2241          * Find out how many pages are allowed for a single swap
2242          * device. There are two limiting factors: 1) the number
2243          * of bits for the swap offset in the swp_entry_t type, and
2244          * 2) the number of bits in the swap pte as defined by the
2245          * different architectures. In order to find the
2246          * largest possible bit mask, a swap entry with swap type 0
2247          * and swap offset ~0UL is created, encoded to a swap pte,
2248          * decoded to a swp_entry_t again, and finally the swap
2249          * offset is extracted. This will mask all the bits from
2250          * the initial ~0UL mask that can't be encoded in either
2251          * the swp_entry_t or the architecture definition of a
2252          * swap pte.
2253          */
2254         maxpages = swp_offset(pte_to_swp_entry(
2255                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2256         last_page = swap_header->info.last_page;
2257         if (last_page > maxpages) {
2258                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2259                         maxpages << (PAGE_SHIFT - 10),
2260                         last_page << (PAGE_SHIFT - 10));
2261         }
2262         if (maxpages > last_page) {
2263                 maxpages = last_page + 1;
2264                 /* p->max is an unsigned int: don't overflow it */
2265                 if ((unsigned int)maxpages == 0)
2266                         maxpages = UINT_MAX;
2267         }
2268         p->highest_bit = maxpages - 1;
2269
2270         if (!maxpages)
2271                 return 0;
2272         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2273         if (swapfilepages && maxpages > swapfilepages) {
2274                 pr_warn("Swap area shorter than signature indicates\n");
2275                 return 0;
2276         }
2277         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2278                 return 0;
2279         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2280                 return 0;
2281
2282         return maxpages;
2283 }
2284
2285 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2286                                         union swap_header *swap_header,
2287                                         unsigned char *swap_map,
2288                                         struct swap_cluster_info *cluster_info,
2289                                         unsigned long maxpages,
2290                                         sector_t *span)
2291 {
2292         int i;
2293         unsigned int nr_good_pages;
2294         int nr_extents;
2295         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2296         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2297
2298         nr_good_pages = maxpages - 1;   /* omit header page */
2299
2300         cluster_set_null(&p->free_cluster_head);
2301         cluster_set_null(&p->free_cluster_tail);
2302         cluster_set_null(&p->discard_cluster_head);
2303         cluster_set_null(&p->discard_cluster_tail);
2304
2305         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2306                 unsigned int page_nr = swap_header->info.badpages[i];
2307                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2308                         return -EINVAL;
2309                 if (page_nr < maxpages) {
2310                         swap_map[page_nr] = SWAP_MAP_BAD;
2311                         nr_good_pages--;
2312                         /*
2313                          * Haven't marked the cluster free yet, no list
2314                          * operation involved
2315                          */
2316                         inc_cluster_info_page(p, cluster_info, page_nr);
2317                 }
2318         }
2319
2320         /* Haven't marked the cluster free yet, no list operation involved */
2321         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2322                 inc_cluster_info_page(p, cluster_info, i);
2323
2324         if (nr_good_pages) {
2325                 swap_map[0] = SWAP_MAP_BAD;
2326                 /*
2327                  * Not mark the cluster free yet, no list
2328                  * operation involved
2329                  */
2330                 inc_cluster_info_page(p, cluster_info, 0);
2331                 p->max = maxpages;
2332                 p->pages = nr_good_pages;
2333                 nr_extents = setup_swap_extents(p, span);
2334                 if (nr_extents < 0)
2335                         return nr_extents;
2336                 nr_good_pages = p->pages;
2337         }
2338         if (!nr_good_pages) {
2339                 pr_warn("Empty swap-file\n");
2340                 return -EINVAL;
2341         }
2342
2343         if (!cluster_info)
2344                 return nr_extents;
2345
2346         for (i = 0; i < nr_clusters; i++) {
2347                 if (!cluster_count(&cluster_info[idx])) {
2348                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2349                         if (cluster_is_null(&p->free_cluster_head)) {
2350                                 cluster_set_next_flag(&p->free_cluster_head,
2351                                                                 idx, 0);
2352                                 cluster_set_next_flag(&p->free_cluster_tail,
2353                                                                 idx, 0);
2354                         } else {
2355                                 unsigned int tail;
2356
2357                                 tail = cluster_next(&p->free_cluster_tail);
2358                                 cluster_set_next(&cluster_info[tail], idx);
2359                                 cluster_set_next_flag(&p->free_cluster_tail,
2360                                                                 idx, 0);
2361                         }
2362                 }
2363                 idx++;
2364                 if (idx == nr_clusters)
2365                         idx = 0;
2366         }
2367         return nr_extents;
2368 }
2369
2370 /*
2371  * Helper to sys_swapon determining if a given swap
2372  * backing device queue supports DISCARD operations.
2373  */
2374 static bool swap_discardable(struct swap_info_struct *si)
2375 {
2376         struct request_queue *q = bdev_get_queue(si->bdev);
2377
2378         if (!q || !blk_queue_discard(q))
2379                 return false;
2380
2381         return true;
2382 }
2383
2384 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2385 {
2386         struct swap_info_struct *p;
2387         struct filename *name;
2388         struct file *swap_file = NULL;
2389         struct address_space *mapping;
2390         int prio;
2391         int error;
2392         union swap_header *swap_header;
2393         int nr_extents;
2394         sector_t span;
2395         unsigned long maxpages;
2396         unsigned char *swap_map = NULL;
2397         struct swap_cluster_info *cluster_info = NULL;
2398         unsigned long *frontswap_map = NULL;
2399         struct page *page = NULL;
2400         struct inode *inode = NULL;
2401
2402         if (swap_flags & ~SWAP_FLAGS_VALID)
2403                 return -EINVAL;
2404
2405         if (!capable(CAP_SYS_ADMIN))
2406                 return -EPERM;
2407
2408         p = alloc_swap_info();
2409         if (IS_ERR(p))
2410                 return PTR_ERR(p);
2411
2412         INIT_WORK(&p->discard_work, swap_discard_work);
2413
2414         name = getname(specialfile);
2415         if (IS_ERR(name)) {
2416                 error = PTR_ERR(name);
2417                 name = NULL;
2418                 goto bad_swap;
2419         }
2420         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2421         if (IS_ERR(swap_file)) {
2422                 error = PTR_ERR(swap_file);
2423                 swap_file = NULL;
2424                 goto bad_swap;
2425         }
2426
2427         p->swap_file = swap_file;
2428         mapping = swap_file->f_mapping;
2429         inode = mapping->host;
2430
2431         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2432         error = claim_swapfile(p, inode);
2433         if (unlikely(error))
2434                 goto bad_swap;
2435
2436         /*
2437          * Read the swap header.
2438          */
2439         if (!mapping->a_ops->readpage) {
2440                 error = -EINVAL;
2441                 goto bad_swap;
2442         }
2443         page = read_mapping_page(mapping, 0, swap_file);
2444         if (IS_ERR(page)) {
2445                 error = PTR_ERR(page);
2446                 goto bad_swap;
2447         }
2448         swap_header = kmap(page);
2449
2450         maxpages = read_swap_header(p, swap_header, inode);
2451         if (unlikely(!maxpages)) {
2452                 error = -EINVAL;
2453                 goto bad_swap;
2454         }
2455
2456         /* OK, set up the swap map and apply the bad block list */
2457         swap_map = vzalloc(maxpages);
2458         if (!swap_map) {
2459                 error = -ENOMEM;
2460                 goto bad_swap;
2461         }
2462         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2463                 int cpu;
2464
2465                 p->flags |= SWP_SOLIDSTATE;
2466                 /*
2467                  * select a random position to start with to help wear leveling
2468                  * SSD
2469                  */
2470                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2471
2472                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2473                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2474                 if (!cluster_info) {
2475                         error = -ENOMEM;
2476                         goto bad_swap;
2477                 }
2478                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2479                 if (!p->percpu_cluster) {
2480                         error = -ENOMEM;
2481                         goto bad_swap;
2482                 }
2483                 for_each_possible_cpu(cpu) {
2484                         struct percpu_cluster *cluster;
2485                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2486                         cluster_set_null(&cluster->index);
2487                 }
2488         }
2489
2490         error = swap_cgroup_swapon(p->type, maxpages);
2491         if (error)
2492                 goto bad_swap;
2493
2494         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2495                 cluster_info, maxpages, &span);
2496         if (unlikely(nr_extents < 0)) {
2497                 error = nr_extents;
2498                 goto bad_swap;
2499         }
2500         /* frontswap enabled? set up bit-per-page map for frontswap */
2501         if (frontswap_enabled)
2502                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2503
2504         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2505                 /*
2506                  * When discard is enabled for swap with no particular
2507                  * policy flagged, we set all swap discard flags here in
2508                  * order to sustain backward compatibility with older
2509                  * swapon(8) releases.
2510                  */
2511                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2512                              SWP_PAGE_DISCARD);
2513
2514                 /*
2515                  * By flagging sys_swapon, a sysadmin can tell us to
2516                  * either do single-time area discards only, or to just
2517                  * perform discards for released swap page-clusters.
2518                  * Now it's time to adjust the p->flags accordingly.
2519                  */
2520                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2521                         p->flags &= ~SWP_PAGE_DISCARD;
2522                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2523                         p->flags &= ~SWP_AREA_DISCARD;
2524
2525                 /* issue a swapon-time discard if it's still required */
2526                 if (p->flags & SWP_AREA_DISCARD) {
2527                         int err = discard_swap(p);
2528                         if (unlikely(err))
2529                                 pr_err("swapon: discard_swap(%p): %d\n",
2530                                         p, err);
2531                 }
2532         }
2533
2534         mutex_lock(&swapon_mutex);
2535         prio = -1;
2536         if (swap_flags & SWAP_FLAG_PREFER)
2537                 prio =
2538                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2539         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2540
2541         pr_info("Adding %uk swap on %s.  "
2542                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2543                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2544                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2545                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2546                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2547                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2548                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2549                 (frontswap_map) ? "FS" : "");
2550
2551         mutex_unlock(&swapon_mutex);
2552         atomic_inc(&proc_poll_event);
2553         wake_up_interruptible(&proc_poll_wait);
2554
2555         if (S_ISREG(inode->i_mode))
2556                 inode->i_flags |= S_SWAPFILE;
2557         error = 0;
2558         goto out;
2559 bad_swap:
2560         free_percpu(p->percpu_cluster);
2561         p->percpu_cluster = NULL;
2562         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2563                 set_blocksize(p->bdev, p->old_block_size);
2564                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2565         }
2566         destroy_swap_extents(p);
2567         swap_cgroup_swapoff(p->type);
2568         spin_lock(&swap_lock);
2569         p->swap_file = NULL;
2570         p->flags = 0;
2571         spin_unlock(&swap_lock);
2572         vfree(swap_map);
2573         vfree(cluster_info);
2574         if (swap_file) {
2575                 if (inode && S_ISREG(inode->i_mode)) {
2576                         mutex_unlock(&inode->i_mutex);
2577                         inode = NULL;
2578                 }
2579                 filp_close(swap_file, NULL);
2580         }
2581 out:
2582         if (page && !IS_ERR(page)) {
2583                 kunmap(page);
2584                 page_cache_release(page);
2585         }
2586         if (name)
2587                 putname(name);
2588         if (inode && S_ISREG(inode->i_mode))
2589                 mutex_unlock(&inode->i_mutex);
2590         return error;
2591 }
2592
2593 void si_swapinfo(struct sysinfo *val)
2594 {
2595         unsigned int type;
2596         unsigned long nr_to_be_unused = 0;
2597
2598         spin_lock(&swap_lock);
2599         for (type = 0; type < nr_swapfiles; type++) {
2600                 struct swap_info_struct *si = swap_info[type];
2601
2602                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2603                         nr_to_be_unused += si->inuse_pages;
2604         }
2605         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2606         val->totalswap = total_swap_pages + nr_to_be_unused;
2607         spin_unlock(&swap_lock);
2608 }
2609
2610 /*
2611  * Verify that a swap entry is valid and increment its swap map count.
2612  *
2613  * Returns error code in following case.
2614  * - success -> 0
2615  * - swp_entry is invalid -> EINVAL
2616  * - swp_entry is migration entry -> EINVAL
2617  * - swap-cache reference is requested but there is already one. -> EEXIST
2618  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2619  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2620  */
2621 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2622 {
2623         struct swap_info_struct *p;
2624         unsigned long offset, type;
2625         unsigned char count;
2626         unsigned char has_cache;
2627         int err = -EINVAL;
2628
2629         if (non_swap_entry(entry))
2630                 goto out;
2631
2632         type = swp_type(entry);
2633         if (type >= nr_swapfiles)
2634                 goto bad_file;
2635         p = swap_info[type];
2636         offset = swp_offset(entry);
2637
2638         spin_lock(&p->lock);
2639         if (unlikely(offset >= p->max))
2640                 goto unlock_out;
2641
2642         count = p->swap_map[offset];
2643
2644         /*
2645          * swapin_readahead() doesn't check if a swap entry is valid, so the
2646          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2647          */
2648         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2649                 err = -ENOENT;
2650                 goto unlock_out;
2651         }
2652
2653         has_cache = count & SWAP_HAS_CACHE;
2654         count &= ~SWAP_HAS_CACHE;
2655         err = 0;
2656
2657         if (usage == SWAP_HAS_CACHE) {
2658
2659                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2660                 if (!has_cache && count)
2661                         has_cache = SWAP_HAS_CACHE;
2662                 else if (has_cache)             /* someone else added cache */
2663                         err = -EEXIST;
2664                 else                            /* no users remaining */
2665                         err = -ENOENT;
2666
2667         } else if (count || has_cache) {
2668
2669                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2670                         count += usage;
2671                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2672                         err = -EINVAL;
2673                 else if (swap_count_continued(p, offset, count))
2674                         count = COUNT_CONTINUED;
2675                 else
2676                         err = -ENOMEM;
2677         } else
2678                 err = -ENOENT;                  /* unused swap entry */
2679
2680         p->swap_map[offset] = count | has_cache;
2681
2682 unlock_out:
2683         spin_unlock(&p->lock);
2684 out:
2685         return err;
2686
2687 bad_file:
2688         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2689         goto out;
2690 }
2691
2692 /*
2693  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2694  * (in which case its reference count is never incremented).
2695  */
2696 void swap_shmem_alloc(swp_entry_t entry)
2697 {
2698         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2699 }
2700
2701 /*
2702  * Increase reference count of swap entry by 1.
2703  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2704  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2705  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2706  * might occur if a page table entry has got corrupted.
2707  */
2708 int swap_duplicate(swp_entry_t entry)
2709 {
2710         int err = 0;
2711
2712         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2713                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2714         return err;
2715 }
2716
2717 /*
2718  * @entry: swap entry for which we allocate swap cache.
2719  *
2720  * Called when allocating swap cache for existing swap entry,
2721  * This can return error codes. Returns 0 at success.
2722  * -EBUSY means there is a swap cache.
2723  * Note: return code is different from swap_duplicate().
2724  */
2725 int swapcache_prepare(swp_entry_t entry)
2726 {
2727         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2728 }
2729
2730 struct swap_info_struct *page_swap_info(struct page *page)
2731 {
2732         swp_entry_t swap = { .val = page_private(page) };
2733         BUG_ON(!PageSwapCache(page));
2734         return swap_info[swp_type(swap)];
2735 }
2736
2737 /*
2738  * out-of-line __page_file_ methods to avoid include hell.
2739  */
2740 struct address_space *__page_file_mapping(struct page *page)
2741 {
2742         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2743         return page_swap_info(page)->swap_file->f_mapping;
2744 }
2745 EXPORT_SYMBOL_GPL(__page_file_mapping);
2746
2747 pgoff_t __page_file_index(struct page *page)
2748 {
2749         swp_entry_t swap = { .val = page_private(page) };
2750         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2751         return swp_offset(swap);
2752 }
2753 EXPORT_SYMBOL_GPL(__page_file_index);
2754
2755 /*
2756  * add_swap_count_continuation - called when a swap count is duplicated
2757  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2758  * page of the original vmalloc'ed swap_map, to hold the continuation count
2759  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2760  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2761  *
2762  * These continuation pages are seldom referenced: the common paths all work
2763  * on the original swap_map, only referring to a continuation page when the
2764  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2765  *
2766  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2767  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2768  * can be called after dropping locks.
2769  */
2770 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2771 {
2772         struct swap_info_struct *si;
2773         struct page *head;
2774         struct page *page;
2775         struct page *list_page;
2776         pgoff_t offset;
2777         unsigned char count;
2778
2779         /*
2780          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2781          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2782          */
2783         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2784
2785         si = swap_info_get(entry);
2786         if (!si) {
2787                 /*
2788                  * An acceptable race has occurred since the failing
2789                  * __swap_duplicate(): the swap entry has been freed,
2790                  * perhaps even the whole swap_map cleared for swapoff.
2791                  */
2792                 goto outer;
2793         }
2794
2795         offset = swp_offset(entry);
2796         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2797
2798         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2799                 /*
2800                  * The higher the swap count, the more likely it is that tasks
2801                  * will race to add swap count continuation: we need to avoid
2802                  * over-provisioning.
2803                  */
2804                 goto out;
2805         }
2806
2807         if (!page) {
2808                 spin_unlock(&si->lock);
2809                 return -ENOMEM;
2810         }
2811
2812         /*
2813          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2814          * no architecture is using highmem pages for kernel page tables: so it
2815          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2816          */
2817         head = vmalloc_to_page(si->swap_map + offset);
2818         offset &= ~PAGE_MASK;
2819
2820         /*
2821          * Page allocation does not initialize the page's lru field,
2822          * but it does always reset its private field.
2823          */
2824         if (!page_private(head)) {
2825                 BUG_ON(count & COUNT_CONTINUED);
2826                 INIT_LIST_HEAD(&head->lru);
2827                 set_page_private(head, SWP_CONTINUED);
2828                 si->flags |= SWP_CONTINUED;
2829         }
2830
2831         list_for_each_entry(list_page, &head->lru, lru) {
2832                 unsigned char *map;
2833
2834                 /*
2835                  * If the previous map said no continuation, but we've found
2836                  * a continuation page, free our allocation and use this one.
2837                  */
2838                 if (!(count & COUNT_CONTINUED))
2839                         goto out;
2840
2841                 map = kmap_atomic(list_page) + offset;
2842                 count = *map;
2843                 kunmap_atomic(map);
2844
2845                 /*
2846                  * If this continuation count now has some space in it,
2847                  * free our allocation and use this one.
2848                  */
2849                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2850                         goto out;
2851         }
2852
2853         list_add_tail(&page->lru, &head->lru);
2854         page = NULL;                    /* now it's attached, don't free it */
2855 out:
2856         spin_unlock(&si->lock);
2857 outer:
2858         if (page)
2859                 __free_page(page);
2860         return 0;
2861 }
2862
2863 /*
2864  * swap_count_continued - when the original swap_map count is incremented
2865  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2866  * into, carry if so, or else fail until a new continuation page is allocated;
2867  * when the original swap_map count is decremented from 0 with continuation,
2868  * borrow from the continuation and report whether it still holds more.
2869  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2870  */
2871 static bool swap_count_continued(struct swap_info_struct *si,
2872                                  pgoff_t offset, unsigned char count)
2873 {
2874         struct page *head;
2875         struct page *page;
2876         unsigned char *map;
2877
2878         head = vmalloc_to_page(si->swap_map + offset);
2879         if (page_private(head) != SWP_CONTINUED) {
2880                 BUG_ON(count & COUNT_CONTINUED);
2881                 return false;           /* need to add count continuation */
2882         }
2883
2884         offset &= ~PAGE_MASK;
2885         page = list_entry(head->lru.next, struct page, lru);
2886         map = kmap_atomic(page) + offset;
2887
2888         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2889                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2890
2891         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2892                 /*
2893                  * Think of how you add 1 to 999
2894                  */
2895                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2896                         kunmap_atomic(map);
2897                         page = list_entry(page->lru.next, struct page, lru);
2898                         BUG_ON(page == head);
2899                         map = kmap_atomic(page) + offset;
2900                 }
2901                 if (*map == SWAP_CONT_MAX) {
2902                         kunmap_atomic(map);
2903                         page = list_entry(page->lru.next, struct page, lru);
2904                         if (page == head)
2905                                 return false;   /* add count continuation */
2906                         map = kmap_atomic(page) + offset;
2907 init_map:               *map = 0;               /* we didn't zero the page */
2908                 }
2909                 *map += 1;
2910                 kunmap_atomic(map);
2911                 page = list_entry(page->lru.prev, struct page, lru);
2912                 while (page != head) {
2913                         map = kmap_atomic(page) + offset;
2914                         *map = COUNT_CONTINUED;
2915                         kunmap_atomic(map);
2916                         page = list_entry(page->lru.prev, struct page, lru);
2917                 }
2918                 return true;                    /* incremented */
2919
2920         } else {                                /* decrementing */
2921                 /*
2922                  * Think of how you subtract 1 from 1000
2923                  */
2924                 BUG_ON(count != COUNT_CONTINUED);
2925                 while (*map == COUNT_CONTINUED) {
2926                         kunmap_atomic(map);
2927                         page = list_entry(page->lru.next, struct page, lru);
2928                         BUG_ON(page == head);
2929                         map = kmap_atomic(page) + offset;
2930                 }
2931                 BUG_ON(*map == 0);
2932                 *map -= 1;
2933                 if (*map == 0)
2934                         count = 0;
2935                 kunmap_atomic(map);
2936                 page = list_entry(page->lru.prev, struct page, lru);
2937                 while (page != head) {
2938                         map = kmap_atomic(page) + offset;
2939                         *map = SWAP_CONT_MAX | count;
2940                         count = COUNT_CONTINUED;
2941                         kunmap_atomic(map);
2942                         page = list_entry(page->lru.prev, struct page, lru);
2943                 }
2944                 return count == COUNT_CONTINUED;
2945         }
2946 }
2947
2948 /*
2949  * free_swap_count_continuations - swapoff free all the continuation pages
2950  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2951  */
2952 static void free_swap_count_continuations(struct swap_info_struct *si)
2953 {
2954         pgoff_t offset;
2955
2956         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2957                 struct page *head;
2958                 head = vmalloc_to_page(si->swap_map + offset);
2959                 if (page_private(head)) {
2960                         struct page *page, *next;
2961
2962                         list_for_each_entry_safe(page, next, &head->lru, lru) {
2963                                 list_del(&page->lru);
2964                                 __free_page(page);
2965                         }
2966                 }
2967         }
2968 }