Merge tag 'docs-4.5' of git://git.lwn.net/linux
[linux-drm-fsl-dcu.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 #include <linux/userfaultfd_k.h>
65
66 #include <asm/io.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/tlb.h>
70 #include <asm/tlbflush.h>
71 #include <asm/pgtable.h>
72
73 #include "internal.h"
74
75 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
77 #endif
78
79 #ifndef CONFIG_NEED_MULTIPLE_NODES
80 /* use the per-pgdat data instead for discontigmem - mbligh */
81 unsigned long max_mapnr;
82 struct page *mem_map;
83
84 EXPORT_SYMBOL(max_mapnr);
85 EXPORT_SYMBOL(mem_map);
86 #endif
87
88 /*
89  * A number of key systems in x86 including ioremap() rely on the assumption
90  * that high_memory defines the upper bound on direct map memory, then end
91  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
92  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93  * and ZONE_HIGHMEM.
94  */
95 void * high_memory;
96
97 EXPORT_SYMBOL(high_memory);
98
99 /*
100  * Randomize the address space (stacks, mmaps, brk, etc.).
101  *
102  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103  *   as ancient (libc5 based) binaries can segfault. )
104  */
105 int randomize_va_space __read_mostly =
106 #ifdef CONFIG_COMPAT_BRK
107                                         1;
108 #else
109                                         2;
110 #endif
111
112 static int __init disable_randmaps(char *s)
113 {
114         randomize_va_space = 0;
115         return 1;
116 }
117 __setup("norandmaps", disable_randmaps);
118
119 unsigned long zero_pfn __read_mostly;
120 unsigned long highest_memmap_pfn __read_mostly;
121
122 EXPORT_SYMBOL(zero_pfn);
123
124 /*
125  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126  */
127 static int __init init_zero_pfn(void)
128 {
129         zero_pfn = page_to_pfn(ZERO_PAGE(0));
130         return 0;
131 }
132 core_initcall(init_zero_pfn);
133
134
135 #if defined(SPLIT_RSS_COUNTING)
136
137 void sync_mm_rss(struct mm_struct *mm)
138 {
139         int i;
140
141         for (i = 0; i < NR_MM_COUNTERS; i++) {
142                 if (current->rss_stat.count[i]) {
143                         add_mm_counter(mm, i, current->rss_stat.count[i]);
144                         current->rss_stat.count[i] = 0;
145                 }
146         }
147         current->rss_stat.events = 0;
148 }
149
150 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 {
152         struct task_struct *task = current;
153
154         if (likely(task->mm == mm))
155                 task->rss_stat.count[member] += val;
156         else
157                 add_mm_counter(mm, member, val);
158 }
159 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162 /* sync counter once per 64 page faults */
163 #define TASK_RSS_EVENTS_THRESH  (64)
164 static void check_sync_rss_stat(struct task_struct *task)
165 {
166         if (unlikely(task != current))
167                 return;
168         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
169                 sync_mm_rss(task->mm);
170 }
171 #else /* SPLIT_RSS_COUNTING */
172
173 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176 static void check_sync_rss_stat(struct task_struct *task)
177 {
178 }
179
180 #endif /* SPLIT_RSS_COUNTING */
181
182 #ifdef HAVE_GENERIC_MMU_GATHER
183
184 static bool tlb_next_batch(struct mmu_gather *tlb)
185 {
186         struct mmu_gather_batch *batch;
187
188         batch = tlb->active;
189         if (batch->next) {
190                 tlb->active = batch->next;
191                 return true;
192         }
193
194         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
195                 return false;
196
197         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198         if (!batch)
199                 return false;
200
201         tlb->batch_count++;
202         batch->next = NULL;
203         batch->nr   = 0;
204         batch->max  = MAX_GATHER_BATCH;
205
206         tlb->active->next = batch;
207         tlb->active = batch;
208
209         return true;
210 }
211
212 /* tlb_gather_mmu
213  *      Called to initialize an (on-stack) mmu_gather structure for page-table
214  *      tear-down from @mm. The @fullmm argument is used when @mm is without
215  *      users and we're going to destroy the full address space (exit/execve).
216  */
217 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 {
219         tlb->mm = mm;
220
221         /* Is it from 0 to ~0? */
222         tlb->fullmm     = !(start | (end+1));
223         tlb->need_flush_all = 0;
224         tlb->local.next = NULL;
225         tlb->local.nr   = 0;
226         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227         tlb->active     = &tlb->local;
228         tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231         tlb->batch = NULL;
232 #endif
233
234         __tlb_reset_range(tlb);
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239         if (!tlb->end)
240                 return;
241
242         tlb_flush(tlb);
243         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
244 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
245         tlb_table_flush(tlb);
246 #endif
247         __tlb_reset_range(tlb);
248 }
249
250 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 {
252         struct mmu_gather_batch *batch;
253
254         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
255                 free_pages_and_swap_cache(batch->pages, batch->nr);
256                 batch->nr = 0;
257         }
258         tlb->active = &tlb->local;
259 }
260
261 void tlb_flush_mmu(struct mmu_gather *tlb)
262 {
263         tlb_flush_mmu_tlbonly(tlb);
264         tlb_flush_mmu_free(tlb);
265 }
266
267 /* tlb_finish_mmu
268  *      Called at the end of the shootdown operation to free up any resources
269  *      that were required.
270  */
271 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 {
273         struct mmu_gather_batch *batch, *next;
274
275         tlb_flush_mmu(tlb);
276
277         /* keep the page table cache within bounds */
278         check_pgt_cache();
279
280         for (batch = tlb->local.next; batch; batch = next) {
281                 next = batch->next;
282                 free_pages((unsigned long)batch, 0);
283         }
284         tlb->local.next = NULL;
285 }
286
287 /* __tlb_remove_page
288  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289  *      handling the additional races in SMP caused by other CPUs caching valid
290  *      mappings in their TLBs. Returns the number of free page slots left.
291  *      When out of page slots we must call tlb_flush_mmu().
292  */
293 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 {
295         struct mmu_gather_batch *batch;
296
297         VM_BUG_ON(!tlb->end);
298
299         batch = tlb->active;
300         batch->pages[batch->nr++] = page;
301         if (batch->nr == batch->max) {
302                 if (!tlb_next_batch(tlb))
303                         return 0;
304                 batch = tlb->active;
305         }
306         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307
308         return batch->max - batch->nr;
309 }
310
311 #endif /* HAVE_GENERIC_MMU_GATHER */
312
313 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315 /*
316  * See the comment near struct mmu_table_batch.
317  */
318
319 static void tlb_remove_table_smp_sync(void *arg)
320 {
321         /* Simply deliver the interrupt */
322 }
323
324 static void tlb_remove_table_one(void *table)
325 {
326         /*
327          * This isn't an RCU grace period and hence the page-tables cannot be
328          * assumed to be actually RCU-freed.
329          *
330          * It is however sufficient for software page-table walkers that rely on
331          * IRQ disabling. See the comment near struct mmu_table_batch.
332          */
333         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334         __tlb_remove_table(table);
335 }
336
337 static void tlb_remove_table_rcu(struct rcu_head *head)
338 {
339         struct mmu_table_batch *batch;
340         int i;
341
342         batch = container_of(head, struct mmu_table_batch, rcu);
343
344         for (i = 0; i < batch->nr; i++)
345                 __tlb_remove_table(batch->tables[i]);
346
347         free_page((unsigned long)batch);
348 }
349
350 void tlb_table_flush(struct mmu_gather *tlb)
351 {
352         struct mmu_table_batch **batch = &tlb->batch;
353
354         if (*batch) {
355                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356                 *batch = NULL;
357         }
358 }
359
360 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 {
362         struct mmu_table_batch **batch = &tlb->batch;
363
364         /*
365          * When there's less then two users of this mm there cannot be a
366          * concurrent page-table walk.
367          */
368         if (atomic_read(&tlb->mm->mm_users) < 2) {
369                 __tlb_remove_table(table);
370                 return;
371         }
372
373         if (*batch == NULL) {
374                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375                 if (*batch == NULL) {
376                         tlb_remove_table_one(table);
377                         return;
378                 }
379                 (*batch)->nr = 0;
380         }
381         (*batch)->tables[(*batch)->nr++] = table;
382         if ((*batch)->nr == MAX_TABLE_BATCH)
383                 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393                            unsigned long addr)
394 {
395         pgtable_t token = pmd_pgtable(*pmd);
396         pmd_clear(pmd);
397         pte_free_tlb(tlb, token, addr);
398         atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402                                 unsigned long addr, unsigned long end,
403                                 unsigned long floor, unsigned long ceiling)
404 {
405         pmd_t *pmd;
406         unsigned long next;
407         unsigned long start;
408
409         start = addr;
410         pmd = pmd_offset(pud, addr);
411         do {
412                 next = pmd_addr_end(addr, end);
413                 if (pmd_none_or_clear_bad(pmd))
414                         continue;
415                 free_pte_range(tlb, pmd, addr);
416         } while (pmd++, addr = next, addr != end);
417
418         start &= PUD_MASK;
419         if (start < floor)
420                 return;
421         if (ceiling) {
422                 ceiling &= PUD_MASK;
423                 if (!ceiling)
424                         return;
425         }
426         if (end - 1 > ceiling - 1)
427                 return;
428
429         pmd = pmd_offset(pud, start);
430         pud_clear(pud);
431         pmd_free_tlb(tlb, pmd, start);
432         mm_dec_nr_pmds(tlb->mm);
433 }
434
435 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436                                 unsigned long addr, unsigned long end,
437                                 unsigned long floor, unsigned long ceiling)
438 {
439         pud_t *pud;
440         unsigned long next;
441         unsigned long start;
442
443         start = addr;
444         pud = pud_offset(pgd, addr);
445         do {
446                 next = pud_addr_end(addr, end);
447                 if (pud_none_or_clear_bad(pud))
448                         continue;
449                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
450         } while (pud++, addr = next, addr != end);
451
452         start &= PGDIR_MASK;
453         if (start < floor)
454                 return;
455         if (ceiling) {
456                 ceiling &= PGDIR_MASK;
457                 if (!ceiling)
458                         return;
459         }
460         if (end - 1 > ceiling - 1)
461                 return;
462
463         pud = pud_offset(pgd, start);
464         pgd_clear(pgd);
465         pud_free_tlb(tlb, pud, start);
466 }
467
468 /*
469  * This function frees user-level page tables of a process.
470  */
471 void free_pgd_range(struct mmu_gather *tlb,
472                         unsigned long addr, unsigned long end,
473                         unsigned long floor, unsigned long ceiling)
474 {
475         pgd_t *pgd;
476         unsigned long next;
477
478         /*
479          * The next few lines have given us lots of grief...
480          *
481          * Why are we testing PMD* at this top level?  Because often
482          * there will be no work to do at all, and we'd prefer not to
483          * go all the way down to the bottom just to discover that.
484          *
485          * Why all these "- 1"s?  Because 0 represents both the bottom
486          * of the address space and the top of it (using -1 for the
487          * top wouldn't help much: the masks would do the wrong thing).
488          * The rule is that addr 0 and floor 0 refer to the bottom of
489          * the address space, but end 0 and ceiling 0 refer to the top
490          * Comparisons need to use "end - 1" and "ceiling - 1" (though
491          * that end 0 case should be mythical).
492          *
493          * Wherever addr is brought up or ceiling brought down, we must
494          * be careful to reject "the opposite 0" before it confuses the
495          * subsequent tests.  But what about where end is brought down
496          * by PMD_SIZE below? no, end can't go down to 0 there.
497          *
498          * Whereas we round start (addr) and ceiling down, by different
499          * masks at different levels, in order to test whether a table
500          * now has no other vmas using it, so can be freed, we don't
501          * bother to round floor or end up - the tests don't need that.
502          */
503
504         addr &= PMD_MASK;
505         if (addr < floor) {
506                 addr += PMD_SIZE;
507                 if (!addr)
508                         return;
509         }
510         if (ceiling) {
511                 ceiling &= PMD_MASK;
512                 if (!ceiling)
513                         return;
514         }
515         if (end - 1 > ceiling - 1)
516                 end -= PMD_SIZE;
517         if (addr > end - 1)
518                 return;
519
520         pgd = pgd_offset(tlb->mm, addr);
521         do {
522                 next = pgd_addr_end(addr, end);
523                 if (pgd_none_or_clear_bad(pgd))
524                         continue;
525                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
526         } while (pgd++, addr = next, addr != end);
527 }
528
529 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
530                 unsigned long floor, unsigned long ceiling)
531 {
532         while (vma) {
533                 struct vm_area_struct *next = vma->vm_next;
534                 unsigned long addr = vma->vm_start;
535
536                 /*
537                  * Hide vma from rmap and truncate_pagecache before freeing
538                  * pgtables
539                  */
540                 unlink_anon_vmas(vma);
541                 unlink_file_vma(vma);
542
543                 if (is_vm_hugetlb_page(vma)) {
544                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
545                                 floor, next? next->vm_start: ceiling);
546                 } else {
547                         /*
548                          * Optimization: gather nearby vmas into one call down
549                          */
550                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
551                                && !is_vm_hugetlb_page(next)) {
552                                 vma = next;
553                                 next = vma->vm_next;
554                                 unlink_anon_vmas(vma);
555                                 unlink_file_vma(vma);
556                         }
557                         free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next? next->vm_start: ceiling);
559                 }
560                 vma = next;
561         }
562 }
563
564 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565                 pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         int wait_split_huge_page;
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         wait_split_huge_page = 0;
590         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
591                 atomic_long_inc(&mm->nr_ptes);
592                 pmd_populate(mm, pmd, new);
593                 new = NULL;
594         } else if (unlikely(pmd_trans_splitting(*pmd)))
595                 wait_split_huge_page = 1;
596         spin_unlock(ptl);
597         if (new)
598                 pte_free(mm, new);
599         if (wait_split_huge_page)
600                 wait_split_huge_page(vma->anon_vma, pmd);
601         return 0;
602 }
603
604 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 {
606         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
607         if (!new)
608                 return -ENOMEM;
609
610         smp_wmb(); /* See comment in __pte_alloc */
611
612         spin_lock(&init_mm.page_table_lock);
613         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
614                 pmd_populate_kernel(&init_mm, pmd, new);
615                 new = NULL;
616         } else
617                 VM_BUG_ON(pmd_trans_splitting(*pmd));
618         spin_unlock(&init_mm.page_table_lock);
619         if (new)
620                 pte_free_kernel(&init_mm, new);
621         return 0;
622 }
623
624 static inline void init_rss_vec(int *rss)
625 {
626         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
627 }
628
629 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 {
631         int i;
632
633         if (current->mm == mm)
634                 sync_mm_rss(mm);
635         for (i = 0; i < NR_MM_COUNTERS; i++)
636                 if (rss[i])
637                         add_mm_counter(mm, i, rss[i]);
638 }
639
640 /*
641  * This function is called to print an error when a bad pte
642  * is found. For example, we might have a PFN-mapped pte in
643  * a region that doesn't allow it.
644  *
645  * The calling function must still handle the error.
646  */
647 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
648                           pte_t pte, struct page *page)
649 {
650         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
651         pud_t *pud = pud_offset(pgd, addr);
652         pmd_t *pmd = pmd_offset(pud, addr);
653         struct address_space *mapping;
654         pgoff_t index;
655         static unsigned long resume;
656         static unsigned long nr_shown;
657         static unsigned long nr_unshown;
658
659         /*
660          * Allow a burst of 60 reports, then keep quiet for that minute;
661          * or allow a steady drip of one report per second.
662          */
663         if (nr_shown == 60) {
664                 if (time_before(jiffies, resume)) {
665                         nr_unshown++;
666                         return;
667                 }
668                 if (nr_unshown) {
669                         printk(KERN_ALERT
670                                 "BUG: Bad page map: %lu messages suppressed\n",
671                                 nr_unshown);
672                         nr_unshown = 0;
673                 }
674                 nr_shown = 0;
675         }
676         if (nr_shown++ == 0)
677                 resume = jiffies + 60 * HZ;
678
679         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
680         index = linear_page_index(vma, addr);
681
682         printk(KERN_ALERT
683                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
684                 current->comm,
685                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
686         if (page)
687                 dump_page(page, "bad pte");
688         printk(KERN_ALERT
689                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
690                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691         /*
692          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693          */
694         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
695                  vma->vm_file,
696                  vma->vm_ops ? vma->vm_ops->fault : NULL,
697                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
698                  mapping ? mapping->a_ops->readpage : NULL);
699         dump_stack();
700         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751                                 pte_t pte)
752 {
753         unsigned long pfn = pte_pfn(pte);
754
755         if (HAVE_PTE_SPECIAL) {
756                 if (likely(!pte_special(pte)))
757                         goto check_pfn;
758                 if (vma->vm_ops && vma->vm_ops->find_special_page)
759                         return vma->vm_ops->find_special_page(vma, addr);
760                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761                         return NULL;
762                 if (!is_zero_pfn(pfn))
763                         print_bad_pte(vma, addr, pte, NULL);
764                 return NULL;
765         }
766
767         /* !HAVE_PTE_SPECIAL case follows: */
768
769         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770                 if (vma->vm_flags & VM_MIXEDMAP) {
771                         if (!pfn_valid(pfn))
772                                 return NULL;
773                         goto out;
774                 } else {
775                         unsigned long off;
776                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
777                         if (pfn == vma->vm_pgoff + off)
778                                 return NULL;
779                         if (!is_cow_mapping(vma->vm_flags))
780                                 return NULL;
781                 }
782         }
783
784         if (is_zero_pfn(pfn))
785                 return NULL;
786 check_pfn:
787         if (unlikely(pfn > highest_memmap_pfn)) {
788                 print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /*
793          * NOTE! We still have PageReserved() pages in the page tables.
794          * eg. VDSO mappings can cause them to exist.
795          */
796 out:
797         return pfn_to_page(pfn);
798 }
799
800 /*
801  * copy one vm_area from one task to the other. Assumes the page tables
802  * already present in the new task to be cleared in the whole range
803  * covered by this vma.
804  */
805
806 static inline unsigned long
807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
809                 unsigned long addr, int *rss)
810 {
811         unsigned long vm_flags = vma->vm_flags;
812         pte_t pte = *src_pte;
813         struct page *page;
814
815         /* pte contains position in swap or file, so copy. */
816         if (unlikely(!pte_present(pte))) {
817                 swp_entry_t entry = pte_to_swp_entry(pte);
818
819                 if (likely(!non_swap_entry(entry))) {
820                         if (swap_duplicate(entry) < 0)
821                                 return entry.val;
822
823                         /* make sure dst_mm is on swapoff's mmlist. */
824                         if (unlikely(list_empty(&dst_mm->mmlist))) {
825                                 spin_lock(&mmlist_lock);
826                                 if (list_empty(&dst_mm->mmlist))
827                                         list_add(&dst_mm->mmlist,
828                                                         &src_mm->mmlist);
829                                 spin_unlock(&mmlist_lock);
830                         }
831                         rss[MM_SWAPENTS]++;
832                 } else if (is_migration_entry(entry)) {
833                         page = migration_entry_to_page(entry);
834
835                         rss[mm_counter(page)]++;
836
837                         if (is_write_migration_entry(entry) &&
838                                         is_cow_mapping(vm_flags)) {
839                                 /*
840                                  * COW mappings require pages in both
841                                  * parent and child to be set to read.
842                                  */
843                                 make_migration_entry_read(&entry);
844                                 pte = swp_entry_to_pte(entry);
845                                 if (pte_swp_soft_dirty(*src_pte))
846                                         pte = pte_swp_mksoft_dirty(pte);
847                                 set_pte_at(src_mm, addr, src_pte, pte);
848                         }
849                 }
850                 goto out_set_pte;
851         }
852
853         /*
854          * If it's a COW mapping, write protect it both
855          * in the parent and the child
856          */
857         if (is_cow_mapping(vm_flags)) {
858                 ptep_set_wrprotect(src_mm, addr, src_pte);
859                 pte = pte_wrprotect(pte);
860         }
861
862         /*
863          * If it's a shared mapping, mark it clean in
864          * the child
865          */
866         if (vm_flags & VM_SHARED)
867                 pte = pte_mkclean(pte);
868         pte = pte_mkold(pte);
869
870         page = vm_normal_page(vma, addr, pte);
871         if (page) {
872                 get_page(page);
873                 page_dup_rmap(page);
874                 rss[mm_counter(page)]++;
875         }
876
877 out_set_pte:
878         set_pte_at(dst_mm, addr, dst_pte, pte);
879         return 0;
880 }
881
882 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884                    unsigned long addr, unsigned long end)
885 {
886         pte_t *orig_src_pte, *orig_dst_pte;
887         pte_t *src_pte, *dst_pte;
888         spinlock_t *src_ptl, *dst_ptl;
889         int progress = 0;
890         int rss[NR_MM_COUNTERS];
891         swp_entry_t entry = (swp_entry_t){0};
892
893 again:
894         init_rss_vec(rss);
895
896         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
897         if (!dst_pte)
898                 return -ENOMEM;
899         src_pte = pte_offset_map(src_pmd, addr);
900         src_ptl = pte_lockptr(src_mm, src_pmd);
901         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902         orig_src_pte = src_pte;
903         orig_dst_pte = dst_pte;
904         arch_enter_lazy_mmu_mode();
905
906         do {
907                 /*
908                  * We are holding two locks at this point - either of them
909                  * could generate latencies in another task on another CPU.
910                  */
911                 if (progress >= 32) {
912                         progress = 0;
913                         if (need_resched() ||
914                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915                                 break;
916                 }
917                 if (pte_none(*src_pte)) {
918                         progress++;
919                         continue;
920                 }
921                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922                                                         vma, addr, rss);
923                 if (entry.val)
924                         break;
925                 progress += 8;
926         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
927
928         arch_leave_lazy_mmu_mode();
929         spin_unlock(src_ptl);
930         pte_unmap(orig_src_pte);
931         add_mm_rss_vec(dst_mm, rss);
932         pte_unmap_unlock(orig_dst_pte, dst_ptl);
933         cond_resched();
934
935         if (entry.val) {
936                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937                         return -ENOMEM;
938                 progress = 0;
939         }
940         if (addr != end)
941                 goto again;
942         return 0;
943 }
944
945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947                 unsigned long addr, unsigned long end)
948 {
949         pmd_t *src_pmd, *dst_pmd;
950         unsigned long next;
951
952         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953         if (!dst_pmd)
954                 return -ENOMEM;
955         src_pmd = pmd_offset(src_pud, addr);
956         do {
957                 next = pmd_addr_end(addr, end);
958                 if (pmd_trans_huge(*src_pmd)) {
959                         int err;
960                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961                         err = copy_huge_pmd(dst_mm, src_mm,
962                                             dst_pmd, src_pmd, addr, vma);
963                         if (err == -ENOMEM)
964                                 return -ENOMEM;
965                         if (!err)
966                                 continue;
967                         /* fall through */
968                 }
969                 if (pmd_none_or_clear_bad(src_pmd))
970                         continue;
971                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972                                                 vma, addr, next))
973                         return -ENOMEM;
974         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975         return 0;
976 }
977
978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980                 unsigned long addr, unsigned long end)
981 {
982         pud_t *src_pud, *dst_pud;
983         unsigned long next;
984
985         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986         if (!dst_pud)
987                 return -ENOMEM;
988         src_pud = pud_offset(src_pgd, addr);
989         do {
990                 next = pud_addr_end(addr, end);
991                 if (pud_none_or_clear_bad(src_pud))
992                         continue;
993                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994                                                 vma, addr, next))
995                         return -ENOMEM;
996         } while (dst_pud++, src_pud++, addr = next, addr != end);
997         return 0;
998 }
999
1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001                 struct vm_area_struct *vma)
1002 {
1003         pgd_t *src_pgd, *dst_pgd;
1004         unsigned long next;
1005         unsigned long addr = vma->vm_start;
1006         unsigned long end = vma->vm_end;
1007         unsigned long mmun_start;       /* For mmu_notifiers */
1008         unsigned long mmun_end;         /* For mmu_notifiers */
1009         bool is_cow;
1010         int ret;
1011
1012         /*
1013          * Don't copy ptes where a page fault will fill them correctly.
1014          * Fork becomes much lighter when there are big shared or private
1015          * readonly mappings. The tradeoff is that copy_page_range is more
1016          * efficient than faulting.
1017          */
1018         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1019                         !vma->anon_vma)
1020                 return 0;
1021
1022         if (is_vm_hugetlb_page(vma))
1023                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1024
1025         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1026                 /*
1027                  * We do not free on error cases below as remove_vma
1028                  * gets called on error from higher level routine
1029                  */
1030                 ret = track_pfn_copy(vma);
1031                 if (ret)
1032                         return ret;
1033         }
1034
1035         /*
1036          * We need to invalidate the secondary MMU mappings only when
1037          * there could be a permission downgrade on the ptes of the
1038          * parent mm. And a permission downgrade will only happen if
1039          * is_cow_mapping() returns true.
1040          */
1041         is_cow = is_cow_mapping(vma->vm_flags);
1042         mmun_start = addr;
1043         mmun_end   = end;
1044         if (is_cow)
1045                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1046                                                     mmun_end);
1047
1048         ret = 0;
1049         dst_pgd = pgd_offset(dst_mm, addr);
1050         src_pgd = pgd_offset(src_mm, addr);
1051         do {
1052                 next = pgd_addr_end(addr, end);
1053                 if (pgd_none_or_clear_bad(src_pgd))
1054                         continue;
1055                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1056                                             vma, addr, next))) {
1057                         ret = -ENOMEM;
1058                         break;
1059                 }
1060         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1061
1062         if (is_cow)
1063                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1064         return ret;
1065 }
1066
1067 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1068                                 struct vm_area_struct *vma, pmd_t *pmd,
1069                                 unsigned long addr, unsigned long end,
1070                                 struct zap_details *details)
1071 {
1072         struct mm_struct *mm = tlb->mm;
1073         int force_flush = 0;
1074         int rss[NR_MM_COUNTERS];
1075         spinlock_t *ptl;
1076         pte_t *start_pte;
1077         pte_t *pte;
1078         swp_entry_t entry;
1079
1080 again:
1081         init_rss_vec(rss);
1082         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083         pte = start_pte;
1084         arch_enter_lazy_mmu_mode();
1085         do {
1086                 pte_t ptent = *pte;
1087                 if (pte_none(ptent)) {
1088                         continue;
1089                 }
1090
1091                 if (pte_present(ptent)) {
1092                         struct page *page;
1093
1094                         page = vm_normal_page(vma, addr, ptent);
1095                         if (unlikely(details) && page) {
1096                                 /*
1097                                  * unmap_shared_mapping_pages() wants to
1098                                  * invalidate cache without truncating:
1099                                  * unmap shared but keep private pages.
1100                                  */
1101                                 if (details->check_mapping &&
1102                                     details->check_mapping != page->mapping)
1103                                         continue;
1104                         }
1105                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1106                                                         tlb->fullmm);
1107                         tlb_remove_tlb_entry(tlb, pte, addr);
1108                         if (unlikely(!page))
1109                                 continue;
1110
1111                         if (!PageAnon(page)) {
1112                                 if (pte_dirty(ptent)) {
1113                                         force_flush = 1;
1114                                         set_page_dirty(page);
1115                                 }
1116                                 if (pte_young(ptent) &&
1117                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1118                                         mark_page_accessed(page);
1119                         }
1120                         rss[mm_counter(page)]--;
1121                         page_remove_rmap(page);
1122                         if (unlikely(page_mapcount(page) < 0))
1123                                 print_bad_pte(vma, addr, ptent, page);
1124                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1125                                 force_flush = 1;
1126                                 addr += PAGE_SIZE;
1127                                 break;
1128                         }
1129                         continue;
1130                 }
1131                 /* If details->check_mapping, we leave swap entries. */
1132                 if (unlikely(details))
1133                         continue;
1134
1135                 entry = pte_to_swp_entry(ptent);
1136                 if (!non_swap_entry(entry))
1137                         rss[MM_SWAPENTS]--;
1138                 else if (is_migration_entry(entry)) {
1139                         struct page *page;
1140
1141                         page = migration_entry_to_page(entry);
1142                         rss[mm_counter(page)]--;
1143                 }
1144                 if (unlikely(!free_swap_and_cache(entry)))
1145                         print_bad_pte(vma, addr, ptent, NULL);
1146                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1147         } while (pte++, addr += PAGE_SIZE, addr != end);
1148
1149         add_mm_rss_vec(mm, rss);
1150         arch_leave_lazy_mmu_mode();
1151
1152         /* Do the actual TLB flush before dropping ptl */
1153         if (force_flush)
1154                 tlb_flush_mmu_tlbonly(tlb);
1155         pte_unmap_unlock(start_pte, ptl);
1156
1157         /*
1158          * If we forced a TLB flush (either due to running out of
1159          * batch buffers or because we needed to flush dirty TLB
1160          * entries before releasing the ptl), free the batched
1161          * memory too. Restart if we didn't do everything.
1162          */
1163         if (force_flush) {
1164                 force_flush = 0;
1165                 tlb_flush_mmu_free(tlb);
1166
1167                 if (addr != end)
1168                         goto again;
1169         }
1170
1171         return addr;
1172 }
1173
1174 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1175                                 struct vm_area_struct *vma, pud_t *pud,
1176                                 unsigned long addr, unsigned long end,
1177                                 struct zap_details *details)
1178 {
1179         pmd_t *pmd;
1180         unsigned long next;
1181
1182         pmd = pmd_offset(pud, addr);
1183         do {
1184                 next = pmd_addr_end(addr, end);
1185                 if (pmd_trans_huge(*pmd)) {
1186                         if (next - addr != HPAGE_PMD_SIZE) {
1187 #ifdef CONFIG_DEBUG_VM
1188                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1189                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1190                                                 __func__, addr, end,
1191                                                 vma->vm_start,
1192                                                 vma->vm_end);
1193                                         BUG();
1194                                 }
1195 #endif
1196                                 split_huge_page_pmd(vma, addr, pmd);
1197                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1198                                 goto next;
1199                         /* fall through */
1200                 }
1201                 /*
1202                  * Here there can be other concurrent MADV_DONTNEED or
1203                  * trans huge page faults running, and if the pmd is
1204                  * none or trans huge it can change under us. This is
1205                  * because MADV_DONTNEED holds the mmap_sem in read
1206                  * mode.
1207                  */
1208                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1209                         goto next;
1210                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1211 next:
1212                 cond_resched();
1213         } while (pmd++, addr = next, addr != end);
1214
1215         return addr;
1216 }
1217
1218 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1219                                 struct vm_area_struct *vma, pgd_t *pgd,
1220                                 unsigned long addr, unsigned long end,
1221                                 struct zap_details *details)
1222 {
1223         pud_t *pud;
1224         unsigned long next;
1225
1226         pud = pud_offset(pgd, addr);
1227         do {
1228                 next = pud_addr_end(addr, end);
1229                 if (pud_none_or_clear_bad(pud))
1230                         continue;
1231                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1232         } while (pud++, addr = next, addr != end);
1233
1234         return addr;
1235 }
1236
1237 static void unmap_page_range(struct mmu_gather *tlb,
1238                              struct vm_area_struct *vma,
1239                              unsigned long addr, unsigned long end,
1240                              struct zap_details *details)
1241 {
1242         pgd_t *pgd;
1243         unsigned long next;
1244
1245         if (details && !details->check_mapping)
1246                 details = NULL;
1247
1248         BUG_ON(addr >= end);
1249         tlb_start_vma(tlb, vma);
1250         pgd = pgd_offset(vma->vm_mm, addr);
1251         do {
1252                 next = pgd_addr_end(addr, end);
1253                 if (pgd_none_or_clear_bad(pgd))
1254                         continue;
1255                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1256         } while (pgd++, addr = next, addr != end);
1257         tlb_end_vma(tlb, vma);
1258 }
1259
1260
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262                 struct vm_area_struct *vma, unsigned long start_addr,
1263                 unsigned long end_addr,
1264                 struct zap_details *details)
1265 {
1266         unsigned long start = max(vma->vm_start, start_addr);
1267         unsigned long end;
1268
1269         if (start >= vma->vm_end)
1270                 return;
1271         end = min(vma->vm_end, end_addr);
1272         if (end <= vma->vm_start)
1273                 return;
1274
1275         if (vma->vm_file)
1276                 uprobe_munmap(vma, start, end);
1277
1278         if (unlikely(vma->vm_flags & VM_PFNMAP))
1279                 untrack_pfn(vma, 0, 0);
1280
1281         if (start != end) {
1282                 if (unlikely(is_vm_hugetlb_page(vma))) {
1283                         /*
1284                          * It is undesirable to test vma->vm_file as it
1285                          * should be non-null for valid hugetlb area.
1286                          * However, vm_file will be NULL in the error
1287                          * cleanup path of mmap_region. When
1288                          * hugetlbfs ->mmap method fails,
1289                          * mmap_region() nullifies vma->vm_file
1290                          * before calling this function to clean up.
1291                          * Since no pte has actually been setup, it is
1292                          * safe to do nothing in this case.
1293                          */
1294                         if (vma->vm_file) {
1295                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1296                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1298                         }
1299                 } else
1300                         unmap_page_range(tlb, vma, start, end, details);
1301         }
1302 }
1303
1304 /**
1305  * unmap_vmas - unmap a range of memory covered by a list of vma's
1306  * @tlb: address of the caller's struct mmu_gather
1307  * @vma: the starting vma
1308  * @start_addr: virtual address at which to start unmapping
1309  * @end_addr: virtual address at which to end unmapping
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * Only addresses between `start' and `end' will be unmapped.
1314  *
1315  * The VMA list must be sorted in ascending virtual address order.
1316  *
1317  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318  * range after unmap_vmas() returns.  So the only responsibility here is to
1319  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320  * drops the lock and schedules.
1321  */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323                 struct vm_area_struct *vma, unsigned long start_addr,
1324                 unsigned long end_addr)
1325 {
1326         struct mm_struct *mm = vma->vm_mm;
1327
1328         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1329         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1330                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1331         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1332 }
1333
1334 /**
1335  * zap_page_range - remove user pages in a given range
1336  * @vma: vm_area_struct holding the applicable pages
1337  * @start: starting address of pages to zap
1338  * @size: number of bytes to zap
1339  * @details: details of shared cache invalidation
1340  *
1341  * Caller must protect the VMA list
1342  */
1343 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1344                 unsigned long size, struct zap_details *details)
1345 {
1346         struct mm_struct *mm = vma->vm_mm;
1347         struct mmu_gather tlb;
1348         unsigned long end = start + size;
1349
1350         lru_add_drain();
1351         tlb_gather_mmu(&tlb, mm, start, end);
1352         update_hiwater_rss(mm);
1353         mmu_notifier_invalidate_range_start(mm, start, end);
1354         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1355                 unmap_single_vma(&tlb, vma, start, end, details);
1356         mmu_notifier_invalidate_range_end(mm, start, end);
1357         tlb_finish_mmu(&tlb, start, end);
1358 }
1359
1360 /**
1361  * zap_page_range_single - remove user pages in a given range
1362  * @vma: vm_area_struct holding the applicable pages
1363  * @address: starting address of pages to zap
1364  * @size: number of bytes to zap
1365  * @details: details of shared cache invalidation
1366  *
1367  * The range must fit into one VMA.
1368  */
1369 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1370                 unsigned long size, struct zap_details *details)
1371 {
1372         struct mm_struct *mm = vma->vm_mm;
1373         struct mmu_gather tlb;
1374         unsigned long end = address + size;
1375
1376         lru_add_drain();
1377         tlb_gather_mmu(&tlb, mm, address, end);
1378         update_hiwater_rss(mm);
1379         mmu_notifier_invalidate_range_start(mm, address, end);
1380         unmap_single_vma(&tlb, vma, address, end, details);
1381         mmu_notifier_invalidate_range_end(mm, address, end);
1382         tlb_finish_mmu(&tlb, address, end);
1383 }
1384
1385 /**
1386  * zap_vma_ptes - remove ptes mapping the vma
1387  * @vma: vm_area_struct holding ptes to be zapped
1388  * @address: starting address of pages to zap
1389  * @size: number of bytes to zap
1390  *
1391  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1392  *
1393  * The entire address range must be fully contained within the vma.
1394  *
1395  * Returns 0 if successful.
1396  */
1397 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1398                 unsigned long size)
1399 {
1400         if (address < vma->vm_start || address + size > vma->vm_end ||
1401                         !(vma->vm_flags & VM_PFNMAP))
1402                 return -1;
1403         zap_page_range_single(vma, address, size, NULL);
1404         return 0;
1405 }
1406 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1407
1408 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1409                         spinlock_t **ptl)
1410 {
1411         pgd_t * pgd = pgd_offset(mm, addr);
1412         pud_t * pud = pud_alloc(mm, pgd, addr);
1413         if (pud) {
1414                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1415                 if (pmd) {
1416                         VM_BUG_ON(pmd_trans_huge(*pmd));
1417                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1418                 }
1419         }
1420         return NULL;
1421 }
1422
1423 /*
1424  * This is the old fallback for page remapping.
1425  *
1426  * For historical reasons, it only allows reserved pages. Only
1427  * old drivers should use this, and they needed to mark their
1428  * pages reserved for the old functions anyway.
1429  */
1430 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1431                         struct page *page, pgprot_t prot)
1432 {
1433         struct mm_struct *mm = vma->vm_mm;
1434         int retval;
1435         pte_t *pte;
1436         spinlock_t *ptl;
1437
1438         retval = -EINVAL;
1439         if (PageAnon(page))
1440                 goto out;
1441         retval = -ENOMEM;
1442         flush_dcache_page(page);
1443         pte = get_locked_pte(mm, addr, &ptl);
1444         if (!pte)
1445                 goto out;
1446         retval = -EBUSY;
1447         if (!pte_none(*pte))
1448                 goto out_unlock;
1449
1450         /* Ok, finally just insert the thing.. */
1451         get_page(page);
1452         inc_mm_counter_fast(mm, mm_counter_file(page));
1453         page_add_file_rmap(page);
1454         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1455
1456         retval = 0;
1457         pte_unmap_unlock(pte, ptl);
1458         return retval;
1459 out_unlock:
1460         pte_unmap_unlock(pte, ptl);
1461 out:
1462         return retval;
1463 }
1464
1465 /**
1466  * vm_insert_page - insert single page into user vma
1467  * @vma: user vma to map to
1468  * @addr: target user address of this page
1469  * @page: source kernel page
1470  *
1471  * This allows drivers to insert individual pages they've allocated
1472  * into a user vma.
1473  *
1474  * The page has to be a nice clean _individual_ kernel allocation.
1475  * If you allocate a compound page, you need to have marked it as
1476  * such (__GFP_COMP), or manually just split the page up yourself
1477  * (see split_page()).
1478  *
1479  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1480  * took an arbitrary page protection parameter. This doesn't allow
1481  * that. Your vma protection will have to be set up correctly, which
1482  * means that if you want a shared writable mapping, you'd better
1483  * ask for a shared writable mapping!
1484  *
1485  * The page does not need to be reserved.
1486  *
1487  * Usually this function is called from f_op->mmap() handler
1488  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1489  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1490  * function from other places, for example from page-fault handler.
1491  */
1492 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1493                         struct page *page)
1494 {
1495         if (addr < vma->vm_start || addr >= vma->vm_end)
1496                 return -EFAULT;
1497         if (!page_count(page))
1498                 return -EINVAL;
1499         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1500                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1501                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1502                 vma->vm_flags |= VM_MIXEDMAP;
1503         }
1504         return insert_page(vma, addr, page, vma->vm_page_prot);
1505 }
1506 EXPORT_SYMBOL(vm_insert_page);
1507
1508 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1509                         unsigned long pfn, pgprot_t prot)
1510 {
1511         struct mm_struct *mm = vma->vm_mm;
1512         int retval;
1513         pte_t *pte, entry;
1514         spinlock_t *ptl;
1515
1516         retval = -ENOMEM;
1517         pte = get_locked_pte(mm, addr, &ptl);
1518         if (!pte)
1519                 goto out;
1520         retval = -EBUSY;
1521         if (!pte_none(*pte))
1522                 goto out_unlock;
1523
1524         /* Ok, finally just insert the thing.. */
1525         entry = pte_mkspecial(pfn_pte(pfn, prot));
1526         set_pte_at(mm, addr, pte, entry);
1527         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1528
1529         retval = 0;
1530 out_unlock:
1531         pte_unmap_unlock(pte, ptl);
1532 out:
1533         return retval;
1534 }
1535
1536 /**
1537  * vm_insert_pfn - insert single pfn into user vma
1538  * @vma: user vma to map to
1539  * @addr: target user address of this page
1540  * @pfn: source kernel pfn
1541  *
1542  * Similar to vm_insert_page, this allows drivers to insert individual pages
1543  * they've allocated into a user vma. Same comments apply.
1544  *
1545  * This function should only be called from a vm_ops->fault handler, and
1546  * in that case the handler should return NULL.
1547  *
1548  * vma cannot be a COW mapping.
1549  *
1550  * As this is called only for pages that do not currently exist, we
1551  * do not need to flush old virtual caches or the TLB.
1552  */
1553 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1554                         unsigned long pfn)
1555 {
1556         int ret;
1557         pgprot_t pgprot = vma->vm_page_prot;
1558         /*
1559          * Technically, architectures with pte_special can avoid all these
1560          * restrictions (same for remap_pfn_range).  However we would like
1561          * consistency in testing and feature parity among all, so we should
1562          * try to keep these invariants in place for everybody.
1563          */
1564         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1565         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1566                                                 (VM_PFNMAP|VM_MIXEDMAP));
1567         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1568         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1569
1570         if (addr < vma->vm_start || addr >= vma->vm_end)
1571                 return -EFAULT;
1572         if (track_pfn_insert(vma, &pgprot, pfn))
1573                 return -EINVAL;
1574
1575         ret = insert_pfn(vma, addr, pfn, pgprot);
1576
1577         return ret;
1578 }
1579 EXPORT_SYMBOL(vm_insert_pfn);
1580
1581 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1582                         unsigned long pfn)
1583 {
1584         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1585
1586         if (addr < vma->vm_start || addr >= vma->vm_end)
1587                 return -EFAULT;
1588
1589         /*
1590          * If we don't have pte special, then we have to use the pfn_valid()
1591          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1592          * refcount the page if pfn_valid is true (hence insert_page rather
1593          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1594          * without pte special, it would there be refcounted as a normal page.
1595          */
1596         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1597                 struct page *page;
1598
1599                 page = pfn_to_page(pfn);
1600                 return insert_page(vma, addr, page, vma->vm_page_prot);
1601         }
1602         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1603 }
1604 EXPORT_SYMBOL(vm_insert_mixed);
1605
1606 /*
1607  * maps a range of physical memory into the requested pages. the old
1608  * mappings are removed. any references to nonexistent pages results
1609  * in null mappings (currently treated as "copy-on-access")
1610  */
1611 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1612                         unsigned long addr, unsigned long end,
1613                         unsigned long pfn, pgprot_t prot)
1614 {
1615         pte_t *pte;
1616         spinlock_t *ptl;
1617
1618         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1619         if (!pte)
1620                 return -ENOMEM;
1621         arch_enter_lazy_mmu_mode();
1622         do {
1623                 BUG_ON(!pte_none(*pte));
1624                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1625                 pfn++;
1626         } while (pte++, addr += PAGE_SIZE, addr != end);
1627         arch_leave_lazy_mmu_mode();
1628         pte_unmap_unlock(pte - 1, ptl);
1629         return 0;
1630 }
1631
1632 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1633                         unsigned long addr, unsigned long end,
1634                         unsigned long pfn, pgprot_t prot)
1635 {
1636         pmd_t *pmd;
1637         unsigned long next;
1638
1639         pfn -= addr >> PAGE_SHIFT;
1640         pmd = pmd_alloc(mm, pud, addr);
1641         if (!pmd)
1642                 return -ENOMEM;
1643         VM_BUG_ON(pmd_trans_huge(*pmd));
1644         do {
1645                 next = pmd_addr_end(addr, end);
1646                 if (remap_pte_range(mm, pmd, addr, next,
1647                                 pfn + (addr >> PAGE_SHIFT), prot))
1648                         return -ENOMEM;
1649         } while (pmd++, addr = next, addr != end);
1650         return 0;
1651 }
1652
1653 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1654                         unsigned long addr, unsigned long end,
1655                         unsigned long pfn, pgprot_t prot)
1656 {
1657         pud_t *pud;
1658         unsigned long next;
1659
1660         pfn -= addr >> PAGE_SHIFT;
1661         pud = pud_alloc(mm, pgd, addr);
1662         if (!pud)
1663                 return -ENOMEM;
1664         do {
1665                 next = pud_addr_end(addr, end);
1666                 if (remap_pmd_range(mm, pud, addr, next,
1667                                 pfn + (addr >> PAGE_SHIFT), prot))
1668                         return -ENOMEM;
1669         } while (pud++, addr = next, addr != end);
1670         return 0;
1671 }
1672
1673 /**
1674  * remap_pfn_range - remap kernel memory to userspace
1675  * @vma: user vma to map to
1676  * @addr: target user address to start at
1677  * @pfn: physical address of kernel memory
1678  * @size: size of map area
1679  * @prot: page protection flags for this mapping
1680  *
1681  *  Note: this is only safe if the mm semaphore is held when called.
1682  */
1683 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1684                     unsigned long pfn, unsigned long size, pgprot_t prot)
1685 {
1686         pgd_t *pgd;
1687         unsigned long next;
1688         unsigned long end = addr + PAGE_ALIGN(size);
1689         struct mm_struct *mm = vma->vm_mm;
1690         int err;
1691
1692         /*
1693          * Physically remapped pages are special. Tell the
1694          * rest of the world about it:
1695          *   VM_IO tells people not to look at these pages
1696          *      (accesses can have side effects).
1697          *   VM_PFNMAP tells the core MM that the base pages are just
1698          *      raw PFN mappings, and do not have a "struct page" associated
1699          *      with them.
1700          *   VM_DONTEXPAND
1701          *      Disable vma merging and expanding with mremap().
1702          *   VM_DONTDUMP
1703          *      Omit vma from core dump, even when VM_IO turned off.
1704          *
1705          * There's a horrible special case to handle copy-on-write
1706          * behaviour that some programs depend on. We mark the "original"
1707          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1708          * See vm_normal_page() for details.
1709          */
1710         if (is_cow_mapping(vma->vm_flags)) {
1711                 if (addr != vma->vm_start || end != vma->vm_end)
1712                         return -EINVAL;
1713                 vma->vm_pgoff = pfn;
1714         }
1715
1716         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1717         if (err)
1718                 return -EINVAL;
1719
1720         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1721
1722         BUG_ON(addr >= end);
1723         pfn -= addr >> PAGE_SHIFT;
1724         pgd = pgd_offset(mm, addr);
1725         flush_cache_range(vma, addr, end);
1726         do {
1727                 next = pgd_addr_end(addr, end);
1728                 err = remap_pud_range(mm, pgd, addr, next,
1729                                 pfn + (addr >> PAGE_SHIFT), prot);
1730                 if (err)
1731                         break;
1732         } while (pgd++, addr = next, addr != end);
1733
1734         if (err)
1735                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1736
1737         return err;
1738 }
1739 EXPORT_SYMBOL(remap_pfn_range);
1740
1741 /**
1742  * vm_iomap_memory - remap memory to userspace
1743  * @vma: user vma to map to
1744  * @start: start of area
1745  * @len: size of area
1746  *
1747  * This is a simplified io_remap_pfn_range() for common driver use. The
1748  * driver just needs to give us the physical memory range to be mapped,
1749  * we'll figure out the rest from the vma information.
1750  *
1751  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1752  * whatever write-combining details or similar.
1753  */
1754 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1755 {
1756         unsigned long vm_len, pfn, pages;
1757
1758         /* Check that the physical memory area passed in looks valid */
1759         if (start + len < start)
1760                 return -EINVAL;
1761         /*
1762          * You *really* shouldn't map things that aren't page-aligned,
1763          * but we've historically allowed it because IO memory might
1764          * just have smaller alignment.
1765          */
1766         len += start & ~PAGE_MASK;
1767         pfn = start >> PAGE_SHIFT;
1768         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1769         if (pfn + pages < pfn)
1770                 return -EINVAL;
1771
1772         /* We start the mapping 'vm_pgoff' pages into the area */
1773         if (vma->vm_pgoff > pages)
1774                 return -EINVAL;
1775         pfn += vma->vm_pgoff;
1776         pages -= vma->vm_pgoff;
1777
1778         /* Can we fit all of the mapping? */
1779         vm_len = vma->vm_end - vma->vm_start;
1780         if (vm_len >> PAGE_SHIFT > pages)
1781                 return -EINVAL;
1782
1783         /* Ok, let it rip */
1784         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1785 }
1786 EXPORT_SYMBOL(vm_iomap_memory);
1787
1788 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1789                                      unsigned long addr, unsigned long end,
1790                                      pte_fn_t fn, void *data)
1791 {
1792         pte_t *pte;
1793         int err;
1794         pgtable_t token;
1795         spinlock_t *uninitialized_var(ptl);
1796
1797         pte = (mm == &init_mm) ?
1798                 pte_alloc_kernel(pmd, addr) :
1799                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800         if (!pte)
1801                 return -ENOMEM;
1802
1803         BUG_ON(pmd_huge(*pmd));
1804
1805         arch_enter_lazy_mmu_mode();
1806
1807         token = pmd_pgtable(*pmd);
1808
1809         do {
1810                 err = fn(pte++, token, addr, data);
1811                 if (err)
1812                         break;
1813         } while (addr += PAGE_SIZE, addr != end);
1814
1815         arch_leave_lazy_mmu_mode();
1816
1817         if (mm != &init_mm)
1818                 pte_unmap_unlock(pte-1, ptl);
1819         return err;
1820 }
1821
1822 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1823                                      unsigned long addr, unsigned long end,
1824                                      pte_fn_t fn, void *data)
1825 {
1826         pmd_t *pmd;
1827         unsigned long next;
1828         int err;
1829
1830         BUG_ON(pud_huge(*pud));
1831
1832         pmd = pmd_alloc(mm, pud, addr);
1833         if (!pmd)
1834                 return -ENOMEM;
1835         do {
1836                 next = pmd_addr_end(addr, end);
1837                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1838                 if (err)
1839                         break;
1840         } while (pmd++, addr = next, addr != end);
1841         return err;
1842 }
1843
1844 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1845                                      unsigned long addr, unsigned long end,
1846                                      pte_fn_t fn, void *data)
1847 {
1848         pud_t *pud;
1849         unsigned long next;
1850         int err;
1851
1852         pud = pud_alloc(mm, pgd, addr);
1853         if (!pud)
1854                 return -ENOMEM;
1855         do {
1856                 next = pud_addr_end(addr, end);
1857                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1858                 if (err)
1859                         break;
1860         } while (pud++, addr = next, addr != end);
1861         return err;
1862 }
1863
1864 /*
1865  * Scan a region of virtual memory, filling in page tables as necessary
1866  * and calling a provided function on each leaf page table.
1867  */
1868 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1869                         unsigned long size, pte_fn_t fn, void *data)
1870 {
1871         pgd_t *pgd;
1872         unsigned long next;
1873         unsigned long end = addr + size;
1874         int err;
1875
1876         BUG_ON(addr >= end);
1877         pgd = pgd_offset(mm, addr);
1878         do {
1879                 next = pgd_addr_end(addr, end);
1880                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1881                 if (err)
1882                         break;
1883         } while (pgd++, addr = next, addr != end);
1884
1885         return err;
1886 }
1887 EXPORT_SYMBOL_GPL(apply_to_page_range);
1888
1889 /*
1890  * handle_pte_fault chooses page fault handler according to an entry which was
1891  * read non-atomically.  Before making any commitment, on those architectures
1892  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1893  * parts, do_swap_page must check under lock before unmapping the pte and
1894  * proceeding (but do_wp_page is only called after already making such a check;
1895  * and do_anonymous_page can safely check later on).
1896  */
1897 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1898                                 pte_t *page_table, pte_t orig_pte)
1899 {
1900         int same = 1;
1901 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1902         if (sizeof(pte_t) > sizeof(unsigned long)) {
1903                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1904                 spin_lock(ptl);
1905                 same = pte_same(*page_table, orig_pte);
1906                 spin_unlock(ptl);
1907         }
1908 #endif
1909         pte_unmap(page_table);
1910         return same;
1911 }
1912
1913 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1914 {
1915         debug_dma_assert_idle(src);
1916
1917         /*
1918          * If the source page was a PFN mapping, we don't have
1919          * a "struct page" for it. We do a best-effort copy by
1920          * just copying from the original user address. If that
1921          * fails, we just zero-fill it. Live with it.
1922          */
1923         if (unlikely(!src)) {
1924                 void *kaddr = kmap_atomic(dst);
1925                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1926
1927                 /*
1928                  * This really shouldn't fail, because the page is there
1929                  * in the page tables. But it might just be unreadable,
1930                  * in which case we just give up and fill the result with
1931                  * zeroes.
1932                  */
1933                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1934                         clear_page(kaddr);
1935                 kunmap_atomic(kaddr);
1936                 flush_dcache_page(dst);
1937         } else
1938                 copy_user_highpage(dst, src, va, vma);
1939 }
1940
1941 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1942 {
1943         struct file *vm_file = vma->vm_file;
1944
1945         if (vm_file)
1946                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1947
1948         /*
1949          * Special mappings (e.g. VDSO) do not have any file so fake
1950          * a default GFP_KERNEL for them.
1951          */
1952         return GFP_KERNEL;
1953 }
1954
1955 /*
1956  * Notify the address space that the page is about to become writable so that
1957  * it can prohibit this or wait for the page to get into an appropriate state.
1958  *
1959  * We do this without the lock held, so that it can sleep if it needs to.
1960  */
1961 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1962                unsigned long address)
1963 {
1964         struct vm_fault vmf;
1965         int ret;
1966
1967         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1968         vmf.pgoff = page->index;
1969         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1970         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1971         vmf.page = page;
1972         vmf.cow_page = NULL;
1973
1974         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1975         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1976                 return ret;
1977         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1978                 lock_page(page);
1979                 if (!page->mapping) {
1980                         unlock_page(page);
1981                         return 0; /* retry */
1982                 }
1983                 ret |= VM_FAULT_LOCKED;
1984         } else
1985                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1986         return ret;
1987 }
1988
1989 /*
1990  * Handle write page faults for pages that can be reused in the current vma
1991  *
1992  * This can happen either due to the mapping being with the VM_SHARED flag,
1993  * or due to us being the last reference standing to the page. In either
1994  * case, all we need to do here is to mark the page as writable and update
1995  * any related book-keeping.
1996  */
1997 static inline int wp_page_reuse(struct mm_struct *mm,
1998                         struct vm_area_struct *vma, unsigned long address,
1999                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2000                         struct page *page, int page_mkwrite,
2001                         int dirty_shared)
2002         __releases(ptl)
2003 {
2004         pte_t entry;
2005         /*
2006          * Clear the pages cpupid information as the existing
2007          * information potentially belongs to a now completely
2008          * unrelated process.
2009          */
2010         if (page)
2011                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2012
2013         flush_cache_page(vma, address, pte_pfn(orig_pte));
2014         entry = pte_mkyoung(orig_pte);
2015         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2016         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2017                 update_mmu_cache(vma, address, page_table);
2018         pte_unmap_unlock(page_table, ptl);
2019
2020         if (dirty_shared) {
2021                 struct address_space *mapping;
2022                 int dirtied;
2023
2024                 if (!page_mkwrite)
2025                         lock_page(page);
2026
2027                 dirtied = set_page_dirty(page);
2028                 VM_BUG_ON_PAGE(PageAnon(page), page);
2029                 mapping = page->mapping;
2030                 unlock_page(page);
2031                 page_cache_release(page);
2032
2033                 if ((dirtied || page_mkwrite) && mapping) {
2034                         /*
2035                          * Some device drivers do not set page.mapping
2036                          * but still dirty their pages
2037                          */
2038                         balance_dirty_pages_ratelimited(mapping);
2039                 }
2040
2041                 if (!page_mkwrite)
2042                         file_update_time(vma->vm_file);
2043         }
2044
2045         return VM_FAULT_WRITE;
2046 }
2047
2048 /*
2049  * Handle the case of a page which we actually need to copy to a new page.
2050  *
2051  * Called with mmap_sem locked and the old page referenced, but
2052  * without the ptl held.
2053  *
2054  * High level logic flow:
2055  *
2056  * - Allocate a page, copy the content of the old page to the new one.
2057  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2058  * - Take the PTL. If the pte changed, bail out and release the allocated page
2059  * - If the pte is still the way we remember it, update the page table and all
2060  *   relevant references. This includes dropping the reference the page-table
2061  *   held to the old page, as well as updating the rmap.
2062  * - In any case, unlock the PTL and drop the reference we took to the old page.
2063  */
2064 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2065                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2066                         pte_t orig_pte, struct page *old_page)
2067 {
2068         struct page *new_page = NULL;
2069         spinlock_t *ptl = NULL;
2070         pte_t entry;
2071         int page_copied = 0;
2072         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2073         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2074         struct mem_cgroup *memcg;
2075
2076         if (unlikely(anon_vma_prepare(vma)))
2077                 goto oom;
2078
2079         if (is_zero_pfn(pte_pfn(orig_pte))) {
2080                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2081                 if (!new_page)
2082                         goto oom;
2083         } else {
2084                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2085                 if (!new_page)
2086                         goto oom;
2087                 cow_user_page(new_page, old_page, address, vma);
2088         }
2089
2090         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2091                 goto oom_free_new;
2092
2093         __SetPageUptodate(new_page);
2094
2095         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2096
2097         /*
2098          * Re-check the pte - we dropped the lock
2099          */
2100         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2101         if (likely(pte_same(*page_table, orig_pte))) {
2102                 if (old_page) {
2103                         if (!PageAnon(old_page)) {
2104                                 dec_mm_counter_fast(mm,
2105                                                 mm_counter_file(old_page));
2106                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2107                         }
2108                 } else {
2109                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2110                 }
2111                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2112                 entry = mk_pte(new_page, vma->vm_page_prot);
2113                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2114                 /*
2115                  * Clear the pte entry and flush it first, before updating the
2116                  * pte with the new entry. This will avoid a race condition
2117                  * seen in the presence of one thread doing SMC and another
2118                  * thread doing COW.
2119                  */
2120                 ptep_clear_flush_notify(vma, address, page_table);
2121                 page_add_new_anon_rmap(new_page, vma, address);
2122                 mem_cgroup_commit_charge(new_page, memcg, false);
2123                 lru_cache_add_active_or_unevictable(new_page, vma);
2124                 /*
2125                  * We call the notify macro here because, when using secondary
2126                  * mmu page tables (such as kvm shadow page tables), we want the
2127                  * new page to be mapped directly into the secondary page table.
2128                  */
2129                 set_pte_at_notify(mm, address, page_table, entry);
2130                 update_mmu_cache(vma, address, page_table);
2131                 if (old_page) {
2132                         /*
2133                          * Only after switching the pte to the new page may
2134                          * we remove the mapcount here. Otherwise another
2135                          * process may come and find the rmap count decremented
2136                          * before the pte is switched to the new page, and
2137                          * "reuse" the old page writing into it while our pte
2138                          * here still points into it and can be read by other
2139                          * threads.
2140                          *
2141                          * The critical issue is to order this
2142                          * page_remove_rmap with the ptp_clear_flush above.
2143                          * Those stores are ordered by (if nothing else,)
2144                          * the barrier present in the atomic_add_negative
2145                          * in page_remove_rmap.
2146                          *
2147                          * Then the TLB flush in ptep_clear_flush ensures that
2148                          * no process can access the old page before the
2149                          * decremented mapcount is visible. And the old page
2150                          * cannot be reused until after the decremented
2151                          * mapcount is visible. So transitively, TLBs to
2152                          * old page will be flushed before it can be reused.
2153                          */
2154                         page_remove_rmap(old_page);
2155                 }
2156
2157                 /* Free the old page.. */
2158                 new_page = old_page;
2159                 page_copied = 1;
2160         } else {
2161                 mem_cgroup_cancel_charge(new_page, memcg);
2162         }
2163
2164         if (new_page)
2165                 page_cache_release(new_page);
2166
2167         pte_unmap_unlock(page_table, ptl);
2168         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2169         if (old_page) {
2170                 /*
2171                  * Don't let another task, with possibly unlocked vma,
2172                  * keep the mlocked page.
2173                  */
2174                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2175                         lock_page(old_page);    /* LRU manipulation */
2176                         munlock_vma_page(old_page);
2177                         unlock_page(old_page);
2178                 }
2179                 page_cache_release(old_page);
2180         }
2181         return page_copied ? VM_FAULT_WRITE : 0;
2182 oom_free_new:
2183         page_cache_release(new_page);
2184 oom:
2185         if (old_page)
2186                 page_cache_release(old_page);
2187         return VM_FAULT_OOM;
2188 }
2189
2190 /*
2191  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2192  * mapping
2193  */
2194 static int wp_pfn_shared(struct mm_struct *mm,
2195                         struct vm_area_struct *vma, unsigned long address,
2196                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2197                         pmd_t *pmd)
2198 {
2199         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2200                 struct vm_fault vmf = {
2201                         .page = NULL,
2202                         .pgoff = linear_page_index(vma, address),
2203                         .virtual_address = (void __user *)(address & PAGE_MASK),
2204                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2205                 };
2206                 int ret;
2207
2208                 pte_unmap_unlock(page_table, ptl);
2209                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2210                 if (ret & VM_FAULT_ERROR)
2211                         return ret;
2212                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2213                 /*
2214                  * We might have raced with another page fault while we
2215                  * released the pte_offset_map_lock.
2216                  */
2217                 if (!pte_same(*page_table, orig_pte)) {
2218                         pte_unmap_unlock(page_table, ptl);
2219                         return 0;
2220                 }
2221         }
2222         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2223                              NULL, 0, 0);
2224 }
2225
2226 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2227                           unsigned long address, pte_t *page_table,
2228                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2229                           struct page *old_page)
2230         __releases(ptl)
2231 {
2232         int page_mkwrite = 0;
2233
2234         page_cache_get(old_page);
2235
2236         /*
2237          * Only catch write-faults on shared writable pages,
2238          * read-only shared pages can get COWed by
2239          * get_user_pages(.write=1, .force=1).
2240          */
2241         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2242                 int tmp;
2243
2244                 pte_unmap_unlock(page_table, ptl);
2245                 tmp = do_page_mkwrite(vma, old_page, address);
2246                 if (unlikely(!tmp || (tmp &
2247                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2248                         page_cache_release(old_page);
2249                         return tmp;
2250                 }
2251                 /*
2252                  * Since we dropped the lock we need to revalidate
2253                  * the PTE as someone else may have changed it.  If
2254                  * they did, we just return, as we can count on the
2255                  * MMU to tell us if they didn't also make it writable.
2256                  */
2257                 page_table = pte_offset_map_lock(mm, pmd, address,
2258                                                  &ptl);
2259                 if (!pte_same(*page_table, orig_pte)) {
2260                         unlock_page(old_page);
2261                         pte_unmap_unlock(page_table, ptl);
2262                         page_cache_release(old_page);
2263                         return 0;
2264                 }
2265                 page_mkwrite = 1;
2266         }
2267
2268         return wp_page_reuse(mm, vma, address, page_table, ptl,
2269                              orig_pte, old_page, page_mkwrite, 1);
2270 }
2271
2272 /*
2273  * This routine handles present pages, when users try to write
2274  * to a shared page. It is done by copying the page to a new address
2275  * and decrementing the shared-page counter for the old page.
2276  *
2277  * Note that this routine assumes that the protection checks have been
2278  * done by the caller (the low-level page fault routine in most cases).
2279  * Thus we can safely just mark it writable once we've done any necessary
2280  * COW.
2281  *
2282  * We also mark the page dirty at this point even though the page will
2283  * change only once the write actually happens. This avoids a few races,
2284  * and potentially makes it more efficient.
2285  *
2286  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2287  * but allow concurrent faults), with pte both mapped and locked.
2288  * We return with mmap_sem still held, but pte unmapped and unlocked.
2289  */
2290 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2291                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2292                 spinlock_t *ptl, pte_t orig_pte)
2293         __releases(ptl)
2294 {
2295         struct page *old_page;
2296
2297         old_page = vm_normal_page(vma, address, orig_pte);
2298         if (!old_page) {
2299                 /*
2300                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2301                  * VM_PFNMAP VMA.
2302                  *
2303                  * We should not cow pages in a shared writeable mapping.
2304                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2305                  */
2306                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2307                                      (VM_WRITE|VM_SHARED))
2308                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2309                                              orig_pte, pmd);
2310
2311                 pte_unmap_unlock(page_table, ptl);
2312                 return wp_page_copy(mm, vma, address, page_table, pmd,
2313                                     orig_pte, old_page);
2314         }
2315
2316         /*
2317          * Take out anonymous pages first, anonymous shared vmas are
2318          * not dirty accountable.
2319          */
2320         if (PageAnon(old_page) && !PageKsm(old_page)) {
2321                 if (!trylock_page(old_page)) {
2322                         page_cache_get(old_page);
2323                         pte_unmap_unlock(page_table, ptl);
2324                         lock_page(old_page);
2325                         page_table = pte_offset_map_lock(mm, pmd, address,
2326                                                          &ptl);
2327                         if (!pte_same(*page_table, orig_pte)) {
2328                                 unlock_page(old_page);
2329                                 pte_unmap_unlock(page_table, ptl);
2330                                 page_cache_release(old_page);
2331                                 return 0;
2332                         }
2333                         page_cache_release(old_page);
2334                 }
2335                 if (reuse_swap_page(old_page)) {
2336                         /*
2337                          * The page is all ours.  Move it to our anon_vma so
2338                          * the rmap code will not search our parent or siblings.
2339                          * Protected against the rmap code by the page lock.
2340                          */
2341                         page_move_anon_rmap(old_page, vma, address);
2342                         unlock_page(old_page);
2343                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2344                                              orig_pte, old_page, 0, 0);
2345                 }
2346                 unlock_page(old_page);
2347         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2348                                         (VM_WRITE|VM_SHARED))) {
2349                 return wp_page_shared(mm, vma, address, page_table, pmd,
2350                                       ptl, orig_pte, old_page);
2351         }
2352
2353         /*
2354          * Ok, we need to copy. Oh, well..
2355          */
2356         page_cache_get(old_page);
2357
2358         pte_unmap_unlock(page_table, ptl);
2359         return wp_page_copy(mm, vma, address, page_table, pmd,
2360                             orig_pte, old_page);
2361 }
2362
2363 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2364                 unsigned long start_addr, unsigned long end_addr,
2365                 struct zap_details *details)
2366 {
2367         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2368 }
2369
2370 static inline void unmap_mapping_range_tree(struct rb_root *root,
2371                                             struct zap_details *details)
2372 {
2373         struct vm_area_struct *vma;
2374         pgoff_t vba, vea, zba, zea;
2375
2376         vma_interval_tree_foreach(vma, root,
2377                         details->first_index, details->last_index) {
2378
2379                 vba = vma->vm_pgoff;
2380                 vea = vba + vma_pages(vma) - 1;
2381                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2382                 zba = details->first_index;
2383                 if (zba < vba)
2384                         zba = vba;
2385                 zea = details->last_index;
2386                 if (zea > vea)
2387                         zea = vea;
2388
2389                 unmap_mapping_range_vma(vma,
2390                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2391                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2392                                 details);
2393         }
2394 }
2395
2396 /**
2397  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2398  * address_space corresponding to the specified page range in the underlying
2399  * file.
2400  *
2401  * @mapping: the address space containing mmaps to be unmapped.
2402  * @holebegin: byte in first page to unmap, relative to the start of
2403  * the underlying file.  This will be rounded down to a PAGE_SIZE
2404  * boundary.  Note that this is different from truncate_pagecache(), which
2405  * must keep the partial page.  In contrast, we must get rid of
2406  * partial pages.
2407  * @holelen: size of prospective hole in bytes.  This will be rounded
2408  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2409  * end of the file.
2410  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2411  * but 0 when invalidating pagecache, don't throw away private data.
2412  */
2413 void unmap_mapping_range(struct address_space *mapping,
2414                 loff_t const holebegin, loff_t const holelen, int even_cows)
2415 {
2416         struct zap_details details;
2417         pgoff_t hba = holebegin >> PAGE_SHIFT;
2418         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2419
2420         /* Check for overflow. */
2421         if (sizeof(holelen) > sizeof(hlen)) {
2422                 long long holeend =
2423                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2424                 if (holeend & ~(long long)ULONG_MAX)
2425                         hlen = ULONG_MAX - hba + 1;
2426         }
2427
2428         details.check_mapping = even_cows? NULL: mapping;
2429         details.first_index = hba;
2430         details.last_index = hba + hlen - 1;
2431         if (details.last_index < details.first_index)
2432                 details.last_index = ULONG_MAX;
2433
2434
2435         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2436         i_mmap_lock_write(mapping);
2437         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2438                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2439         i_mmap_unlock_write(mapping);
2440 }
2441 EXPORT_SYMBOL(unmap_mapping_range);
2442
2443 /*
2444  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2445  * but allow concurrent faults), and pte mapped but not yet locked.
2446  * We return with pte unmapped and unlocked.
2447  *
2448  * We return with the mmap_sem locked or unlocked in the same cases
2449  * as does filemap_fault().
2450  */
2451 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2452                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2453                 unsigned int flags, pte_t orig_pte)
2454 {
2455         spinlock_t *ptl;
2456         struct page *page, *swapcache;
2457         struct mem_cgroup *memcg;
2458         swp_entry_t entry;
2459         pte_t pte;
2460         int locked;
2461         int exclusive = 0;
2462         int ret = 0;
2463
2464         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2465                 goto out;
2466
2467         entry = pte_to_swp_entry(orig_pte);
2468         if (unlikely(non_swap_entry(entry))) {
2469                 if (is_migration_entry(entry)) {
2470                         migration_entry_wait(mm, pmd, address);
2471                 } else if (is_hwpoison_entry(entry)) {
2472                         ret = VM_FAULT_HWPOISON;
2473                 } else {
2474                         print_bad_pte(vma, address, orig_pte, NULL);
2475                         ret = VM_FAULT_SIGBUS;
2476                 }
2477                 goto out;
2478         }
2479         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2480         page = lookup_swap_cache(entry);
2481         if (!page) {
2482                 page = swapin_readahead(entry,
2483                                         GFP_HIGHUSER_MOVABLE, vma, address);
2484                 if (!page) {
2485                         /*
2486                          * Back out if somebody else faulted in this pte
2487                          * while we released the pte lock.
2488                          */
2489                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2490                         if (likely(pte_same(*page_table, orig_pte)))
2491                                 ret = VM_FAULT_OOM;
2492                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2493                         goto unlock;
2494                 }
2495
2496                 /* Had to read the page from swap area: Major fault */
2497                 ret = VM_FAULT_MAJOR;
2498                 count_vm_event(PGMAJFAULT);
2499                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2500         } else if (PageHWPoison(page)) {
2501                 /*
2502                  * hwpoisoned dirty swapcache pages are kept for killing
2503                  * owner processes (which may be unknown at hwpoison time)
2504                  */
2505                 ret = VM_FAULT_HWPOISON;
2506                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2507                 swapcache = page;
2508                 goto out_release;
2509         }
2510
2511         swapcache = page;
2512         locked = lock_page_or_retry(page, mm, flags);
2513
2514         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2515         if (!locked) {
2516                 ret |= VM_FAULT_RETRY;
2517                 goto out_release;
2518         }
2519
2520         /*
2521          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2522          * release the swapcache from under us.  The page pin, and pte_same
2523          * test below, are not enough to exclude that.  Even if it is still
2524          * swapcache, we need to check that the page's swap has not changed.
2525          */
2526         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2527                 goto out_page;
2528
2529         page = ksm_might_need_to_copy(page, vma, address);
2530         if (unlikely(!page)) {
2531                 ret = VM_FAULT_OOM;
2532                 page = swapcache;
2533                 goto out_page;
2534         }
2535
2536         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2537                 ret = VM_FAULT_OOM;
2538                 goto out_page;
2539         }
2540
2541         /*
2542          * Back out if somebody else already faulted in this pte.
2543          */
2544         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2545         if (unlikely(!pte_same(*page_table, orig_pte)))
2546                 goto out_nomap;
2547
2548         if (unlikely(!PageUptodate(page))) {
2549                 ret = VM_FAULT_SIGBUS;
2550                 goto out_nomap;
2551         }
2552
2553         /*
2554          * The page isn't present yet, go ahead with the fault.
2555          *
2556          * Be careful about the sequence of operations here.
2557          * To get its accounting right, reuse_swap_page() must be called
2558          * while the page is counted on swap but not yet in mapcount i.e.
2559          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2560          * must be called after the swap_free(), or it will never succeed.
2561          */
2562
2563         inc_mm_counter_fast(mm, MM_ANONPAGES);
2564         dec_mm_counter_fast(mm, MM_SWAPENTS);
2565         pte = mk_pte(page, vma->vm_page_prot);
2566         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2567                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2568                 flags &= ~FAULT_FLAG_WRITE;
2569                 ret |= VM_FAULT_WRITE;
2570                 exclusive = 1;
2571         }
2572         flush_icache_page(vma, page);
2573         if (pte_swp_soft_dirty(orig_pte))
2574                 pte = pte_mksoft_dirty(pte);
2575         set_pte_at(mm, address, page_table, pte);
2576         if (page == swapcache) {
2577                 do_page_add_anon_rmap(page, vma, address, exclusive);
2578                 mem_cgroup_commit_charge(page, memcg, true);
2579         } else { /* ksm created a completely new copy */
2580                 page_add_new_anon_rmap(page, vma, address);
2581                 mem_cgroup_commit_charge(page, memcg, false);
2582                 lru_cache_add_active_or_unevictable(page, vma);
2583         }
2584
2585         swap_free(entry);
2586         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2587                 try_to_free_swap(page);
2588         unlock_page(page);
2589         if (page != swapcache) {
2590                 /*
2591                  * Hold the lock to avoid the swap entry to be reused
2592                  * until we take the PT lock for the pte_same() check
2593                  * (to avoid false positives from pte_same). For
2594                  * further safety release the lock after the swap_free
2595                  * so that the swap count won't change under a
2596                  * parallel locked swapcache.
2597                  */
2598                 unlock_page(swapcache);
2599                 page_cache_release(swapcache);
2600         }
2601
2602         if (flags & FAULT_FLAG_WRITE) {
2603                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2604                 if (ret & VM_FAULT_ERROR)
2605                         ret &= VM_FAULT_ERROR;
2606                 goto out;
2607         }
2608
2609         /* No need to invalidate - it was non-present before */
2610         update_mmu_cache(vma, address, page_table);
2611 unlock:
2612         pte_unmap_unlock(page_table, ptl);
2613 out:
2614         return ret;
2615 out_nomap:
2616         mem_cgroup_cancel_charge(page, memcg);
2617         pte_unmap_unlock(page_table, ptl);
2618 out_page:
2619         unlock_page(page);
2620 out_release:
2621         page_cache_release(page);
2622         if (page != swapcache) {
2623                 unlock_page(swapcache);
2624                 page_cache_release(swapcache);
2625         }
2626         return ret;
2627 }
2628
2629 /*
2630  * This is like a special single-page "expand_{down|up}wards()",
2631  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2632  * doesn't hit another vma.
2633  */
2634 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2635 {
2636         address &= PAGE_MASK;
2637         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2638                 struct vm_area_struct *prev = vma->vm_prev;
2639
2640                 /*
2641                  * Is there a mapping abutting this one below?
2642                  *
2643                  * That's only ok if it's the same stack mapping
2644                  * that has gotten split..
2645                  */
2646                 if (prev && prev->vm_end == address)
2647                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2648
2649                 return expand_downwards(vma, address - PAGE_SIZE);
2650         }
2651         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2652                 struct vm_area_struct *next = vma->vm_next;
2653
2654                 /* As VM_GROWSDOWN but s/below/above/ */
2655                 if (next && next->vm_start == address + PAGE_SIZE)
2656                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2657
2658                 return expand_upwards(vma, address + PAGE_SIZE);
2659         }
2660         return 0;
2661 }
2662
2663 /*
2664  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665  * but allow concurrent faults), and pte mapped but not yet locked.
2666  * We return with mmap_sem still held, but pte unmapped and unlocked.
2667  */
2668 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2669                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2670                 unsigned int flags)
2671 {
2672         struct mem_cgroup *memcg;
2673         struct page *page;
2674         spinlock_t *ptl;
2675         pte_t entry;
2676
2677         pte_unmap(page_table);
2678
2679         /* File mapping without ->vm_ops ? */
2680         if (vma->vm_flags & VM_SHARED)
2681                 return VM_FAULT_SIGBUS;
2682
2683         /* Check if we need to add a guard page to the stack */
2684         if (check_stack_guard_page(vma, address) < 0)
2685                 return VM_FAULT_SIGSEGV;
2686
2687         /* Use the zero-page for reads */
2688         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2689                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2690                                                 vma->vm_page_prot));
2691                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2692                 if (!pte_none(*page_table))
2693                         goto unlock;
2694                 /* Deliver the page fault to userland, check inside PT lock */
2695                 if (userfaultfd_missing(vma)) {
2696                         pte_unmap_unlock(page_table, ptl);
2697                         return handle_userfault(vma, address, flags,
2698                                                 VM_UFFD_MISSING);
2699                 }
2700                 goto setpte;
2701         }
2702
2703         /* Allocate our own private page. */
2704         if (unlikely(anon_vma_prepare(vma)))
2705                 goto oom;
2706         page = alloc_zeroed_user_highpage_movable(vma, address);
2707         if (!page)
2708                 goto oom;
2709
2710         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2711                 goto oom_free_page;
2712
2713         /*
2714          * The memory barrier inside __SetPageUptodate makes sure that
2715          * preceeding stores to the page contents become visible before
2716          * the set_pte_at() write.
2717          */
2718         __SetPageUptodate(page);
2719
2720         entry = mk_pte(page, vma->vm_page_prot);
2721         if (vma->vm_flags & VM_WRITE)
2722                 entry = pte_mkwrite(pte_mkdirty(entry));
2723
2724         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2725         if (!pte_none(*page_table))
2726                 goto release;
2727
2728         /* Deliver the page fault to userland, check inside PT lock */
2729         if (userfaultfd_missing(vma)) {
2730                 pte_unmap_unlock(page_table, ptl);
2731                 mem_cgroup_cancel_charge(page, memcg);
2732                 page_cache_release(page);
2733                 return handle_userfault(vma, address, flags,
2734                                         VM_UFFD_MISSING);
2735         }
2736
2737         inc_mm_counter_fast(mm, MM_ANONPAGES);
2738         page_add_new_anon_rmap(page, vma, address);
2739         mem_cgroup_commit_charge(page, memcg, false);
2740         lru_cache_add_active_or_unevictable(page, vma);
2741 setpte:
2742         set_pte_at(mm, address, page_table, entry);
2743
2744         /* No need to invalidate - it was non-present before */
2745         update_mmu_cache(vma, address, page_table);
2746 unlock:
2747         pte_unmap_unlock(page_table, ptl);
2748         return 0;
2749 release:
2750         mem_cgroup_cancel_charge(page, memcg);
2751         page_cache_release(page);
2752         goto unlock;
2753 oom_free_page:
2754         page_cache_release(page);
2755 oom:
2756         return VM_FAULT_OOM;
2757 }
2758
2759 /*
2760  * The mmap_sem must have been held on entry, and may have been
2761  * released depending on flags and vma->vm_ops->fault() return value.
2762  * See filemap_fault() and __lock_page_retry().
2763  */
2764 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2765                         pgoff_t pgoff, unsigned int flags,
2766                         struct page *cow_page, struct page **page)
2767 {
2768         struct vm_fault vmf;
2769         int ret;
2770
2771         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2772         vmf.pgoff = pgoff;
2773         vmf.flags = flags;
2774         vmf.page = NULL;
2775         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2776         vmf.cow_page = cow_page;
2777
2778         ret = vma->vm_ops->fault(vma, &vmf);
2779         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2780                 return ret;
2781         if (!vmf.page)
2782                 goto out;
2783
2784         if (unlikely(PageHWPoison(vmf.page))) {
2785                 if (ret & VM_FAULT_LOCKED)
2786                         unlock_page(vmf.page);
2787                 page_cache_release(vmf.page);
2788                 return VM_FAULT_HWPOISON;
2789         }
2790
2791         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2792                 lock_page(vmf.page);
2793         else
2794                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2795
2796  out:
2797         *page = vmf.page;
2798         return ret;
2799 }
2800
2801 /**
2802  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2803  *
2804  * @vma: virtual memory area
2805  * @address: user virtual address
2806  * @page: page to map
2807  * @pte: pointer to target page table entry
2808  * @write: true, if new entry is writable
2809  * @anon: true, if it's anonymous page
2810  *
2811  * Caller must hold page table lock relevant for @pte.
2812  *
2813  * Target users are page handler itself and implementations of
2814  * vm_ops->map_pages.
2815  */
2816 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2817                 struct page *page, pte_t *pte, bool write, bool anon)
2818 {
2819         pte_t entry;
2820
2821         flush_icache_page(vma, page);
2822         entry = mk_pte(page, vma->vm_page_prot);
2823         if (write)
2824                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2825         if (anon) {
2826                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2827                 page_add_new_anon_rmap(page, vma, address);
2828         } else {
2829                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2830                 page_add_file_rmap(page);
2831         }
2832         set_pte_at(vma->vm_mm, address, pte, entry);
2833
2834         /* no need to invalidate: a not-present page won't be cached */
2835         update_mmu_cache(vma, address, pte);
2836 }
2837
2838 static unsigned long fault_around_bytes __read_mostly =
2839         rounddown_pow_of_two(65536);
2840
2841 #ifdef CONFIG_DEBUG_FS
2842 static int fault_around_bytes_get(void *data, u64 *val)
2843 {
2844         *val = fault_around_bytes;
2845         return 0;
2846 }
2847
2848 /*
2849  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2850  * rounded down to nearest page order. It's what do_fault_around() expects to
2851  * see.
2852  */
2853 static int fault_around_bytes_set(void *data, u64 val)
2854 {
2855         if (val / PAGE_SIZE > PTRS_PER_PTE)
2856                 return -EINVAL;
2857         if (val > PAGE_SIZE)
2858                 fault_around_bytes = rounddown_pow_of_two(val);
2859         else
2860                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2861         return 0;
2862 }
2863 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2864                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2865
2866 static int __init fault_around_debugfs(void)
2867 {
2868         void *ret;
2869
2870         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2871                         &fault_around_bytes_fops);
2872         if (!ret)
2873                 pr_warn("Failed to create fault_around_bytes in debugfs");
2874         return 0;
2875 }
2876 late_initcall(fault_around_debugfs);
2877 #endif
2878
2879 /*
2880  * do_fault_around() tries to map few pages around the fault address. The hope
2881  * is that the pages will be needed soon and this will lower the number of
2882  * faults to handle.
2883  *
2884  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2885  * not ready to be mapped: not up-to-date, locked, etc.
2886  *
2887  * This function is called with the page table lock taken. In the split ptlock
2888  * case the page table lock only protects only those entries which belong to
2889  * the page table corresponding to the fault address.
2890  *
2891  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2892  * only once.
2893  *
2894  * fault_around_pages() defines how many pages we'll try to map.
2895  * do_fault_around() expects it to return a power of two less than or equal to
2896  * PTRS_PER_PTE.
2897  *
2898  * The virtual address of the area that we map is naturally aligned to the
2899  * fault_around_pages() value (and therefore to page order).  This way it's
2900  * easier to guarantee that we don't cross page table boundaries.
2901  */
2902 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2903                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2904 {
2905         unsigned long start_addr, nr_pages, mask;
2906         pgoff_t max_pgoff;
2907         struct vm_fault vmf;
2908         int off;
2909
2910         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2911         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2912
2913         start_addr = max(address & mask, vma->vm_start);
2914         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2915         pte -= off;
2916         pgoff -= off;
2917
2918         /*
2919          *  max_pgoff is either end of page table or end of vma
2920          *  or fault_around_pages() from pgoff, depending what is nearest.
2921          */
2922         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2923                 PTRS_PER_PTE - 1;
2924         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2925                         pgoff + nr_pages - 1);
2926
2927         /* Check if it makes any sense to call ->map_pages */
2928         while (!pte_none(*pte)) {
2929                 if (++pgoff > max_pgoff)
2930                         return;
2931                 start_addr += PAGE_SIZE;
2932                 if (start_addr >= vma->vm_end)
2933                         return;
2934                 pte++;
2935         }
2936
2937         vmf.virtual_address = (void __user *) start_addr;
2938         vmf.pte = pte;
2939         vmf.pgoff = pgoff;
2940         vmf.max_pgoff = max_pgoff;
2941         vmf.flags = flags;
2942         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2943         vma->vm_ops->map_pages(vma, &vmf);
2944 }
2945
2946 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2947                 unsigned long address, pmd_t *pmd,
2948                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2949 {
2950         struct page *fault_page;
2951         spinlock_t *ptl;
2952         pte_t *pte;
2953         int ret = 0;
2954
2955         /*
2956          * Let's call ->map_pages() first and use ->fault() as fallback
2957          * if page by the offset is not ready to be mapped (cold cache or
2958          * something).
2959          */
2960         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2961                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2962                 do_fault_around(vma, address, pte, pgoff, flags);
2963                 if (!pte_same(*pte, orig_pte))
2964                         goto unlock_out;
2965                 pte_unmap_unlock(pte, ptl);
2966         }
2967
2968         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2969         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2970                 return ret;
2971
2972         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2973         if (unlikely(!pte_same(*pte, orig_pte))) {
2974                 pte_unmap_unlock(pte, ptl);
2975                 unlock_page(fault_page);
2976                 page_cache_release(fault_page);
2977                 return ret;
2978         }
2979         do_set_pte(vma, address, fault_page, pte, false, false);
2980         unlock_page(fault_page);
2981 unlock_out:
2982         pte_unmap_unlock(pte, ptl);
2983         return ret;
2984 }
2985
2986 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2987                 unsigned long address, pmd_t *pmd,
2988                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2989 {
2990         struct page *fault_page, *new_page;
2991         struct mem_cgroup *memcg;
2992         spinlock_t *ptl;
2993         pte_t *pte;
2994         int ret;
2995
2996         if (unlikely(anon_vma_prepare(vma)))
2997                 return VM_FAULT_OOM;
2998
2999         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3000         if (!new_page)
3001                 return VM_FAULT_OOM;
3002
3003         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
3004                 page_cache_release(new_page);
3005                 return VM_FAULT_OOM;
3006         }
3007
3008         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3009         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3010                 goto uncharge_out;
3011
3012         if (fault_page)
3013                 copy_user_highpage(new_page, fault_page, address, vma);
3014         __SetPageUptodate(new_page);
3015
3016         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3017         if (unlikely(!pte_same(*pte, orig_pte))) {
3018                 pte_unmap_unlock(pte, ptl);
3019                 if (fault_page) {
3020                         unlock_page(fault_page);
3021                         page_cache_release(fault_page);
3022                 } else {
3023                         /*
3024                          * The fault handler has no page to lock, so it holds
3025                          * i_mmap_lock for read to protect against truncate.
3026                          */
3027                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3028                 }
3029                 goto uncharge_out;
3030         }
3031         do_set_pte(vma, address, new_page, pte, true, true);
3032         mem_cgroup_commit_charge(new_page, memcg, false);
3033         lru_cache_add_active_or_unevictable(new_page, vma);
3034         pte_unmap_unlock(pte, ptl);
3035         if (fault_page) {
3036                 unlock_page(fault_page);
3037                 page_cache_release(fault_page);
3038         } else {
3039                 /*
3040                  * The fault handler has no page to lock, so it holds
3041                  * i_mmap_lock for read to protect against truncate.
3042                  */
3043                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3044         }
3045         return ret;
3046 uncharge_out:
3047         mem_cgroup_cancel_charge(new_page, memcg);
3048         page_cache_release(new_page);
3049         return ret;
3050 }
3051
3052 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3053                 unsigned long address, pmd_t *pmd,
3054                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3055 {
3056         struct page *fault_page;
3057         struct address_space *mapping;
3058         spinlock_t *ptl;
3059         pte_t *pte;
3060         int dirtied = 0;
3061         int ret, tmp;
3062
3063         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3064         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3065                 return ret;
3066
3067         /*
3068          * Check if the backing address space wants to know that the page is
3069          * about to become writable
3070          */
3071         if (vma->vm_ops->page_mkwrite) {
3072                 unlock_page(fault_page);
3073                 tmp = do_page_mkwrite(vma, fault_page, address);
3074                 if (unlikely(!tmp ||
3075                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3076                         page_cache_release(fault_page);
3077                         return tmp;
3078                 }
3079         }
3080
3081         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3082         if (unlikely(!pte_same(*pte, orig_pte))) {
3083                 pte_unmap_unlock(pte, ptl);
3084                 unlock_page(fault_page);
3085                 page_cache_release(fault_page);
3086                 return ret;
3087         }
3088         do_set_pte(vma, address, fault_page, pte, true, false);
3089         pte_unmap_unlock(pte, ptl);
3090
3091         if (set_page_dirty(fault_page))
3092                 dirtied = 1;
3093         /*
3094          * Take a local copy of the address_space - page.mapping may be zeroed
3095          * by truncate after unlock_page().   The address_space itself remains
3096          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3097          * release semantics to prevent the compiler from undoing this copying.
3098          */
3099         mapping = fault_page->mapping;
3100         unlock_page(fault_page);
3101         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3102                 /*
3103                  * Some device drivers do not set page.mapping but still
3104                  * dirty their pages
3105                  */
3106                 balance_dirty_pages_ratelimited(mapping);
3107         }
3108
3109         if (!vma->vm_ops->page_mkwrite)
3110                 file_update_time(vma->vm_file);
3111
3112         return ret;
3113 }
3114
3115 /*
3116  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117  * but allow concurrent faults).
3118  * The mmap_sem may have been released depending on flags and our
3119  * return value.  See filemap_fault() and __lock_page_or_retry().
3120  */
3121 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3122                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3123                 unsigned int flags, pte_t orig_pte)
3124 {
3125         pgoff_t pgoff = (((address & PAGE_MASK)
3126                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3127
3128         pte_unmap(page_table);
3129         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3130         if (!vma->vm_ops->fault)
3131                 return VM_FAULT_SIGBUS;
3132         if (!(flags & FAULT_FLAG_WRITE))
3133                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3134                                 orig_pte);
3135         if (!(vma->vm_flags & VM_SHARED))
3136                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3137                                 orig_pte);
3138         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3139 }
3140
3141 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3142                                 unsigned long addr, int page_nid,
3143                                 int *flags)
3144 {
3145         get_page(page);
3146
3147         count_vm_numa_event(NUMA_HINT_FAULTS);
3148         if (page_nid == numa_node_id()) {
3149                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3150                 *flags |= TNF_FAULT_LOCAL;
3151         }
3152
3153         return mpol_misplaced(page, vma, addr);
3154 }
3155
3156 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3157                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3158 {
3159         struct page *page = NULL;
3160         spinlock_t *ptl;
3161         int page_nid = -1;
3162         int last_cpupid;
3163         int target_nid;
3164         bool migrated = false;
3165         bool was_writable = pte_write(pte);
3166         int flags = 0;
3167
3168         /* A PROT_NONE fault should not end up here */
3169         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3170
3171         /*
3172         * The "pte" at this point cannot be used safely without
3173         * validation through pte_unmap_same(). It's of NUMA type but
3174         * the pfn may be screwed if the read is non atomic.
3175         *
3176         * We can safely just do a "set_pte_at()", because the old
3177         * page table entry is not accessible, so there would be no
3178         * concurrent hardware modifications to the PTE.
3179         */
3180         ptl = pte_lockptr(mm, pmd);
3181         spin_lock(ptl);
3182         if (unlikely(!pte_same(*ptep, pte))) {
3183                 pte_unmap_unlock(ptep, ptl);
3184                 goto out;
3185         }
3186
3187         /* Make it present again */
3188         pte = pte_modify(pte, vma->vm_page_prot);
3189         pte = pte_mkyoung(pte);
3190         if (was_writable)
3191                 pte = pte_mkwrite(pte);
3192         set_pte_at(mm, addr, ptep, pte);
3193         update_mmu_cache(vma, addr, ptep);
3194
3195         page = vm_normal_page(vma, addr, pte);
3196         if (!page) {
3197                 pte_unmap_unlock(ptep, ptl);
3198                 return 0;
3199         }
3200
3201         /*
3202          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3203          * much anyway since they can be in shared cache state. This misses
3204          * the case where a mapping is writable but the process never writes
3205          * to it but pte_write gets cleared during protection updates and
3206          * pte_dirty has unpredictable behaviour between PTE scan updates,
3207          * background writeback, dirty balancing and application behaviour.
3208          */
3209         if (!(vma->vm_flags & VM_WRITE))
3210                 flags |= TNF_NO_GROUP;
3211
3212         /*
3213          * Flag if the page is shared between multiple address spaces. This
3214          * is later used when determining whether to group tasks together
3215          */
3216         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3217                 flags |= TNF_SHARED;
3218
3219         last_cpupid = page_cpupid_last(page);
3220         page_nid = page_to_nid(page);
3221         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3222         pte_unmap_unlock(ptep, ptl);
3223         if (target_nid == -1) {
3224                 put_page(page);
3225                 goto out;
3226         }
3227
3228         /* Migrate to the requested node */
3229         migrated = migrate_misplaced_page(page, vma, target_nid);
3230         if (migrated) {
3231                 page_nid = target_nid;
3232                 flags |= TNF_MIGRATED;
3233         } else
3234                 flags |= TNF_MIGRATE_FAIL;
3235
3236 out:
3237         if (page_nid != -1)
3238                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3239         return 0;
3240 }
3241
3242 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3243                         unsigned long address, pmd_t *pmd, unsigned int flags)
3244 {
3245         if (vma_is_anonymous(vma))
3246                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3247         if (vma->vm_ops->pmd_fault)
3248                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3249         return VM_FAULT_FALLBACK;
3250 }
3251
3252 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3253                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3254                         unsigned int flags)
3255 {
3256         if (vma_is_anonymous(vma))
3257                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3258         if (vma->vm_ops->pmd_fault)
3259                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3260         return VM_FAULT_FALLBACK;
3261 }
3262
3263 /*
3264  * These routines also need to handle stuff like marking pages dirty
3265  * and/or accessed for architectures that don't do it in hardware (most
3266  * RISC architectures).  The early dirtying is also good on the i386.
3267  *
3268  * There is also a hook called "update_mmu_cache()" that architectures
3269  * with external mmu caches can use to update those (ie the Sparc or
3270  * PowerPC hashed page tables that act as extended TLBs).
3271  *
3272  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3273  * but allow concurrent faults), and pte mapped but not yet locked.
3274  * We return with pte unmapped and unlocked.
3275  *
3276  * The mmap_sem may have been released depending on flags and our
3277  * return value.  See filemap_fault() and __lock_page_or_retry().
3278  */
3279 static int handle_pte_fault(struct mm_struct *mm,
3280                      struct vm_area_struct *vma, unsigned long address,
3281                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3282 {
3283         pte_t entry;
3284         spinlock_t *ptl;
3285
3286         /*
3287          * some architectures can have larger ptes than wordsize,
3288          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3289          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3290          * The code below just needs a consistent view for the ifs and
3291          * we later double check anyway with the ptl lock held. So here
3292          * a barrier will do.
3293          */
3294         entry = *pte;
3295         barrier();
3296         if (!pte_present(entry)) {
3297                 if (pte_none(entry)) {
3298                         if (vma_is_anonymous(vma))
3299                                 return do_anonymous_page(mm, vma, address,
3300                                                          pte, pmd, flags);
3301                         else
3302                                 return do_fault(mm, vma, address, pte, pmd,
3303                                                 flags, entry);
3304                 }
3305                 return do_swap_page(mm, vma, address,
3306                                         pte, pmd, flags, entry);
3307         }
3308
3309         if (pte_protnone(entry))
3310                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3311
3312         ptl = pte_lockptr(mm, pmd);
3313         spin_lock(ptl);
3314         if (unlikely(!pte_same(*pte, entry)))
3315                 goto unlock;
3316         if (flags & FAULT_FLAG_WRITE) {
3317                 if (!pte_write(entry))
3318                         return do_wp_page(mm, vma, address,
3319                                         pte, pmd, ptl, entry);
3320                 entry = pte_mkdirty(entry);
3321         }
3322         entry = pte_mkyoung(entry);
3323         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3324                 update_mmu_cache(vma, address, pte);
3325         } else {
3326                 /*
3327                  * This is needed only for protection faults but the arch code
3328                  * is not yet telling us if this is a protection fault or not.
3329                  * This still avoids useless tlb flushes for .text page faults
3330                  * with threads.
3331                  */
3332                 if (flags & FAULT_FLAG_WRITE)
3333                         flush_tlb_fix_spurious_fault(vma, address);
3334         }
3335 unlock:
3336         pte_unmap_unlock(pte, ptl);
3337         return 0;
3338 }
3339
3340 /*
3341  * By the time we get here, we already hold the mm semaphore
3342  *
3343  * The mmap_sem may have been released depending on flags and our
3344  * return value.  See filemap_fault() and __lock_page_or_retry().
3345  */
3346 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3347                              unsigned long address, unsigned int flags)
3348 {
3349         pgd_t *pgd;
3350         pud_t *pud;
3351         pmd_t *pmd;
3352         pte_t *pte;
3353
3354         if (unlikely(is_vm_hugetlb_page(vma)))
3355                 return hugetlb_fault(mm, vma, address, flags);
3356
3357         pgd = pgd_offset(mm, address);
3358         pud = pud_alloc(mm, pgd, address);
3359         if (!pud)
3360                 return VM_FAULT_OOM;
3361         pmd = pmd_alloc(mm, pud, address);
3362         if (!pmd)
3363                 return VM_FAULT_OOM;
3364         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3365                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3366                 if (!(ret & VM_FAULT_FALLBACK))
3367                         return ret;
3368         } else {
3369                 pmd_t orig_pmd = *pmd;
3370                 int ret;
3371
3372                 barrier();
3373                 if (pmd_trans_huge(orig_pmd)) {
3374                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3375
3376                         /*
3377                          * If the pmd is splitting, return and retry the
3378                          * the fault.  Alternative: wait until the split
3379                          * is done, and goto retry.
3380                          */
3381                         if (pmd_trans_splitting(orig_pmd))
3382                                 return 0;
3383
3384                         if (pmd_protnone(orig_pmd))
3385                                 return do_huge_pmd_numa_page(mm, vma, address,
3386                                                              orig_pmd, pmd);
3387
3388                         if (dirty && !pmd_write(orig_pmd)) {
3389                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3390                                                         orig_pmd, flags);
3391                                 if (!(ret & VM_FAULT_FALLBACK))
3392                                         return ret;
3393                         } else {
3394                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3395                                                       orig_pmd, dirty);
3396                                 return 0;
3397                         }
3398                 }
3399         }
3400
3401         /*
3402          * Use __pte_alloc instead of pte_alloc_map, because we can't
3403          * run pte_offset_map on the pmd, if an huge pmd could
3404          * materialize from under us from a different thread.
3405          */
3406         if (unlikely(pmd_none(*pmd)) &&
3407             unlikely(__pte_alloc(mm, vma, pmd, address)))
3408                 return VM_FAULT_OOM;
3409         /* if an huge pmd materialized from under us just retry later */
3410         if (unlikely(pmd_trans_huge(*pmd)))
3411                 return 0;
3412         /*
3413          * A regular pmd is established and it can't morph into a huge pmd
3414          * from under us anymore at this point because we hold the mmap_sem
3415          * read mode and khugepaged takes it in write mode. So now it's
3416          * safe to run pte_offset_map().
3417          */
3418         pte = pte_offset_map(pmd, address);
3419
3420         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3421 }
3422
3423 /*
3424  * By the time we get here, we already hold the mm semaphore
3425  *
3426  * The mmap_sem may have been released depending on flags and our
3427  * return value.  See filemap_fault() and __lock_page_or_retry().
3428  */
3429 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3430                     unsigned long address, unsigned int flags)
3431 {
3432         int ret;
3433
3434         __set_current_state(TASK_RUNNING);
3435
3436         count_vm_event(PGFAULT);
3437         mem_cgroup_count_vm_event(mm, PGFAULT);
3438
3439         /* do counter updates before entering really critical section. */
3440         check_sync_rss_stat(current);
3441
3442         /*
3443          * Enable the memcg OOM handling for faults triggered in user
3444          * space.  Kernel faults are handled more gracefully.
3445          */
3446         if (flags & FAULT_FLAG_USER)
3447                 mem_cgroup_oom_enable();
3448
3449         ret = __handle_mm_fault(mm, vma, address, flags);
3450
3451         if (flags & FAULT_FLAG_USER) {
3452                 mem_cgroup_oom_disable();
3453                 /*
3454                  * The task may have entered a memcg OOM situation but
3455                  * if the allocation error was handled gracefully (no
3456                  * VM_FAULT_OOM), there is no need to kill anything.
3457                  * Just clean up the OOM state peacefully.
3458                  */
3459                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3460                         mem_cgroup_oom_synchronize(false);
3461         }
3462
3463         return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(handle_mm_fault);
3466
3467 #ifndef __PAGETABLE_PUD_FOLDED
3468 /*
3469  * Allocate page upper directory.
3470  * We've already handled the fast-path in-line.
3471  */
3472 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3473 {
3474         pud_t *new = pud_alloc_one(mm, address);
3475         if (!new)
3476                 return -ENOMEM;
3477
3478         smp_wmb(); /* See comment in __pte_alloc */
3479
3480         spin_lock(&mm->page_table_lock);
3481         if (pgd_present(*pgd))          /* Another has populated it */
3482                 pud_free(mm, new);
3483         else
3484                 pgd_populate(mm, pgd, new);
3485         spin_unlock(&mm->page_table_lock);
3486         return 0;
3487 }
3488 #endif /* __PAGETABLE_PUD_FOLDED */
3489
3490 #ifndef __PAGETABLE_PMD_FOLDED
3491 /*
3492  * Allocate page middle directory.
3493  * We've already handled the fast-path in-line.
3494  */
3495 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3496 {
3497         pmd_t *new = pmd_alloc_one(mm, address);
3498         if (!new)
3499                 return -ENOMEM;
3500
3501         smp_wmb(); /* See comment in __pte_alloc */
3502
3503         spin_lock(&mm->page_table_lock);
3504 #ifndef __ARCH_HAS_4LEVEL_HACK
3505         if (!pud_present(*pud)) {
3506                 mm_inc_nr_pmds(mm);
3507                 pud_populate(mm, pud, new);
3508         } else  /* Another has populated it */
3509                 pmd_free(mm, new);
3510 #else
3511         if (!pgd_present(*pud)) {
3512                 mm_inc_nr_pmds(mm);
3513                 pgd_populate(mm, pud, new);
3514         } else /* Another has populated it */
3515                 pmd_free(mm, new);
3516 #endif /* __ARCH_HAS_4LEVEL_HACK */
3517         spin_unlock(&mm->page_table_lock);
3518         return 0;
3519 }
3520 #endif /* __PAGETABLE_PMD_FOLDED */
3521
3522 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3523                 pte_t **ptepp, spinlock_t **ptlp)
3524 {
3525         pgd_t *pgd;
3526         pud_t *pud;
3527         pmd_t *pmd;
3528         pte_t *ptep;
3529
3530         pgd = pgd_offset(mm, address);
3531         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3532                 goto out;
3533
3534         pud = pud_offset(pgd, address);
3535         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3536                 goto out;
3537
3538         pmd = pmd_offset(pud, address);
3539         VM_BUG_ON(pmd_trans_huge(*pmd));
3540         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3541                 goto out;
3542
3543         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3544         if (pmd_huge(*pmd))
3545                 goto out;
3546
3547         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3548         if (!ptep)
3549                 goto out;
3550         if (!pte_present(*ptep))
3551                 goto unlock;
3552         *ptepp = ptep;
3553         return 0;
3554 unlock:
3555         pte_unmap_unlock(ptep, *ptlp);
3556 out:
3557         return -EINVAL;
3558 }
3559
3560 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3561                              pte_t **ptepp, spinlock_t **ptlp)
3562 {
3563         int res;
3564
3565         /* (void) is needed to make gcc happy */
3566         (void) __cond_lock(*ptlp,
3567                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3568         return res;
3569 }
3570
3571 /**
3572  * follow_pfn - look up PFN at a user virtual address
3573  * @vma: memory mapping
3574  * @address: user virtual address
3575  * @pfn: location to store found PFN
3576  *
3577  * Only IO mappings and raw PFN mappings are allowed.
3578  *
3579  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3580  */
3581 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3582         unsigned long *pfn)
3583 {
3584         int ret = -EINVAL;
3585         spinlock_t *ptl;
3586         pte_t *ptep;
3587
3588         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3589                 return ret;
3590
3591         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3592         if (ret)
3593                 return ret;
3594         *pfn = pte_pfn(*ptep);
3595         pte_unmap_unlock(ptep, ptl);
3596         return 0;
3597 }
3598 EXPORT_SYMBOL(follow_pfn);
3599
3600 #ifdef CONFIG_HAVE_IOREMAP_PROT
3601 int follow_phys(struct vm_area_struct *vma,
3602                 unsigned long address, unsigned int flags,
3603                 unsigned long *prot, resource_size_t *phys)
3604 {
3605         int ret = -EINVAL;
3606         pte_t *ptep, pte;
3607         spinlock_t *ptl;
3608
3609         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3610                 goto out;
3611
3612         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3613                 goto out;
3614         pte = *ptep;
3615
3616         if ((flags & FOLL_WRITE) && !pte_write(pte))
3617                 goto unlock;
3618
3619         *prot = pgprot_val(pte_pgprot(pte));
3620         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3621
3622         ret = 0;
3623 unlock:
3624         pte_unmap_unlock(ptep, ptl);
3625 out:
3626         return ret;
3627 }
3628
3629 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3630                         void *buf, int len, int write)
3631 {
3632         resource_size_t phys_addr;
3633         unsigned long prot = 0;
3634         void __iomem *maddr;
3635         int offset = addr & (PAGE_SIZE-1);
3636
3637         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3638                 return -EINVAL;
3639
3640         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3641         if (write)
3642                 memcpy_toio(maddr + offset, buf, len);
3643         else
3644                 memcpy_fromio(buf, maddr + offset, len);
3645         iounmap(maddr);
3646
3647         return len;
3648 }
3649 EXPORT_SYMBOL_GPL(generic_access_phys);
3650 #endif
3651
3652 /*
3653  * Access another process' address space as given in mm.  If non-NULL, use the
3654  * given task for page fault accounting.
3655  */
3656 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3657                 unsigned long addr, void *buf, int len, int write)
3658 {
3659         struct vm_area_struct *vma;
3660         void *old_buf = buf;
3661
3662         down_read(&mm->mmap_sem);
3663         /* ignore errors, just check how much was successfully transferred */
3664         while (len) {
3665                 int bytes, ret, offset;
3666                 void *maddr;
3667                 struct page *page = NULL;
3668
3669                 ret = get_user_pages(tsk, mm, addr, 1,
3670                                 write, 1, &page, &vma);
3671                 if (ret <= 0) {
3672 #ifndef CONFIG_HAVE_IOREMAP_PROT
3673                         break;
3674 #else
3675                         /*
3676                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3677                          * we can access using slightly different code.
3678                          */
3679                         vma = find_vma(mm, addr);
3680                         if (!vma || vma->vm_start > addr)
3681                                 break;
3682                         if (vma->vm_ops && vma->vm_ops->access)
3683                                 ret = vma->vm_ops->access(vma, addr, buf,
3684                                                           len, write);
3685                         if (ret <= 0)
3686                                 break;
3687                         bytes = ret;
3688 #endif
3689                 } else {
3690                         bytes = len;
3691                         offset = addr & (PAGE_SIZE-1);
3692                         if (bytes > PAGE_SIZE-offset)
3693                                 bytes = PAGE_SIZE-offset;
3694
3695                         maddr = kmap(page);
3696                         if (write) {
3697                                 copy_to_user_page(vma, page, addr,
3698                                                   maddr + offset, buf, bytes);
3699                                 set_page_dirty_lock(page);
3700                         } else {
3701                                 copy_from_user_page(vma, page, addr,
3702                                                     buf, maddr + offset, bytes);
3703                         }
3704                         kunmap(page);
3705                         page_cache_release(page);
3706                 }
3707                 len -= bytes;
3708                 buf += bytes;
3709                 addr += bytes;
3710         }
3711         up_read(&mm->mmap_sem);
3712
3713         return buf - old_buf;
3714 }
3715
3716 /**
3717  * access_remote_vm - access another process' address space
3718  * @mm:         the mm_struct of the target address space
3719  * @addr:       start address to access
3720  * @buf:        source or destination buffer
3721  * @len:        number of bytes to transfer
3722  * @write:      whether the access is a write
3723  *
3724  * The caller must hold a reference on @mm.
3725  */
3726 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3727                 void *buf, int len, int write)
3728 {
3729         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3730 }
3731
3732 /*
3733  * Access another process' address space.
3734  * Source/target buffer must be kernel space,
3735  * Do not walk the page table directly, use get_user_pages
3736  */
3737 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3738                 void *buf, int len, int write)
3739 {
3740         struct mm_struct *mm;
3741         int ret;
3742
3743         mm = get_task_mm(tsk);
3744         if (!mm)
3745                 return 0;
3746
3747         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3748         mmput(mm);
3749
3750         return ret;
3751 }
3752
3753 /*
3754  * Print the name of a VMA.
3755  */
3756 void print_vma_addr(char *prefix, unsigned long ip)
3757 {
3758         struct mm_struct *mm = current->mm;
3759         struct vm_area_struct *vma;
3760
3761         /*
3762          * Do not print if we are in atomic
3763          * contexts (in exception stacks, etc.):
3764          */
3765         if (preempt_count())
3766                 return;
3767
3768         down_read(&mm->mmap_sem);
3769         vma = find_vma(mm, ip);
3770         if (vma && vma->vm_file) {
3771                 struct file *f = vma->vm_file;
3772                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3773                 if (buf) {
3774                         char *p;
3775
3776                         p = file_path(f, buf, PAGE_SIZE);
3777                         if (IS_ERR(p))
3778                                 p = "?";
3779                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3780                                         vma->vm_start,
3781                                         vma->vm_end - vma->vm_start);
3782                         free_page((unsigned long)buf);
3783                 }
3784         }
3785         up_read(&mm->mmap_sem);
3786 }
3787
3788 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3789 void __might_fault(const char *file, int line)
3790 {
3791         /*
3792          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3793          * holding the mmap_sem, this is safe because kernel memory doesn't
3794          * get paged out, therefore we'll never actually fault, and the
3795          * below annotations will generate false positives.
3796          */
3797         if (segment_eq(get_fs(), KERNEL_DS))
3798                 return;
3799         if (pagefault_disabled())
3800                 return;
3801         __might_sleep(file, line, 0);
3802 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3803         if (current->mm)
3804                 might_lock_read(&current->mm->mmap_sem);
3805 #endif
3806 }
3807 EXPORT_SYMBOL(__might_fault);
3808 #endif
3809
3810 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3811 static void clear_gigantic_page(struct page *page,
3812                                 unsigned long addr,
3813                                 unsigned int pages_per_huge_page)
3814 {
3815         int i;
3816         struct page *p = page;
3817
3818         might_sleep();
3819         for (i = 0; i < pages_per_huge_page;
3820              i++, p = mem_map_next(p, page, i)) {
3821                 cond_resched();
3822                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3823         }
3824 }
3825 void clear_huge_page(struct page *page,
3826                      unsigned long addr, unsigned int pages_per_huge_page)
3827 {
3828         int i;
3829
3830         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3831                 clear_gigantic_page(page, addr, pages_per_huge_page);
3832                 return;
3833         }
3834
3835         might_sleep();
3836         for (i = 0; i < pages_per_huge_page; i++) {
3837                 cond_resched();
3838                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3839         }
3840 }
3841
3842 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3843                                     unsigned long addr,
3844                                     struct vm_area_struct *vma,
3845                                     unsigned int pages_per_huge_page)
3846 {
3847         int i;
3848         struct page *dst_base = dst;
3849         struct page *src_base = src;
3850
3851         for (i = 0; i < pages_per_huge_page; ) {
3852                 cond_resched();
3853                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3854
3855                 i++;
3856                 dst = mem_map_next(dst, dst_base, i);
3857                 src = mem_map_next(src, src_base, i);
3858         }
3859 }
3860
3861 void copy_user_huge_page(struct page *dst, struct page *src,
3862                          unsigned long addr, struct vm_area_struct *vma,
3863                          unsigned int pages_per_huge_page)
3864 {
3865         int i;
3866
3867         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3868                 copy_user_gigantic_page(dst, src, addr, vma,
3869                                         pages_per_huge_page);
3870                 return;
3871         }
3872
3873         might_sleep();
3874         for (i = 0; i < pages_per_huge_page; i++) {
3875                 cond_resched();
3876                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3877         }
3878 }
3879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3880
3881 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3882
3883 static struct kmem_cache *page_ptl_cachep;
3884
3885 void __init ptlock_cache_init(void)
3886 {
3887         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3888                         SLAB_PANIC, NULL);
3889 }
3890
3891 bool ptlock_alloc(struct page *page)
3892 {
3893         spinlock_t *ptl;
3894
3895         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3896         if (!ptl)
3897                 return false;
3898         page->ptl = ptl;
3899         return true;
3900 }
3901
3902 void ptlock_free(struct page *page)
3903 {
3904         kmem_cache_free(page_ptl_cachep, page->ptl);
3905 }
3906 #endif