Merge tag 'docs-4.5' of git://git.lwn.net/linux
[linux-drm-fsl-dcu.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201         .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes  1U
232 #define ksm_nr_node_ids         1
233 #endif
234
235 #define KSM_RUN_STOP    0
236 #define KSM_RUN_MERGE   1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247                 sizeof(struct __struct), __alignof__(struct __struct),\
248                 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253         if (!rmap_item_cache)
254                 goto out;
255
256         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257         if (!stable_node_cache)
258                 goto out_free1;
259
260         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261         if (!mm_slot_cache)
262                 goto out_free2;
263
264         return 0;
265
266 out_free2:
267         kmem_cache_destroy(stable_node_cache);
268 out_free1:
269         kmem_cache_destroy(rmap_item_cache);
270 out:
271         return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276         kmem_cache_destroy(mm_slot_cache);
277         kmem_cache_destroy(stable_node_cache);
278         kmem_cache_destroy(rmap_item_cache);
279         mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284         struct rmap_item *rmap_item;
285
286         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287         if (rmap_item)
288                 ksm_rmap_items++;
289         return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294         ksm_rmap_items--;
295         rmap_item->mm = NULL;   /* debug safety */
296         kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306         kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311         if (!mm_slot_cache)     /* initialization failed */
312                 return NULL;
313         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318         kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323         struct mm_slot *slot;
324
325         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326                 if (slot->mm == mm)
327                         return slot;
328
329         return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333                                     struct mm_slot *mm_slot)
334 {
335         mm_slot->mm = mm;
336         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349         return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356  *              put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365         struct page *page;
366         int ret = 0;
367
368         do {
369                 cond_resched();
370                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371                 if (IS_ERR_OR_NULL(page))
372                         break;
373                 if (PageKsm(page))
374                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
375                                                         FAULT_FLAG_WRITE);
376                 else
377                         ret = VM_FAULT_WRITE;
378                 put_page(page);
379         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380         /*
381          * We must loop because handle_mm_fault() may back out if there's
382          * any difficulty e.g. if pte accessed bit gets updated concurrently.
383          *
384          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385          * COW has been broken, even if the vma does not permit VM_WRITE;
386          * but note that a concurrent fault might break PageKsm for us.
387          *
388          * VM_FAULT_SIGBUS could occur if we race with truncation of the
389          * backing file, which also invalidates anonymous pages: that's
390          * okay, that truncation will have unmapped the PageKsm for us.
391          *
392          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394          * current task has TIF_MEMDIE set, and will be OOM killed on return
395          * to user; and ksmd, having no mm, would never be chosen for that.
396          *
397          * But if the mm is in a limited mem_cgroup, then the fault may fail
398          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399          * even ksmd can fail in this way - though it's usually breaking ksm
400          * just to undo a merge it made a moment before, so unlikely to oom.
401          *
402          * That's a pity: we might therefore have more kernel pages allocated
403          * than we're counting as nodes in the stable tree; but ksm_do_scan
404          * will retry to break_cow on each pass, so should recover the page
405          * in due course.  The important thing is to not let VM_MERGEABLE
406          * be cleared while any such pages might remain in the area.
407          */
408         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412                 unsigned long addr)
413 {
414         struct vm_area_struct *vma;
415         if (ksm_test_exit(mm))
416                 return NULL;
417         vma = find_vma(mm, addr);
418         if (!vma || vma->vm_start > addr)
419                 return NULL;
420         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421                 return NULL;
422         return vma;
423 }
424
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427         struct mm_struct *mm = rmap_item->mm;
428         unsigned long addr = rmap_item->address;
429         struct vm_area_struct *vma;
430
431         /*
432          * It is not an accident that whenever we want to break COW
433          * to undo, we also need to drop a reference to the anon_vma.
434          */
435         put_anon_vma(rmap_item->anon_vma);
436
437         down_read(&mm->mmap_sem);
438         vma = find_mergeable_vma(mm, addr);
439         if (vma)
440                 break_ksm(vma, addr);
441         up_read(&mm->mmap_sem);
442 }
443
444 static struct page *page_trans_compound_anon(struct page *page)
445 {
446         if (PageTransCompound(page)) {
447                 struct page *head = compound_head(page);
448                 /*
449                  * head may actually be splitted and freed from under
450                  * us but it's ok here.
451                  */
452                 if (PageAnon(head))
453                         return head;
454         }
455         return NULL;
456 }
457
458 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459 {
460         struct mm_struct *mm = rmap_item->mm;
461         unsigned long addr = rmap_item->address;
462         struct vm_area_struct *vma;
463         struct page *page;
464
465         down_read(&mm->mmap_sem);
466         vma = find_mergeable_vma(mm, addr);
467         if (!vma)
468                 goto out;
469
470         page = follow_page(vma, addr, FOLL_GET);
471         if (IS_ERR_OR_NULL(page))
472                 goto out;
473         if (PageAnon(page) || page_trans_compound_anon(page)) {
474                 flush_anon_page(vma, page, addr);
475                 flush_dcache_page(page);
476         } else {
477                 put_page(page);
478 out:
479                 page = NULL;
480         }
481         up_read(&mm->mmap_sem);
482         return page;
483 }
484
485 /*
486  * This helper is used for getting right index into array of tree roots.
487  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489  * every node has its own stable and unstable tree.
490  */
491 static inline int get_kpfn_nid(unsigned long kpfn)
492 {
493         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
494 }
495
496 static void remove_node_from_stable_tree(struct stable_node *stable_node)
497 {
498         struct rmap_item *rmap_item;
499
500         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
501                 if (rmap_item->hlist.next)
502                         ksm_pages_sharing--;
503                 else
504                         ksm_pages_shared--;
505                 put_anon_vma(rmap_item->anon_vma);
506                 rmap_item->address &= PAGE_MASK;
507                 cond_resched();
508         }
509
510         if (stable_node->head == &migrate_nodes)
511                 list_del(&stable_node->list);
512         else
513                 rb_erase(&stable_node->node,
514                          root_stable_tree + NUMA(stable_node->nid));
515         free_stable_node(stable_node);
516 }
517
518 /*
519  * get_ksm_page: checks if the page indicated by the stable node
520  * is still its ksm page, despite having held no reference to it.
521  * In which case we can trust the content of the page, and it
522  * returns the gotten page; but if the page has now been zapped,
523  * remove the stale node from the stable tree and return NULL.
524  * But beware, the stable node's page might be being migrated.
525  *
526  * You would expect the stable_node to hold a reference to the ksm page.
527  * But if it increments the page's count, swapping out has to wait for
528  * ksmd to come around again before it can free the page, which may take
529  * seconds or even minutes: much too unresponsive.  So instead we use a
530  * "keyhole reference": access to the ksm page from the stable node peeps
531  * out through its keyhole to see if that page still holds the right key,
532  * pointing back to this stable node.  This relies on freeing a PageAnon
533  * page to reset its page->mapping to NULL, and relies on no other use of
534  * a page to put something that might look like our key in page->mapping.
535  * is on its way to being freed; but it is an anomaly to bear in mind.
536  */
537 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
538 {
539         struct page *page;
540         void *expected_mapping;
541         unsigned long kpfn;
542
543         expected_mapping = (void *)stable_node +
544                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
545 again:
546         kpfn = READ_ONCE(stable_node->kpfn);
547         page = pfn_to_page(kpfn);
548
549         /*
550          * page is computed from kpfn, so on most architectures reading
551          * page->mapping is naturally ordered after reading node->kpfn,
552          * but on Alpha we need to be more careful.
553          */
554         smp_read_barrier_depends();
555         if (READ_ONCE(page->mapping) != expected_mapping)
556                 goto stale;
557
558         /*
559          * We cannot do anything with the page while its refcount is 0.
560          * Usually 0 means free, or tail of a higher-order page: in which
561          * case this node is no longer referenced, and should be freed;
562          * however, it might mean that the page is under page_freeze_refs().
563          * The __remove_mapping() case is easy, again the node is now stale;
564          * but if page is swapcache in migrate_page_move_mapping(), it might
565          * still be our page, in which case it's essential to keep the node.
566          */
567         while (!get_page_unless_zero(page)) {
568                 /*
569                  * Another check for page->mapping != expected_mapping would
570                  * work here too.  We have chosen the !PageSwapCache test to
571                  * optimize the common case, when the page is or is about to
572                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
573                  * in the freeze_refs section of __remove_mapping(); but Anon
574                  * page->mapping reset to NULL later, in free_pages_prepare().
575                  */
576                 if (!PageSwapCache(page))
577                         goto stale;
578                 cpu_relax();
579         }
580
581         if (READ_ONCE(page->mapping) != expected_mapping) {
582                 put_page(page);
583                 goto stale;
584         }
585
586         if (lock_it) {
587                 lock_page(page);
588                 if (READ_ONCE(page->mapping) != expected_mapping) {
589                         unlock_page(page);
590                         put_page(page);
591                         goto stale;
592                 }
593         }
594         return page;
595
596 stale:
597         /*
598          * We come here from above when page->mapping or !PageSwapCache
599          * suggests that the node is stale; but it might be under migration.
600          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601          * before checking whether node->kpfn has been changed.
602          */
603         smp_rmb();
604         if (READ_ONCE(stable_node->kpfn) != kpfn)
605                 goto again;
606         remove_node_from_stable_tree(stable_node);
607         return NULL;
608 }
609
610 /*
611  * Removing rmap_item from stable or unstable tree.
612  * This function will clean the information from the stable/unstable tree.
613  */
614 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
615 {
616         if (rmap_item->address & STABLE_FLAG) {
617                 struct stable_node *stable_node;
618                 struct page *page;
619
620                 stable_node = rmap_item->head;
621                 page = get_ksm_page(stable_node, true);
622                 if (!page)
623                         goto out;
624
625                 hlist_del(&rmap_item->hlist);
626                 unlock_page(page);
627                 put_page(page);
628
629                 if (!hlist_empty(&stable_node->hlist))
630                         ksm_pages_sharing--;
631                 else
632                         ksm_pages_shared--;
633
634                 put_anon_vma(rmap_item->anon_vma);
635                 rmap_item->address &= PAGE_MASK;
636
637         } else if (rmap_item->address & UNSTABLE_FLAG) {
638                 unsigned char age;
639                 /*
640                  * Usually ksmd can and must skip the rb_erase, because
641                  * root_unstable_tree was already reset to RB_ROOT.
642                  * But be careful when an mm is exiting: do the rb_erase
643                  * if this rmap_item was inserted by this scan, rather
644                  * than left over from before.
645                  */
646                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
647                 BUG_ON(age > 1);
648                 if (!age)
649                         rb_erase(&rmap_item->node,
650                                  root_unstable_tree + NUMA(rmap_item->nid));
651                 ksm_pages_unshared--;
652                 rmap_item->address &= PAGE_MASK;
653         }
654 out:
655         cond_resched();         /* we're called from many long loops */
656 }
657
658 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
659                                        struct rmap_item **rmap_list)
660 {
661         while (*rmap_list) {
662                 struct rmap_item *rmap_item = *rmap_list;
663                 *rmap_list = rmap_item->rmap_list;
664                 remove_rmap_item_from_tree(rmap_item);
665                 free_rmap_item(rmap_item);
666         }
667 }
668
669 /*
670  * Though it's very tempting to unmerge rmap_items from stable tree rather
671  * than check every pte of a given vma, the locking doesn't quite work for
672  * that - an rmap_item is assigned to the stable tree after inserting ksm
673  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
674  * rmap_items from parent to child at fork time (so as not to waste time
675  * if exit comes before the next scan reaches it).
676  *
677  * Similarly, although we'd like to remove rmap_items (so updating counts
678  * and freeing memory) when unmerging an area, it's easier to leave that
679  * to the next pass of ksmd - consider, for example, how ksmd might be
680  * in cmp_and_merge_page on one of the rmap_items we would be removing.
681  */
682 static int unmerge_ksm_pages(struct vm_area_struct *vma,
683                              unsigned long start, unsigned long end)
684 {
685         unsigned long addr;
686         int err = 0;
687
688         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
689                 if (ksm_test_exit(vma->vm_mm))
690                         break;
691                 if (signal_pending(current))
692                         err = -ERESTARTSYS;
693                 else
694                         err = break_ksm(vma, addr);
695         }
696         return err;
697 }
698
699 #ifdef CONFIG_SYSFS
700 /*
701  * Only called through the sysfs control interface:
702  */
703 static int remove_stable_node(struct stable_node *stable_node)
704 {
705         struct page *page;
706         int err;
707
708         page = get_ksm_page(stable_node, true);
709         if (!page) {
710                 /*
711                  * get_ksm_page did remove_node_from_stable_tree itself.
712                  */
713                 return 0;
714         }
715
716         if (WARN_ON_ONCE(page_mapped(page))) {
717                 /*
718                  * This should not happen: but if it does, just refuse to let
719                  * merge_across_nodes be switched - there is no need to panic.
720                  */
721                 err = -EBUSY;
722         } else {
723                 /*
724                  * The stable node did not yet appear stale to get_ksm_page(),
725                  * since that allows for an unmapped ksm page to be recognized
726                  * right up until it is freed; but the node is safe to remove.
727                  * This page might be in a pagevec waiting to be freed,
728                  * or it might be PageSwapCache (perhaps under writeback),
729                  * or it might have been removed from swapcache a moment ago.
730                  */
731                 set_page_stable_node(page, NULL);
732                 remove_node_from_stable_tree(stable_node);
733                 err = 0;
734         }
735
736         unlock_page(page);
737         put_page(page);
738         return err;
739 }
740
741 static int remove_all_stable_nodes(void)
742 {
743         struct stable_node *stable_node, *next;
744         int nid;
745         int err = 0;
746
747         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
748                 while (root_stable_tree[nid].rb_node) {
749                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
750                                                 struct stable_node, node);
751                         if (remove_stable_node(stable_node)) {
752                                 err = -EBUSY;
753                                 break;  /* proceed to next nid */
754                         }
755                         cond_resched();
756                 }
757         }
758         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
759                 if (remove_stable_node(stable_node))
760                         err = -EBUSY;
761                 cond_resched();
762         }
763         return err;
764 }
765
766 static int unmerge_and_remove_all_rmap_items(void)
767 {
768         struct mm_slot *mm_slot;
769         struct mm_struct *mm;
770         struct vm_area_struct *vma;
771         int err = 0;
772
773         spin_lock(&ksm_mmlist_lock);
774         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
775                                                 struct mm_slot, mm_list);
776         spin_unlock(&ksm_mmlist_lock);
777
778         for (mm_slot = ksm_scan.mm_slot;
779                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
780                 mm = mm_slot->mm;
781                 down_read(&mm->mmap_sem);
782                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
783                         if (ksm_test_exit(mm))
784                                 break;
785                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
786                                 continue;
787                         err = unmerge_ksm_pages(vma,
788                                                 vma->vm_start, vma->vm_end);
789                         if (err)
790                                 goto error;
791                 }
792
793                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
794
795                 spin_lock(&ksm_mmlist_lock);
796                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
797                                                 struct mm_slot, mm_list);
798                 if (ksm_test_exit(mm)) {
799                         hash_del(&mm_slot->link);
800                         list_del(&mm_slot->mm_list);
801                         spin_unlock(&ksm_mmlist_lock);
802
803                         free_mm_slot(mm_slot);
804                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
805                         up_read(&mm->mmap_sem);
806                         mmdrop(mm);
807                 } else {
808                         spin_unlock(&ksm_mmlist_lock);
809                         up_read(&mm->mmap_sem);
810                 }
811         }
812
813         /* Clean up stable nodes, but don't worry if some are still busy */
814         remove_all_stable_nodes();
815         ksm_scan.seqnr = 0;
816         return 0;
817
818 error:
819         up_read(&mm->mmap_sem);
820         spin_lock(&ksm_mmlist_lock);
821         ksm_scan.mm_slot = &ksm_mm_head;
822         spin_unlock(&ksm_mmlist_lock);
823         return err;
824 }
825 #endif /* CONFIG_SYSFS */
826
827 static u32 calc_checksum(struct page *page)
828 {
829         u32 checksum;
830         void *addr = kmap_atomic(page);
831         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
832         kunmap_atomic(addr);
833         return checksum;
834 }
835
836 static int memcmp_pages(struct page *page1, struct page *page2)
837 {
838         char *addr1, *addr2;
839         int ret;
840
841         addr1 = kmap_atomic(page1);
842         addr2 = kmap_atomic(page2);
843         ret = memcmp(addr1, addr2, PAGE_SIZE);
844         kunmap_atomic(addr2);
845         kunmap_atomic(addr1);
846         return ret;
847 }
848
849 static inline int pages_identical(struct page *page1, struct page *page2)
850 {
851         return !memcmp_pages(page1, page2);
852 }
853
854 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
855                               pte_t *orig_pte)
856 {
857         struct mm_struct *mm = vma->vm_mm;
858         unsigned long addr;
859         pte_t *ptep;
860         spinlock_t *ptl;
861         int swapped;
862         int err = -EFAULT;
863         unsigned long mmun_start;       /* For mmu_notifiers */
864         unsigned long mmun_end;         /* For mmu_notifiers */
865
866         addr = page_address_in_vma(page, vma);
867         if (addr == -EFAULT)
868                 goto out;
869
870         BUG_ON(PageTransCompound(page));
871
872         mmun_start = addr;
873         mmun_end   = addr + PAGE_SIZE;
874         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
875
876         ptep = page_check_address(page, mm, addr, &ptl, 0);
877         if (!ptep)
878                 goto out_mn;
879
880         if (pte_write(*ptep) || pte_dirty(*ptep)) {
881                 pte_t entry;
882
883                 swapped = PageSwapCache(page);
884                 flush_cache_page(vma, addr, page_to_pfn(page));
885                 /*
886                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
887                  * take any lock, therefore the check that we are going to make
888                  * with the pagecount against the mapcount is racey and
889                  * O_DIRECT can happen right after the check.
890                  * So we clear the pte and flush the tlb before the check
891                  * this assure us that no O_DIRECT can happen after the check
892                  * or in the middle of the check.
893                  */
894                 entry = ptep_clear_flush_notify(vma, addr, ptep);
895                 /*
896                  * Check that no O_DIRECT or similar I/O is in progress on the
897                  * page
898                  */
899                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
900                         set_pte_at(mm, addr, ptep, entry);
901                         goto out_unlock;
902                 }
903                 if (pte_dirty(entry))
904                         set_page_dirty(page);
905                 entry = pte_mkclean(pte_wrprotect(entry));
906                 set_pte_at_notify(mm, addr, ptep, entry);
907         }
908         *orig_pte = *ptep;
909         err = 0;
910
911 out_unlock:
912         pte_unmap_unlock(ptep, ptl);
913 out_mn:
914         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
915 out:
916         return err;
917 }
918
919 /**
920  * replace_page - replace page in vma by new ksm page
921  * @vma:      vma that holds the pte pointing to page
922  * @page:     the page we are replacing by kpage
923  * @kpage:    the ksm page we replace page by
924  * @orig_pte: the original value of the pte
925  *
926  * Returns 0 on success, -EFAULT on failure.
927  */
928 static int replace_page(struct vm_area_struct *vma, struct page *page,
929                         struct page *kpage, pte_t orig_pte)
930 {
931         struct mm_struct *mm = vma->vm_mm;
932         pmd_t *pmd;
933         pte_t *ptep;
934         spinlock_t *ptl;
935         unsigned long addr;
936         int err = -EFAULT;
937         unsigned long mmun_start;       /* For mmu_notifiers */
938         unsigned long mmun_end;         /* For mmu_notifiers */
939
940         addr = page_address_in_vma(page, vma);
941         if (addr == -EFAULT)
942                 goto out;
943
944         pmd = mm_find_pmd(mm, addr);
945         if (!pmd)
946                 goto out;
947
948         mmun_start = addr;
949         mmun_end   = addr + PAGE_SIZE;
950         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
951
952         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
953         if (!pte_same(*ptep, orig_pte)) {
954                 pte_unmap_unlock(ptep, ptl);
955                 goto out_mn;
956         }
957
958         get_page(kpage);
959         page_add_anon_rmap(kpage, vma, addr);
960
961         flush_cache_page(vma, addr, pte_pfn(*ptep));
962         ptep_clear_flush_notify(vma, addr, ptep);
963         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
964
965         page_remove_rmap(page);
966         if (!page_mapped(page))
967                 try_to_free_swap(page);
968         put_page(page);
969
970         pte_unmap_unlock(ptep, ptl);
971         err = 0;
972 out_mn:
973         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
974 out:
975         return err;
976 }
977
978 static int page_trans_compound_anon_split(struct page *page)
979 {
980         int ret = 0;
981         struct page *transhuge_head = page_trans_compound_anon(page);
982         if (transhuge_head) {
983                 /* Get the reference on the head to split it. */
984                 if (get_page_unless_zero(transhuge_head)) {
985                         /*
986                          * Recheck we got the reference while the head
987                          * was still anonymous.
988                          */
989                         if (PageAnon(transhuge_head))
990                                 ret = split_huge_page(transhuge_head);
991                         else
992                                 /*
993                                  * Retry later if split_huge_page run
994                                  * from under us.
995                                  */
996                                 ret = 1;
997                         put_page(transhuge_head);
998                 } else
999                         /* Retry later if split_huge_page run from under us. */
1000                         ret = 1;
1001         }
1002         return ret;
1003 }
1004
1005 /*
1006  * try_to_merge_one_page - take two pages and merge them into one
1007  * @vma: the vma that holds the pte pointing to page
1008  * @page: the PageAnon page that we want to replace with kpage
1009  * @kpage: the PageKsm page that we want to map instead of page,
1010  *         or NULL the first time when we want to use page as kpage.
1011  *
1012  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1013  */
1014 static int try_to_merge_one_page(struct vm_area_struct *vma,
1015                                  struct page *page, struct page *kpage)
1016 {
1017         pte_t orig_pte = __pte(0);
1018         int err = -EFAULT;
1019
1020         if (page == kpage)                      /* ksm page forked */
1021                 return 0;
1022
1023         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1024                 goto out;
1025         BUG_ON(PageTransCompound(page));
1026         if (!PageAnon(page))
1027                 goto out;
1028
1029         /*
1030          * We need the page lock to read a stable PageSwapCache in
1031          * write_protect_page().  We use trylock_page() instead of
1032          * lock_page() because we don't want to wait here - we
1033          * prefer to continue scanning and merging different pages,
1034          * then come back to this page when it is unlocked.
1035          */
1036         if (!trylock_page(page))
1037                 goto out;
1038         /*
1039          * If this anonymous page is mapped only here, its pte may need
1040          * to be write-protected.  If it's mapped elsewhere, all of its
1041          * ptes are necessarily already write-protected.  But in either
1042          * case, we need to lock and check page_count is not raised.
1043          */
1044         if (write_protect_page(vma, page, &orig_pte) == 0) {
1045                 if (!kpage) {
1046                         /*
1047                          * While we hold page lock, upgrade page from
1048                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1049                          * stable_tree_insert() will update stable_node.
1050                          */
1051                         set_page_stable_node(page, NULL);
1052                         mark_page_accessed(page);
1053                         err = 0;
1054                 } else if (pages_identical(page, kpage))
1055                         err = replace_page(vma, page, kpage, orig_pte);
1056         }
1057
1058         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1059                 munlock_vma_page(page);
1060                 if (!PageMlocked(kpage)) {
1061                         unlock_page(page);
1062                         lock_page(kpage);
1063                         mlock_vma_page(kpage);
1064                         page = kpage;           /* for final unlock */
1065                 }
1066         }
1067
1068         unlock_page(page);
1069 out:
1070         return err;
1071 }
1072
1073 /*
1074  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1075  * but no new kernel page is allocated: kpage must already be a ksm page.
1076  *
1077  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1078  */
1079 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1080                                       struct page *page, struct page *kpage)
1081 {
1082         struct mm_struct *mm = rmap_item->mm;
1083         struct vm_area_struct *vma;
1084         int err = -EFAULT;
1085
1086         down_read(&mm->mmap_sem);
1087         vma = find_mergeable_vma(mm, rmap_item->address);
1088         if (!vma)
1089                 goto out;
1090
1091         err = try_to_merge_one_page(vma, page, kpage);
1092         if (err)
1093                 goto out;
1094
1095         /* Unstable nid is in union with stable anon_vma: remove first */
1096         remove_rmap_item_from_tree(rmap_item);
1097
1098         /* Must get reference to anon_vma while still holding mmap_sem */
1099         rmap_item->anon_vma = vma->anon_vma;
1100         get_anon_vma(vma->anon_vma);
1101 out:
1102         up_read(&mm->mmap_sem);
1103         return err;
1104 }
1105
1106 /*
1107  * try_to_merge_two_pages - take two identical pages and prepare them
1108  * to be merged into one page.
1109  *
1110  * This function returns the kpage if we successfully merged two identical
1111  * pages into one ksm page, NULL otherwise.
1112  *
1113  * Note that this function upgrades page to ksm page: if one of the pages
1114  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1115  */
1116 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1117                                            struct page *page,
1118                                            struct rmap_item *tree_rmap_item,
1119                                            struct page *tree_page)
1120 {
1121         int err;
1122
1123         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1124         if (!err) {
1125                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1126                                                         tree_page, page);
1127                 /*
1128                  * If that fails, we have a ksm page with only one pte
1129                  * pointing to it: so break it.
1130                  */
1131                 if (err)
1132                         break_cow(rmap_item);
1133         }
1134         return err ? NULL : page;
1135 }
1136
1137 /*
1138  * stable_tree_search - search for page inside the stable tree
1139  *
1140  * This function checks if there is a page inside the stable tree
1141  * with identical content to the page that we are scanning right now.
1142  *
1143  * This function returns the stable tree node of identical content if found,
1144  * NULL otherwise.
1145  */
1146 static struct page *stable_tree_search(struct page *page)
1147 {
1148         int nid;
1149         struct rb_root *root;
1150         struct rb_node **new;
1151         struct rb_node *parent;
1152         struct stable_node *stable_node;
1153         struct stable_node *page_node;
1154
1155         page_node = page_stable_node(page);
1156         if (page_node && page_node->head != &migrate_nodes) {
1157                 /* ksm page forked */
1158                 get_page(page);
1159                 return page;
1160         }
1161
1162         nid = get_kpfn_nid(page_to_pfn(page));
1163         root = root_stable_tree + nid;
1164 again:
1165         new = &root->rb_node;
1166         parent = NULL;
1167
1168         while (*new) {
1169                 struct page *tree_page;
1170                 int ret;
1171
1172                 cond_resched();
1173                 stable_node = rb_entry(*new, struct stable_node, node);
1174                 tree_page = get_ksm_page(stable_node, false);
1175                 if (!tree_page) {
1176                         /*
1177                          * If we walked over a stale stable_node,
1178                          * get_ksm_page() will call rb_erase() and it
1179                          * may rebalance the tree from under us. So
1180                          * restart the search from scratch. Returning
1181                          * NULL would be safe too, but we'd generate
1182                          * false negative insertions just because some
1183                          * stable_node was stale.
1184                          */
1185                         goto again;
1186                 }
1187
1188                 ret = memcmp_pages(page, tree_page);
1189                 put_page(tree_page);
1190
1191                 parent = *new;
1192                 if (ret < 0)
1193                         new = &parent->rb_left;
1194                 else if (ret > 0)
1195                         new = &parent->rb_right;
1196                 else {
1197                         /*
1198                          * Lock and unlock the stable_node's page (which
1199                          * might already have been migrated) so that page
1200                          * migration is sure to notice its raised count.
1201                          * It would be more elegant to return stable_node
1202                          * than kpage, but that involves more changes.
1203                          */
1204                         tree_page = get_ksm_page(stable_node, true);
1205                         if (tree_page) {
1206                                 unlock_page(tree_page);
1207                                 if (get_kpfn_nid(stable_node->kpfn) !=
1208                                                 NUMA(stable_node->nid)) {
1209                                         put_page(tree_page);
1210                                         goto replace;
1211                                 }
1212                                 return tree_page;
1213                         }
1214                         /*
1215                          * There is now a place for page_node, but the tree may
1216                          * have been rebalanced, so re-evaluate parent and new.
1217                          */
1218                         if (page_node)
1219                                 goto again;
1220                         return NULL;
1221                 }
1222         }
1223
1224         if (!page_node)
1225                 return NULL;
1226
1227         list_del(&page_node->list);
1228         DO_NUMA(page_node->nid = nid);
1229         rb_link_node(&page_node->node, parent, new);
1230         rb_insert_color(&page_node->node, root);
1231         get_page(page);
1232         return page;
1233
1234 replace:
1235         if (page_node) {
1236                 list_del(&page_node->list);
1237                 DO_NUMA(page_node->nid = nid);
1238                 rb_replace_node(&stable_node->node, &page_node->node, root);
1239                 get_page(page);
1240         } else {
1241                 rb_erase(&stable_node->node, root);
1242                 page = NULL;
1243         }
1244         stable_node->head = &migrate_nodes;
1245         list_add(&stable_node->list, stable_node->head);
1246         return page;
1247 }
1248
1249 /*
1250  * stable_tree_insert - insert stable tree node pointing to new ksm page
1251  * into the stable tree.
1252  *
1253  * This function returns the stable tree node just allocated on success,
1254  * NULL otherwise.
1255  */
1256 static struct stable_node *stable_tree_insert(struct page *kpage)
1257 {
1258         int nid;
1259         unsigned long kpfn;
1260         struct rb_root *root;
1261         struct rb_node **new;
1262         struct rb_node *parent;
1263         struct stable_node *stable_node;
1264
1265         kpfn = page_to_pfn(kpage);
1266         nid = get_kpfn_nid(kpfn);
1267         root = root_stable_tree + nid;
1268 again:
1269         parent = NULL;
1270         new = &root->rb_node;
1271
1272         while (*new) {
1273                 struct page *tree_page;
1274                 int ret;
1275
1276                 cond_resched();
1277                 stable_node = rb_entry(*new, struct stable_node, node);
1278                 tree_page = get_ksm_page(stable_node, false);
1279                 if (!tree_page) {
1280                         /*
1281                          * If we walked over a stale stable_node,
1282                          * get_ksm_page() will call rb_erase() and it
1283                          * may rebalance the tree from under us. So
1284                          * restart the search from scratch. Returning
1285                          * NULL would be safe too, but we'd generate
1286                          * false negative insertions just because some
1287                          * stable_node was stale.
1288                          */
1289                         goto again;
1290                 }
1291
1292                 ret = memcmp_pages(kpage, tree_page);
1293                 put_page(tree_page);
1294
1295                 parent = *new;
1296                 if (ret < 0)
1297                         new = &parent->rb_left;
1298                 else if (ret > 0)
1299                         new = &parent->rb_right;
1300                 else {
1301                         /*
1302                          * It is not a bug that stable_tree_search() didn't
1303                          * find this node: because at that time our page was
1304                          * not yet write-protected, so may have changed since.
1305                          */
1306                         return NULL;
1307                 }
1308         }
1309
1310         stable_node = alloc_stable_node();
1311         if (!stable_node)
1312                 return NULL;
1313
1314         INIT_HLIST_HEAD(&stable_node->hlist);
1315         stable_node->kpfn = kpfn;
1316         set_page_stable_node(kpage, stable_node);
1317         DO_NUMA(stable_node->nid = nid);
1318         rb_link_node(&stable_node->node, parent, new);
1319         rb_insert_color(&stable_node->node, root);
1320
1321         return stable_node;
1322 }
1323
1324 /*
1325  * unstable_tree_search_insert - search for identical page,
1326  * else insert rmap_item into the unstable tree.
1327  *
1328  * This function searches for a page in the unstable tree identical to the
1329  * page currently being scanned; and if no identical page is found in the
1330  * tree, we insert rmap_item as a new object into the unstable tree.
1331  *
1332  * This function returns pointer to rmap_item found to be identical
1333  * to the currently scanned page, NULL otherwise.
1334  *
1335  * This function does both searching and inserting, because they share
1336  * the same walking algorithm in an rbtree.
1337  */
1338 static
1339 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1340                                               struct page *page,
1341                                               struct page **tree_pagep)
1342 {
1343         struct rb_node **new;
1344         struct rb_root *root;
1345         struct rb_node *parent = NULL;
1346         int nid;
1347
1348         nid = get_kpfn_nid(page_to_pfn(page));
1349         root = root_unstable_tree + nid;
1350         new = &root->rb_node;
1351
1352         while (*new) {
1353                 struct rmap_item *tree_rmap_item;
1354                 struct page *tree_page;
1355                 int ret;
1356
1357                 cond_resched();
1358                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1359                 tree_page = get_mergeable_page(tree_rmap_item);
1360                 if (!tree_page)
1361                         return NULL;
1362
1363                 /*
1364                  * Don't substitute a ksm page for a forked page.
1365                  */
1366                 if (page == tree_page) {
1367                         put_page(tree_page);
1368                         return NULL;
1369                 }
1370
1371                 ret = memcmp_pages(page, tree_page);
1372
1373                 parent = *new;
1374                 if (ret < 0) {
1375                         put_page(tree_page);
1376                         new = &parent->rb_left;
1377                 } else if (ret > 0) {
1378                         put_page(tree_page);
1379                         new = &parent->rb_right;
1380                 } else if (!ksm_merge_across_nodes &&
1381                            page_to_nid(tree_page) != nid) {
1382                         /*
1383                          * If tree_page has been migrated to another NUMA node,
1384                          * it will be flushed out and put in the right unstable
1385                          * tree next time: only merge with it when across_nodes.
1386                          */
1387                         put_page(tree_page);
1388                         return NULL;
1389                 } else {
1390                         *tree_pagep = tree_page;
1391                         return tree_rmap_item;
1392                 }
1393         }
1394
1395         rmap_item->address |= UNSTABLE_FLAG;
1396         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1397         DO_NUMA(rmap_item->nid = nid);
1398         rb_link_node(&rmap_item->node, parent, new);
1399         rb_insert_color(&rmap_item->node, root);
1400
1401         ksm_pages_unshared++;
1402         return NULL;
1403 }
1404
1405 /*
1406  * stable_tree_append - add another rmap_item to the linked list of
1407  * rmap_items hanging off a given node of the stable tree, all sharing
1408  * the same ksm page.
1409  */
1410 static void stable_tree_append(struct rmap_item *rmap_item,
1411                                struct stable_node *stable_node)
1412 {
1413         rmap_item->head = stable_node;
1414         rmap_item->address |= STABLE_FLAG;
1415         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1416
1417         if (rmap_item->hlist.next)
1418                 ksm_pages_sharing++;
1419         else
1420                 ksm_pages_shared++;
1421 }
1422
1423 /*
1424  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1425  * if not, compare checksum to previous and if it's the same, see if page can
1426  * be inserted into the unstable tree, or merged with a page already there and
1427  * both transferred to the stable tree.
1428  *
1429  * @page: the page that we are searching identical page to.
1430  * @rmap_item: the reverse mapping into the virtual address of this page
1431  */
1432 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1433 {
1434         struct rmap_item *tree_rmap_item;
1435         struct page *tree_page = NULL;
1436         struct stable_node *stable_node;
1437         struct page *kpage;
1438         unsigned int checksum;
1439         int err;
1440
1441         stable_node = page_stable_node(page);
1442         if (stable_node) {
1443                 if (stable_node->head != &migrate_nodes &&
1444                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1445                         rb_erase(&stable_node->node,
1446                                  root_stable_tree + NUMA(stable_node->nid));
1447                         stable_node->head = &migrate_nodes;
1448                         list_add(&stable_node->list, stable_node->head);
1449                 }
1450                 if (stable_node->head != &migrate_nodes &&
1451                     rmap_item->head == stable_node)
1452                         return;
1453         }
1454
1455         /* We first start with searching the page inside the stable tree */
1456         kpage = stable_tree_search(page);
1457         if (kpage == page && rmap_item->head == stable_node) {
1458                 put_page(kpage);
1459                 return;
1460         }
1461
1462         remove_rmap_item_from_tree(rmap_item);
1463
1464         if (kpage) {
1465                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1466                 if (!err) {
1467                         /*
1468                          * The page was successfully merged:
1469                          * add its rmap_item to the stable tree.
1470                          */
1471                         lock_page(kpage);
1472                         stable_tree_append(rmap_item, page_stable_node(kpage));
1473                         unlock_page(kpage);
1474                 }
1475                 put_page(kpage);
1476                 return;
1477         }
1478
1479         /*
1480          * If the hash value of the page has changed from the last time
1481          * we calculated it, this page is changing frequently: therefore we
1482          * don't want to insert it in the unstable tree, and we don't want
1483          * to waste our time searching for something identical to it there.
1484          */
1485         checksum = calc_checksum(page);
1486         if (rmap_item->oldchecksum != checksum) {
1487                 rmap_item->oldchecksum = checksum;
1488                 return;
1489         }
1490
1491         tree_rmap_item =
1492                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1493         if (tree_rmap_item) {
1494                 kpage = try_to_merge_two_pages(rmap_item, page,
1495                                                 tree_rmap_item, tree_page);
1496                 put_page(tree_page);
1497                 if (kpage) {
1498                         /*
1499                          * The pages were successfully merged: insert new
1500                          * node in the stable tree and add both rmap_items.
1501                          */
1502                         lock_page(kpage);
1503                         stable_node = stable_tree_insert(kpage);
1504                         if (stable_node) {
1505                                 stable_tree_append(tree_rmap_item, stable_node);
1506                                 stable_tree_append(rmap_item, stable_node);
1507                         }
1508                         unlock_page(kpage);
1509
1510                         /*
1511                          * If we fail to insert the page into the stable tree,
1512                          * we will have 2 virtual addresses that are pointing
1513                          * to a ksm page left outside the stable tree,
1514                          * in which case we need to break_cow on both.
1515                          */
1516                         if (!stable_node) {
1517                                 break_cow(tree_rmap_item);
1518                                 break_cow(rmap_item);
1519                         }
1520                 }
1521         }
1522 }
1523
1524 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1525                                             struct rmap_item **rmap_list,
1526                                             unsigned long addr)
1527 {
1528         struct rmap_item *rmap_item;
1529
1530         while (*rmap_list) {
1531                 rmap_item = *rmap_list;
1532                 if ((rmap_item->address & PAGE_MASK) == addr)
1533                         return rmap_item;
1534                 if (rmap_item->address > addr)
1535                         break;
1536                 *rmap_list = rmap_item->rmap_list;
1537                 remove_rmap_item_from_tree(rmap_item);
1538                 free_rmap_item(rmap_item);
1539         }
1540
1541         rmap_item = alloc_rmap_item();
1542         if (rmap_item) {
1543                 /* It has already been zeroed */
1544                 rmap_item->mm = mm_slot->mm;
1545                 rmap_item->address = addr;
1546                 rmap_item->rmap_list = *rmap_list;
1547                 *rmap_list = rmap_item;
1548         }
1549         return rmap_item;
1550 }
1551
1552 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1553 {
1554         struct mm_struct *mm;
1555         struct mm_slot *slot;
1556         struct vm_area_struct *vma;
1557         struct rmap_item *rmap_item;
1558         int nid;
1559
1560         if (list_empty(&ksm_mm_head.mm_list))
1561                 return NULL;
1562
1563         slot = ksm_scan.mm_slot;
1564         if (slot == &ksm_mm_head) {
1565                 /*
1566                  * A number of pages can hang around indefinitely on per-cpu
1567                  * pagevecs, raised page count preventing write_protect_page
1568                  * from merging them.  Though it doesn't really matter much,
1569                  * it is puzzling to see some stuck in pages_volatile until
1570                  * other activity jostles them out, and they also prevented
1571                  * LTP's KSM test from succeeding deterministically; so drain
1572                  * them here (here rather than on entry to ksm_do_scan(),
1573                  * so we don't IPI too often when pages_to_scan is set low).
1574                  */
1575                 lru_add_drain_all();
1576
1577                 /*
1578                  * Whereas stale stable_nodes on the stable_tree itself
1579                  * get pruned in the regular course of stable_tree_search(),
1580                  * those moved out to the migrate_nodes list can accumulate:
1581                  * so prune them once before each full scan.
1582                  */
1583                 if (!ksm_merge_across_nodes) {
1584                         struct stable_node *stable_node, *next;
1585                         struct page *page;
1586
1587                         list_for_each_entry_safe(stable_node, next,
1588                                                  &migrate_nodes, list) {
1589                                 page = get_ksm_page(stable_node, false);
1590                                 if (page)
1591                                         put_page(page);
1592                                 cond_resched();
1593                         }
1594                 }
1595
1596                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1597                         root_unstable_tree[nid] = RB_ROOT;
1598
1599                 spin_lock(&ksm_mmlist_lock);
1600                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1601                 ksm_scan.mm_slot = slot;
1602                 spin_unlock(&ksm_mmlist_lock);
1603                 /*
1604                  * Although we tested list_empty() above, a racing __ksm_exit
1605                  * of the last mm on the list may have removed it since then.
1606                  */
1607                 if (slot == &ksm_mm_head)
1608                         return NULL;
1609 next_mm:
1610                 ksm_scan.address = 0;
1611                 ksm_scan.rmap_list = &slot->rmap_list;
1612         }
1613
1614         mm = slot->mm;
1615         down_read(&mm->mmap_sem);
1616         if (ksm_test_exit(mm))
1617                 vma = NULL;
1618         else
1619                 vma = find_vma(mm, ksm_scan.address);
1620
1621         for (; vma; vma = vma->vm_next) {
1622                 if (!(vma->vm_flags & VM_MERGEABLE))
1623                         continue;
1624                 if (ksm_scan.address < vma->vm_start)
1625                         ksm_scan.address = vma->vm_start;
1626                 if (!vma->anon_vma)
1627                         ksm_scan.address = vma->vm_end;
1628
1629                 while (ksm_scan.address < vma->vm_end) {
1630                         if (ksm_test_exit(mm))
1631                                 break;
1632                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1633                         if (IS_ERR_OR_NULL(*page)) {
1634                                 ksm_scan.address += PAGE_SIZE;
1635                                 cond_resched();
1636                                 continue;
1637                         }
1638                         if (PageAnon(*page) ||
1639                             page_trans_compound_anon(*page)) {
1640                                 flush_anon_page(vma, *page, ksm_scan.address);
1641                                 flush_dcache_page(*page);
1642                                 rmap_item = get_next_rmap_item(slot,
1643                                         ksm_scan.rmap_list, ksm_scan.address);
1644                                 if (rmap_item) {
1645                                         ksm_scan.rmap_list =
1646                                                         &rmap_item->rmap_list;
1647                                         ksm_scan.address += PAGE_SIZE;
1648                                 } else
1649                                         put_page(*page);
1650                                 up_read(&mm->mmap_sem);
1651                                 return rmap_item;
1652                         }
1653                         put_page(*page);
1654                         ksm_scan.address += PAGE_SIZE;
1655                         cond_resched();
1656                 }
1657         }
1658
1659         if (ksm_test_exit(mm)) {
1660                 ksm_scan.address = 0;
1661                 ksm_scan.rmap_list = &slot->rmap_list;
1662         }
1663         /*
1664          * Nuke all the rmap_items that are above this current rmap:
1665          * because there were no VM_MERGEABLE vmas with such addresses.
1666          */
1667         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1668
1669         spin_lock(&ksm_mmlist_lock);
1670         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1671                                                 struct mm_slot, mm_list);
1672         if (ksm_scan.address == 0) {
1673                 /*
1674                  * We've completed a full scan of all vmas, holding mmap_sem
1675                  * throughout, and found no VM_MERGEABLE: so do the same as
1676                  * __ksm_exit does to remove this mm from all our lists now.
1677                  * This applies either when cleaning up after __ksm_exit
1678                  * (but beware: we can reach here even before __ksm_exit),
1679                  * or when all VM_MERGEABLE areas have been unmapped (and
1680                  * mmap_sem then protects against race with MADV_MERGEABLE).
1681                  */
1682                 hash_del(&slot->link);
1683                 list_del(&slot->mm_list);
1684                 spin_unlock(&ksm_mmlist_lock);
1685
1686                 free_mm_slot(slot);
1687                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1688                 up_read(&mm->mmap_sem);
1689                 mmdrop(mm);
1690         } else {
1691                 spin_unlock(&ksm_mmlist_lock);
1692                 up_read(&mm->mmap_sem);
1693         }
1694
1695         /* Repeat until we've completed scanning the whole list */
1696         slot = ksm_scan.mm_slot;
1697         if (slot != &ksm_mm_head)
1698                 goto next_mm;
1699
1700         ksm_scan.seqnr++;
1701         return NULL;
1702 }
1703
1704 /**
1705  * ksm_do_scan  - the ksm scanner main worker function.
1706  * @scan_npages - number of pages we want to scan before we return.
1707  */
1708 static void ksm_do_scan(unsigned int scan_npages)
1709 {
1710         struct rmap_item *rmap_item;
1711         struct page *uninitialized_var(page);
1712
1713         while (scan_npages-- && likely(!freezing(current))) {
1714                 cond_resched();
1715                 rmap_item = scan_get_next_rmap_item(&page);
1716                 if (!rmap_item)
1717                         return;
1718                 cmp_and_merge_page(page, rmap_item);
1719                 put_page(page);
1720         }
1721 }
1722
1723 static int ksmd_should_run(void)
1724 {
1725         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1726 }
1727
1728 static int ksm_scan_thread(void *nothing)
1729 {
1730         set_freezable();
1731         set_user_nice(current, 5);
1732
1733         while (!kthread_should_stop()) {
1734                 mutex_lock(&ksm_thread_mutex);
1735                 wait_while_offlining();
1736                 if (ksmd_should_run())
1737                         ksm_do_scan(ksm_thread_pages_to_scan);
1738                 mutex_unlock(&ksm_thread_mutex);
1739
1740                 try_to_freeze();
1741
1742                 if (ksmd_should_run()) {
1743                         schedule_timeout_interruptible(
1744                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1745                 } else {
1746                         wait_event_freezable(ksm_thread_wait,
1747                                 ksmd_should_run() || kthread_should_stop());
1748                 }
1749         }
1750         return 0;
1751 }
1752
1753 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1754                 unsigned long end, int advice, unsigned long *vm_flags)
1755 {
1756         struct mm_struct *mm = vma->vm_mm;
1757         int err;
1758
1759         switch (advice) {
1760         case MADV_MERGEABLE:
1761                 /*
1762                  * Be somewhat over-protective for now!
1763                  */
1764                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1765                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1766                                  VM_HUGETLB | VM_MIXEDMAP))
1767                         return 0;               /* just ignore the advice */
1768
1769 #ifdef VM_SAO
1770                 if (*vm_flags & VM_SAO)
1771                         return 0;
1772 #endif
1773
1774                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1775                         err = __ksm_enter(mm);
1776                         if (err)
1777                                 return err;
1778                 }
1779
1780                 *vm_flags |= VM_MERGEABLE;
1781                 break;
1782
1783         case MADV_UNMERGEABLE:
1784                 if (!(*vm_flags & VM_MERGEABLE))
1785                         return 0;               /* just ignore the advice */
1786
1787                 if (vma->anon_vma) {
1788                         err = unmerge_ksm_pages(vma, start, end);
1789                         if (err)
1790                                 return err;
1791                 }
1792
1793                 *vm_flags &= ~VM_MERGEABLE;
1794                 break;
1795         }
1796
1797         return 0;
1798 }
1799
1800 int __ksm_enter(struct mm_struct *mm)
1801 {
1802         struct mm_slot *mm_slot;
1803         int needs_wakeup;
1804
1805         mm_slot = alloc_mm_slot();
1806         if (!mm_slot)
1807                 return -ENOMEM;
1808
1809         /* Check ksm_run too?  Would need tighter locking */
1810         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1811
1812         spin_lock(&ksm_mmlist_lock);
1813         insert_to_mm_slots_hash(mm, mm_slot);
1814         /*
1815          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1816          * insert just behind the scanning cursor, to let the area settle
1817          * down a little; when fork is followed by immediate exec, we don't
1818          * want ksmd to waste time setting up and tearing down an rmap_list.
1819          *
1820          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1821          * scanning cursor, otherwise KSM pages in newly forked mms will be
1822          * missed: then we might as well insert at the end of the list.
1823          */
1824         if (ksm_run & KSM_RUN_UNMERGE)
1825                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1826         else
1827                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1828         spin_unlock(&ksm_mmlist_lock);
1829
1830         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1831         atomic_inc(&mm->mm_count);
1832
1833         if (needs_wakeup)
1834                 wake_up_interruptible(&ksm_thread_wait);
1835
1836         return 0;
1837 }
1838
1839 void __ksm_exit(struct mm_struct *mm)
1840 {
1841         struct mm_slot *mm_slot;
1842         int easy_to_free = 0;
1843
1844         /*
1845          * This process is exiting: if it's straightforward (as is the
1846          * case when ksmd was never running), free mm_slot immediately.
1847          * But if it's at the cursor or has rmap_items linked to it, use
1848          * mmap_sem to synchronize with any break_cows before pagetables
1849          * are freed, and leave the mm_slot on the list for ksmd to free.
1850          * Beware: ksm may already have noticed it exiting and freed the slot.
1851          */
1852
1853         spin_lock(&ksm_mmlist_lock);
1854         mm_slot = get_mm_slot(mm);
1855         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1856                 if (!mm_slot->rmap_list) {
1857                         hash_del(&mm_slot->link);
1858                         list_del(&mm_slot->mm_list);
1859                         easy_to_free = 1;
1860                 } else {
1861                         list_move(&mm_slot->mm_list,
1862                                   &ksm_scan.mm_slot->mm_list);
1863                 }
1864         }
1865         spin_unlock(&ksm_mmlist_lock);
1866
1867         if (easy_to_free) {
1868                 free_mm_slot(mm_slot);
1869                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1870                 mmdrop(mm);
1871         } else if (mm_slot) {
1872                 down_write(&mm->mmap_sem);
1873                 up_write(&mm->mmap_sem);
1874         }
1875 }
1876
1877 struct page *ksm_might_need_to_copy(struct page *page,
1878                         struct vm_area_struct *vma, unsigned long address)
1879 {
1880         struct anon_vma *anon_vma = page_anon_vma(page);
1881         struct page *new_page;
1882
1883         if (PageKsm(page)) {
1884                 if (page_stable_node(page) &&
1885                     !(ksm_run & KSM_RUN_UNMERGE))
1886                         return page;    /* no need to copy it */
1887         } else if (!anon_vma) {
1888                 return page;            /* no need to copy it */
1889         } else if (anon_vma->root == vma->anon_vma->root &&
1890                  page->index == linear_page_index(vma, address)) {
1891                 return page;            /* still no need to copy it */
1892         }
1893         if (!PageUptodate(page))
1894                 return page;            /* let do_swap_page report the error */
1895
1896         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1897         if (new_page) {
1898                 copy_user_highpage(new_page, page, address, vma);
1899
1900                 SetPageDirty(new_page);
1901                 __SetPageUptodate(new_page);
1902                 __set_page_locked(new_page);
1903         }
1904
1905         return new_page;
1906 }
1907
1908 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1909 {
1910         struct stable_node *stable_node;
1911         struct rmap_item *rmap_item;
1912         int ret = SWAP_AGAIN;
1913         int search_new_forks = 0;
1914
1915         VM_BUG_ON_PAGE(!PageKsm(page), page);
1916
1917         /*
1918          * Rely on the page lock to protect against concurrent modifications
1919          * to that page's node of the stable tree.
1920          */
1921         VM_BUG_ON_PAGE(!PageLocked(page), page);
1922
1923         stable_node = page_stable_node(page);
1924         if (!stable_node)
1925                 return ret;
1926 again:
1927         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1928                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1929                 struct anon_vma_chain *vmac;
1930                 struct vm_area_struct *vma;
1931
1932                 cond_resched();
1933                 anon_vma_lock_read(anon_vma);
1934                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1935                                                0, ULONG_MAX) {
1936                         cond_resched();
1937                         vma = vmac->vma;
1938                         if (rmap_item->address < vma->vm_start ||
1939                             rmap_item->address >= vma->vm_end)
1940                                 continue;
1941                         /*
1942                          * Initially we examine only the vma which covers this
1943                          * rmap_item; but later, if there is still work to do,
1944                          * we examine covering vmas in other mms: in case they
1945                          * were forked from the original since ksmd passed.
1946                          */
1947                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1948                                 continue;
1949
1950                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1951                                 continue;
1952
1953                         ret = rwc->rmap_one(page, vma,
1954                                         rmap_item->address, rwc->arg);
1955                         if (ret != SWAP_AGAIN) {
1956                                 anon_vma_unlock_read(anon_vma);
1957                                 goto out;
1958                         }
1959                         if (rwc->done && rwc->done(page)) {
1960                                 anon_vma_unlock_read(anon_vma);
1961                                 goto out;
1962                         }
1963                 }
1964                 anon_vma_unlock_read(anon_vma);
1965         }
1966         if (!search_new_forks++)
1967                 goto again;
1968 out:
1969         return ret;
1970 }
1971
1972 #ifdef CONFIG_MIGRATION
1973 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1974 {
1975         struct stable_node *stable_node;
1976
1977         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1978         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1979         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1980
1981         stable_node = page_stable_node(newpage);
1982         if (stable_node) {
1983                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1984                 stable_node->kpfn = page_to_pfn(newpage);
1985                 /*
1986                  * newpage->mapping was set in advance; now we need smp_wmb()
1987                  * to make sure that the new stable_node->kpfn is visible
1988                  * to get_ksm_page() before it can see that oldpage->mapping
1989                  * has gone stale (or that PageSwapCache has been cleared).
1990                  */
1991                 smp_wmb();
1992                 set_page_stable_node(oldpage, NULL);
1993         }
1994 }
1995 #endif /* CONFIG_MIGRATION */
1996
1997 #ifdef CONFIG_MEMORY_HOTREMOVE
1998 static void wait_while_offlining(void)
1999 {
2000         while (ksm_run & KSM_RUN_OFFLINE) {
2001                 mutex_unlock(&ksm_thread_mutex);
2002                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2003                             TASK_UNINTERRUPTIBLE);
2004                 mutex_lock(&ksm_thread_mutex);
2005         }
2006 }
2007
2008 static void ksm_check_stable_tree(unsigned long start_pfn,
2009                                   unsigned long end_pfn)
2010 {
2011         struct stable_node *stable_node, *next;
2012         struct rb_node *node;
2013         int nid;
2014
2015         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2016                 node = rb_first(root_stable_tree + nid);
2017                 while (node) {
2018                         stable_node = rb_entry(node, struct stable_node, node);
2019                         if (stable_node->kpfn >= start_pfn &&
2020                             stable_node->kpfn < end_pfn) {
2021                                 /*
2022                                  * Don't get_ksm_page, page has already gone:
2023                                  * which is why we keep kpfn instead of page*
2024                                  */
2025                                 remove_node_from_stable_tree(stable_node);
2026                                 node = rb_first(root_stable_tree + nid);
2027                         } else
2028                                 node = rb_next(node);
2029                         cond_resched();
2030                 }
2031         }
2032         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2033                 if (stable_node->kpfn >= start_pfn &&
2034                     stable_node->kpfn < end_pfn)
2035                         remove_node_from_stable_tree(stable_node);
2036                 cond_resched();
2037         }
2038 }
2039
2040 static int ksm_memory_callback(struct notifier_block *self,
2041                                unsigned long action, void *arg)
2042 {
2043         struct memory_notify *mn = arg;
2044
2045         switch (action) {
2046         case MEM_GOING_OFFLINE:
2047                 /*
2048                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2049                  * and remove_all_stable_nodes() while memory is going offline:
2050                  * it is unsafe for them to touch the stable tree at this time.
2051                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2052                  * which do not need the ksm_thread_mutex are all safe.
2053                  */
2054                 mutex_lock(&ksm_thread_mutex);
2055                 ksm_run |= KSM_RUN_OFFLINE;
2056                 mutex_unlock(&ksm_thread_mutex);
2057                 break;
2058
2059         case MEM_OFFLINE:
2060                 /*
2061                  * Most of the work is done by page migration; but there might
2062                  * be a few stable_nodes left over, still pointing to struct
2063                  * pages which have been offlined: prune those from the tree,
2064                  * otherwise get_ksm_page() might later try to access a
2065                  * non-existent struct page.
2066                  */
2067                 ksm_check_stable_tree(mn->start_pfn,
2068                                       mn->start_pfn + mn->nr_pages);
2069                 /* fallthrough */
2070
2071         case MEM_CANCEL_OFFLINE:
2072                 mutex_lock(&ksm_thread_mutex);
2073                 ksm_run &= ~KSM_RUN_OFFLINE;
2074                 mutex_unlock(&ksm_thread_mutex);
2075
2076                 smp_mb();       /* wake_up_bit advises this */
2077                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2078                 break;
2079         }
2080         return NOTIFY_OK;
2081 }
2082 #else
2083 static void wait_while_offlining(void)
2084 {
2085 }
2086 #endif /* CONFIG_MEMORY_HOTREMOVE */
2087
2088 #ifdef CONFIG_SYSFS
2089 /*
2090  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2091  */
2092
2093 #define KSM_ATTR_RO(_name) \
2094         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2095 #define KSM_ATTR(_name) \
2096         static struct kobj_attribute _name##_attr = \
2097                 __ATTR(_name, 0644, _name##_show, _name##_store)
2098
2099 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2100                                     struct kobj_attribute *attr, char *buf)
2101 {
2102         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2103 }
2104
2105 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2106                                      struct kobj_attribute *attr,
2107                                      const char *buf, size_t count)
2108 {
2109         unsigned long msecs;
2110         int err;
2111
2112         err = kstrtoul(buf, 10, &msecs);
2113         if (err || msecs > UINT_MAX)
2114                 return -EINVAL;
2115
2116         ksm_thread_sleep_millisecs = msecs;
2117
2118         return count;
2119 }
2120 KSM_ATTR(sleep_millisecs);
2121
2122 static ssize_t pages_to_scan_show(struct kobject *kobj,
2123                                   struct kobj_attribute *attr, char *buf)
2124 {
2125         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2126 }
2127
2128 static ssize_t pages_to_scan_store(struct kobject *kobj,
2129                                    struct kobj_attribute *attr,
2130                                    const char *buf, size_t count)
2131 {
2132         int err;
2133         unsigned long nr_pages;
2134
2135         err = kstrtoul(buf, 10, &nr_pages);
2136         if (err || nr_pages > UINT_MAX)
2137                 return -EINVAL;
2138
2139         ksm_thread_pages_to_scan = nr_pages;
2140
2141         return count;
2142 }
2143 KSM_ATTR(pages_to_scan);
2144
2145 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2146                         char *buf)
2147 {
2148         return sprintf(buf, "%lu\n", ksm_run);
2149 }
2150
2151 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2152                          const char *buf, size_t count)
2153 {
2154         int err;
2155         unsigned long flags;
2156
2157         err = kstrtoul(buf, 10, &flags);
2158         if (err || flags > UINT_MAX)
2159                 return -EINVAL;
2160         if (flags > KSM_RUN_UNMERGE)
2161                 return -EINVAL;
2162
2163         /*
2164          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2165          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2166          * breaking COW to free the pages_shared (but leaves mm_slots
2167          * on the list for when ksmd may be set running again).
2168          */
2169
2170         mutex_lock(&ksm_thread_mutex);
2171         wait_while_offlining();
2172         if (ksm_run != flags) {
2173                 ksm_run = flags;
2174                 if (flags & KSM_RUN_UNMERGE) {
2175                         set_current_oom_origin();
2176                         err = unmerge_and_remove_all_rmap_items();
2177                         clear_current_oom_origin();
2178                         if (err) {
2179                                 ksm_run = KSM_RUN_STOP;
2180                                 count = err;
2181                         }
2182                 }
2183         }
2184         mutex_unlock(&ksm_thread_mutex);
2185
2186         if (flags & KSM_RUN_MERGE)
2187                 wake_up_interruptible(&ksm_thread_wait);
2188
2189         return count;
2190 }
2191 KSM_ATTR(run);
2192
2193 #ifdef CONFIG_NUMA
2194 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2195                                 struct kobj_attribute *attr, char *buf)
2196 {
2197         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2198 }
2199
2200 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2201                                    struct kobj_attribute *attr,
2202                                    const char *buf, size_t count)
2203 {
2204         int err;
2205         unsigned long knob;
2206
2207         err = kstrtoul(buf, 10, &knob);
2208         if (err)
2209                 return err;
2210         if (knob > 1)
2211                 return -EINVAL;
2212
2213         mutex_lock(&ksm_thread_mutex);
2214         wait_while_offlining();
2215         if (ksm_merge_across_nodes != knob) {
2216                 if (ksm_pages_shared || remove_all_stable_nodes())
2217                         err = -EBUSY;
2218                 else if (root_stable_tree == one_stable_tree) {
2219                         struct rb_root *buf;
2220                         /*
2221                          * This is the first time that we switch away from the
2222                          * default of merging across nodes: must now allocate
2223                          * a buffer to hold as many roots as may be needed.
2224                          * Allocate stable and unstable together:
2225                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2226                          */
2227                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2228                                       GFP_KERNEL);
2229                         /* Let us assume that RB_ROOT is NULL is zero */
2230                         if (!buf)
2231                                 err = -ENOMEM;
2232                         else {
2233                                 root_stable_tree = buf;
2234                                 root_unstable_tree = buf + nr_node_ids;
2235                                 /* Stable tree is empty but not the unstable */
2236                                 root_unstable_tree[0] = one_unstable_tree[0];
2237                         }
2238                 }
2239                 if (!err) {
2240                         ksm_merge_across_nodes = knob;
2241                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2242                 }
2243         }
2244         mutex_unlock(&ksm_thread_mutex);
2245
2246         return err ? err : count;
2247 }
2248 KSM_ATTR(merge_across_nodes);
2249 #endif
2250
2251 static ssize_t pages_shared_show(struct kobject *kobj,
2252                                  struct kobj_attribute *attr, char *buf)
2253 {
2254         return sprintf(buf, "%lu\n", ksm_pages_shared);
2255 }
2256 KSM_ATTR_RO(pages_shared);
2257
2258 static ssize_t pages_sharing_show(struct kobject *kobj,
2259                                   struct kobj_attribute *attr, char *buf)
2260 {
2261         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2262 }
2263 KSM_ATTR_RO(pages_sharing);
2264
2265 static ssize_t pages_unshared_show(struct kobject *kobj,
2266                                    struct kobj_attribute *attr, char *buf)
2267 {
2268         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2269 }
2270 KSM_ATTR_RO(pages_unshared);
2271
2272 static ssize_t pages_volatile_show(struct kobject *kobj,
2273                                    struct kobj_attribute *attr, char *buf)
2274 {
2275         long ksm_pages_volatile;
2276
2277         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2278                                 - ksm_pages_sharing - ksm_pages_unshared;
2279         /*
2280          * It was not worth any locking to calculate that statistic,
2281          * but it might therefore sometimes be negative: conceal that.
2282          */
2283         if (ksm_pages_volatile < 0)
2284                 ksm_pages_volatile = 0;
2285         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2286 }
2287 KSM_ATTR_RO(pages_volatile);
2288
2289 static ssize_t full_scans_show(struct kobject *kobj,
2290                                struct kobj_attribute *attr, char *buf)
2291 {
2292         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2293 }
2294 KSM_ATTR_RO(full_scans);
2295
2296 static struct attribute *ksm_attrs[] = {
2297         &sleep_millisecs_attr.attr,
2298         &pages_to_scan_attr.attr,
2299         &run_attr.attr,
2300         &pages_shared_attr.attr,
2301         &pages_sharing_attr.attr,
2302         &pages_unshared_attr.attr,
2303         &pages_volatile_attr.attr,
2304         &full_scans_attr.attr,
2305 #ifdef CONFIG_NUMA
2306         &merge_across_nodes_attr.attr,
2307 #endif
2308         NULL,
2309 };
2310
2311 static struct attribute_group ksm_attr_group = {
2312         .attrs = ksm_attrs,
2313         .name = "ksm",
2314 };
2315 #endif /* CONFIG_SYSFS */
2316
2317 static int __init ksm_init(void)
2318 {
2319         struct task_struct *ksm_thread;
2320         int err;
2321
2322         err = ksm_slab_init();
2323         if (err)
2324                 goto out;
2325
2326         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2327         if (IS_ERR(ksm_thread)) {
2328                 pr_err("ksm: creating kthread failed\n");
2329                 err = PTR_ERR(ksm_thread);
2330                 goto out_free;
2331         }
2332
2333 #ifdef CONFIG_SYSFS
2334         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2335         if (err) {
2336                 pr_err("ksm: register sysfs failed\n");
2337                 kthread_stop(ksm_thread);
2338                 goto out_free;
2339         }
2340 #else
2341         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2342
2343 #endif /* CONFIG_SYSFS */
2344
2345 #ifdef CONFIG_MEMORY_HOTREMOVE
2346         /* There is no significance to this priority 100 */
2347         hotplug_memory_notifier(ksm_memory_callback, 100);
2348 #endif
2349         return 0;
2350
2351 out_free:
2352         ksm_slab_free();
2353 out:
2354         return err;
2355 }
2356 subsys_initcall(ksm_init);