Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 unsigned long highest_memmap_pfn;
66 struct percpu_counter vm_committed_as;
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly;
70 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
71 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
74 int heap_stack_gap = 0;
75
76 atomic_long_t mmap_pages_allocated;
77
78 /*
79  * The global memory commitment made in the system can be a metric
80  * that can be used to drive ballooning decisions when Linux is hosted
81  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82  * balancing memory across competing virtual machines that are hosted.
83  * Several metrics drive this policy engine including the guest reported
84  * memory commitment.
85  */
86 unsigned long vm_memory_committed(void)
87 {
88         return percpu_counter_read_positive(&vm_committed_as);
89 }
90
91 EXPORT_SYMBOL_GPL(vm_memory_committed);
92
93 EXPORT_SYMBOL(mem_map);
94
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache *vm_region_jar;
97 struct rb_root nommu_region_tree = RB_ROOT;
98 DECLARE_RWSEM(nommu_region_sem);
99
100 const struct vm_operations_struct generic_file_vm_ops = {
101 };
102
103 /*
104  * Return the total memory allocated for this pointer, not
105  * just what the caller asked for.
106  *
107  * Doesn't have to be accurate, i.e. may have races.
108  */
109 unsigned int kobjsize(const void *objp)
110 {
111         struct page *page;
112
113         /*
114          * If the object we have should not have ksize performed on it,
115          * return size of 0
116          */
117         if (!objp || !virt_addr_valid(objp))
118                 return 0;
119
120         page = virt_to_head_page(objp);
121
122         /*
123          * If the allocator sets PageSlab, we know the pointer came from
124          * kmalloc().
125          */
126         if (PageSlab(page))
127                 return ksize(objp);
128
129         /*
130          * If it's not a compound page, see if we have a matching VMA
131          * region. This test is intentionally done in reverse order,
132          * so if there's no VMA, we still fall through and hand back
133          * PAGE_SIZE for 0-order pages.
134          */
135         if (!PageCompound(page)) {
136                 struct vm_area_struct *vma;
137
138                 vma = find_vma(current->mm, (unsigned long)objp);
139                 if (vma)
140                         return vma->vm_end - vma->vm_start;
141         }
142
143         /*
144          * The ksize() function is only guaranteed to work for pointers
145          * returned by kmalloc(). So handle arbitrary pointers here.
146          */
147         return PAGE_SIZE << compound_order(page);
148 }
149
150 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
151                       unsigned long start, unsigned long nr_pages,
152                       unsigned int foll_flags, struct page **pages,
153                       struct vm_area_struct **vmas, int *nonblocking)
154 {
155         struct vm_area_struct *vma;
156         unsigned long vm_flags;
157         int i;
158
159         /* calculate required read or write permissions.
160          * If FOLL_FORCE is set, we only require the "MAY" flags.
161          */
162         vm_flags  = (foll_flags & FOLL_WRITE) ?
163                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
164         vm_flags &= (foll_flags & FOLL_FORCE) ?
165                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
166
167         for (i = 0; i < nr_pages; i++) {
168                 vma = find_vma(mm, start);
169                 if (!vma)
170                         goto finish_or_fault;
171
172                 /* protect what we can, including chardevs */
173                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
174                     !(vm_flags & vma->vm_flags))
175                         goto finish_or_fault;
176
177                 if (pages) {
178                         pages[i] = virt_to_page(start);
179                         if (pages[i])
180                                 page_cache_get(pages[i]);
181                 }
182                 if (vmas)
183                         vmas[i] = vma;
184                 start = (start + PAGE_SIZE) & PAGE_MASK;
185         }
186
187         return i;
188
189 finish_or_fault:
190         return i ? : -EFAULT;
191 }
192
193 /*
194  * get a list of pages in an address range belonging to the specified process
195  * and indicate the VMA that covers each page
196  * - this is potentially dodgy as we may end incrementing the page count of a
197  *   slab page or a secondary page from a compound page
198  * - don't permit access to VMAs that don't support it, such as I/O mappings
199  */
200 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
201                     unsigned long start, unsigned long nr_pages,
202                     int write, int force, struct page **pages,
203                     struct vm_area_struct **vmas)
204 {
205         int flags = 0;
206
207         if (write)
208                 flags |= FOLL_WRITE;
209         if (force)
210                 flags |= FOLL_FORCE;
211
212         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
213                                 NULL);
214 }
215 EXPORT_SYMBOL(get_user_pages);
216
217 /**
218  * follow_pfn - look up PFN at a user virtual address
219  * @vma: memory mapping
220  * @address: user virtual address
221  * @pfn: location to store found PFN
222  *
223  * Only IO mappings and raw PFN mappings are allowed.
224  *
225  * Returns zero and the pfn at @pfn on success, -ve otherwise.
226  */
227 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
228         unsigned long *pfn)
229 {
230         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
231                 return -EINVAL;
232
233         *pfn = address >> PAGE_SHIFT;
234         return 0;
235 }
236 EXPORT_SYMBOL(follow_pfn);
237
238 LIST_HEAD(vmap_area_list);
239
240 void vfree(const void *addr)
241 {
242         kfree(addr);
243 }
244 EXPORT_SYMBOL(vfree);
245
246 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
247 {
248         /*
249          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
250          * returns only a logical address.
251          */
252         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
253 }
254 EXPORT_SYMBOL(__vmalloc);
255
256 void *vmalloc_user(unsigned long size)
257 {
258         void *ret;
259
260         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
261                         PAGE_KERNEL);
262         if (ret) {
263                 struct vm_area_struct *vma;
264
265                 down_write(&current->mm->mmap_sem);
266                 vma = find_vma(current->mm, (unsigned long)ret);
267                 if (vma)
268                         vma->vm_flags |= VM_USERMAP;
269                 up_write(&current->mm->mmap_sem);
270         }
271
272         return ret;
273 }
274 EXPORT_SYMBOL(vmalloc_user);
275
276 struct page *vmalloc_to_page(const void *addr)
277 {
278         return virt_to_page(addr);
279 }
280 EXPORT_SYMBOL(vmalloc_to_page);
281
282 unsigned long vmalloc_to_pfn(const void *addr)
283 {
284         return page_to_pfn(virt_to_page(addr));
285 }
286 EXPORT_SYMBOL(vmalloc_to_pfn);
287
288 long vread(char *buf, char *addr, unsigned long count)
289 {
290         /* Don't allow overflow */
291         if ((unsigned long) buf + count < count)
292                 count = -(unsigned long) buf;
293
294         memcpy(buf, addr, count);
295         return count;
296 }
297
298 long vwrite(char *buf, char *addr, unsigned long count)
299 {
300         /* Don't allow overflow */
301         if ((unsigned long) addr + count < count)
302                 count = -(unsigned long) addr;
303
304         memcpy(addr, buf, count);
305         return count;
306 }
307
308 /*
309  *      vmalloc  -  allocate virtually continguos memory
310  *
311  *      @size:          allocation size
312  *
313  *      Allocate enough pages to cover @size from the page level
314  *      allocator and map them into continguos kernel virtual space.
315  *
316  *      For tight control over page level allocator and protection flags
317  *      use __vmalloc() instead.
318  */
319 void *vmalloc(unsigned long size)
320 {
321        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
322 }
323 EXPORT_SYMBOL(vmalloc);
324
325 /*
326  *      vzalloc - allocate virtually continguos memory with zero fill
327  *
328  *      @size:          allocation size
329  *
330  *      Allocate enough pages to cover @size from the page level
331  *      allocator and map them into continguos kernel virtual space.
332  *      The memory allocated is set to zero.
333  *
334  *      For tight control over page level allocator and protection flags
335  *      use __vmalloc() instead.
336  */
337 void *vzalloc(unsigned long size)
338 {
339         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
340                         PAGE_KERNEL);
341 }
342 EXPORT_SYMBOL(vzalloc);
343
344 /**
345  * vmalloc_node - allocate memory on a specific node
346  * @size:       allocation size
347  * @node:       numa node
348  *
349  * Allocate enough pages to cover @size from the page level
350  * allocator and map them into contiguous kernel virtual space.
351  *
352  * For tight control over page level allocator and protection flags
353  * use __vmalloc() instead.
354  */
355 void *vmalloc_node(unsigned long size, int node)
356 {
357         return vmalloc(size);
358 }
359 EXPORT_SYMBOL(vmalloc_node);
360
361 /**
362  * vzalloc_node - allocate memory on a specific node with zero fill
363  * @size:       allocation size
364  * @node:       numa node
365  *
366  * Allocate enough pages to cover @size from the page level
367  * allocator and map them into contiguous kernel virtual space.
368  * The memory allocated is set to zero.
369  *
370  * For tight control over page level allocator and protection flags
371  * use __vmalloc() instead.
372  */
373 void *vzalloc_node(unsigned long size, int node)
374 {
375         return vzalloc(size);
376 }
377 EXPORT_SYMBOL(vzalloc_node);
378
379 #ifndef PAGE_KERNEL_EXEC
380 # define PAGE_KERNEL_EXEC PAGE_KERNEL
381 #endif
382
383 /**
384  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
385  *      @size:          allocation size
386  *
387  *      Kernel-internal function to allocate enough pages to cover @size
388  *      the page level allocator and map them into contiguous and
389  *      executable kernel virtual space.
390  *
391  *      For tight control over page level allocator and protection flags
392  *      use __vmalloc() instead.
393  */
394
395 void *vmalloc_exec(unsigned long size)
396 {
397         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
398 }
399
400 /**
401  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
402  *      @size:          allocation size
403  *
404  *      Allocate enough 32bit PA addressable pages to cover @size from the
405  *      page level allocator and map them into continguos kernel virtual space.
406  */
407 void *vmalloc_32(unsigned long size)
408 {
409         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
410 }
411 EXPORT_SYMBOL(vmalloc_32);
412
413 /**
414  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
415  *      @size:          allocation size
416  *
417  * The resulting memory area is 32bit addressable and zeroed so it can be
418  * mapped to userspace without leaking data.
419  *
420  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
421  * remap_vmalloc_range() are permissible.
422  */
423 void *vmalloc_32_user(unsigned long size)
424 {
425         /*
426          * We'll have to sort out the ZONE_DMA bits for 64-bit,
427          * but for now this can simply use vmalloc_user() directly.
428          */
429         return vmalloc_user(size);
430 }
431 EXPORT_SYMBOL(vmalloc_32_user);
432
433 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
434 {
435         BUG();
436         return NULL;
437 }
438 EXPORT_SYMBOL(vmap);
439
440 void vunmap(const void *addr)
441 {
442         BUG();
443 }
444 EXPORT_SYMBOL(vunmap);
445
446 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
447 {
448         BUG();
449         return NULL;
450 }
451 EXPORT_SYMBOL(vm_map_ram);
452
453 void vm_unmap_ram(const void *mem, unsigned int count)
454 {
455         BUG();
456 }
457 EXPORT_SYMBOL(vm_unmap_ram);
458
459 void vm_unmap_aliases(void)
460 {
461 }
462 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
463
464 /*
465  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
466  * have one.
467  */
468 void __weak vmalloc_sync_all(void)
469 {
470 }
471
472 /**
473  *      alloc_vm_area - allocate a range of kernel address space
474  *      @size:          size of the area
475  *
476  *      Returns:        NULL on failure, vm_struct on success
477  *
478  *      This function reserves a range of kernel address space, and
479  *      allocates pagetables to map that range.  No actual mappings
480  *      are created.  If the kernel address space is not shared
481  *      between processes, it syncs the pagetable across all
482  *      processes.
483  */
484 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
485 {
486         BUG();
487         return NULL;
488 }
489 EXPORT_SYMBOL_GPL(alloc_vm_area);
490
491 void free_vm_area(struct vm_struct *area)
492 {
493         BUG();
494 }
495 EXPORT_SYMBOL_GPL(free_vm_area);
496
497 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
498                    struct page *page)
499 {
500         return -EINVAL;
501 }
502 EXPORT_SYMBOL(vm_insert_page);
503
504 /*
505  *  sys_brk() for the most part doesn't need the global kernel
506  *  lock, except when an application is doing something nasty
507  *  like trying to un-brk an area that has already been mapped
508  *  to a regular file.  in this case, the unmapping will need
509  *  to invoke file system routines that need the global lock.
510  */
511 SYSCALL_DEFINE1(brk, unsigned long, brk)
512 {
513         struct mm_struct *mm = current->mm;
514
515         if (brk < mm->start_brk || brk > mm->context.end_brk)
516                 return mm->brk;
517
518         if (mm->brk == brk)
519                 return mm->brk;
520
521         /*
522          * Always allow shrinking brk
523          */
524         if (brk <= mm->brk) {
525                 mm->brk = brk;
526                 return brk;
527         }
528
529         /*
530          * Ok, looks good - let it rip.
531          */
532         flush_icache_range(mm->brk, brk);
533         return mm->brk = brk;
534 }
535
536 /*
537  * initialise the VMA and region record slabs
538  */
539 void __init mmap_init(void)
540 {
541         int ret;
542
543         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
544         VM_BUG_ON(ret);
545         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
546 }
547
548 /*
549  * validate the region tree
550  * - the caller must hold the region lock
551  */
552 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
553 static noinline void validate_nommu_regions(void)
554 {
555         struct vm_region *region, *last;
556         struct rb_node *p, *lastp;
557
558         lastp = rb_first(&nommu_region_tree);
559         if (!lastp)
560                 return;
561
562         last = rb_entry(lastp, struct vm_region, vm_rb);
563         BUG_ON(unlikely(last->vm_end <= last->vm_start));
564         BUG_ON(unlikely(last->vm_top < last->vm_end));
565
566         while ((p = rb_next(lastp))) {
567                 region = rb_entry(p, struct vm_region, vm_rb);
568                 last = rb_entry(lastp, struct vm_region, vm_rb);
569
570                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
571                 BUG_ON(unlikely(region->vm_top < region->vm_end));
572                 BUG_ON(unlikely(region->vm_start < last->vm_top));
573
574                 lastp = p;
575         }
576 }
577 #else
578 static void validate_nommu_regions(void)
579 {
580 }
581 #endif
582
583 /*
584  * add a region into the global tree
585  */
586 static void add_nommu_region(struct vm_region *region)
587 {
588         struct vm_region *pregion;
589         struct rb_node **p, *parent;
590
591         validate_nommu_regions();
592
593         parent = NULL;
594         p = &nommu_region_tree.rb_node;
595         while (*p) {
596                 parent = *p;
597                 pregion = rb_entry(parent, struct vm_region, vm_rb);
598                 if (region->vm_start < pregion->vm_start)
599                         p = &(*p)->rb_left;
600                 else if (region->vm_start > pregion->vm_start)
601                         p = &(*p)->rb_right;
602                 else if (pregion == region)
603                         return;
604                 else
605                         BUG();
606         }
607
608         rb_link_node(&region->vm_rb, parent, p);
609         rb_insert_color(&region->vm_rb, &nommu_region_tree);
610
611         validate_nommu_regions();
612 }
613
614 /*
615  * delete a region from the global tree
616  */
617 static void delete_nommu_region(struct vm_region *region)
618 {
619         BUG_ON(!nommu_region_tree.rb_node);
620
621         validate_nommu_regions();
622         rb_erase(&region->vm_rb, &nommu_region_tree);
623         validate_nommu_regions();
624 }
625
626 /*
627  * free a contiguous series of pages
628  */
629 static void free_page_series(unsigned long from, unsigned long to)
630 {
631         for (; from < to; from += PAGE_SIZE) {
632                 struct page *page = virt_to_page(from);
633
634                 kdebug("- free %lx", from);
635                 atomic_long_dec(&mmap_pages_allocated);
636                 if (page_count(page) != 1)
637                         kdebug("free page %p: refcount not one: %d",
638                                page, page_count(page));
639                 put_page(page);
640         }
641 }
642
643 /*
644  * release a reference to a region
645  * - the caller must hold the region semaphore for writing, which this releases
646  * - the region may not have been added to the tree yet, in which case vm_top
647  *   will equal vm_start
648  */
649 static void __put_nommu_region(struct vm_region *region)
650         __releases(nommu_region_sem)
651 {
652         kenter("%p{%d}", region, region->vm_usage);
653
654         BUG_ON(!nommu_region_tree.rb_node);
655
656         if (--region->vm_usage == 0) {
657                 if (region->vm_top > region->vm_start)
658                         delete_nommu_region(region);
659                 up_write(&nommu_region_sem);
660
661                 if (region->vm_file)
662                         fput(region->vm_file);
663
664                 /* IO memory and memory shared directly out of the pagecache
665                  * from ramfs/tmpfs mustn't be released here */
666                 if (region->vm_flags & VM_MAPPED_COPY) {
667                         kdebug("free series");
668                         free_page_series(region->vm_start, region->vm_top);
669                 }
670                 kmem_cache_free(vm_region_jar, region);
671         } else {
672                 up_write(&nommu_region_sem);
673         }
674 }
675
676 /*
677  * release a reference to a region
678  */
679 static void put_nommu_region(struct vm_region *region)
680 {
681         down_write(&nommu_region_sem);
682         __put_nommu_region(region);
683 }
684
685 /*
686  * update protection on a vma
687  */
688 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
689 {
690 #ifdef CONFIG_MPU
691         struct mm_struct *mm = vma->vm_mm;
692         long start = vma->vm_start & PAGE_MASK;
693         while (start < vma->vm_end) {
694                 protect_page(mm, start, flags);
695                 start += PAGE_SIZE;
696         }
697         update_protections(mm);
698 #endif
699 }
700
701 /*
702  * add a VMA into a process's mm_struct in the appropriate place in the list
703  * and tree and add to the address space's page tree also if not an anonymous
704  * page
705  * - should be called with mm->mmap_sem held writelocked
706  */
707 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
708 {
709         struct vm_area_struct *pvma, *prev;
710         struct address_space *mapping;
711         struct rb_node **p, *parent, *rb_prev;
712
713         kenter(",%p", vma);
714
715         BUG_ON(!vma->vm_region);
716
717         mm->map_count++;
718         vma->vm_mm = mm;
719
720         protect_vma(vma, vma->vm_flags);
721
722         /* add the VMA to the mapping */
723         if (vma->vm_file) {
724                 mapping = vma->vm_file->f_mapping;
725
726                 i_mmap_lock_write(mapping);
727                 flush_dcache_mmap_lock(mapping);
728                 vma_interval_tree_insert(vma, &mapping->i_mmap);
729                 flush_dcache_mmap_unlock(mapping);
730                 i_mmap_unlock_write(mapping);
731         }
732
733         /* add the VMA to the tree */
734         parent = rb_prev = NULL;
735         p = &mm->mm_rb.rb_node;
736         while (*p) {
737                 parent = *p;
738                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
739
740                 /* sort by: start addr, end addr, VMA struct addr in that order
741                  * (the latter is necessary as we may get identical VMAs) */
742                 if (vma->vm_start < pvma->vm_start)
743                         p = &(*p)->rb_left;
744                 else if (vma->vm_start > pvma->vm_start) {
745                         rb_prev = parent;
746                         p = &(*p)->rb_right;
747                 } else if (vma->vm_end < pvma->vm_end)
748                         p = &(*p)->rb_left;
749                 else if (vma->vm_end > pvma->vm_end) {
750                         rb_prev = parent;
751                         p = &(*p)->rb_right;
752                 } else if (vma < pvma)
753                         p = &(*p)->rb_left;
754                 else if (vma > pvma) {
755                         rb_prev = parent;
756                         p = &(*p)->rb_right;
757                 } else
758                         BUG();
759         }
760
761         rb_link_node(&vma->vm_rb, parent, p);
762         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
763
764         /* add VMA to the VMA list also */
765         prev = NULL;
766         if (rb_prev)
767                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
768
769         __vma_link_list(mm, vma, prev, parent);
770 }
771
772 /*
773  * delete a VMA from its owning mm_struct and address space
774  */
775 static void delete_vma_from_mm(struct vm_area_struct *vma)
776 {
777         int i;
778         struct address_space *mapping;
779         struct mm_struct *mm = vma->vm_mm;
780         struct task_struct *curr = current;
781
782         kenter("%p", vma);
783
784         protect_vma(vma, 0);
785
786         mm->map_count--;
787         for (i = 0; i < VMACACHE_SIZE; i++) {
788                 /* if the vma is cached, invalidate the entire cache */
789                 if (curr->vmacache[i] == vma) {
790                         vmacache_invalidate(mm);
791                         break;
792                 }
793         }
794
795         /* remove the VMA from the mapping */
796         if (vma->vm_file) {
797                 mapping = vma->vm_file->f_mapping;
798
799                 i_mmap_lock_write(mapping);
800                 flush_dcache_mmap_lock(mapping);
801                 vma_interval_tree_remove(vma, &mapping->i_mmap);
802                 flush_dcache_mmap_unlock(mapping);
803                 i_mmap_unlock_write(mapping);
804         }
805
806         /* remove from the MM's tree and list */
807         rb_erase(&vma->vm_rb, &mm->mm_rb);
808
809         if (vma->vm_prev)
810                 vma->vm_prev->vm_next = vma->vm_next;
811         else
812                 mm->mmap = vma->vm_next;
813
814         if (vma->vm_next)
815                 vma->vm_next->vm_prev = vma->vm_prev;
816 }
817
818 /*
819  * destroy a VMA record
820  */
821 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
822 {
823         kenter("%p", vma);
824         if (vma->vm_ops && vma->vm_ops->close)
825                 vma->vm_ops->close(vma);
826         if (vma->vm_file)
827                 fput(vma->vm_file);
828         put_nommu_region(vma->vm_region);
829         kmem_cache_free(vm_area_cachep, vma);
830 }
831
832 /*
833  * look up the first VMA in which addr resides, NULL if none
834  * - should be called with mm->mmap_sem at least held readlocked
835  */
836 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
837 {
838         struct vm_area_struct *vma;
839
840         /* check the cache first */
841         vma = vmacache_find(mm, addr);
842         if (likely(vma))
843                 return vma;
844
845         /* trawl the list (there may be multiple mappings in which addr
846          * resides) */
847         for (vma = mm->mmap; vma; vma = vma->vm_next) {
848                 if (vma->vm_start > addr)
849                         return NULL;
850                 if (vma->vm_end > addr) {
851                         vmacache_update(addr, vma);
852                         return vma;
853                 }
854         }
855
856         return NULL;
857 }
858 EXPORT_SYMBOL(find_vma);
859
860 /*
861  * find a VMA
862  * - we don't extend stack VMAs under NOMMU conditions
863  */
864 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
865 {
866         return find_vma(mm, addr);
867 }
868
869 /*
870  * expand a stack to a given address
871  * - not supported under NOMMU conditions
872  */
873 int expand_stack(struct vm_area_struct *vma, unsigned long address)
874 {
875         return -ENOMEM;
876 }
877
878 /*
879  * look up the first VMA exactly that exactly matches addr
880  * - should be called with mm->mmap_sem at least held readlocked
881  */
882 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
883                                              unsigned long addr,
884                                              unsigned long len)
885 {
886         struct vm_area_struct *vma;
887         unsigned long end = addr + len;
888
889         /* check the cache first */
890         vma = vmacache_find_exact(mm, addr, end);
891         if (vma)
892                 return vma;
893
894         /* trawl the list (there may be multiple mappings in which addr
895          * resides) */
896         for (vma = mm->mmap; vma; vma = vma->vm_next) {
897                 if (vma->vm_start < addr)
898                         continue;
899                 if (vma->vm_start > addr)
900                         return NULL;
901                 if (vma->vm_end == end) {
902                         vmacache_update(addr, vma);
903                         return vma;
904                 }
905         }
906
907         return NULL;
908 }
909
910 /*
911  * determine whether a mapping should be permitted and, if so, what sort of
912  * mapping we're capable of supporting
913  */
914 static int validate_mmap_request(struct file *file,
915                                  unsigned long addr,
916                                  unsigned long len,
917                                  unsigned long prot,
918                                  unsigned long flags,
919                                  unsigned long pgoff,
920                                  unsigned long *_capabilities)
921 {
922         unsigned long capabilities, rlen;
923         int ret;
924
925         /* do the simple checks first */
926         if (flags & MAP_FIXED) {
927                 printk(KERN_DEBUG
928                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
929                        current->pid);
930                 return -EINVAL;
931         }
932
933         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
934             (flags & MAP_TYPE) != MAP_SHARED)
935                 return -EINVAL;
936
937         if (!len)
938                 return -EINVAL;
939
940         /* Careful about overflows.. */
941         rlen = PAGE_ALIGN(len);
942         if (!rlen || rlen > TASK_SIZE)
943                 return -ENOMEM;
944
945         /* offset overflow? */
946         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
947                 return -EOVERFLOW;
948
949         if (file) {
950                 /* validate file mapping requests */
951                 struct address_space *mapping;
952
953                 /* files must support mmap */
954                 if (!file->f_op->mmap)
955                         return -ENODEV;
956
957                 /* work out if what we've got could possibly be shared
958                  * - we support chardevs that provide their own "memory"
959                  * - we support files/blockdevs that are memory backed
960                  */
961                 mapping = file->f_mapping;
962                 if (!mapping)
963                         mapping = file_inode(file)->i_mapping;
964
965                 capabilities = 0;
966                 if (mapping && mapping->backing_dev_info)
967                         capabilities = mapping->backing_dev_info->capabilities;
968
969                 if (!capabilities) {
970                         /* no explicit capabilities set, so assume some
971                          * defaults */
972                         switch (file_inode(file)->i_mode & S_IFMT) {
973                         case S_IFREG:
974                         case S_IFBLK:
975                                 capabilities = BDI_CAP_MAP_COPY;
976                                 break;
977
978                         case S_IFCHR:
979                                 capabilities =
980                                         BDI_CAP_MAP_DIRECT |
981                                         BDI_CAP_READ_MAP |
982                                         BDI_CAP_WRITE_MAP;
983                                 break;
984
985                         default:
986                                 return -EINVAL;
987                         }
988                 }
989
990                 /* eliminate any capabilities that we can't support on this
991                  * device */
992                 if (!file->f_op->get_unmapped_area)
993                         capabilities &= ~BDI_CAP_MAP_DIRECT;
994                 if (!file->f_op->read)
995                         capabilities &= ~BDI_CAP_MAP_COPY;
996
997                 /* The file shall have been opened with read permission. */
998                 if (!(file->f_mode & FMODE_READ))
999                         return -EACCES;
1000
1001                 if (flags & MAP_SHARED) {
1002                         /* do checks for writing, appending and locking */
1003                         if ((prot & PROT_WRITE) &&
1004                             !(file->f_mode & FMODE_WRITE))
1005                                 return -EACCES;
1006
1007                         if (IS_APPEND(file_inode(file)) &&
1008                             (file->f_mode & FMODE_WRITE))
1009                                 return -EACCES;
1010
1011                         if (locks_verify_locked(file))
1012                                 return -EAGAIN;
1013
1014                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
1015                                 return -ENODEV;
1016
1017                         /* we mustn't privatise shared mappings */
1018                         capabilities &= ~BDI_CAP_MAP_COPY;
1019                 } else {
1020                         /* we're going to read the file into private memory we
1021                          * allocate */
1022                         if (!(capabilities & BDI_CAP_MAP_COPY))
1023                                 return -ENODEV;
1024
1025                         /* we don't permit a private writable mapping to be
1026                          * shared with the backing device */
1027                         if (prot & PROT_WRITE)
1028                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1029                 }
1030
1031                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1032                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1033                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1034                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1035                             ) {
1036                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1037                                 if (flags & MAP_SHARED) {
1038                                         printk(KERN_WARNING
1039                                                "MAP_SHARED not completely supported on !MMU\n");
1040                                         return -EINVAL;
1041                                 }
1042                         }
1043                 }
1044
1045                 /* handle executable mappings and implied executable
1046                  * mappings */
1047                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1048                         if (prot & PROT_EXEC)
1049                                 return -EPERM;
1050                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1051                         /* handle implication of PROT_EXEC by PROT_READ */
1052                         if (current->personality & READ_IMPLIES_EXEC) {
1053                                 if (capabilities & BDI_CAP_EXEC_MAP)
1054                                         prot |= PROT_EXEC;
1055                         }
1056                 } else if ((prot & PROT_READ) &&
1057                          (prot & PROT_EXEC) &&
1058                          !(capabilities & BDI_CAP_EXEC_MAP)
1059                          ) {
1060                         /* backing file is not executable, try to copy */
1061                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1062                 }
1063         } else {
1064                 /* anonymous mappings are always memory backed and can be
1065                  * privately mapped
1066                  */
1067                 capabilities = BDI_CAP_MAP_COPY;
1068
1069                 /* handle PROT_EXEC implication by PROT_READ */
1070                 if ((prot & PROT_READ) &&
1071                     (current->personality & READ_IMPLIES_EXEC))
1072                         prot |= PROT_EXEC;
1073         }
1074
1075         /* allow the security API to have its say */
1076         ret = security_mmap_addr(addr);
1077         if (ret < 0)
1078                 return ret;
1079
1080         /* looks okay */
1081         *_capabilities = capabilities;
1082         return 0;
1083 }
1084
1085 /*
1086  * we've determined that we can make the mapping, now translate what we
1087  * now know into VMA flags
1088  */
1089 static unsigned long determine_vm_flags(struct file *file,
1090                                         unsigned long prot,
1091                                         unsigned long flags,
1092                                         unsigned long capabilities)
1093 {
1094         unsigned long vm_flags;
1095
1096         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1097         /* vm_flags |= mm->def_flags; */
1098
1099         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1100                 /* attempt to share read-only copies of mapped file chunks */
1101                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1102                 if (file && !(prot & PROT_WRITE))
1103                         vm_flags |= VM_MAYSHARE;
1104         } else {
1105                 /* overlay a shareable mapping on the backing device or inode
1106                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1107                  * romfs/cramfs */
1108                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1109                 if (flags & MAP_SHARED)
1110                         vm_flags |= VM_SHARED;
1111         }
1112
1113         /* refuse to let anyone share private mappings with this process if
1114          * it's being traced - otherwise breakpoints set in it may interfere
1115          * with another untraced process
1116          */
1117         if ((flags & MAP_PRIVATE) && current->ptrace)
1118                 vm_flags &= ~VM_MAYSHARE;
1119
1120         return vm_flags;
1121 }
1122
1123 /*
1124  * set up a shared mapping on a file (the driver or filesystem provides and
1125  * pins the storage)
1126  */
1127 static int do_mmap_shared_file(struct vm_area_struct *vma)
1128 {
1129         int ret;
1130
1131         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1132         if (ret == 0) {
1133                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1134                 return 0;
1135         }
1136         if (ret != -ENOSYS)
1137                 return ret;
1138
1139         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1140          * opposed to tried but failed) so we can only give a suitable error as
1141          * it's not possible to make a private copy if MAP_SHARED was given */
1142         return -ENODEV;
1143 }
1144
1145 /*
1146  * set up a private mapping or an anonymous shared mapping
1147  */
1148 static int do_mmap_private(struct vm_area_struct *vma,
1149                            struct vm_region *region,
1150                            unsigned long len,
1151                            unsigned long capabilities)
1152 {
1153         unsigned long total, point;
1154         void *base;
1155         int ret, order;
1156
1157         /* invoke the file's mapping function so that it can keep track of
1158          * shared mappings on devices or memory
1159          * - VM_MAYSHARE will be set if it may attempt to share
1160          */
1161         if (capabilities & BDI_CAP_MAP_DIRECT) {
1162                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1163                 if (ret == 0) {
1164                         /* shouldn't return success if we're not sharing */
1165                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1166                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1167                         return 0;
1168                 }
1169                 if (ret != -ENOSYS)
1170                         return ret;
1171
1172                 /* getting an ENOSYS error indicates that direct mmap isn't
1173                  * possible (as opposed to tried but failed) so we'll try to
1174                  * make a private copy of the data and map that instead */
1175         }
1176
1177
1178         /* allocate some memory to hold the mapping
1179          * - note that this may not return a page-aligned address if the object
1180          *   we're allocating is smaller than a page
1181          */
1182         order = get_order(len);
1183         kdebug("alloc order %d for %lx", order, len);
1184
1185         total = 1 << order;
1186         point = len >> PAGE_SHIFT;
1187
1188         /* we don't want to allocate a power-of-2 sized page set */
1189         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1190                 total = point;
1191                 kdebug("try to alloc exact %lu pages", total);
1192                 base = alloc_pages_exact(len, GFP_KERNEL);
1193         } else {
1194                 base = (void *)__get_free_pages(GFP_KERNEL, order);
1195         }
1196
1197         if (!base)
1198                 goto enomem;
1199
1200         atomic_long_add(total, &mmap_pages_allocated);
1201
1202         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1203         region->vm_start = (unsigned long) base;
1204         region->vm_end   = region->vm_start + len;
1205         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1206
1207         vma->vm_start = region->vm_start;
1208         vma->vm_end   = region->vm_start + len;
1209
1210         if (vma->vm_file) {
1211                 /* read the contents of a file into the copy */
1212                 mm_segment_t old_fs;
1213                 loff_t fpos;
1214
1215                 fpos = vma->vm_pgoff;
1216                 fpos <<= PAGE_SHIFT;
1217
1218                 old_fs = get_fs();
1219                 set_fs(KERNEL_DS);
1220                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1221                 set_fs(old_fs);
1222
1223                 if (ret < 0)
1224                         goto error_free;
1225
1226                 /* clear the last little bit */
1227                 if (ret < len)
1228                         memset(base + ret, 0, len - ret);
1229
1230         }
1231
1232         return 0;
1233
1234 error_free:
1235         free_page_series(region->vm_start, region->vm_top);
1236         region->vm_start = vma->vm_start = 0;
1237         region->vm_end   = vma->vm_end = 0;
1238         region->vm_top   = 0;
1239         return ret;
1240
1241 enomem:
1242         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1243                len, current->pid, current->comm);
1244         show_free_areas(0);
1245         return -ENOMEM;
1246 }
1247
1248 /*
1249  * handle mapping creation for uClinux
1250  */
1251 unsigned long do_mmap_pgoff(struct file *file,
1252                             unsigned long addr,
1253                             unsigned long len,
1254                             unsigned long prot,
1255                             unsigned long flags,
1256                             unsigned long pgoff,
1257                             unsigned long *populate)
1258 {
1259         struct vm_area_struct *vma;
1260         struct vm_region *region;
1261         struct rb_node *rb;
1262         unsigned long capabilities, vm_flags, result;
1263         int ret;
1264
1265         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1266
1267         *populate = 0;
1268
1269         /* decide whether we should attempt the mapping, and if so what sort of
1270          * mapping */
1271         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1272                                     &capabilities);
1273         if (ret < 0) {
1274                 kleave(" = %d [val]", ret);
1275                 return ret;
1276         }
1277
1278         /* we ignore the address hint */
1279         addr = 0;
1280         len = PAGE_ALIGN(len);
1281
1282         /* we've determined that we can make the mapping, now translate what we
1283          * now know into VMA flags */
1284         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1285
1286         /* we're going to need to record the mapping */
1287         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1288         if (!region)
1289                 goto error_getting_region;
1290
1291         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1292         if (!vma)
1293                 goto error_getting_vma;
1294
1295         region->vm_usage = 1;
1296         region->vm_flags = vm_flags;
1297         region->vm_pgoff = pgoff;
1298
1299         INIT_LIST_HEAD(&vma->anon_vma_chain);
1300         vma->vm_flags = vm_flags;
1301         vma->vm_pgoff = pgoff;
1302
1303         if (file) {
1304                 region->vm_file = get_file(file);
1305                 vma->vm_file = get_file(file);
1306         }
1307
1308         down_write(&nommu_region_sem);
1309
1310         /* if we want to share, we need to check for regions created by other
1311          * mmap() calls that overlap with our proposed mapping
1312          * - we can only share with a superset match on most regular files
1313          * - shared mappings on character devices and memory backed files are
1314          *   permitted to overlap inexactly as far as we are concerned for in
1315          *   these cases, sharing is handled in the driver or filesystem rather
1316          *   than here
1317          */
1318         if (vm_flags & VM_MAYSHARE) {
1319                 struct vm_region *pregion;
1320                 unsigned long pglen, rpglen, pgend, rpgend, start;
1321
1322                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1323                 pgend = pgoff + pglen;
1324
1325                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1326                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1327
1328                         if (!(pregion->vm_flags & VM_MAYSHARE))
1329                                 continue;
1330
1331                         /* search for overlapping mappings on the same file */
1332                         if (file_inode(pregion->vm_file) !=
1333                             file_inode(file))
1334                                 continue;
1335
1336                         if (pregion->vm_pgoff >= pgend)
1337                                 continue;
1338
1339                         rpglen = pregion->vm_end - pregion->vm_start;
1340                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1341                         rpgend = pregion->vm_pgoff + rpglen;
1342                         if (pgoff >= rpgend)
1343                                 continue;
1344
1345                         /* handle inexactly overlapping matches between
1346                          * mappings */
1347                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1348                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1349                                 /* new mapping is not a subset of the region */
1350                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1351                                         goto sharing_violation;
1352                                 continue;
1353                         }
1354
1355                         /* we've found a region we can share */
1356                         pregion->vm_usage++;
1357                         vma->vm_region = pregion;
1358                         start = pregion->vm_start;
1359                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1360                         vma->vm_start = start;
1361                         vma->vm_end = start + len;
1362
1363                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1364                                 kdebug("share copy");
1365                                 vma->vm_flags |= VM_MAPPED_COPY;
1366                         } else {
1367                                 kdebug("share mmap");
1368                                 ret = do_mmap_shared_file(vma);
1369                                 if (ret < 0) {
1370                                         vma->vm_region = NULL;
1371                                         vma->vm_start = 0;
1372                                         vma->vm_end = 0;
1373                                         pregion->vm_usage--;
1374                                         pregion = NULL;
1375                                         goto error_just_free;
1376                                 }
1377                         }
1378                         fput(region->vm_file);
1379                         kmem_cache_free(vm_region_jar, region);
1380                         region = pregion;
1381                         result = start;
1382                         goto share;
1383                 }
1384
1385                 /* obtain the address at which to make a shared mapping
1386                  * - this is the hook for quasi-memory character devices to
1387                  *   tell us the location of a shared mapping
1388                  */
1389                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1390                         addr = file->f_op->get_unmapped_area(file, addr, len,
1391                                                              pgoff, flags);
1392                         if (IS_ERR_VALUE(addr)) {
1393                                 ret = addr;
1394                                 if (ret != -ENOSYS)
1395                                         goto error_just_free;
1396
1397                                 /* the driver refused to tell us where to site
1398                                  * the mapping so we'll have to attempt to copy
1399                                  * it */
1400                                 ret = -ENODEV;
1401                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1402                                         goto error_just_free;
1403
1404                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1405                         } else {
1406                                 vma->vm_start = region->vm_start = addr;
1407                                 vma->vm_end = region->vm_end = addr + len;
1408                         }
1409                 }
1410         }
1411
1412         vma->vm_region = region;
1413
1414         /* set up the mapping
1415          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1416          */
1417         if (file && vma->vm_flags & VM_SHARED)
1418                 ret = do_mmap_shared_file(vma);
1419         else
1420                 ret = do_mmap_private(vma, region, len, capabilities);
1421         if (ret < 0)
1422                 goto error_just_free;
1423         add_nommu_region(region);
1424
1425         /* clear anonymous mappings that don't ask for uninitialized data */
1426         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1427                 memset((void *)region->vm_start, 0,
1428                        region->vm_end - region->vm_start);
1429
1430         /* okay... we have a mapping; now we have to register it */
1431         result = vma->vm_start;
1432
1433         current->mm->total_vm += len >> PAGE_SHIFT;
1434
1435 share:
1436         add_vma_to_mm(current->mm, vma);
1437
1438         /* we flush the region from the icache only when the first executable
1439          * mapping of it is made  */
1440         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1441                 flush_icache_range(region->vm_start, region->vm_end);
1442                 region->vm_icache_flushed = true;
1443         }
1444
1445         up_write(&nommu_region_sem);
1446
1447         kleave(" = %lx", result);
1448         return result;
1449
1450 error_just_free:
1451         up_write(&nommu_region_sem);
1452 error:
1453         if (region->vm_file)
1454                 fput(region->vm_file);
1455         kmem_cache_free(vm_region_jar, region);
1456         if (vma->vm_file)
1457                 fput(vma->vm_file);
1458         kmem_cache_free(vm_area_cachep, vma);
1459         kleave(" = %d", ret);
1460         return ret;
1461
1462 sharing_violation:
1463         up_write(&nommu_region_sem);
1464         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1465         ret = -EINVAL;
1466         goto error;
1467
1468 error_getting_vma:
1469         kmem_cache_free(vm_region_jar, region);
1470         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1471                " from process %d failed\n",
1472                len, current->pid);
1473         show_free_areas(0);
1474         return -ENOMEM;
1475
1476 error_getting_region:
1477         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1478                " from process %d failed\n",
1479                len, current->pid);
1480         show_free_areas(0);
1481         return -ENOMEM;
1482 }
1483
1484 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1485                 unsigned long, prot, unsigned long, flags,
1486                 unsigned long, fd, unsigned long, pgoff)
1487 {
1488         struct file *file = NULL;
1489         unsigned long retval = -EBADF;
1490
1491         audit_mmap_fd(fd, flags);
1492         if (!(flags & MAP_ANONYMOUS)) {
1493                 file = fget(fd);
1494                 if (!file)
1495                         goto out;
1496         }
1497
1498         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499
1500         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501
1502         if (file)
1503                 fput(file);
1504 out:
1505         return retval;
1506 }
1507
1508 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1509 struct mmap_arg_struct {
1510         unsigned long addr;
1511         unsigned long len;
1512         unsigned long prot;
1513         unsigned long flags;
1514         unsigned long fd;
1515         unsigned long offset;
1516 };
1517
1518 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1519 {
1520         struct mmap_arg_struct a;
1521
1522         if (copy_from_user(&a, arg, sizeof(a)))
1523                 return -EFAULT;
1524         if (a.offset & ~PAGE_MASK)
1525                 return -EINVAL;
1526
1527         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1528                               a.offset >> PAGE_SHIFT);
1529 }
1530 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1531
1532 /*
1533  * split a vma into two pieces at address 'addr', a new vma is allocated either
1534  * for the first part or the tail.
1535  */
1536 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1537               unsigned long addr, int new_below)
1538 {
1539         struct vm_area_struct *new;
1540         struct vm_region *region;
1541         unsigned long npages;
1542
1543         kenter("");
1544
1545         /* we're only permitted to split anonymous regions (these should have
1546          * only a single usage on the region) */
1547         if (vma->vm_file)
1548                 return -ENOMEM;
1549
1550         if (mm->map_count >= sysctl_max_map_count)
1551                 return -ENOMEM;
1552
1553         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1554         if (!region)
1555                 return -ENOMEM;
1556
1557         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1558         if (!new) {
1559                 kmem_cache_free(vm_region_jar, region);
1560                 return -ENOMEM;
1561         }
1562
1563         /* most fields are the same, copy all, and then fixup */
1564         *new = *vma;
1565         *region = *vma->vm_region;
1566         new->vm_region = region;
1567
1568         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1569
1570         if (new_below) {
1571                 region->vm_top = region->vm_end = new->vm_end = addr;
1572         } else {
1573                 region->vm_start = new->vm_start = addr;
1574                 region->vm_pgoff = new->vm_pgoff += npages;
1575         }
1576
1577         if (new->vm_ops && new->vm_ops->open)
1578                 new->vm_ops->open(new);
1579
1580         delete_vma_from_mm(vma);
1581         down_write(&nommu_region_sem);
1582         delete_nommu_region(vma->vm_region);
1583         if (new_below) {
1584                 vma->vm_region->vm_start = vma->vm_start = addr;
1585                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1586         } else {
1587                 vma->vm_region->vm_end = vma->vm_end = addr;
1588                 vma->vm_region->vm_top = addr;
1589         }
1590         add_nommu_region(vma->vm_region);
1591         add_nommu_region(new->vm_region);
1592         up_write(&nommu_region_sem);
1593         add_vma_to_mm(mm, vma);
1594         add_vma_to_mm(mm, new);
1595         return 0;
1596 }
1597
1598 /*
1599  * shrink a VMA by removing the specified chunk from either the beginning or
1600  * the end
1601  */
1602 static int shrink_vma(struct mm_struct *mm,
1603                       struct vm_area_struct *vma,
1604                       unsigned long from, unsigned long to)
1605 {
1606         struct vm_region *region;
1607
1608         kenter("");
1609
1610         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1611          * and list */
1612         delete_vma_from_mm(vma);
1613         if (from > vma->vm_start)
1614                 vma->vm_end = from;
1615         else
1616                 vma->vm_start = to;
1617         add_vma_to_mm(mm, vma);
1618
1619         /* cut the backing region down to size */
1620         region = vma->vm_region;
1621         BUG_ON(region->vm_usage != 1);
1622
1623         down_write(&nommu_region_sem);
1624         delete_nommu_region(region);
1625         if (from > region->vm_start) {
1626                 to = region->vm_top;
1627                 region->vm_top = region->vm_end = from;
1628         } else {
1629                 region->vm_start = to;
1630         }
1631         add_nommu_region(region);
1632         up_write(&nommu_region_sem);
1633
1634         free_page_series(from, to);
1635         return 0;
1636 }
1637
1638 /*
1639  * release a mapping
1640  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1641  *   VMA, though it need not cover the whole VMA
1642  */
1643 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1644 {
1645         struct vm_area_struct *vma;
1646         unsigned long end;
1647         int ret;
1648
1649         kenter(",%lx,%zx", start, len);
1650
1651         len = PAGE_ALIGN(len);
1652         if (len == 0)
1653                 return -EINVAL;
1654
1655         end = start + len;
1656
1657         /* find the first potentially overlapping VMA */
1658         vma = find_vma(mm, start);
1659         if (!vma) {
1660                 static int limit;
1661                 if (limit < 5) {
1662                         printk(KERN_WARNING
1663                                "munmap of memory not mmapped by process %d"
1664                                " (%s): 0x%lx-0x%lx\n",
1665                                current->pid, current->comm,
1666                                start, start + len - 1);
1667                         limit++;
1668                 }
1669                 return -EINVAL;
1670         }
1671
1672         /* we're allowed to split an anonymous VMA but not a file-backed one */
1673         if (vma->vm_file) {
1674                 do {
1675                         if (start > vma->vm_start) {
1676                                 kleave(" = -EINVAL [miss]");
1677                                 return -EINVAL;
1678                         }
1679                         if (end == vma->vm_end)
1680                                 goto erase_whole_vma;
1681                         vma = vma->vm_next;
1682                 } while (vma);
1683                 kleave(" = -EINVAL [split file]");
1684                 return -EINVAL;
1685         } else {
1686                 /* the chunk must be a subset of the VMA found */
1687                 if (start == vma->vm_start && end == vma->vm_end)
1688                         goto erase_whole_vma;
1689                 if (start < vma->vm_start || end > vma->vm_end) {
1690                         kleave(" = -EINVAL [superset]");
1691                         return -EINVAL;
1692                 }
1693                 if (start & ~PAGE_MASK) {
1694                         kleave(" = -EINVAL [unaligned start]");
1695                         return -EINVAL;
1696                 }
1697                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1698                         kleave(" = -EINVAL [unaligned split]");
1699                         return -EINVAL;
1700                 }
1701                 if (start != vma->vm_start && end != vma->vm_end) {
1702                         ret = split_vma(mm, vma, start, 1);
1703                         if (ret < 0) {
1704                                 kleave(" = %d [split]", ret);
1705                                 return ret;
1706                         }
1707                 }
1708                 return shrink_vma(mm, vma, start, end);
1709         }
1710
1711 erase_whole_vma:
1712         delete_vma_from_mm(vma);
1713         delete_vma(mm, vma);
1714         kleave(" = 0");
1715         return 0;
1716 }
1717 EXPORT_SYMBOL(do_munmap);
1718
1719 int vm_munmap(unsigned long addr, size_t len)
1720 {
1721         struct mm_struct *mm = current->mm;
1722         int ret;
1723
1724         down_write(&mm->mmap_sem);
1725         ret = do_munmap(mm, addr, len);
1726         up_write(&mm->mmap_sem);
1727         return ret;
1728 }
1729 EXPORT_SYMBOL(vm_munmap);
1730
1731 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1732 {
1733         return vm_munmap(addr, len);
1734 }
1735
1736 /*
1737  * release all the mappings made in a process's VM space
1738  */
1739 void exit_mmap(struct mm_struct *mm)
1740 {
1741         struct vm_area_struct *vma;
1742
1743         if (!mm)
1744                 return;
1745
1746         kenter("");
1747
1748         mm->total_vm = 0;
1749
1750         while ((vma = mm->mmap)) {
1751                 mm->mmap = vma->vm_next;
1752                 delete_vma_from_mm(vma);
1753                 delete_vma(mm, vma);
1754                 cond_resched();
1755         }
1756
1757         kleave("");
1758 }
1759
1760 unsigned long vm_brk(unsigned long addr, unsigned long len)
1761 {
1762         return -ENOMEM;
1763 }
1764
1765 /*
1766  * expand (or shrink) an existing mapping, potentially moving it at the same
1767  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1768  *
1769  * under NOMMU conditions, we only permit changing a mapping's size, and only
1770  * as long as it stays within the region allocated by do_mmap_private() and the
1771  * block is not shareable
1772  *
1773  * MREMAP_FIXED is not supported under NOMMU conditions
1774  */
1775 static unsigned long do_mremap(unsigned long addr,
1776                         unsigned long old_len, unsigned long new_len,
1777                         unsigned long flags, unsigned long new_addr)
1778 {
1779         struct vm_area_struct *vma;
1780
1781         /* insanity checks first */
1782         old_len = PAGE_ALIGN(old_len);
1783         new_len = PAGE_ALIGN(new_len);
1784         if (old_len == 0 || new_len == 0)
1785                 return (unsigned long) -EINVAL;
1786
1787         if (addr & ~PAGE_MASK)
1788                 return -EINVAL;
1789
1790         if (flags & MREMAP_FIXED && new_addr != addr)
1791                 return (unsigned long) -EINVAL;
1792
1793         vma = find_vma_exact(current->mm, addr, old_len);
1794         if (!vma)
1795                 return (unsigned long) -EINVAL;
1796
1797         if (vma->vm_end != vma->vm_start + old_len)
1798                 return (unsigned long) -EFAULT;
1799
1800         if (vma->vm_flags & VM_MAYSHARE)
1801                 return (unsigned long) -EPERM;
1802
1803         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1804                 return (unsigned long) -ENOMEM;
1805
1806         /* all checks complete - do it */
1807         vma->vm_end = vma->vm_start + new_len;
1808         return vma->vm_start;
1809 }
1810
1811 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1812                 unsigned long, new_len, unsigned long, flags,
1813                 unsigned long, new_addr)
1814 {
1815         unsigned long ret;
1816
1817         down_write(&current->mm->mmap_sem);
1818         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1819         up_write(&current->mm->mmap_sem);
1820         return ret;
1821 }
1822
1823 struct page *follow_page_mask(struct vm_area_struct *vma,
1824                               unsigned long address, unsigned int flags,
1825                               unsigned int *page_mask)
1826 {
1827         *page_mask = 0;
1828         return NULL;
1829 }
1830
1831 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1832                 unsigned long pfn, unsigned long size, pgprot_t prot)
1833 {
1834         if (addr != (pfn << PAGE_SHIFT))
1835                 return -EINVAL;
1836
1837         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1838         return 0;
1839 }
1840 EXPORT_SYMBOL(remap_pfn_range);
1841
1842 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1843 {
1844         unsigned long pfn = start >> PAGE_SHIFT;
1845         unsigned long vm_len = vma->vm_end - vma->vm_start;
1846
1847         pfn += vma->vm_pgoff;
1848         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1849 }
1850 EXPORT_SYMBOL(vm_iomap_memory);
1851
1852 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1853                         unsigned long pgoff)
1854 {
1855         unsigned int size = vma->vm_end - vma->vm_start;
1856
1857         if (!(vma->vm_flags & VM_USERMAP))
1858                 return -EINVAL;
1859
1860         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1861         vma->vm_end = vma->vm_start + size;
1862
1863         return 0;
1864 }
1865 EXPORT_SYMBOL(remap_vmalloc_range);
1866
1867 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1868         unsigned long len, unsigned long pgoff, unsigned long flags)
1869 {
1870         return -ENOMEM;
1871 }
1872
1873 void unmap_mapping_range(struct address_space *mapping,
1874                          loff_t const holebegin, loff_t const holelen,
1875                          int even_cows)
1876 {
1877 }
1878 EXPORT_SYMBOL(unmap_mapping_range);
1879
1880 /*
1881  * Check that a process has enough memory to allocate a new virtual
1882  * mapping. 0 means there is enough memory for the allocation to
1883  * succeed and -ENOMEM implies there is not.
1884  *
1885  * We currently support three overcommit policies, which are set via the
1886  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1887  *
1888  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1889  * Additional code 2002 Jul 20 by Robert Love.
1890  *
1891  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1892  *
1893  * Note this is a helper function intended to be used by LSMs which
1894  * wish to use this logic.
1895  */
1896 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1897 {
1898         unsigned long free, allowed, reserve;
1899
1900         vm_acct_memory(pages);
1901
1902         /*
1903          * Sometimes we want to use more memory than we have
1904          */
1905         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1906                 return 0;
1907
1908         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1909                 free = global_page_state(NR_FREE_PAGES);
1910                 free += global_page_state(NR_FILE_PAGES);
1911
1912                 /*
1913                  * shmem pages shouldn't be counted as free in this
1914                  * case, they can't be purged, only swapped out, and
1915                  * that won't affect the overall amount of available
1916                  * memory in the system.
1917                  */
1918                 free -= global_page_state(NR_SHMEM);
1919
1920                 free += get_nr_swap_pages();
1921
1922                 /*
1923                  * Any slabs which are created with the
1924                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1925                  * which are reclaimable, under pressure.  The dentry
1926                  * cache and most inode caches should fall into this
1927                  */
1928                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1929
1930                 /*
1931                  * Leave reserved pages. The pages are not for anonymous pages.
1932                  */
1933                 if (free <= totalreserve_pages)
1934                         goto error;
1935                 else
1936                         free -= totalreserve_pages;
1937
1938                 /*
1939                  * Reserve some for root
1940                  */
1941                 if (!cap_sys_admin)
1942                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1943
1944                 if (free > pages)
1945                         return 0;
1946
1947                 goto error;
1948         }
1949
1950         allowed = vm_commit_limit();
1951         /*
1952          * Reserve some 3% for root
1953          */
1954         if (!cap_sys_admin)
1955                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1956
1957         /*
1958          * Don't let a single process grow so big a user can't recover
1959          */
1960         if (mm) {
1961                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1962                 allowed -= min(mm->total_vm / 32, reserve);
1963         }
1964
1965         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1966                 return 0;
1967
1968 error:
1969         vm_unacct_memory(pages);
1970
1971         return -ENOMEM;
1972 }
1973
1974 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1975 {
1976         BUG();
1977         return 0;
1978 }
1979 EXPORT_SYMBOL(filemap_fault);
1980
1981 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1982 {
1983         BUG();
1984 }
1985 EXPORT_SYMBOL(filemap_map_pages);
1986
1987 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1988                              unsigned long size, pgoff_t pgoff)
1989 {
1990         BUG();
1991         return 0;
1992 }
1993 EXPORT_SYMBOL(generic_file_remap_pages);
1994
1995 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1996                 unsigned long addr, void *buf, int len, int write)
1997 {
1998         struct vm_area_struct *vma;
1999
2000         down_read(&mm->mmap_sem);
2001
2002         /* the access must start within one of the target process's mappings */
2003         vma = find_vma(mm, addr);
2004         if (vma) {
2005                 /* don't overrun this mapping */
2006                 if (addr + len >= vma->vm_end)
2007                         len = vma->vm_end - addr;
2008
2009                 /* only read or write mappings where it is permitted */
2010                 if (write && vma->vm_flags & VM_MAYWRITE)
2011                         copy_to_user_page(vma, NULL, addr,
2012                                          (void *) addr, buf, len);
2013                 else if (!write && vma->vm_flags & VM_MAYREAD)
2014                         copy_from_user_page(vma, NULL, addr,
2015                                             buf, (void *) addr, len);
2016                 else
2017                         len = 0;
2018         } else {
2019                 len = 0;
2020         }
2021
2022         up_read(&mm->mmap_sem);
2023
2024         return len;
2025 }
2026
2027 /**
2028  * @access_remote_vm - access another process' address space
2029  * @mm:         the mm_struct of the target address space
2030  * @addr:       start address to access
2031  * @buf:        source or destination buffer
2032  * @len:        number of bytes to transfer
2033  * @write:      whether the access is a write
2034  *
2035  * The caller must hold a reference on @mm.
2036  */
2037 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2038                 void *buf, int len, int write)
2039 {
2040         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2041 }
2042
2043 /*
2044  * Access another process' address space.
2045  * - source/target buffer must be kernel space
2046  */
2047 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2048 {
2049         struct mm_struct *mm;
2050
2051         if (addr + len < addr)
2052                 return 0;
2053
2054         mm = get_task_mm(tsk);
2055         if (!mm)
2056                 return 0;
2057
2058         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2059
2060         mmput(mm);
2061         return len;
2062 }
2063
2064 /**
2065  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2066  * @inode: The inode to check
2067  * @size: The current filesize of the inode
2068  * @newsize: The proposed filesize of the inode
2069  *
2070  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2071  * make sure that that any outstanding VMAs aren't broken and then shrink the
2072  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2073  * automatically grant mappings that are too large.
2074  */
2075 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2076                                 size_t newsize)
2077 {
2078         struct vm_area_struct *vma;
2079         struct vm_region *region;
2080         pgoff_t low, high;
2081         size_t r_size, r_top;
2082
2083         low = newsize >> PAGE_SHIFT;
2084         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2085
2086         down_write(&nommu_region_sem);
2087         i_mmap_lock_read(inode->i_mapping);
2088
2089         /* search for VMAs that fall within the dead zone */
2090         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2091                 /* found one - only interested if it's shared out of the page
2092                  * cache */
2093                 if (vma->vm_flags & VM_SHARED) {
2094                         i_mmap_unlock_read(inode->i_mapping);
2095                         up_write(&nommu_region_sem);
2096                         return -ETXTBSY; /* not quite true, but near enough */
2097                 }
2098         }
2099
2100         /* reduce any regions that overlap the dead zone - if in existence,
2101          * these will be pointed to by VMAs that don't overlap the dead zone
2102          *
2103          * we don't check for any regions that start beyond the EOF as there
2104          * shouldn't be any
2105          */
2106         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2107                 if (!(vma->vm_flags & VM_SHARED))
2108                         continue;
2109
2110                 region = vma->vm_region;
2111                 r_size = region->vm_top - region->vm_start;
2112                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2113
2114                 if (r_top > newsize) {
2115                         region->vm_top -= r_top - newsize;
2116                         if (region->vm_end > region->vm_top)
2117                                 region->vm_end = region->vm_top;
2118                 }
2119         }
2120
2121         i_mmap_unlock_read(inode->i_mapping);
2122         up_write(&nommu_region_sem);
2123         return 0;
2124 }
2125
2126 /*
2127  * Initialise sysctl_user_reserve_kbytes.
2128  *
2129  * This is intended to prevent a user from starting a single memory hogging
2130  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2131  * mode.
2132  *
2133  * The default value is min(3% of free memory, 128MB)
2134  * 128MB is enough to recover with sshd/login, bash, and top/kill.
2135  */
2136 static int __meminit init_user_reserve(void)
2137 {
2138         unsigned long free_kbytes;
2139
2140         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2141
2142         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2143         return 0;
2144 }
2145 module_init(init_user_reserve)
2146
2147 /*
2148  * Initialise sysctl_admin_reserve_kbytes.
2149  *
2150  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2151  * to log in and kill a memory hogging process.
2152  *
2153  * Systems with more than 256MB will reserve 8MB, enough to recover
2154  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2155  * only reserve 3% of free pages by default.
2156  */
2157 static int __meminit init_admin_reserve(void)
2158 {
2159         unsigned long free_kbytes;
2160
2161         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2162
2163         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2164         return 0;
2165 }
2166 module_init(init_admin_reserve)