Merge branch '4.3-fixes' into mips-for-linux-next
[linux-drm-fsl-dcu.git] / mm / page_io.c
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, 
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28                                 struct page *page, bio_end_io_t end_io)
29 {
30         struct bio *bio;
31
32         bio = bio_alloc(gfp_flags, 1);
33         if (bio) {
34                 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36                 bio->bi_end_io = end_io;
37
38                 bio_add_page(bio, page, PAGE_SIZE, 0);
39                 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40         }
41         return bio;
42 }
43
44 void end_swap_bio_write(struct bio *bio)
45 {
46         struct page *page = bio->bi_io_vec[0].bv_page;
47
48         if (bio->bi_error) {
49                 SetPageError(page);
50                 /*
51                  * We failed to write the page out to swap-space.
52                  * Re-dirty the page in order to avoid it being reclaimed.
53                  * Also print a dire warning that things will go BAD (tm)
54                  * very quickly.
55                  *
56                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57                  */
58                 set_page_dirty(page);
59                 printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n",
60                                 imajor(bio->bi_bdev->bd_inode),
61                                 iminor(bio->bi_bdev->bd_inode),
62                                 (unsigned long long)bio->bi_iter.bi_sector);
63                 ClearPageReclaim(page);
64         }
65         end_page_writeback(page);
66         bio_put(bio);
67 }
68
69 static void end_swap_bio_read(struct bio *bio)
70 {
71         struct page *page = bio->bi_io_vec[0].bv_page;
72
73         if (bio->bi_error) {
74                 SetPageError(page);
75                 ClearPageUptodate(page);
76                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
77                                 imajor(bio->bi_bdev->bd_inode),
78                                 iminor(bio->bi_bdev->bd_inode),
79                                 (unsigned long long)bio->bi_iter.bi_sector);
80                 goto out;
81         }
82
83         SetPageUptodate(page);
84
85         /*
86          * There is no guarantee that the page is in swap cache - the software
87          * suspend code (at least) uses end_swap_bio_read() against a non-
88          * swapcache page.  So we must check PG_swapcache before proceeding with
89          * this optimization.
90          */
91         if (likely(PageSwapCache(page))) {
92                 struct swap_info_struct *sis;
93
94                 sis = page_swap_info(page);
95                 if (sis->flags & SWP_BLKDEV) {
96                         /*
97                          * The swap subsystem performs lazy swap slot freeing,
98                          * expecting that the page will be swapped out again.
99                          * So we can avoid an unnecessary write if the page
100                          * isn't redirtied.
101                          * This is good for real swap storage because we can
102                          * reduce unnecessary I/O and enhance wear-leveling
103                          * if an SSD is used as the as swap device.
104                          * But if in-memory swap device (eg zram) is used,
105                          * this causes a duplicated copy between uncompressed
106                          * data in VM-owned memory and compressed data in
107                          * zram-owned memory.  So let's free zram-owned memory
108                          * and make the VM-owned decompressed page *dirty*,
109                          * so the page should be swapped out somewhere again if
110                          * we again wish to reclaim it.
111                          */
112                         struct gendisk *disk = sis->bdev->bd_disk;
113                         if (disk->fops->swap_slot_free_notify) {
114                                 swp_entry_t entry;
115                                 unsigned long offset;
116
117                                 entry.val = page_private(page);
118                                 offset = swp_offset(entry);
119
120                                 SetPageDirty(page);
121                                 disk->fops->swap_slot_free_notify(sis->bdev,
122                                                 offset);
123                         }
124                 }
125         }
126
127 out:
128         unlock_page(page);
129         bio_put(bio);
130 }
131
132 int generic_swapfile_activate(struct swap_info_struct *sis,
133                                 struct file *swap_file,
134                                 sector_t *span)
135 {
136         struct address_space *mapping = swap_file->f_mapping;
137         struct inode *inode = mapping->host;
138         unsigned blocks_per_page;
139         unsigned long page_no;
140         unsigned blkbits;
141         sector_t probe_block;
142         sector_t last_block;
143         sector_t lowest_block = -1;
144         sector_t highest_block = 0;
145         int nr_extents = 0;
146         int ret;
147
148         blkbits = inode->i_blkbits;
149         blocks_per_page = PAGE_SIZE >> blkbits;
150
151         /*
152          * Map all the blocks into the extent list.  This code doesn't try
153          * to be very smart.
154          */
155         probe_block = 0;
156         page_no = 0;
157         last_block = i_size_read(inode) >> blkbits;
158         while ((probe_block + blocks_per_page) <= last_block &&
159                         page_no < sis->max) {
160                 unsigned block_in_page;
161                 sector_t first_block;
162
163                 first_block = bmap(inode, probe_block);
164                 if (first_block == 0)
165                         goto bad_bmap;
166
167                 /*
168                  * It must be PAGE_SIZE aligned on-disk
169                  */
170                 if (first_block & (blocks_per_page - 1)) {
171                         probe_block++;
172                         goto reprobe;
173                 }
174
175                 for (block_in_page = 1; block_in_page < blocks_per_page;
176                                         block_in_page++) {
177                         sector_t block;
178
179                         block = bmap(inode, probe_block + block_in_page);
180                         if (block == 0)
181                                 goto bad_bmap;
182                         if (block != first_block + block_in_page) {
183                                 /* Discontiguity */
184                                 probe_block++;
185                                 goto reprobe;
186                         }
187                 }
188
189                 first_block >>= (PAGE_SHIFT - blkbits);
190                 if (page_no) {  /* exclude the header page */
191                         if (first_block < lowest_block)
192                                 lowest_block = first_block;
193                         if (first_block > highest_block)
194                                 highest_block = first_block;
195                 }
196
197                 /*
198                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
199                  */
200                 ret = add_swap_extent(sis, page_no, 1, first_block);
201                 if (ret < 0)
202                         goto out;
203                 nr_extents += ret;
204                 page_no++;
205                 probe_block += blocks_per_page;
206 reprobe:
207                 continue;
208         }
209         ret = nr_extents;
210         *span = 1 + highest_block - lowest_block;
211         if (page_no == 0)
212                 page_no = 1;    /* force Empty message */
213         sis->max = page_no;
214         sis->pages = page_no - 1;
215         sis->highest_bit = page_no - 1;
216 out:
217         return ret;
218 bad_bmap:
219         printk(KERN_ERR "swapon: swapfile has holes\n");
220         ret = -EINVAL;
221         goto out;
222 }
223
224 /*
225  * We may have stale swap cache pages in memory: notice
226  * them here and get rid of the unnecessary final write.
227  */
228 int swap_writepage(struct page *page, struct writeback_control *wbc)
229 {
230         int ret = 0;
231
232         if (try_to_free_swap(page)) {
233                 unlock_page(page);
234                 goto out;
235         }
236         if (frontswap_store(page) == 0) {
237                 set_page_writeback(page);
238                 unlock_page(page);
239                 end_page_writeback(page);
240                 goto out;
241         }
242         ret = __swap_writepage(page, wbc, end_swap_bio_write);
243 out:
244         return ret;
245 }
246
247 static sector_t swap_page_sector(struct page *page)
248 {
249         return (sector_t)__page_file_index(page) << (PAGE_CACHE_SHIFT - 9);
250 }
251
252 int __swap_writepage(struct page *page, struct writeback_control *wbc,
253                 bio_end_io_t end_write_func)
254 {
255         struct bio *bio;
256         int ret, rw = WRITE;
257         struct swap_info_struct *sis = page_swap_info(page);
258
259         if (sis->flags & SWP_FILE) {
260                 struct kiocb kiocb;
261                 struct file *swap_file = sis->swap_file;
262                 struct address_space *mapping = swap_file->f_mapping;
263                 struct bio_vec bv = {
264                         .bv_page = page,
265                         .bv_len  = PAGE_SIZE,
266                         .bv_offset = 0
267                 };
268                 struct iov_iter from;
269
270                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
271                 init_sync_kiocb(&kiocb, swap_file);
272                 kiocb.ki_pos = page_file_offset(page);
273
274                 set_page_writeback(page);
275                 unlock_page(page);
276                 ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
277                 if (ret == PAGE_SIZE) {
278                         count_vm_event(PSWPOUT);
279                         ret = 0;
280                 } else {
281                         /*
282                          * In the case of swap-over-nfs, this can be a
283                          * temporary failure if the system has limited
284                          * memory for allocating transmit buffers.
285                          * Mark the page dirty and avoid
286                          * rotate_reclaimable_page but rate-limit the
287                          * messages but do not flag PageError like
288                          * the normal direct-to-bio case as it could
289                          * be temporary.
290                          */
291                         set_page_dirty(page);
292                         ClearPageReclaim(page);
293                         pr_err_ratelimited("Write error on dio swapfile (%Lu)\n",
294                                 page_file_offset(page));
295                 }
296                 end_page_writeback(page);
297                 return ret;
298         }
299
300         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
301         if (!ret) {
302                 count_vm_event(PSWPOUT);
303                 return 0;
304         }
305
306         ret = 0;
307         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
308         if (bio == NULL) {
309                 set_page_dirty(page);
310                 unlock_page(page);
311                 ret = -ENOMEM;
312                 goto out;
313         }
314         if (wbc->sync_mode == WB_SYNC_ALL)
315                 rw |= REQ_SYNC;
316         count_vm_event(PSWPOUT);
317         set_page_writeback(page);
318         unlock_page(page);
319         submit_bio(rw, bio);
320 out:
321         return ret;
322 }
323
324 int swap_readpage(struct page *page)
325 {
326         struct bio *bio;
327         int ret = 0;
328         struct swap_info_struct *sis = page_swap_info(page);
329
330         VM_BUG_ON_PAGE(!PageLocked(page), page);
331         VM_BUG_ON_PAGE(PageUptodate(page), page);
332         if (frontswap_load(page) == 0) {
333                 SetPageUptodate(page);
334                 unlock_page(page);
335                 goto out;
336         }
337
338         if (sis->flags & SWP_FILE) {
339                 struct file *swap_file = sis->swap_file;
340                 struct address_space *mapping = swap_file->f_mapping;
341
342                 ret = mapping->a_ops->readpage(swap_file, page);
343                 if (!ret)
344                         count_vm_event(PSWPIN);
345                 return ret;
346         }
347
348         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
349         if (!ret) {
350                 count_vm_event(PSWPIN);
351                 return 0;
352         }
353
354         ret = 0;
355         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
356         if (bio == NULL) {
357                 unlock_page(page);
358                 ret = -ENOMEM;
359                 goto out;
360         }
361         count_vm_event(PSWPIN);
362         submit_bio(READ, bio);
363 out:
364         return ret;
365 }
366
367 int swap_set_page_dirty(struct page *page)
368 {
369         struct swap_info_struct *sis = page_swap_info(page);
370
371         if (sis->flags & SWP_FILE) {
372                 struct address_space *mapping = sis->swap_file->f_mapping;
373                 return mapping->a_ops->set_page_dirty(page);
374         } else {
375                 return __set_page_dirty_no_writeback(page);
376         }
377 }