MIPS: SEAD3: Use symbolic addresses from sead-addr.h in LED driver.
[linux-drm-fsl-dcu.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100         unsigned long vm_flags = vma->vm_flags;
101
102         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103         if (vma_wants_writenotify(vma)) {
104                 vm_flags &= ~VM_SHARED;
105                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106                                                      vm_flags);
107         }
108 }
109
110
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133         return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155         long free, allowed, reserve;
156
157         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158                         -(s64)vm_committed_as_batch * num_online_cpus(),
159                         "memory commitment underflow");
160
161         vm_acct_memory(pages);
162
163         /*
164          * Sometimes we want to use more memory than we have
165          */
166         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167                 return 0;
168
169         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170                 free = global_page_state(NR_FREE_PAGES);
171                 free += global_page_state(NR_FILE_PAGES);
172
173                 /*
174                  * shmem pages shouldn't be counted as free in this
175                  * case, they can't be purged, only swapped out, and
176                  * that won't affect the overall amount of available
177                  * memory in the system.
178                  */
179                 free -= global_page_state(NR_SHMEM);
180
181                 free += get_nr_swap_pages();
182
183                 /*
184                  * Any slabs which are created with the
185                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186                  * which are reclaimable, under pressure.  The dentry
187                  * cache and most inode caches should fall into this
188                  */
189                 free += global_page_state(NR_SLAB_RECLAIMABLE);
190
191                 /*
192                  * Leave reserved pages. The pages are not for anonymous pages.
193                  */
194                 if (free <= totalreserve_pages)
195                         goto error;
196                 else
197                         free -= totalreserve_pages;
198
199                 /*
200                  * Reserve some for root
201                  */
202                 if (!cap_sys_admin)
203                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204
205                 if (free > pages)
206                         return 0;
207
208                 goto error;
209         }
210
211         allowed = vm_commit_limit();
212         /*
213          * Reserve some for root
214          */
215         if (!cap_sys_admin)
216                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218         /*
219          * Don't let a single process grow so big a user can't recover
220          */
221         if (mm) {
222                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223                 allowed -= min_t(long, mm->total_vm / 32, reserve);
224         }
225
226         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227                 return 0;
228 error:
229         vm_unacct_memory(pages);
230
231         return -ENOMEM;
232 }
233
234 /*
235  * Requires inode->i_mapping->i_mmap_rwsem
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238                 struct file *file, struct address_space *mapping)
239 {
240         if (vma->vm_flags & VM_DENYWRITE)
241                 atomic_inc(&file_inode(file)->i_writecount);
242         if (vma->vm_flags & VM_SHARED)
243                 mapping_unmap_writable(mapping);
244
245         flush_dcache_mmap_lock(mapping);
246         vma_interval_tree_remove(vma, &mapping->i_mmap);
247         flush_dcache_mmap_unlock(mapping);
248 }
249
250 /*
251  * Unlink a file-based vm structure from its interval tree, to hide
252  * vma from rmap and vmtruncate before freeing its page tables.
253  */
254 void unlink_file_vma(struct vm_area_struct *vma)
255 {
256         struct file *file = vma->vm_file;
257
258         if (file) {
259                 struct address_space *mapping = file->f_mapping;
260                 i_mmap_lock_write(mapping);
261                 __remove_shared_vm_struct(vma, file, mapping);
262                 i_mmap_unlock_write(mapping);
263         }
264 }
265
266 /*
267  * Close a vm structure and free it, returning the next.
268  */
269 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
270 {
271         struct vm_area_struct *next = vma->vm_next;
272
273         might_sleep();
274         if (vma->vm_ops && vma->vm_ops->close)
275                 vma->vm_ops->close(vma);
276         if (vma->vm_file)
277                 fput(vma->vm_file);
278         mpol_put(vma_policy(vma));
279         kmem_cache_free(vm_area_cachep, vma);
280         return next;
281 }
282
283 static unsigned long do_brk(unsigned long addr, unsigned long len);
284
285 SYSCALL_DEFINE1(brk, unsigned long, brk)
286 {
287         unsigned long retval;
288         unsigned long newbrk, oldbrk;
289         struct mm_struct *mm = current->mm;
290         unsigned long min_brk;
291         bool populate;
292
293         down_write(&mm->mmap_sem);
294
295 #ifdef CONFIG_COMPAT_BRK
296         /*
297          * CONFIG_COMPAT_BRK can still be overridden by setting
298          * randomize_va_space to 2, which will still cause mm->start_brk
299          * to be arbitrarily shifted
300          */
301         if (current->brk_randomized)
302                 min_brk = mm->start_brk;
303         else
304                 min_brk = mm->end_data;
305 #else
306         min_brk = mm->start_brk;
307 #endif
308         if (brk < min_brk)
309                 goto out;
310
311         /*
312          * Check against rlimit here. If this check is done later after the test
313          * of oldbrk with newbrk then it can escape the test and let the data
314          * segment grow beyond its set limit the in case where the limit is
315          * not page aligned -Ram Gupta
316          */
317         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
318                               mm->end_data, mm->start_data))
319                 goto out;
320
321         newbrk = PAGE_ALIGN(brk);
322         oldbrk = PAGE_ALIGN(mm->brk);
323         if (oldbrk == newbrk)
324                 goto set_brk;
325
326         /* Always allow shrinking brk. */
327         if (brk <= mm->brk) {
328                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
329                         goto set_brk;
330                 goto out;
331         }
332
333         /* Check against existing mmap mappings. */
334         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
335                 goto out;
336
337         /* Ok, looks good - let it rip. */
338         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
339                 goto out;
340
341 set_brk:
342         mm->brk = brk;
343         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
344         up_write(&mm->mmap_sem);
345         if (populate)
346                 mm_populate(oldbrk, newbrk - oldbrk);
347         return brk;
348
349 out:
350         retval = mm->brk;
351         up_write(&mm->mmap_sem);
352         return retval;
353 }
354
355 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
356 {
357         unsigned long max, subtree_gap;
358         max = vma->vm_start;
359         if (vma->vm_prev)
360                 max -= vma->vm_prev->vm_end;
361         if (vma->vm_rb.rb_left) {
362                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
363                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
364                 if (subtree_gap > max)
365                         max = subtree_gap;
366         }
367         if (vma->vm_rb.rb_right) {
368                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
369                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
370                 if (subtree_gap > max)
371                         max = subtree_gap;
372         }
373         return max;
374 }
375
376 #ifdef CONFIG_DEBUG_VM_RB
377 static int browse_rb(struct rb_root *root)
378 {
379         int i = 0, j, bug = 0;
380         struct rb_node *nd, *pn = NULL;
381         unsigned long prev = 0, pend = 0;
382
383         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384                 struct vm_area_struct *vma;
385                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386                 if (vma->vm_start < prev) {
387                         pr_emerg("vm_start %lx < prev %lx\n",
388                                   vma->vm_start, prev);
389                         bug = 1;
390                 }
391                 if (vma->vm_start < pend) {
392                         pr_emerg("vm_start %lx < pend %lx\n",
393                                   vma->vm_start, pend);
394                         bug = 1;
395                 }
396                 if (vma->vm_start > vma->vm_end) {
397                         pr_emerg("vm_start %lx > vm_end %lx\n",
398                                   vma->vm_start, vma->vm_end);
399                         bug = 1;
400                 }
401                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
402                         pr_emerg("free gap %lx, correct %lx\n",
403                                vma->rb_subtree_gap,
404                                vma_compute_subtree_gap(vma));
405                         bug = 1;
406                 }
407                 i++;
408                 pn = nd;
409                 prev = vma->vm_start;
410                 pend = vma->vm_end;
411         }
412         j = 0;
413         for (nd = pn; nd; nd = rb_prev(nd))
414                 j++;
415         if (i != j) {
416                 pr_emerg("backwards %d, forwards %d\n", j, i);
417                 bug = 1;
418         }
419         return bug ? -1 : i;
420 }
421
422 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
423 {
424         struct rb_node *nd;
425
426         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
427                 struct vm_area_struct *vma;
428                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
429                 VM_BUG_ON_VMA(vma != ignore &&
430                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
431                         vma);
432         }
433 }
434
435 static void validate_mm(struct mm_struct *mm)
436 {
437         int bug = 0;
438         int i = 0;
439         unsigned long highest_address = 0;
440         struct vm_area_struct *vma = mm->mmap;
441
442         while (vma) {
443                 struct anon_vma_chain *avc;
444
445                 vma_lock_anon_vma(vma);
446                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
447                         anon_vma_interval_tree_verify(avc);
448                 vma_unlock_anon_vma(vma);
449                 highest_address = vma->vm_end;
450                 vma = vma->vm_next;
451                 i++;
452         }
453         if (i != mm->map_count) {
454                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
455                 bug = 1;
456         }
457         if (highest_address != mm->highest_vm_end) {
458                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
459                           mm->highest_vm_end, highest_address);
460                 bug = 1;
461         }
462         i = browse_rb(&mm->mm_rb);
463         if (i != mm->map_count) {
464                 if (i != -1)
465                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
466                 bug = 1;
467         }
468         VM_BUG_ON_MM(bug, mm);
469 }
470 #else
471 #define validate_mm_rb(root, ignore) do { } while (0)
472 #define validate_mm(mm) do { } while (0)
473 #endif
474
475 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
476                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
477
478 /*
479  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
480  * vma->vm_prev->vm_end values changed, without modifying the vma's position
481  * in the rbtree.
482  */
483 static void vma_gap_update(struct vm_area_struct *vma)
484 {
485         /*
486          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
487          * function that does exacltly what we want.
488          */
489         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
490 }
491
492 static inline void vma_rb_insert(struct vm_area_struct *vma,
493                                  struct rb_root *root)
494 {
495         /* All rb_subtree_gap values must be consistent prior to insertion */
496         validate_mm_rb(root, NULL);
497
498         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
499 }
500
501 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
502 {
503         /*
504          * All rb_subtree_gap values must be consistent prior to erase,
505          * with the possible exception of the vma being erased.
506          */
507         validate_mm_rb(root, vma);
508
509         /*
510          * Note rb_erase_augmented is a fairly large inline function,
511          * so make sure we instantiate it only once with our desired
512          * augmented rbtree callbacks.
513          */
514         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
515 }
516
517 /*
518  * vma has some anon_vma assigned, and is already inserted on that
519  * anon_vma's interval trees.
520  *
521  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
522  * vma must be removed from the anon_vma's interval trees using
523  * anon_vma_interval_tree_pre_update_vma().
524  *
525  * After the update, the vma will be reinserted using
526  * anon_vma_interval_tree_post_update_vma().
527  *
528  * The entire update must be protected by exclusive mmap_sem and by
529  * the root anon_vma's mutex.
530  */
531 static inline void
532 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
533 {
534         struct anon_vma_chain *avc;
535
536         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
537                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
538 }
539
540 static inline void
541 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
542 {
543         struct anon_vma_chain *avc;
544
545         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
546                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
547 }
548
549 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
550                 unsigned long end, struct vm_area_struct **pprev,
551                 struct rb_node ***rb_link, struct rb_node **rb_parent)
552 {
553         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
554
555         __rb_link = &mm->mm_rb.rb_node;
556         rb_prev = __rb_parent = NULL;
557
558         while (*__rb_link) {
559                 struct vm_area_struct *vma_tmp;
560
561                 __rb_parent = *__rb_link;
562                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
563
564                 if (vma_tmp->vm_end > addr) {
565                         /* Fail if an existing vma overlaps the area */
566                         if (vma_tmp->vm_start < end)
567                                 return -ENOMEM;
568                         __rb_link = &__rb_parent->rb_left;
569                 } else {
570                         rb_prev = __rb_parent;
571                         __rb_link = &__rb_parent->rb_right;
572                 }
573         }
574
575         *pprev = NULL;
576         if (rb_prev)
577                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
578         *rb_link = __rb_link;
579         *rb_parent = __rb_parent;
580         return 0;
581 }
582
583 static unsigned long count_vma_pages_range(struct mm_struct *mm,
584                 unsigned long addr, unsigned long end)
585 {
586         unsigned long nr_pages = 0;
587         struct vm_area_struct *vma;
588
589         /* Find first overlaping mapping */
590         vma = find_vma_intersection(mm, addr, end);
591         if (!vma)
592                 return 0;
593
594         nr_pages = (min(end, vma->vm_end) -
595                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
596
597         /* Iterate over the rest of the overlaps */
598         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
599                 unsigned long overlap_len;
600
601                 if (vma->vm_start > end)
602                         break;
603
604                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
605                 nr_pages += overlap_len >> PAGE_SHIFT;
606         }
607
608         return nr_pages;
609 }
610
611 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
612                 struct rb_node **rb_link, struct rb_node *rb_parent)
613 {
614         /* Update tracking information for the gap following the new vma. */
615         if (vma->vm_next)
616                 vma_gap_update(vma->vm_next);
617         else
618                 mm->highest_vm_end = vma->vm_end;
619
620         /*
621          * vma->vm_prev wasn't known when we followed the rbtree to find the
622          * correct insertion point for that vma. As a result, we could not
623          * update the vma vm_rb parents rb_subtree_gap values on the way down.
624          * So, we first insert the vma with a zero rb_subtree_gap value
625          * (to be consistent with what we did on the way down), and then
626          * immediately update the gap to the correct value. Finally we
627          * rebalance the rbtree after all augmented values have been set.
628          */
629         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
630         vma->rb_subtree_gap = 0;
631         vma_gap_update(vma);
632         vma_rb_insert(vma, &mm->mm_rb);
633 }
634
635 static void __vma_link_file(struct vm_area_struct *vma)
636 {
637         struct file *file;
638
639         file = vma->vm_file;
640         if (file) {
641                 struct address_space *mapping = file->f_mapping;
642
643                 if (vma->vm_flags & VM_DENYWRITE)
644                         atomic_dec(&file_inode(file)->i_writecount);
645                 if (vma->vm_flags & VM_SHARED)
646                         atomic_inc(&mapping->i_mmap_writable);
647
648                 flush_dcache_mmap_lock(mapping);
649                 vma_interval_tree_insert(vma, &mapping->i_mmap);
650                 flush_dcache_mmap_unlock(mapping);
651         }
652 }
653
654 static void
655 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
656         struct vm_area_struct *prev, struct rb_node **rb_link,
657         struct rb_node *rb_parent)
658 {
659         __vma_link_list(mm, vma, prev, rb_parent);
660         __vma_link_rb(mm, vma, rb_link, rb_parent);
661 }
662
663 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
664                         struct vm_area_struct *prev, struct rb_node **rb_link,
665                         struct rb_node *rb_parent)
666 {
667         struct address_space *mapping = NULL;
668
669         if (vma->vm_file) {
670                 mapping = vma->vm_file->f_mapping;
671                 i_mmap_lock_write(mapping);
672         }
673
674         __vma_link(mm, vma, prev, rb_link, rb_parent);
675         __vma_link_file(vma);
676
677         if (mapping)
678                 i_mmap_unlock_write(mapping);
679
680         mm->map_count++;
681         validate_mm(mm);
682 }
683
684 /*
685  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
686  * mm's list and rbtree.  It has already been inserted into the interval tree.
687  */
688 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
689 {
690         struct vm_area_struct *prev;
691         struct rb_node **rb_link, *rb_parent;
692
693         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
694                            &prev, &rb_link, &rb_parent))
695                 BUG();
696         __vma_link(mm, vma, prev, rb_link, rb_parent);
697         mm->map_count++;
698 }
699
700 static inline void
701 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
702                 struct vm_area_struct *prev)
703 {
704         struct vm_area_struct *next;
705
706         vma_rb_erase(vma, &mm->mm_rb);
707         prev->vm_next = next = vma->vm_next;
708         if (next)
709                 next->vm_prev = prev;
710
711         /* Kill the cache */
712         vmacache_invalidate(mm);
713 }
714
715 /*
716  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
717  * is already present in an i_mmap tree without adjusting the tree.
718  * The following helper function should be used when such adjustments
719  * are necessary.  The "insert" vma (if any) is to be inserted
720  * before we drop the necessary locks.
721  */
722 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
723         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
724 {
725         struct mm_struct *mm = vma->vm_mm;
726         struct vm_area_struct *next = vma->vm_next;
727         struct vm_area_struct *importer = NULL;
728         struct address_space *mapping = NULL;
729         struct rb_root *root = NULL;
730         struct anon_vma *anon_vma = NULL;
731         struct file *file = vma->vm_file;
732         bool start_changed = false, end_changed = false;
733         long adjust_next = 0;
734         int remove_next = 0;
735
736         if (next && !insert) {
737                 struct vm_area_struct *exporter = NULL;
738
739                 if (end >= next->vm_end) {
740                         /*
741                          * vma expands, overlapping all the next, and
742                          * perhaps the one after too (mprotect case 6).
743                          */
744 again:                  remove_next = 1 + (end > next->vm_end);
745                         end = next->vm_end;
746                         exporter = next;
747                         importer = vma;
748                 } else if (end > next->vm_start) {
749                         /*
750                          * vma expands, overlapping part of the next:
751                          * mprotect case 5 shifting the boundary up.
752                          */
753                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754                         exporter = next;
755                         importer = vma;
756                 } else if (end < vma->vm_end) {
757                         /*
758                          * vma shrinks, and !insert tells it's not
759                          * split_vma inserting another: so it must be
760                          * mprotect case 4 shifting the boundary down.
761                          */
762                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
763                         exporter = vma;
764                         importer = next;
765                 }
766
767                 /*
768                  * Easily overlooked: when mprotect shifts the boundary,
769                  * make sure the expanding vma has anon_vma set if the
770                  * shrinking vma had, to cover any anon pages imported.
771                  */
772                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
773                         int error;
774
775                         importer->anon_vma = exporter->anon_vma;
776                         error = anon_vma_clone(importer, exporter);
777                         if (error) {
778                                 importer->anon_vma = NULL;
779                                 return error;
780                         }
781                 }
782         }
783
784         if (file) {
785                 mapping = file->f_mapping;
786                 root = &mapping->i_mmap;
787                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
788
789                 if (adjust_next)
790                         uprobe_munmap(next, next->vm_start, next->vm_end);
791
792                 i_mmap_lock_write(mapping);
793                 if (insert) {
794                         /*
795                          * Put into interval tree now, so instantiated pages
796                          * are visible to arm/parisc __flush_dcache_page
797                          * throughout; but we cannot insert into address
798                          * space until vma start or end is updated.
799                          */
800                         __vma_link_file(insert);
801                 }
802         }
803
804         vma_adjust_trans_huge(vma, start, end, adjust_next);
805
806         anon_vma = vma->anon_vma;
807         if (!anon_vma && adjust_next)
808                 anon_vma = next->anon_vma;
809         if (anon_vma) {
810                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
811                           anon_vma != next->anon_vma, next);
812                 anon_vma_lock_write(anon_vma);
813                 anon_vma_interval_tree_pre_update_vma(vma);
814                 if (adjust_next)
815                         anon_vma_interval_tree_pre_update_vma(next);
816         }
817
818         if (root) {
819                 flush_dcache_mmap_lock(mapping);
820                 vma_interval_tree_remove(vma, root);
821                 if (adjust_next)
822                         vma_interval_tree_remove(next, root);
823         }
824
825         if (start != vma->vm_start) {
826                 vma->vm_start = start;
827                 start_changed = true;
828         }
829         if (end != vma->vm_end) {
830                 vma->vm_end = end;
831                 end_changed = true;
832         }
833         vma->vm_pgoff = pgoff;
834         if (adjust_next) {
835                 next->vm_start += adjust_next << PAGE_SHIFT;
836                 next->vm_pgoff += adjust_next;
837         }
838
839         if (root) {
840                 if (adjust_next)
841                         vma_interval_tree_insert(next, root);
842                 vma_interval_tree_insert(vma, root);
843                 flush_dcache_mmap_unlock(mapping);
844         }
845
846         if (remove_next) {
847                 /*
848                  * vma_merge has merged next into vma, and needs
849                  * us to remove next before dropping the locks.
850                  */
851                 __vma_unlink(mm, next, vma);
852                 if (file)
853                         __remove_shared_vm_struct(next, file, mapping);
854         } else if (insert) {
855                 /*
856                  * split_vma has split insert from vma, and needs
857                  * us to insert it before dropping the locks
858                  * (it may either follow vma or precede it).
859                  */
860                 __insert_vm_struct(mm, insert);
861         } else {
862                 if (start_changed)
863                         vma_gap_update(vma);
864                 if (end_changed) {
865                         if (!next)
866                                 mm->highest_vm_end = end;
867                         else if (!adjust_next)
868                                 vma_gap_update(next);
869                 }
870         }
871
872         if (anon_vma) {
873                 anon_vma_interval_tree_post_update_vma(vma);
874                 if (adjust_next)
875                         anon_vma_interval_tree_post_update_vma(next);
876                 anon_vma_unlock_write(anon_vma);
877         }
878         if (mapping)
879                 i_mmap_unlock_write(mapping);
880
881         if (root) {
882                 uprobe_mmap(vma);
883
884                 if (adjust_next)
885                         uprobe_mmap(next);
886         }
887
888         if (remove_next) {
889                 if (file) {
890                         uprobe_munmap(next, next->vm_start, next->vm_end);
891                         fput(file);
892                 }
893                 if (next->anon_vma)
894                         anon_vma_merge(vma, next);
895                 mm->map_count--;
896                 mpol_put(vma_policy(next));
897                 kmem_cache_free(vm_area_cachep, next);
898                 /*
899                  * In mprotect's case 6 (see comments on vma_merge),
900                  * we must remove another next too. It would clutter
901                  * up the code too much to do both in one go.
902                  */
903                 next = vma->vm_next;
904                 if (remove_next == 2)
905                         goto again;
906                 else if (next)
907                         vma_gap_update(next);
908                 else
909                         mm->highest_vm_end = end;
910         }
911         if (insert && file)
912                 uprobe_mmap(insert);
913
914         validate_mm(mm);
915
916         return 0;
917 }
918
919 /*
920  * If the vma has a ->close operation then the driver probably needs to release
921  * per-vma resources, so we don't attempt to merge those.
922  */
923 static inline int is_mergeable_vma(struct vm_area_struct *vma,
924                         struct file *file, unsigned long vm_flags)
925 {
926         /*
927          * VM_SOFTDIRTY should not prevent from VMA merging, if we
928          * match the flags but dirty bit -- the caller should mark
929          * merged VMA as dirty. If dirty bit won't be excluded from
930          * comparison, we increase pressue on the memory system forcing
931          * the kernel to generate new VMAs when old one could be
932          * extended instead.
933          */
934         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
935                 return 0;
936         if (vma->vm_file != file)
937                 return 0;
938         if (vma->vm_ops && vma->vm_ops->close)
939                 return 0;
940         return 1;
941 }
942
943 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
944                                         struct anon_vma *anon_vma2,
945                                         struct vm_area_struct *vma)
946 {
947         /*
948          * The list_is_singular() test is to avoid merging VMA cloned from
949          * parents. This can improve scalability caused by anon_vma lock.
950          */
951         if ((!anon_vma1 || !anon_vma2) && (!vma ||
952                 list_is_singular(&vma->anon_vma_chain)))
953                 return 1;
954         return anon_vma1 == anon_vma2;
955 }
956
957 /*
958  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
959  * in front of (at a lower virtual address and file offset than) the vma.
960  *
961  * We cannot merge two vmas if they have differently assigned (non-NULL)
962  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
963  *
964  * We don't check here for the merged mmap wrapping around the end of pagecache
965  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
966  * wrap, nor mmaps which cover the final page at index -1UL.
967  */
968 static int
969 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
970         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
971 {
972         if (is_mergeable_vma(vma, file, vm_flags) &&
973             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
974                 if (vma->vm_pgoff == vm_pgoff)
975                         return 1;
976         }
977         return 0;
978 }
979
980 /*
981  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
982  * beyond (at a higher virtual address and file offset than) the vma.
983  *
984  * We cannot merge two vmas if they have differently assigned (non-NULL)
985  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
986  */
987 static int
988 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
989         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
990 {
991         if (is_mergeable_vma(vma, file, vm_flags) &&
992             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
993                 pgoff_t vm_pglen;
994                 vm_pglen = vma_pages(vma);
995                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
996                         return 1;
997         }
998         return 0;
999 }
1000
1001 /*
1002  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1003  * whether that can be merged with its predecessor or its successor.
1004  * Or both (it neatly fills a hole).
1005  *
1006  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1007  * certain not to be mapped by the time vma_merge is called; but when
1008  * called for mprotect, it is certain to be already mapped (either at
1009  * an offset within prev, or at the start of next), and the flags of
1010  * this area are about to be changed to vm_flags - and the no-change
1011  * case has already been eliminated.
1012  *
1013  * The following mprotect cases have to be considered, where AAAA is
1014  * the area passed down from mprotect_fixup, never extending beyond one
1015  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1016  *
1017  *     AAAA             AAAA                AAAA          AAAA
1018  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1019  *    cannot merge    might become    might become    might become
1020  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1021  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1022  *    mremap move:                                    PPPPNNNNNNNN 8
1023  *        AAAA
1024  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1025  *    might become    case 1 below    case 2 below    case 3 below
1026  *
1027  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1028  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1029  */
1030 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1031                         struct vm_area_struct *prev, unsigned long addr,
1032                         unsigned long end, unsigned long vm_flags,
1033                         struct anon_vma *anon_vma, struct file *file,
1034                         pgoff_t pgoff, struct mempolicy *policy)
1035 {
1036         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1037         struct vm_area_struct *area, *next;
1038         int err;
1039
1040         /*
1041          * We later require that vma->vm_flags == vm_flags,
1042          * so this tests vma->vm_flags & VM_SPECIAL, too.
1043          */
1044         if (vm_flags & VM_SPECIAL)
1045                 return NULL;
1046
1047         if (prev)
1048                 next = prev->vm_next;
1049         else
1050                 next = mm->mmap;
1051         area = next;
1052         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1053                 next = next->vm_next;
1054
1055         /*
1056          * Can it merge with the predecessor?
1057          */
1058         if (prev && prev->vm_end == addr &&
1059                         mpol_equal(vma_policy(prev), policy) &&
1060                         can_vma_merge_after(prev, vm_flags,
1061                                                 anon_vma, file, pgoff)) {
1062                 /*
1063                  * OK, it can.  Can we now merge in the successor as well?
1064                  */
1065                 if (next && end == next->vm_start &&
1066                                 mpol_equal(policy, vma_policy(next)) &&
1067                                 can_vma_merge_before(next, vm_flags,
1068                                         anon_vma, file, pgoff+pglen) &&
1069                                 is_mergeable_anon_vma(prev->anon_vma,
1070                                                       next->anon_vma, NULL)) {
1071                                                         /* cases 1, 6 */
1072                         err = vma_adjust(prev, prev->vm_start,
1073                                 next->vm_end, prev->vm_pgoff, NULL);
1074                 } else                                  /* cases 2, 5, 7 */
1075                         err = vma_adjust(prev, prev->vm_start,
1076                                 end, prev->vm_pgoff, NULL);
1077                 if (err)
1078                         return NULL;
1079                 khugepaged_enter_vma_merge(prev, vm_flags);
1080                 return prev;
1081         }
1082
1083         /*
1084          * Can this new request be merged in front of next?
1085          */
1086         if (next && end == next->vm_start &&
1087                         mpol_equal(policy, vma_policy(next)) &&
1088                         can_vma_merge_before(next, vm_flags,
1089                                         anon_vma, file, pgoff+pglen)) {
1090                 if (prev && addr < prev->vm_end)        /* case 4 */
1091                         err = vma_adjust(prev, prev->vm_start,
1092                                 addr, prev->vm_pgoff, NULL);
1093                 else                                    /* cases 3, 8 */
1094                         err = vma_adjust(area, addr, next->vm_end,
1095                                 next->vm_pgoff - pglen, NULL);
1096                 if (err)
1097                         return NULL;
1098                 khugepaged_enter_vma_merge(area, vm_flags);
1099                 return area;
1100         }
1101
1102         return NULL;
1103 }
1104
1105 /*
1106  * Rough compatbility check to quickly see if it's even worth looking
1107  * at sharing an anon_vma.
1108  *
1109  * They need to have the same vm_file, and the flags can only differ
1110  * in things that mprotect may change.
1111  *
1112  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1113  * we can merge the two vma's. For example, we refuse to merge a vma if
1114  * there is a vm_ops->close() function, because that indicates that the
1115  * driver is doing some kind of reference counting. But that doesn't
1116  * really matter for the anon_vma sharing case.
1117  */
1118 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1119 {
1120         return a->vm_end == b->vm_start &&
1121                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1122                 a->vm_file == b->vm_file &&
1123                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1124                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1125 }
1126
1127 /*
1128  * Do some basic sanity checking to see if we can re-use the anon_vma
1129  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1130  * the same as 'old', the other will be the new one that is trying
1131  * to share the anon_vma.
1132  *
1133  * NOTE! This runs with mm_sem held for reading, so it is possible that
1134  * the anon_vma of 'old' is concurrently in the process of being set up
1135  * by another page fault trying to merge _that_. But that's ok: if it
1136  * is being set up, that automatically means that it will be a singleton
1137  * acceptable for merging, so we can do all of this optimistically. But
1138  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1139  *
1140  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1141  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1142  * is to return an anon_vma that is "complex" due to having gone through
1143  * a fork).
1144  *
1145  * We also make sure that the two vma's are compatible (adjacent,
1146  * and with the same memory policies). That's all stable, even with just
1147  * a read lock on the mm_sem.
1148  */
1149 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1150 {
1151         if (anon_vma_compatible(a, b)) {
1152                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1153
1154                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1155                         return anon_vma;
1156         }
1157         return NULL;
1158 }
1159
1160 /*
1161  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1162  * neighbouring vmas for a suitable anon_vma, before it goes off
1163  * to allocate a new anon_vma.  It checks because a repetitive
1164  * sequence of mprotects and faults may otherwise lead to distinct
1165  * anon_vmas being allocated, preventing vma merge in subsequent
1166  * mprotect.
1167  */
1168 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1169 {
1170         struct anon_vma *anon_vma;
1171         struct vm_area_struct *near;
1172
1173         near = vma->vm_next;
1174         if (!near)
1175                 goto try_prev;
1176
1177         anon_vma = reusable_anon_vma(near, vma, near);
1178         if (anon_vma)
1179                 return anon_vma;
1180 try_prev:
1181         near = vma->vm_prev;
1182         if (!near)
1183                 goto none;
1184
1185         anon_vma = reusable_anon_vma(near, near, vma);
1186         if (anon_vma)
1187                 return anon_vma;
1188 none:
1189         /*
1190          * There's no absolute need to look only at touching neighbours:
1191          * we could search further afield for "compatible" anon_vmas.
1192          * But it would probably just be a waste of time searching,
1193          * or lead to too many vmas hanging off the same anon_vma.
1194          * We're trying to allow mprotect remerging later on,
1195          * not trying to minimize memory used for anon_vmas.
1196          */
1197         return NULL;
1198 }
1199
1200 #ifdef CONFIG_PROC_FS
1201 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1202                                                 struct file *file, long pages)
1203 {
1204         const unsigned long stack_flags
1205                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1206
1207         mm->total_vm += pages;
1208
1209         if (file) {
1210                 mm->shared_vm += pages;
1211                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1212                         mm->exec_vm += pages;
1213         } else if (flags & stack_flags)
1214                 mm->stack_vm += pages;
1215 }
1216 #endif /* CONFIG_PROC_FS */
1217
1218 /*
1219  * If a hint addr is less than mmap_min_addr change hint to be as
1220  * low as possible but still greater than mmap_min_addr
1221  */
1222 static inline unsigned long round_hint_to_min(unsigned long hint)
1223 {
1224         hint &= PAGE_MASK;
1225         if (((void *)hint != NULL) &&
1226             (hint < mmap_min_addr))
1227                 return PAGE_ALIGN(mmap_min_addr);
1228         return hint;
1229 }
1230
1231 static inline int mlock_future_check(struct mm_struct *mm,
1232                                      unsigned long flags,
1233                                      unsigned long len)
1234 {
1235         unsigned long locked, lock_limit;
1236
1237         /*  mlock MCL_FUTURE? */
1238         if (flags & VM_LOCKED) {
1239                 locked = len >> PAGE_SHIFT;
1240                 locked += mm->locked_vm;
1241                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1242                 lock_limit >>= PAGE_SHIFT;
1243                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1244                         return -EAGAIN;
1245         }
1246         return 0;
1247 }
1248
1249 /*
1250  * The caller must hold down_write(&current->mm->mmap_sem).
1251  */
1252
1253 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1254                         unsigned long len, unsigned long prot,
1255                         unsigned long flags, unsigned long pgoff,
1256                         unsigned long *populate)
1257 {
1258         struct mm_struct *mm = current->mm;
1259         vm_flags_t vm_flags;
1260
1261         *populate = 0;
1262
1263         /*
1264          * Does the application expect PROT_READ to imply PROT_EXEC?
1265          *
1266          * (the exception is when the underlying filesystem is noexec
1267          *  mounted, in which case we dont add PROT_EXEC.)
1268          */
1269         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1270                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1271                         prot |= PROT_EXEC;
1272
1273         if (!len)
1274                 return -EINVAL;
1275
1276         if (!(flags & MAP_FIXED))
1277                 addr = round_hint_to_min(addr);
1278
1279         /* Careful about overflows.. */
1280         len = PAGE_ALIGN(len);
1281         if (!len)
1282                 return -ENOMEM;
1283
1284         /* offset overflow? */
1285         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1286                 return -EOVERFLOW;
1287
1288         /* Too many mappings? */
1289         if (mm->map_count > sysctl_max_map_count)
1290                 return -ENOMEM;
1291
1292         /* Obtain the address to map to. we verify (or select) it and ensure
1293          * that it represents a valid section of the address space.
1294          */
1295         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1296         if (addr & ~PAGE_MASK)
1297                 return addr;
1298
1299         /* Do simple checking here so the lower-level routines won't have
1300          * to. we assume access permissions have been handled by the open
1301          * of the memory object, so we don't do any here.
1302          */
1303         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1304                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1305
1306         if (flags & MAP_LOCKED)
1307                 if (!can_do_mlock())
1308                         return -EPERM;
1309
1310         if (mlock_future_check(mm, vm_flags, len))
1311                 return -EAGAIN;
1312
1313         if (file) {
1314                 struct inode *inode = file_inode(file);
1315
1316                 switch (flags & MAP_TYPE) {
1317                 case MAP_SHARED:
1318                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1319                                 return -EACCES;
1320
1321                         /*
1322                          * Make sure we don't allow writing to an append-only
1323                          * file..
1324                          */
1325                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1326                                 return -EACCES;
1327
1328                         /*
1329                          * Make sure there are no mandatory locks on the file.
1330                          */
1331                         if (locks_verify_locked(file))
1332                                 return -EAGAIN;
1333
1334                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1335                         if (!(file->f_mode & FMODE_WRITE))
1336                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1337
1338                         /* fall through */
1339                 case MAP_PRIVATE:
1340                         if (!(file->f_mode & FMODE_READ))
1341                                 return -EACCES;
1342                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1343                                 if (vm_flags & VM_EXEC)
1344                                         return -EPERM;
1345                                 vm_flags &= ~VM_MAYEXEC;
1346                         }
1347
1348                         if (!file->f_op->mmap)
1349                                 return -ENODEV;
1350                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1351                                 return -EINVAL;
1352                         break;
1353
1354                 default:
1355                         return -EINVAL;
1356                 }
1357         } else {
1358                 switch (flags & MAP_TYPE) {
1359                 case MAP_SHARED:
1360                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1361                                 return -EINVAL;
1362                         /*
1363                          * Ignore pgoff.
1364                          */
1365                         pgoff = 0;
1366                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1367                         break;
1368                 case MAP_PRIVATE:
1369                         /*
1370                          * Set pgoff according to addr for anon_vma.
1371                          */
1372                         pgoff = addr >> PAGE_SHIFT;
1373                         break;
1374                 default:
1375                         return -EINVAL;
1376                 }
1377         }
1378
1379         /*
1380          * Set 'VM_NORESERVE' if we should not account for the
1381          * memory use of this mapping.
1382          */
1383         if (flags & MAP_NORESERVE) {
1384                 /* We honor MAP_NORESERVE if allowed to overcommit */
1385                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1386                         vm_flags |= VM_NORESERVE;
1387
1388                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1389                 if (file && is_file_hugepages(file))
1390                         vm_flags |= VM_NORESERVE;
1391         }
1392
1393         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1394         if (!IS_ERR_VALUE(addr) &&
1395             ((vm_flags & VM_LOCKED) ||
1396              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1397                 *populate = len;
1398         return addr;
1399 }
1400
1401 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1402                 unsigned long, prot, unsigned long, flags,
1403                 unsigned long, fd, unsigned long, pgoff)
1404 {
1405         struct file *file = NULL;
1406         unsigned long retval = -EBADF;
1407
1408         if (!(flags & MAP_ANONYMOUS)) {
1409                 audit_mmap_fd(fd, flags);
1410                 file = fget(fd);
1411                 if (!file)
1412                         goto out;
1413                 if (is_file_hugepages(file))
1414                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1415                 retval = -EINVAL;
1416                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1417                         goto out_fput;
1418         } else if (flags & MAP_HUGETLB) {
1419                 struct user_struct *user = NULL;
1420                 struct hstate *hs;
1421
1422                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1423                 if (!hs)
1424                         return -EINVAL;
1425
1426                 len = ALIGN(len, huge_page_size(hs));
1427                 /*
1428                  * VM_NORESERVE is used because the reservations will be
1429                  * taken when vm_ops->mmap() is called
1430                  * A dummy user value is used because we are not locking
1431                  * memory so no accounting is necessary
1432                  */
1433                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1434                                 VM_NORESERVE,
1435                                 &user, HUGETLB_ANONHUGE_INODE,
1436                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1437                 if (IS_ERR(file))
1438                         return PTR_ERR(file);
1439         }
1440
1441         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1442
1443         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444 out_fput:
1445         if (file)
1446                 fput(file);
1447 out:
1448         return retval;
1449 }
1450
1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1452 struct mmap_arg_struct {
1453         unsigned long addr;
1454         unsigned long len;
1455         unsigned long prot;
1456         unsigned long flags;
1457         unsigned long fd;
1458         unsigned long offset;
1459 };
1460
1461 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1462 {
1463         struct mmap_arg_struct a;
1464
1465         if (copy_from_user(&a, arg, sizeof(a)))
1466                 return -EFAULT;
1467         if (a.offset & ~PAGE_MASK)
1468                 return -EINVAL;
1469
1470         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1471                               a.offset >> PAGE_SHIFT);
1472 }
1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1474
1475 /*
1476  * Some shared mappigns will want the pages marked read-only
1477  * to track write events. If so, we'll downgrade vm_page_prot
1478  * to the private version (using protection_map[] without the
1479  * VM_SHARED bit).
1480  */
1481 int vma_wants_writenotify(struct vm_area_struct *vma)
1482 {
1483         vm_flags_t vm_flags = vma->vm_flags;
1484
1485         /* If it was private or non-writable, the write bit is already clear */
1486         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1487                 return 0;
1488
1489         /* The backer wishes to know when pages are first written to? */
1490         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1491                 return 1;
1492
1493         /* The open routine did something to the protections that pgprot_modify
1494          * won't preserve? */
1495         if (pgprot_val(vma->vm_page_prot) !=
1496             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1497                 return 0;
1498
1499         /* Do we need to track softdirty? */
1500         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1501                 return 1;
1502
1503         /* Specialty mapping? */
1504         if (vm_flags & VM_PFNMAP)
1505                 return 0;
1506
1507         /* Can the mapping track the dirty pages? */
1508         return vma->vm_file && vma->vm_file->f_mapping &&
1509                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1510 }
1511
1512 /*
1513  * We account for memory if it's a private writeable mapping,
1514  * not hugepages and VM_NORESERVE wasn't set.
1515  */
1516 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1517 {
1518         /*
1519          * hugetlb has its own accounting separate from the core VM
1520          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1521          */
1522         if (file && is_file_hugepages(file))
1523                 return 0;
1524
1525         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1526 }
1527
1528 unsigned long mmap_region(struct file *file, unsigned long addr,
1529                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1530 {
1531         struct mm_struct *mm = current->mm;
1532         struct vm_area_struct *vma, *prev;
1533         int error;
1534         struct rb_node **rb_link, *rb_parent;
1535         unsigned long charged = 0;
1536
1537         /* Check against address space limit. */
1538         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1539                 unsigned long nr_pages;
1540
1541                 /*
1542                  * MAP_FIXED may remove pages of mappings that intersects with
1543                  * requested mapping. Account for the pages it would unmap.
1544                  */
1545                 if (!(vm_flags & MAP_FIXED))
1546                         return -ENOMEM;
1547
1548                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1549
1550                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1551                         return -ENOMEM;
1552         }
1553
1554         /* Clear old maps */
1555         error = -ENOMEM;
1556 munmap_back:
1557         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1558                 if (do_munmap(mm, addr, len))
1559                         return -ENOMEM;
1560                 goto munmap_back;
1561         }
1562
1563         /*
1564          * Private writable mapping: check memory availability
1565          */
1566         if (accountable_mapping(file, vm_flags)) {
1567                 charged = len >> PAGE_SHIFT;
1568                 if (security_vm_enough_memory_mm(mm, charged))
1569                         return -ENOMEM;
1570                 vm_flags |= VM_ACCOUNT;
1571         }
1572
1573         /*
1574          * Can we just expand an old mapping?
1575          */
1576         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1577         if (vma)
1578                 goto out;
1579
1580         /*
1581          * Determine the object being mapped and call the appropriate
1582          * specific mapper. the address has already been validated, but
1583          * not unmapped, but the maps are removed from the list.
1584          */
1585         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1586         if (!vma) {
1587                 error = -ENOMEM;
1588                 goto unacct_error;
1589         }
1590
1591         vma->vm_mm = mm;
1592         vma->vm_start = addr;
1593         vma->vm_end = addr + len;
1594         vma->vm_flags = vm_flags;
1595         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1596         vma->vm_pgoff = pgoff;
1597         INIT_LIST_HEAD(&vma->anon_vma_chain);
1598
1599         if (file) {
1600                 if (vm_flags & VM_DENYWRITE) {
1601                         error = deny_write_access(file);
1602                         if (error)
1603                                 goto free_vma;
1604                 }
1605                 if (vm_flags & VM_SHARED) {
1606                         error = mapping_map_writable(file->f_mapping);
1607                         if (error)
1608                                 goto allow_write_and_free_vma;
1609                 }
1610
1611                 /* ->mmap() can change vma->vm_file, but must guarantee that
1612                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1613                  * and map writably if VM_SHARED is set. This usually means the
1614                  * new file must not have been exposed to user-space, yet.
1615                  */
1616                 vma->vm_file = get_file(file);
1617                 error = file->f_op->mmap(file, vma);
1618                 if (error)
1619                         goto unmap_and_free_vma;
1620
1621                 /* Can addr have changed??
1622                  *
1623                  * Answer: Yes, several device drivers can do it in their
1624                  *         f_op->mmap method. -DaveM
1625                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1626                  *      be updated for vma_link()
1627                  */
1628                 WARN_ON_ONCE(addr != vma->vm_start);
1629
1630                 addr = vma->vm_start;
1631                 vm_flags = vma->vm_flags;
1632         } else if (vm_flags & VM_SHARED) {
1633                 error = shmem_zero_setup(vma);
1634                 if (error)
1635                         goto free_vma;
1636         }
1637
1638         vma_link(mm, vma, prev, rb_link, rb_parent);
1639         /* Once vma denies write, undo our temporary denial count */
1640         if (file) {
1641                 if (vm_flags & VM_SHARED)
1642                         mapping_unmap_writable(file->f_mapping);
1643                 if (vm_flags & VM_DENYWRITE)
1644                         allow_write_access(file);
1645         }
1646         file = vma->vm_file;
1647 out:
1648         perf_event_mmap(vma);
1649
1650         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1651         if (vm_flags & VM_LOCKED) {
1652                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1653                                         vma == get_gate_vma(current->mm)))
1654                         mm->locked_vm += (len >> PAGE_SHIFT);
1655                 else
1656                         vma->vm_flags &= ~VM_LOCKED;
1657         }
1658
1659         if (file)
1660                 uprobe_mmap(vma);
1661
1662         /*
1663          * New (or expanded) vma always get soft dirty status.
1664          * Otherwise user-space soft-dirty page tracker won't
1665          * be able to distinguish situation when vma area unmapped,
1666          * then new mapped in-place (which must be aimed as
1667          * a completely new data area).
1668          */
1669         vma->vm_flags |= VM_SOFTDIRTY;
1670
1671         vma_set_page_prot(vma);
1672
1673         return addr;
1674
1675 unmap_and_free_vma:
1676         vma->vm_file = NULL;
1677         fput(file);
1678
1679         /* Undo any partial mapping done by a device driver. */
1680         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1681         charged = 0;
1682         if (vm_flags & VM_SHARED)
1683                 mapping_unmap_writable(file->f_mapping);
1684 allow_write_and_free_vma:
1685         if (vm_flags & VM_DENYWRITE)
1686                 allow_write_access(file);
1687 free_vma:
1688         kmem_cache_free(vm_area_cachep, vma);
1689 unacct_error:
1690         if (charged)
1691                 vm_unacct_memory(charged);
1692         return error;
1693 }
1694
1695 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1696 {
1697         /*
1698          * We implement the search by looking for an rbtree node that
1699          * immediately follows a suitable gap. That is,
1700          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1702          * - gap_end - gap_start >= length
1703          */
1704
1705         struct mm_struct *mm = current->mm;
1706         struct vm_area_struct *vma;
1707         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708
1709         /* Adjust search length to account for worst case alignment overhead */
1710         length = info->length + info->align_mask;
1711         if (length < info->length)
1712                 return -ENOMEM;
1713
1714         /* Adjust search limits by the desired length */
1715         if (info->high_limit < length)
1716                 return -ENOMEM;
1717         high_limit = info->high_limit - length;
1718
1719         if (info->low_limit > high_limit)
1720                 return -ENOMEM;
1721         low_limit = info->low_limit + length;
1722
1723         /* Check if rbtree root looks promising */
1724         if (RB_EMPTY_ROOT(&mm->mm_rb))
1725                 goto check_highest;
1726         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1727         if (vma->rb_subtree_gap < length)
1728                 goto check_highest;
1729
1730         while (true) {
1731                 /* Visit left subtree if it looks promising */
1732                 gap_end = vma->vm_start;
1733                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1734                         struct vm_area_struct *left =
1735                                 rb_entry(vma->vm_rb.rb_left,
1736                                          struct vm_area_struct, vm_rb);
1737                         if (left->rb_subtree_gap >= length) {
1738                                 vma = left;
1739                                 continue;
1740                         }
1741                 }
1742
1743                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1744 check_current:
1745                 /* Check if current node has a suitable gap */
1746                 if (gap_start > high_limit)
1747                         return -ENOMEM;
1748                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1749                         goto found;
1750
1751                 /* Visit right subtree if it looks promising */
1752                 if (vma->vm_rb.rb_right) {
1753                         struct vm_area_struct *right =
1754                                 rb_entry(vma->vm_rb.rb_right,
1755                                          struct vm_area_struct, vm_rb);
1756                         if (right->rb_subtree_gap >= length) {
1757                                 vma = right;
1758                                 continue;
1759                         }
1760                 }
1761
1762                 /* Go back up the rbtree to find next candidate node */
1763                 while (true) {
1764                         struct rb_node *prev = &vma->vm_rb;
1765                         if (!rb_parent(prev))
1766                                 goto check_highest;
1767                         vma = rb_entry(rb_parent(prev),
1768                                        struct vm_area_struct, vm_rb);
1769                         if (prev == vma->vm_rb.rb_left) {
1770                                 gap_start = vma->vm_prev->vm_end;
1771                                 gap_end = vma->vm_start;
1772                                 goto check_current;
1773                         }
1774                 }
1775         }
1776
1777 check_highest:
1778         /* Check highest gap, which does not precede any rbtree node */
1779         gap_start = mm->highest_vm_end;
1780         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1781         if (gap_start > high_limit)
1782                 return -ENOMEM;
1783
1784 found:
1785         /* We found a suitable gap. Clip it with the original low_limit. */
1786         if (gap_start < info->low_limit)
1787                 gap_start = info->low_limit;
1788
1789         /* Adjust gap address to the desired alignment */
1790         gap_start += (info->align_offset - gap_start) & info->align_mask;
1791
1792         VM_BUG_ON(gap_start + info->length > info->high_limit);
1793         VM_BUG_ON(gap_start + info->length > gap_end);
1794         return gap_start;
1795 }
1796
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1798 {
1799         struct mm_struct *mm = current->mm;
1800         struct vm_area_struct *vma;
1801         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1802
1803         /* Adjust search length to account for worst case alignment overhead */
1804         length = info->length + info->align_mask;
1805         if (length < info->length)
1806                 return -ENOMEM;
1807
1808         /*
1809          * Adjust search limits by the desired length.
1810          * See implementation comment at top of unmapped_area().
1811          */
1812         gap_end = info->high_limit;
1813         if (gap_end < length)
1814                 return -ENOMEM;
1815         high_limit = gap_end - length;
1816
1817         if (info->low_limit > high_limit)
1818                 return -ENOMEM;
1819         low_limit = info->low_limit + length;
1820
1821         /* Check highest gap, which does not precede any rbtree node */
1822         gap_start = mm->highest_vm_end;
1823         if (gap_start <= high_limit)
1824                 goto found_highest;
1825
1826         /* Check if rbtree root looks promising */
1827         if (RB_EMPTY_ROOT(&mm->mm_rb))
1828                 return -ENOMEM;
1829         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830         if (vma->rb_subtree_gap < length)
1831                 return -ENOMEM;
1832
1833         while (true) {
1834                 /* Visit right subtree if it looks promising */
1835                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1836                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1837                         struct vm_area_struct *right =
1838                                 rb_entry(vma->vm_rb.rb_right,
1839                                          struct vm_area_struct, vm_rb);
1840                         if (right->rb_subtree_gap >= length) {
1841                                 vma = right;
1842                                 continue;
1843                         }
1844                 }
1845
1846 check_current:
1847                 /* Check if current node has a suitable gap */
1848                 gap_end = vma->vm_start;
1849                 if (gap_end < low_limit)
1850                         return -ENOMEM;
1851                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1852                         goto found;
1853
1854                 /* Visit left subtree if it looks promising */
1855                 if (vma->vm_rb.rb_left) {
1856                         struct vm_area_struct *left =
1857                                 rb_entry(vma->vm_rb.rb_left,
1858                                          struct vm_area_struct, vm_rb);
1859                         if (left->rb_subtree_gap >= length) {
1860                                 vma = left;
1861                                 continue;
1862                         }
1863                 }
1864
1865                 /* Go back up the rbtree to find next candidate node */
1866                 while (true) {
1867                         struct rb_node *prev = &vma->vm_rb;
1868                         if (!rb_parent(prev))
1869                                 return -ENOMEM;
1870                         vma = rb_entry(rb_parent(prev),
1871                                        struct vm_area_struct, vm_rb);
1872                         if (prev == vma->vm_rb.rb_right) {
1873                                 gap_start = vma->vm_prev ?
1874                                         vma->vm_prev->vm_end : 0;
1875                                 goto check_current;
1876                         }
1877                 }
1878         }
1879
1880 found:
1881         /* We found a suitable gap. Clip it with the original high_limit. */
1882         if (gap_end > info->high_limit)
1883                 gap_end = info->high_limit;
1884
1885 found_highest:
1886         /* Compute highest gap address at the desired alignment */
1887         gap_end -= info->length;
1888         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1889
1890         VM_BUG_ON(gap_end < info->low_limit);
1891         VM_BUG_ON(gap_end < gap_start);
1892         return gap_end;
1893 }
1894
1895 /* Get an address range which is currently unmapped.
1896  * For shmat() with addr=0.
1897  *
1898  * Ugly calling convention alert:
1899  * Return value with the low bits set means error value,
1900  * ie
1901  *      if (ret & ~PAGE_MASK)
1902  *              error = ret;
1903  *
1904  * This function "knows" that -ENOMEM has the bits set.
1905  */
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1907 unsigned long
1908 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1909                 unsigned long len, unsigned long pgoff, unsigned long flags)
1910 {
1911         struct mm_struct *mm = current->mm;
1912         struct vm_area_struct *vma;
1913         struct vm_unmapped_area_info info;
1914
1915         if (len > TASK_SIZE - mmap_min_addr)
1916                 return -ENOMEM;
1917
1918         if (flags & MAP_FIXED)
1919                 return addr;
1920
1921         if (addr) {
1922                 addr = PAGE_ALIGN(addr);
1923                 vma = find_vma(mm, addr);
1924                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1925                     (!vma || addr + len <= vma->vm_start))
1926                         return addr;
1927         }
1928
1929         info.flags = 0;
1930         info.length = len;
1931         info.low_limit = mm->mmap_base;
1932         info.high_limit = TASK_SIZE;
1933         info.align_mask = 0;
1934         return vm_unmapped_area(&info);
1935 }
1936 #endif
1937
1938 /*
1939  * This mmap-allocator allocates new areas top-down from below the
1940  * stack's low limit (the base):
1941  */
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1943 unsigned long
1944 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1945                           const unsigned long len, const unsigned long pgoff,
1946                           const unsigned long flags)
1947 {
1948         struct vm_area_struct *vma;
1949         struct mm_struct *mm = current->mm;
1950         unsigned long addr = addr0;
1951         struct vm_unmapped_area_info info;
1952
1953         /* requested length too big for entire address space */
1954         if (len > TASK_SIZE - mmap_min_addr)
1955                 return -ENOMEM;
1956
1957         if (flags & MAP_FIXED)
1958                 return addr;
1959
1960         /* requesting a specific address */
1961         if (addr) {
1962                 addr = PAGE_ALIGN(addr);
1963                 vma = find_vma(mm, addr);
1964                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1965                                 (!vma || addr + len <= vma->vm_start))
1966                         return addr;
1967         }
1968
1969         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1970         info.length = len;
1971         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1972         info.high_limit = mm->mmap_base;
1973         info.align_mask = 0;
1974         addr = vm_unmapped_area(&info);
1975
1976         /*
1977          * A failed mmap() very likely causes application failure,
1978          * so fall back to the bottom-up function here. This scenario
1979          * can happen with large stack limits and large mmap()
1980          * allocations.
1981          */
1982         if (addr & ~PAGE_MASK) {
1983                 VM_BUG_ON(addr != -ENOMEM);
1984                 info.flags = 0;
1985                 info.low_limit = TASK_UNMAPPED_BASE;
1986                 info.high_limit = TASK_SIZE;
1987                 addr = vm_unmapped_area(&info);
1988         }
1989
1990         return addr;
1991 }
1992 #endif
1993
1994 unsigned long
1995 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1996                 unsigned long pgoff, unsigned long flags)
1997 {
1998         unsigned long (*get_area)(struct file *, unsigned long,
1999                                   unsigned long, unsigned long, unsigned long);
2000
2001         unsigned long error = arch_mmap_check(addr, len, flags);
2002         if (error)
2003                 return error;
2004
2005         /* Careful about overflows.. */
2006         if (len > TASK_SIZE)
2007                 return -ENOMEM;
2008
2009         get_area = current->mm->get_unmapped_area;
2010         if (file && file->f_op->get_unmapped_area)
2011                 get_area = file->f_op->get_unmapped_area;
2012         addr = get_area(file, addr, len, pgoff, flags);
2013         if (IS_ERR_VALUE(addr))
2014                 return addr;
2015
2016         if (addr > TASK_SIZE - len)
2017                 return -ENOMEM;
2018         if (addr & ~PAGE_MASK)
2019                 return -EINVAL;
2020
2021         addr = arch_rebalance_pgtables(addr, len);
2022         error = security_mmap_addr(addr);
2023         return error ? error : addr;
2024 }
2025
2026 EXPORT_SYMBOL(get_unmapped_area);
2027
2028 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2029 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2030 {
2031         struct rb_node *rb_node;
2032         struct vm_area_struct *vma;
2033
2034         /* Check the cache first. */
2035         vma = vmacache_find(mm, addr);
2036         if (likely(vma))
2037                 return vma;
2038
2039         rb_node = mm->mm_rb.rb_node;
2040         vma = NULL;
2041
2042         while (rb_node) {
2043                 struct vm_area_struct *tmp;
2044
2045                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2046
2047                 if (tmp->vm_end > addr) {
2048                         vma = tmp;
2049                         if (tmp->vm_start <= addr)
2050                                 break;
2051                         rb_node = rb_node->rb_left;
2052                 } else
2053                         rb_node = rb_node->rb_right;
2054         }
2055
2056         if (vma)
2057                 vmacache_update(addr, vma);
2058         return vma;
2059 }
2060
2061 EXPORT_SYMBOL(find_vma);
2062
2063 /*
2064  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2065  */
2066 struct vm_area_struct *
2067 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2068                         struct vm_area_struct **pprev)
2069 {
2070         struct vm_area_struct *vma;
2071
2072         vma = find_vma(mm, addr);
2073         if (vma) {
2074                 *pprev = vma->vm_prev;
2075         } else {
2076                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2077                 *pprev = NULL;
2078                 while (rb_node) {
2079                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2080                         rb_node = rb_node->rb_right;
2081                 }
2082         }
2083         return vma;
2084 }
2085
2086 /*
2087  * Verify that the stack growth is acceptable and
2088  * update accounting. This is shared with both the
2089  * grow-up and grow-down cases.
2090  */
2091 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2092 {
2093         struct mm_struct *mm = vma->vm_mm;
2094         struct rlimit *rlim = current->signal->rlim;
2095         unsigned long new_start, actual_size;
2096
2097         /* address space limit tests */
2098         if (!may_expand_vm(mm, grow))
2099                 return -ENOMEM;
2100
2101         /* Stack limit test */
2102         actual_size = size;
2103         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2104                 actual_size -= PAGE_SIZE;
2105         if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2106                 return -ENOMEM;
2107
2108         /* mlock limit tests */
2109         if (vma->vm_flags & VM_LOCKED) {
2110                 unsigned long locked;
2111                 unsigned long limit;
2112                 locked = mm->locked_vm + grow;
2113                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2114                 limit >>= PAGE_SHIFT;
2115                 if (locked > limit && !capable(CAP_IPC_LOCK))
2116                         return -ENOMEM;
2117         }
2118
2119         /* Check to ensure the stack will not grow into a hugetlb-only region */
2120         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2121                         vma->vm_end - size;
2122         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2123                 return -EFAULT;
2124
2125         /*
2126          * Overcommit..  This must be the final test, as it will
2127          * update security statistics.
2128          */
2129         if (security_vm_enough_memory_mm(mm, grow))
2130                 return -ENOMEM;
2131
2132         /* Ok, everything looks good - let it rip */
2133         if (vma->vm_flags & VM_LOCKED)
2134                 mm->locked_vm += grow;
2135         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2136         return 0;
2137 }
2138
2139 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2140 /*
2141  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2142  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2143  */
2144 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2145 {
2146         int error;
2147
2148         if (!(vma->vm_flags & VM_GROWSUP))
2149                 return -EFAULT;
2150
2151         /*
2152          * We must make sure the anon_vma is allocated
2153          * so that the anon_vma locking is not a noop.
2154          */
2155         if (unlikely(anon_vma_prepare(vma)))
2156                 return -ENOMEM;
2157         vma_lock_anon_vma(vma);
2158
2159         /*
2160          * vma->vm_start/vm_end cannot change under us because the caller
2161          * is required to hold the mmap_sem in read mode.  We need the
2162          * anon_vma lock to serialize against concurrent expand_stacks.
2163          * Also guard against wrapping around to address 0.
2164          */
2165         if (address < PAGE_ALIGN(address+4))
2166                 address = PAGE_ALIGN(address+4);
2167         else {
2168                 vma_unlock_anon_vma(vma);
2169                 return -ENOMEM;
2170         }
2171         error = 0;
2172
2173         /* Somebody else might have raced and expanded it already */
2174         if (address > vma->vm_end) {
2175                 unsigned long size, grow;
2176
2177                 size = address - vma->vm_start;
2178                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2179
2180                 error = -ENOMEM;
2181                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2182                         error = acct_stack_growth(vma, size, grow);
2183                         if (!error) {
2184                                 /*
2185                                  * vma_gap_update() doesn't support concurrent
2186                                  * updates, but we only hold a shared mmap_sem
2187                                  * lock here, so we need to protect against
2188                                  * concurrent vma expansions.
2189                                  * vma_lock_anon_vma() doesn't help here, as
2190                                  * we don't guarantee that all growable vmas
2191                                  * in a mm share the same root anon vma.
2192                                  * So, we reuse mm->page_table_lock to guard
2193                                  * against concurrent vma expansions.
2194                                  */
2195                                 spin_lock(&vma->vm_mm->page_table_lock);
2196                                 anon_vma_interval_tree_pre_update_vma(vma);
2197                                 vma->vm_end = address;
2198                                 anon_vma_interval_tree_post_update_vma(vma);
2199                                 if (vma->vm_next)
2200                                         vma_gap_update(vma->vm_next);
2201                                 else
2202                                         vma->vm_mm->highest_vm_end = address;
2203                                 spin_unlock(&vma->vm_mm->page_table_lock);
2204
2205                                 perf_event_mmap(vma);
2206                         }
2207                 }
2208         }
2209         vma_unlock_anon_vma(vma);
2210         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2211         validate_mm(vma->vm_mm);
2212         return error;
2213 }
2214 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2215
2216 /*
2217  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2218  */
2219 int expand_downwards(struct vm_area_struct *vma,
2220                                    unsigned long address)
2221 {
2222         int error;
2223
2224         /*
2225          * We must make sure the anon_vma is allocated
2226          * so that the anon_vma locking is not a noop.
2227          */
2228         if (unlikely(anon_vma_prepare(vma)))
2229                 return -ENOMEM;
2230
2231         address &= PAGE_MASK;
2232         error = security_mmap_addr(address);
2233         if (error)
2234                 return error;
2235
2236         vma_lock_anon_vma(vma);
2237
2238         /*
2239          * vma->vm_start/vm_end cannot change under us because the caller
2240          * is required to hold the mmap_sem in read mode.  We need the
2241          * anon_vma lock to serialize against concurrent expand_stacks.
2242          */
2243
2244         /* Somebody else might have raced and expanded it already */
2245         if (address < vma->vm_start) {
2246                 unsigned long size, grow;
2247
2248                 size = vma->vm_end - address;
2249                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2250
2251                 error = -ENOMEM;
2252                 if (grow <= vma->vm_pgoff) {
2253                         error = acct_stack_growth(vma, size, grow);
2254                         if (!error) {
2255                                 /*
2256                                  * vma_gap_update() doesn't support concurrent
2257                                  * updates, but we only hold a shared mmap_sem
2258                                  * lock here, so we need to protect against
2259                                  * concurrent vma expansions.
2260                                  * vma_lock_anon_vma() doesn't help here, as
2261                                  * we don't guarantee that all growable vmas
2262                                  * in a mm share the same root anon vma.
2263                                  * So, we reuse mm->page_table_lock to guard
2264                                  * against concurrent vma expansions.
2265                                  */
2266                                 spin_lock(&vma->vm_mm->page_table_lock);
2267                                 anon_vma_interval_tree_pre_update_vma(vma);
2268                                 vma->vm_start = address;
2269                                 vma->vm_pgoff -= grow;
2270                                 anon_vma_interval_tree_post_update_vma(vma);
2271                                 vma_gap_update(vma);
2272                                 spin_unlock(&vma->vm_mm->page_table_lock);
2273
2274                                 perf_event_mmap(vma);
2275                         }
2276                 }
2277         }
2278         vma_unlock_anon_vma(vma);
2279         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2280         validate_mm(vma->vm_mm);
2281         return error;
2282 }
2283
2284 /*
2285  * Note how expand_stack() refuses to expand the stack all the way to
2286  * abut the next virtual mapping, *unless* that mapping itself is also
2287  * a stack mapping. We want to leave room for a guard page, after all
2288  * (the guard page itself is not added here, that is done by the
2289  * actual page faulting logic)
2290  *
2291  * This matches the behavior of the guard page logic (see mm/memory.c:
2292  * check_stack_guard_page()), which only allows the guard page to be
2293  * removed under these circumstances.
2294  */
2295 #ifdef CONFIG_STACK_GROWSUP
2296 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2297 {
2298         struct vm_area_struct *next;
2299
2300         address &= PAGE_MASK;
2301         next = vma->vm_next;
2302         if (next && next->vm_start == address + PAGE_SIZE) {
2303                 if (!(next->vm_flags & VM_GROWSUP))
2304                         return -ENOMEM;
2305         }
2306         return expand_upwards(vma, address);
2307 }
2308
2309 struct vm_area_struct *
2310 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2311 {
2312         struct vm_area_struct *vma, *prev;
2313
2314         addr &= PAGE_MASK;
2315         vma = find_vma_prev(mm, addr, &prev);
2316         if (vma && (vma->vm_start <= addr))
2317                 return vma;
2318         if (!prev || expand_stack(prev, addr))
2319                 return NULL;
2320         if (prev->vm_flags & VM_LOCKED)
2321                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2322         return prev;
2323 }
2324 #else
2325 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2326 {
2327         struct vm_area_struct *prev;
2328
2329         address &= PAGE_MASK;
2330         prev = vma->vm_prev;
2331         if (prev && prev->vm_end == address) {
2332                 if (!(prev->vm_flags & VM_GROWSDOWN))
2333                         return -ENOMEM;
2334         }
2335         return expand_downwards(vma, address);
2336 }
2337
2338 struct vm_area_struct *
2339 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2340 {
2341         struct vm_area_struct *vma;
2342         unsigned long start;
2343
2344         addr &= PAGE_MASK;
2345         vma = find_vma(mm, addr);
2346         if (!vma)
2347                 return NULL;
2348         if (vma->vm_start <= addr)
2349                 return vma;
2350         if (!(vma->vm_flags & VM_GROWSDOWN))
2351                 return NULL;
2352         start = vma->vm_start;
2353         if (expand_stack(vma, addr))
2354                 return NULL;
2355         if (vma->vm_flags & VM_LOCKED)
2356                 __mlock_vma_pages_range(vma, addr, start, NULL);
2357         return vma;
2358 }
2359 #endif
2360
2361 EXPORT_SYMBOL_GPL(find_extend_vma);
2362
2363 /*
2364  * Ok - we have the memory areas we should free on the vma list,
2365  * so release them, and do the vma updates.
2366  *
2367  * Called with the mm semaphore held.
2368  */
2369 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2370 {
2371         unsigned long nr_accounted = 0;
2372
2373         /* Update high watermark before we lower total_vm */
2374         update_hiwater_vm(mm);
2375         do {
2376                 long nrpages = vma_pages(vma);
2377
2378                 if (vma->vm_flags & VM_ACCOUNT)
2379                         nr_accounted += nrpages;
2380                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2381                 vma = remove_vma(vma);
2382         } while (vma);
2383         vm_unacct_memory(nr_accounted);
2384         validate_mm(mm);
2385 }
2386
2387 /*
2388  * Get rid of page table information in the indicated region.
2389  *
2390  * Called with the mm semaphore held.
2391  */
2392 static void unmap_region(struct mm_struct *mm,
2393                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2394                 unsigned long start, unsigned long end)
2395 {
2396         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2397         struct mmu_gather tlb;
2398
2399         lru_add_drain();
2400         tlb_gather_mmu(&tlb, mm, start, end);
2401         update_hiwater_rss(mm);
2402         unmap_vmas(&tlb, vma, start, end);
2403         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2404                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2405         tlb_finish_mmu(&tlb, start, end);
2406 }
2407
2408 /*
2409  * Create a list of vma's touched by the unmap, removing them from the mm's
2410  * vma list as we go..
2411  */
2412 static void
2413 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2414         struct vm_area_struct *prev, unsigned long end)
2415 {
2416         struct vm_area_struct **insertion_point;
2417         struct vm_area_struct *tail_vma = NULL;
2418
2419         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2420         vma->vm_prev = NULL;
2421         do {
2422                 vma_rb_erase(vma, &mm->mm_rb);
2423                 mm->map_count--;
2424                 tail_vma = vma;
2425                 vma = vma->vm_next;
2426         } while (vma && vma->vm_start < end);
2427         *insertion_point = vma;
2428         if (vma) {
2429                 vma->vm_prev = prev;
2430                 vma_gap_update(vma);
2431         } else
2432                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2433         tail_vma->vm_next = NULL;
2434
2435         /* Kill the cache */
2436         vmacache_invalidate(mm);
2437 }
2438
2439 /*
2440  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2441  * munmap path where it doesn't make sense to fail.
2442  */
2443 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2444               unsigned long addr, int new_below)
2445 {
2446         struct vm_area_struct *new;
2447         int err = -ENOMEM;
2448
2449         if (is_vm_hugetlb_page(vma) && (addr &
2450                                         ~(huge_page_mask(hstate_vma(vma)))))
2451                 return -EINVAL;
2452
2453         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2454         if (!new)
2455                 goto out_err;
2456
2457         /* most fields are the same, copy all, and then fixup */
2458         *new = *vma;
2459
2460         INIT_LIST_HEAD(&new->anon_vma_chain);
2461
2462         if (new_below)
2463                 new->vm_end = addr;
2464         else {
2465                 new->vm_start = addr;
2466                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2467         }
2468
2469         err = vma_dup_policy(vma, new);
2470         if (err)
2471                 goto out_free_vma;
2472
2473         err = anon_vma_clone(new, vma);
2474         if (err)
2475                 goto out_free_mpol;
2476
2477         if (new->vm_file)
2478                 get_file(new->vm_file);
2479
2480         if (new->vm_ops && new->vm_ops->open)
2481                 new->vm_ops->open(new);
2482
2483         if (new_below)
2484                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2485                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2486         else
2487                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2488
2489         /* Success. */
2490         if (!err)
2491                 return 0;
2492
2493         /* Clean everything up if vma_adjust failed. */
2494         if (new->vm_ops && new->vm_ops->close)
2495                 new->vm_ops->close(new);
2496         if (new->vm_file)
2497                 fput(new->vm_file);
2498         unlink_anon_vmas(new);
2499  out_free_mpol:
2500         mpol_put(vma_policy(new));
2501  out_free_vma:
2502         kmem_cache_free(vm_area_cachep, new);
2503  out_err:
2504         return err;
2505 }
2506
2507 /*
2508  * Split a vma into two pieces at address 'addr', a new vma is allocated
2509  * either for the first part or the tail.
2510  */
2511 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2512               unsigned long addr, int new_below)
2513 {
2514         if (mm->map_count >= sysctl_max_map_count)
2515                 return -ENOMEM;
2516
2517         return __split_vma(mm, vma, addr, new_below);
2518 }
2519
2520 /* Munmap is split into 2 main parts -- this part which finds
2521  * what needs doing, and the areas themselves, which do the
2522  * work.  This now handles partial unmappings.
2523  * Jeremy Fitzhardinge <jeremy@goop.org>
2524  */
2525 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2526 {
2527         unsigned long end;
2528         struct vm_area_struct *vma, *prev, *last;
2529
2530         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2531                 return -EINVAL;
2532
2533         len = PAGE_ALIGN(len);
2534         if (len == 0)
2535                 return -EINVAL;
2536
2537         /* Find the first overlapping VMA */
2538         vma = find_vma(mm, start);
2539         if (!vma)
2540                 return 0;
2541         prev = vma->vm_prev;
2542         /* we have  start < vma->vm_end  */
2543
2544         /* if it doesn't overlap, we have nothing.. */
2545         end = start + len;
2546         if (vma->vm_start >= end)
2547                 return 0;
2548
2549         /*
2550          * If we need to split any vma, do it now to save pain later.
2551          *
2552          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2553          * unmapped vm_area_struct will remain in use: so lower split_vma
2554          * places tmp vma above, and higher split_vma places tmp vma below.
2555          */
2556         if (start > vma->vm_start) {
2557                 int error;
2558
2559                 /*
2560                  * Make sure that map_count on return from munmap() will
2561                  * not exceed its limit; but let map_count go just above
2562                  * its limit temporarily, to help free resources as expected.
2563                  */
2564                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2565                         return -ENOMEM;
2566
2567                 error = __split_vma(mm, vma, start, 0);
2568                 if (error)
2569                         return error;
2570                 prev = vma;
2571         }
2572
2573         /* Does it split the last one? */
2574         last = find_vma(mm, end);
2575         if (last && end > last->vm_start) {
2576                 int error = __split_vma(mm, last, end, 1);
2577                 if (error)
2578                         return error;
2579         }
2580         vma = prev ? prev->vm_next : mm->mmap;
2581
2582         /*
2583          * unlock any mlock()ed ranges before detaching vmas
2584          */
2585         if (mm->locked_vm) {
2586                 struct vm_area_struct *tmp = vma;
2587                 while (tmp && tmp->vm_start < end) {
2588                         if (tmp->vm_flags & VM_LOCKED) {
2589                                 mm->locked_vm -= vma_pages(tmp);
2590                                 munlock_vma_pages_all(tmp);
2591                         }
2592                         tmp = tmp->vm_next;
2593                 }
2594         }
2595
2596         /*
2597          * Remove the vma's, and unmap the actual pages
2598          */
2599         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2600         unmap_region(mm, vma, prev, start, end);
2601
2602         arch_unmap(mm, vma, start, end);
2603
2604         /* Fix up all other VM information */
2605         remove_vma_list(mm, vma);
2606
2607         return 0;
2608 }
2609
2610 int vm_munmap(unsigned long start, size_t len)
2611 {
2612         int ret;
2613         struct mm_struct *mm = current->mm;
2614
2615         down_write(&mm->mmap_sem);
2616         ret = do_munmap(mm, start, len);
2617         up_write(&mm->mmap_sem);
2618         return ret;
2619 }
2620 EXPORT_SYMBOL(vm_munmap);
2621
2622 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2623 {
2624         profile_munmap(addr);
2625         return vm_munmap(addr, len);
2626 }
2627
2628
2629 /*
2630  * Emulation of deprecated remap_file_pages() syscall.
2631  */
2632 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2633                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2634 {
2635
2636         struct mm_struct *mm = current->mm;
2637         struct vm_area_struct *vma;
2638         unsigned long populate = 0;
2639         unsigned long ret = -EINVAL;
2640         struct file *file;
2641
2642         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2643                         "See Documentation/vm/remap_file_pages.txt.\n",
2644                         current->comm, current->pid);
2645
2646         if (prot)
2647                 return ret;
2648         start = start & PAGE_MASK;
2649         size = size & PAGE_MASK;
2650
2651         if (start + size <= start)
2652                 return ret;
2653
2654         /* Does pgoff wrap? */
2655         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2656                 return ret;
2657
2658         down_write(&mm->mmap_sem);
2659         vma = find_vma(mm, start);
2660
2661         if (!vma || !(vma->vm_flags & VM_SHARED))
2662                 goto out;
2663
2664         if (start < vma->vm_start || start + size > vma->vm_end)
2665                 goto out;
2666
2667         if (pgoff == linear_page_index(vma, start)) {
2668                 ret = 0;
2669                 goto out;
2670         }
2671
2672         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2673         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2674         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2675
2676         flags &= MAP_NONBLOCK;
2677         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2678         if (vma->vm_flags & VM_LOCKED) {
2679                 flags |= MAP_LOCKED;
2680                 /* drop PG_Mlocked flag for over-mapped range */
2681                 munlock_vma_pages_range(vma, start, start + size);
2682         }
2683
2684         file = get_file(vma->vm_file);
2685         ret = do_mmap_pgoff(vma->vm_file, start, size,
2686                         prot, flags, pgoff, &populate);
2687         fput(file);
2688 out:
2689         up_write(&mm->mmap_sem);
2690         if (populate)
2691                 mm_populate(ret, populate);
2692         if (!IS_ERR_VALUE(ret))
2693                 ret = 0;
2694         return ret;
2695 }
2696
2697 static inline void verify_mm_writelocked(struct mm_struct *mm)
2698 {
2699 #ifdef CONFIG_DEBUG_VM
2700         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2701                 WARN_ON(1);
2702                 up_read(&mm->mmap_sem);
2703         }
2704 #endif
2705 }
2706
2707 /*
2708  *  this is really a simplified "do_mmap".  it only handles
2709  *  anonymous maps.  eventually we may be able to do some
2710  *  brk-specific accounting here.
2711  */
2712 static unsigned long do_brk(unsigned long addr, unsigned long len)
2713 {
2714         struct mm_struct *mm = current->mm;
2715         struct vm_area_struct *vma, *prev;
2716         unsigned long flags;
2717         struct rb_node **rb_link, *rb_parent;
2718         pgoff_t pgoff = addr >> PAGE_SHIFT;
2719         int error;
2720
2721         len = PAGE_ALIGN(len);
2722         if (!len)
2723                 return addr;
2724
2725         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2726
2727         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2728         if (error & ~PAGE_MASK)
2729                 return error;
2730
2731         error = mlock_future_check(mm, mm->def_flags, len);
2732         if (error)
2733                 return error;
2734
2735         /*
2736          * mm->mmap_sem is required to protect against another thread
2737          * changing the mappings in case we sleep.
2738          */
2739         verify_mm_writelocked(mm);
2740
2741         /*
2742          * Clear old maps.  this also does some error checking for us
2743          */
2744  munmap_back:
2745         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2746                 if (do_munmap(mm, addr, len))
2747                         return -ENOMEM;
2748                 goto munmap_back;
2749         }
2750
2751         /* Check against address space limits *after* clearing old maps... */
2752         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2753                 return -ENOMEM;
2754
2755         if (mm->map_count > sysctl_max_map_count)
2756                 return -ENOMEM;
2757
2758         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2759                 return -ENOMEM;
2760
2761         /* Can we just expand an old private anonymous mapping? */
2762         vma = vma_merge(mm, prev, addr, addr + len, flags,
2763                                         NULL, NULL, pgoff, NULL);
2764         if (vma)
2765                 goto out;
2766
2767         /*
2768          * create a vma struct for an anonymous mapping
2769          */
2770         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2771         if (!vma) {
2772                 vm_unacct_memory(len >> PAGE_SHIFT);
2773                 return -ENOMEM;
2774         }
2775
2776         INIT_LIST_HEAD(&vma->anon_vma_chain);
2777         vma->vm_mm = mm;
2778         vma->vm_start = addr;
2779         vma->vm_end = addr + len;
2780         vma->vm_pgoff = pgoff;
2781         vma->vm_flags = flags;
2782         vma->vm_page_prot = vm_get_page_prot(flags);
2783         vma_link(mm, vma, prev, rb_link, rb_parent);
2784 out:
2785         perf_event_mmap(vma);
2786         mm->total_vm += len >> PAGE_SHIFT;
2787         if (flags & VM_LOCKED)
2788                 mm->locked_vm += (len >> PAGE_SHIFT);
2789         vma->vm_flags |= VM_SOFTDIRTY;
2790         return addr;
2791 }
2792
2793 unsigned long vm_brk(unsigned long addr, unsigned long len)
2794 {
2795         struct mm_struct *mm = current->mm;
2796         unsigned long ret;
2797         bool populate;
2798
2799         down_write(&mm->mmap_sem);
2800         ret = do_brk(addr, len);
2801         populate = ((mm->def_flags & VM_LOCKED) != 0);
2802         up_write(&mm->mmap_sem);
2803         if (populate)
2804                 mm_populate(addr, len);
2805         return ret;
2806 }
2807 EXPORT_SYMBOL(vm_brk);
2808
2809 /* Release all mmaps. */
2810 void exit_mmap(struct mm_struct *mm)
2811 {
2812         struct mmu_gather tlb;
2813         struct vm_area_struct *vma;
2814         unsigned long nr_accounted = 0;
2815
2816         /* mm's last user has gone, and its about to be pulled down */
2817         mmu_notifier_release(mm);
2818
2819         if (mm->locked_vm) {
2820                 vma = mm->mmap;
2821                 while (vma) {
2822                         if (vma->vm_flags & VM_LOCKED)
2823                                 munlock_vma_pages_all(vma);
2824                         vma = vma->vm_next;
2825                 }
2826         }
2827
2828         arch_exit_mmap(mm);
2829
2830         vma = mm->mmap;
2831         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2832                 return;
2833
2834         lru_add_drain();
2835         flush_cache_mm(mm);
2836         tlb_gather_mmu(&tlb, mm, 0, -1);
2837         /* update_hiwater_rss(mm) here? but nobody should be looking */
2838         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2839         unmap_vmas(&tlb, vma, 0, -1);
2840
2841         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2842         tlb_finish_mmu(&tlb, 0, -1);
2843
2844         /*
2845          * Walk the list again, actually closing and freeing it,
2846          * with preemption enabled, without holding any MM locks.
2847          */
2848         while (vma) {
2849                 if (vma->vm_flags & VM_ACCOUNT)
2850                         nr_accounted += vma_pages(vma);
2851                 vma = remove_vma(vma);
2852         }
2853         vm_unacct_memory(nr_accounted);
2854 }
2855
2856 /* Insert vm structure into process list sorted by address
2857  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2858  * then i_mmap_rwsem is taken here.
2859  */
2860 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2861 {
2862         struct vm_area_struct *prev;
2863         struct rb_node **rb_link, *rb_parent;
2864
2865         /*
2866          * The vm_pgoff of a purely anonymous vma should be irrelevant
2867          * until its first write fault, when page's anon_vma and index
2868          * are set.  But now set the vm_pgoff it will almost certainly
2869          * end up with (unless mremap moves it elsewhere before that
2870          * first wfault), so /proc/pid/maps tells a consistent story.
2871          *
2872          * By setting it to reflect the virtual start address of the
2873          * vma, merges and splits can happen in a seamless way, just
2874          * using the existing file pgoff checks and manipulations.
2875          * Similarly in do_mmap_pgoff and in do_brk.
2876          */
2877         if (!vma->vm_file) {
2878                 BUG_ON(vma->anon_vma);
2879                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2880         }
2881         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2882                            &prev, &rb_link, &rb_parent))
2883                 return -ENOMEM;
2884         if ((vma->vm_flags & VM_ACCOUNT) &&
2885              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2886                 return -ENOMEM;
2887
2888         vma_link(mm, vma, prev, rb_link, rb_parent);
2889         return 0;
2890 }
2891
2892 /*
2893  * Copy the vma structure to a new location in the same mm,
2894  * prior to moving page table entries, to effect an mremap move.
2895  */
2896 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2897         unsigned long addr, unsigned long len, pgoff_t pgoff,
2898         bool *need_rmap_locks)
2899 {
2900         struct vm_area_struct *vma = *vmap;
2901         unsigned long vma_start = vma->vm_start;
2902         struct mm_struct *mm = vma->vm_mm;
2903         struct vm_area_struct *new_vma, *prev;
2904         struct rb_node **rb_link, *rb_parent;
2905         bool faulted_in_anon_vma = true;
2906
2907         /*
2908          * If anonymous vma has not yet been faulted, update new pgoff
2909          * to match new location, to increase its chance of merging.
2910          */
2911         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2912                 pgoff = addr >> PAGE_SHIFT;
2913                 faulted_in_anon_vma = false;
2914         }
2915
2916         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2917                 return NULL;    /* should never get here */
2918         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2919                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2920         if (new_vma) {
2921                 /*
2922                  * Source vma may have been merged into new_vma
2923                  */
2924                 if (unlikely(vma_start >= new_vma->vm_start &&
2925                              vma_start < new_vma->vm_end)) {
2926                         /*
2927                          * The only way we can get a vma_merge with
2928                          * self during an mremap is if the vma hasn't
2929                          * been faulted in yet and we were allowed to
2930                          * reset the dst vma->vm_pgoff to the
2931                          * destination address of the mremap to allow
2932                          * the merge to happen. mremap must change the
2933                          * vm_pgoff linearity between src and dst vmas
2934                          * (in turn preventing a vma_merge) to be
2935                          * safe. It is only safe to keep the vm_pgoff
2936                          * linear if there are no pages mapped yet.
2937                          */
2938                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2939                         *vmap = vma = new_vma;
2940                 }
2941                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2942         } else {
2943                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2944                 if (new_vma) {
2945                         *new_vma = *vma;
2946                         new_vma->vm_start = addr;
2947                         new_vma->vm_end = addr + len;
2948                         new_vma->vm_pgoff = pgoff;
2949                         if (vma_dup_policy(vma, new_vma))
2950                                 goto out_free_vma;
2951                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2952                         if (anon_vma_clone(new_vma, vma))
2953                                 goto out_free_mempol;
2954                         if (new_vma->vm_file)
2955                                 get_file(new_vma->vm_file);
2956                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2957                                 new_vma->vm_ops->open(new_vma);
2958                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2959                         *need_rmap_locks = false;
2960                 }
2961         }
2962         return new_vma;
2963
2964  out_free_mempol:
2965         mpol_put(vma_policy(new_vma));
2966  out_free_vma:
2967         kmem_cache_free(vm_area_cachep, new_vma);
2968         return NULL;
2969 }
2970
2971 /*
2972  * Return true if the calling process may expand its vm space by the passed
2973  * number of pages
2974  */
2975 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2976 {
2977         unsigned long cur = mm->total_vm;       /* pages */
2978         unsigned long lim;
2979
2980         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2981
2982         if (cur + npages > lim)
2983                 return 0;
2984         return 1;
2985 }
2986
2987 static int special_mapping_fault(struct vm_area_struct *vma,
2988                                  struct vm_fault *vmf);
2989
2990 /*
2991  * Having a close hook prevents vma merging regardless of flags.
2992  */
2993 static void special_mapping_close(struct vm_area_struct *vma)
2994 {
2995 }
2996
2997 static const char *special_mapping_name(struct vm_area_struct *vma)
2998 {
2999         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3000 }
3001
3002 static const struct vm_operations_struct special_mapping_vmops = {
3003         .close = special_mapping_close,
3004         .fault = special_mapping_fault,
3005         .name = special_mapping_name,
3006 };
3007
3008 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3009         .close = special_mapping_close,
3010         .fault = special_mapping_fault,
3011 };
3012
3013 static int special_mapping_fault(struct vm_area_struct *vma,
3014                                 struct vm_fault *vmf)
3015 {
3016         pgoff_t pgoff;
3017         struct page **pages;
3018
3019         /*
3020          * special mappings have no vm_file, and in that case, the mm
3021          * uses vm_pgoff internally. So we have to subtract it from here.
3022          * We are allowed to do this because we are the mm; do not copy
3023          * this code into drivers!
3024          */
3025         pgoff = vmf->pgoff - vma->vm_pgoff;
3026
3027         if (vma->vm_ops == &legacy_special_mapping_vmops)
3028                 pages = vma->vm_private_data;
3029         else
3030                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3031                         pages;
3032
3033         for (; pgoff && *pages; ++pages)
3034                 pgoff--;
3035
3036         if (*pages) {
3037                 struct page *page = *pages;
3038                 get_page(page);
3039                 vmf->page = page;
3040                 return 0;
3041         }
3042
3043         return VM_FAULT_SIGBUS;
3044 }
3045
3046 static struct vm_area_struct *__install_special_mapping(
3047         struct mm_struct *mm,
3048         unsigned long addr, unsigned long len,
3049         unsigned long vm_flags, const struct vm_operations_struct *ops,
3050         void *priv)
3051 {
3052         int ret;
3053         struct vm_area_struct *vma;
3054
3055         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3056         if (unlikely(vma == NULL))
3057                 return ERR_PTR(-ENOMEM);
3058
3059         INIT_LIST_HEAD(&vma->anon_vma_chain);
3060         vma->vm_mm = mm;
3061         vma->vm_start = addr;
3062         vma->vm_end = addr + len;
3063
3064         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3065         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3066
3067         vma->vm_ops = ops;
3068         vma->vm_private_data = priv;
3069
3070         ret = insert_vm_struct(mm, vma);
3071         if (ret)
3072                 goto out;
3073
3074         mm->total_vm += len >> PAGE_SHIFT;
3075
3076         perf_event_mmap(vma);
3077
3078         return vma;
3079
3080 out:
3081         kmem_cache_free(vm_area_cachep, vma);
3082         return ERR_PTR(ret);
3083 }
3084
3085 /*
3086  * Called with mm->mmap_sem held for writing.
3087  * Insert a new vma covering the given region, with the given flags.
3088  * Its pages are supplied by the given array of struct page *.
3089  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3090  * The region past the last page supplied will always produce SIGBUS.
3091  * The array pointer and the pages it points to are assumed to stay alive
3092  * for as long as this mapping might exist.
3093  */
3094 struct vm_area_struct *_install_special_mapping(
3095         struct mm_struct *mm,
3096         unsigned long addr, unsigned long len,
3097         unsigned long vm_flags, const struct vm_special_mapping *spec)
3098 {
3099         return __install_special_mapping(mm, addr, len, vm_flags,
3100                                          &special_mapping_vmops, (void *)spec);
3101 }
3102
3103 int install_special_mapping(struct mm_struct *mm,
3104                             unsigned long addr, unsigned long len,
3105                             unsigned long vm_flags, struct page **pages)
3106 {
3107         struct vm_area_struct *vma = __install_special_mapping(
3108                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3109                 (void *)pages);
3110
3111         return PTR_ERR_OR_ZERO(vma);
3112 }
3113
3114 static DEFINE_MUTEX(mm_all_locks_mutex);
3115
3116 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3117 {
3118         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3119                 /*
3120                  * The LSB of head.next can't change from under us
3121                  * because we hold the mm_all_locks_mutex.
3122                  */
3123                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3124                 /*
3125                  * We can safely modify head.next after taking the
3126                  * anon_vma->root->rwsem. If some other vma in this mm shares
3127                  * the same anon_vma we won't take it again.
3128                  *
3129                  * No need of atomic instructions here, head.next
3130                  * can't change from under us thanks to the
3131                  * anon_vma->root->rwsem.
3132                  */
3133                 if (__test_and_set_bit(0, (unsigned long *)
3134                                        &anon_vma->root->rb_root.rb_node))
3135                         BUG();
3136         }
3137 }
3138
3139 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3140 {
3141         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3142                 /*
3143                  * AS_MM_ALL_LOCKS can't change from under us because
3144                  * we hold the mm_all_locks_mutex.
3145                  *
3146                  * Operations on ->flags have to be atomic because
3147                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3148                  * mm_all_locks_mutex, there may be other cpus
3149                  * changing other bitflags in parallel to us.
3150                  */
3151                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3152                         BUG();
3153                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3154         }
3155 }
3156
3157 /*
3158  * This operation locks against the VM for all pte/vma/mm related
3159  * operations that could ever happen on a certain mm. This includes
3160  * vmtruncate, try_to_unmap, and all page faults.
3161  *
3162  * The caller must take the mmap_sem in write mode before calling
3163  * mm_take_all_locks(). The caller isn't allowed to release the
3164  * mmap_sem until mm_drop_all_locks() returns.
3165  *
3166  * mmap_sem in write mode is required in order to block all operations
3167  * that could modify pagetables and free pages without need of
3168  * altering the vma layout. It's also needed in write mode to avoid new
3169  * anon_vmas to be associated with existing vmas.
3170  *
3171  * A single task can't take more than one mm_take_all_locks() in a row
3172  * or it would deadlock.
3173  *
3174  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3175  * mapping->flags avoid to take the same lock twice, if more than one
3176  * vma in this mm is backed by the same anon_vma or address_space.
3177  *
3178  * We can take all the locks in random order because the VM code
3179  * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3180  * takes more than one of them in a row. Secondly we're protected
3181  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3182  *
3183  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3184  * that may have to take thousand of locks.
3185  *
3186  * mm_take_all_locks() can fail if it's interrupted by signals.
3187  */
3188 int mm_take_all_locks(struct mm_struct *mm)
3189 {
3190         struct vm_area_struct *vma;
3191         struct anon_vma_chain *avc;
3192
3193         BUG_ON(down_read_trylock(&mm->mmap_sem));
3194
3195         mutex_lock(&mm_all_locks_mutex);
3196
3197         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3198                 if (signal_pending(current))
3199                         goto out_unlock;
3200                 if (vma->vm_file && vma->vm_file->f_mapping)
3201                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3202         }
3203
3204         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3205                 if (signal_pending(current))
3206                         goto out_unlock;
3207                 if (vma->anon_vma)
3208                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3209                                 vm_lock_anon_vma(mm, avc->anon_vma);
3210         }
3211
3212         return 0;
3213
3214 out_unlock:
3215         mm_drop_all_locks(mm);
3216         return -EINTR;
3217 }
3218
3219 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3220 {
3221         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3222                 /*
3223                  * The LSB of head.next can't change to 0 from under
3224                  * us because we hold the mm_all_locks_mutex.
3225                  *
3226                  * We must however clear the bitflag before unlocking
3227                  * the vma so the users using the anon_vma->rb_root will
3228                  * never see our bitflag.
3229                  *
3230                  * No need of atomic instructions here, head.next
3231                  * can't change from under us until we release the
3232                  * anon_vma->root->rwsem.
3233                  */
3234                 if (!__test_and_clear_bit(0, (unsigned long *)
3235                                           &anon_vma->root->rb_root.rb_node))
3236                         BUG();
3237                 anon_vma_unlock_write(anon_vma);
3238         }
3239 }
3240
3241 static void vm_unlock_mapping(struct address_space *mapping)
3242 {
3243         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3244                 /*
3245                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3246                  * because we hold the mm_all_locks_mutex.
3247                  */
3248                 i_mmap_unlock_write(mapping);
3249                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3250                                         &mapping->flags))
3251                         BUG();
3252         }
3253 }
3254
3255 /*
3256  * The mmap_sem cannot be released by the caller until
3257  * mm_drop_all_locks() returns.
3258  */
3259 void mm_drop_all_locks(struct mm_struct *mm)
3260 {
3261         struct vm_area_struct *vma;
3262         struct anon_vma_chain *avc;
3263
3264         BUG_ON(down_read_trylock(&mm->mmap_sem));
3265         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3266
3267         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3268                 if (vma->anon_vma)
3269                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3270                                 vm_unlock_anon_vma(avc->anon_vma);
3271                 if (vma->vm_file && vma->vm_file->f_mapping)
3272                         vm_unlock_mapping(vma->vm_file->f_mapping);
3273         }
3274
3275         mutex_unlock(&mm_all_locks_mutex);
3276 }
3277
3278 /*
3279  * initialise the VMA slab
3280  */
3281 void __init mmap_init(void)
3282 {
3283         int ret;
3284
3285         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3286         VM_BUG_ON(ret);
3287 }
3288
3289 /*
3290  * Initialise sysctl_user_reserve_kbytes.
3291  *
3292  * This is intended to prevent a user from starting a single memory hogging
3293  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3294  * mode.
3295  *
3296  * The default value is min(3% of free memory, 128MB)
3297  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3298  */
3299 static int init_user_reserve(void)
3300 {
3301         unsigned long free_kbytes;
3302
3303         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3304
3305         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3306         return 0;
3307 }
3308 subsys_initcall(init_user_reserve);
3309
3310 /*
3311  * Initialise sysctl_admin_reserve_kbytes.
3312  *
3313  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3314  * to log in and kill a memory hogging process.
3315  *
3316  * Systems with more than 256MB will reserve 8MB, enough to recover
3317  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3318  * only reserve 3% of free pages by default.
3319  */
3320 static int init_admin_reserve(void)
3321 {
3322         unsigned long free_kbytes;
3323
3324         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3325
3326         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3327         return 0;
3328 }
3329 subsys_initcall(init_admin_reserve);
3330
3331 /*
3332  * Reinititalise user and admin reserves if memory is added or removed.
3333  *
3334  * The default user reserve max is 128MB, and the default max for the
3335  * admin reserve is 8MB. These are usually, but not always, enough to
3336  * enable recovery from a memory hogging process using login/sshd, a shell,
3337  * and tools like top. It may make sense to increase or even disable the
3338  * reserve depending on the existence of swap or variations in the recovery
3339  * tools. So, the admin may have changed them.
3340  *
3341  * If memory is added and the reserves have been eliminated or increased above
3342  * the default max, then we'll trust the admin.
3343  *
3344  * If memory is removed and there isn't enough free memory, then we
3345  * need to reset the reserves.
3346  *
3347  * Otherwise keep the reserve set by the admin.
3348  */
3349 static int reserve_mem_notifier(struct notifier_block *nb,
3350                              unsigned long action, void *data)
3351 {
3352         unsigned long tmp, free_kbytes;
3353
3354         switch (action) {
3355         case MEM_ONLINE:
3356                 /* Default max is 128MB. Leave alone if modified by operator. */
3357                 tmp = sysctl_user_reserve_kbytes;
3358                 if (0 < tmp && tmp < (1UL << 17))
3359                         init_user_reserve();
3360
3361                 /* Default max is 8MB.  Leave alone if modified by operator. */
3362                 tmp = sysctl_admin_reserve_kbytes;
3363                 if (0 < tmp && tmp < (1UL << 13))
3364                         init_admin_reserve();
3365
3366                 break;
3367         case MEM_OFFLINE:
3368                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3369
3370                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3371                         init_user_reserve();
3372                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3373                                 sysctl_user_reserve_kbytes);
3374                 }
3375
3376                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3377                         init_admin_reserve();
3378                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3379                                 sysctl_admin_reserve_kbytes);
3380                 }
3381                 break;
3382         default:
3383                 break;
3384         }
3385         return NOTIFY_OK;
3386 }
3387
3388 static struct notifier_block reserve_mem_nb = {
3389         .notifier_call = reserve_mem_notifier,
3390 };
3391
3392 static int __meminit init_reserve_notifier(void)
3393 {
3394         if (register_hotmemory_notifier(&reserve_mem_nb))
3395                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3396
3397         return 0;
3398 }
3399 subsys_initcall(init_reserve_notifier);