Merge branches 'acpi-video', 'device-properties', 'pm-sleep' and 'pm-cpuidle'
[linux-drm-fsl-dcu.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE               16      /* stack trace length */
110 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
112 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER       sizeof(void *)
116
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119                                            __GFP_NOACCOUNT)) | \
120                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
121                                  __GFP_NOWARN)
122
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125         struct hlist_node node;
126         unsigned long start;
127         size_t size;
128 };
129
130 #define KMEMLEAK_GREY   0
131 #define KMEMLEAK_BLACK  -1
132
133 /*
134  * Structure holding the metadata for each allocated memory block.
135  * Modifications to such objects should be made while holding the
136  * object->lock. Insertions or deletions from object_list, gray_list or
137  * rb_node are already protected by the corresponding locks or mutex (see
138  * the notes on locking above). These objects are reference-counted
139  * (use_count) and freed using the RCU mechanism.
140  */
141 struct kmemleak_object {
142         spinlock_t lock;
143         unsigned long flags;            /* object status flags */
144         struct list_head object_list;
145         struct list_head gray_list;
146         struct rb_node rb_node;
147         struct rcu_head rcu;            /* object_list lockless traversal */
148         /* object usage count; object freed when use_count == 0 */
149         atomic_t use_count;
150         unsigned long pointer;
151         size_t size;
152         /* minimum number of a pointers found before it is considered leak */
153         int min_count;
154         /* the total number of pointers found pointing to this object */
155         int count;
156         /* checksum for detecting modified objects */
157         u32 checksum;
158         /* memory ranges to be scanned inside an object (empty for all) */
159         struct hlist_head area_list;
160         unsigned long trace[MAX_TRACE];
161         unsigned int trace_len;
162         unsigned long jiffies;          /* creation timestamp */
163         pid_t pid;                      /* pid of the current task */
164         char comm[TASK_COMM_LEN];       /* executable name */
165 };
166
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED        (1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED         (1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN          (1 << 2)
173
174 /* number of bytes to print per line; must be 16 or 32 */
175 #define HEX_ROW_SIZE            16
176 /* number of bytes to print at a time (1, 2, 4, 8) */
177 #define HEX_GROUP_SIZE          1
178 /* include ASCII after the hex output */
179 #define HEX_ASCII               1
180 /* max number of lines to be printed */
181 #define HEX_MAX_LINES           2
182
183 /* the list of all allocated objects */
184 static LIST_HEAD(object_list);
185 /* the list of gray-colored objects (see color_gray comment below) */
186 static LIST_HEAD(gray_list);
187 /* search tree for object boundaries */
188 static struct rb_root object_tree_root = RB_ROOT;
189 /* rw_lock protecting the access to object_list and object_tree_root */
190 static DEFINE_RWLOCK(kmemleak_lock);
191
192 /* allocation caches for kmemleak internal data */
193 static struct kmem_cache *object_cache;
194 static struct kmem_cache *scan_area_cache;
195
196 /* set if tracing memory operations is enabled */
197 static int kmemleak_enabled;
198 /* set in the late_initcall if there were no errors */
199 static int kmemleak_initialized;
200 /* enables or disables early logging of the memory operations */
201 static int kmemleak_early_log = 1;
202 /* set if a kmemleak warning was issued */
203 static int kmemleak_warning;
204 /* set if a fatal kmemleak error has occurred */
205 static int kmemleak_error;
206
207 /* minimum and maximum address that may be valid pointers */
208 static unsigned long min_addr = ULONG_MAX;
209 static unsigned long max_addr;
210
211 static struct task_struct *scan_thread;
212 /* used to avoid reporting of recently allocated objects */
213 static unsigned long jiffies_min_age;
214 static unsigned long jiffies_last_scan;
215 /* delay between automatic memory scannings */
216 static signed long jiffies_scan_wait;
217 /* enables or disables the task stacks scanning */
218 static int kmemleak_stack_scan = 1;
219 /* protects the memory scanning, parameters and debug/kmemleak file access */
220 static DEFINE_MUTEX(scan_mutex);
221 /* setting kmemleak=on, will set this var, skipping the disable */
222 static int kmemleak_skip_disable;
223 /* If there are leaks that can be reported */
224 static bool kmemleak_found_leaks;
225
226 /*
227  * Early object allocation/freeing logging. Kmemleak is initialized after the
228  * kernel allocator. However, both the kernel allocator and kmemleak may
229  * allocate memory blocks which need to be tracked. Kmemleak defines an
230  * arbitrary buffer to hold the allocation/freeing information before it is
231  * fully initialized.
232  */
233
234 /* kmemleak operation type for early logging */
235 enum {
236         KMEMLEAK_ALLOC,
237         KMEMLEAK_ALLOC_PERCPU,
238         KMEMLEAK_FREE,
239         KMEMLEAK_FREE_PART,
240         KMEMLEAK_FREE_PERCPU,
241         KMEMLEAK_NOT_LEAK,
242         KMEMLEAK_IGNORE,
243         KMEMLEAK_SCAN_AREA,
244         KMEMLEAK_NO_SCAN
245 };
246
247 /*
248  * Structure holding the information passed to kmemleak callbacks during the
249  * early logging.
250  */
251 struct early_log {
252         int op_type;                    /* kmemleak operation type */
253         const void *ptr;                /* allocated/freed memory block */
254         size_t size;                    /* memory block size */
255         int min_count;                  /* minimum reference count */
256         unsigned long trace[MAX_TRACE]; /* stack trace */
257         unsigned int trace_len;         /* stack trace length */
258 };
259
260 /* early logging buffer and current position */
261 static struct early_log
262         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
263 static int crt_early_log __initdata;
264
265 static void kmemleak_disable(void);
266
267 /*
268  * Print a warning and dump the stack trace.
269  */
270 #define kmemleak_warn(x...)     do {            \
271         pr_warning(x);                          \
272         dump_stack();                           \
273         kmemleak_warning = 1;                   \
274 } while (0)
275
276 /*
277  * Macro invoked when a serious kmemleak condition occurred and cannot be
278  * recovered from. Kmemleak will be disabled and further allocation/freeing
279  * tracing no longer available.
280  */
281 #define kmemleak_stop(x...)     do {    \
282         kmemleak_warn(x);               \
283         kmemleak_disable();             \
284 } while (0)
285
286 /*
287  * Printing of the objects hex dump to the seq file. The number of lines to be
288  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290  * with the object->lock held.
291  */
292 static void hex_dump_object(struct seq_file *seq,
293                             struct kmemleak_object *object)
294 {
295         const u8 *ptr = (const u8 *)object->pointer;
296         int i, len, remaining;
297         unsigned char linebuf[HEX_ROW_SIZE * 5];
298
299         /* limit the number of lines to HEX_MAX_LINES */
300         remaining = len =
301                 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
302
303         seq_printf(seq, "  hex dump (first %d bytes):\n", len);
304         for (i = 0; i < len; i += HEX_ROW_SIZE) {
305                 int linelen = min(remaining, HEX_ROW_SIZE);
306
307                 remaining -= HEX_ROW_SIZE;
308                 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
309                                    HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
310                                    HEX_ASCII);
311                 seq_printf(seq, "    %s\n", linebuf);
312         }
313 }
314
315 /*
316  * Object colors, encoded with count and min_count:
317  * - white - orphan object, not enough references to it (count < min_count)
318  * - gray  - not orphan, not marked as false positive (min_count == 0) or
319  *              sufficient references to it (count >= min_count)
320  * - black - ignore, it doesn't contain references (e.g. text section)
321  *              (min_count == -1). No function defined for this color.
322  * Newly created objects don't have any color assigned (object->count == -1)
323  * before the next memory scan when they become white.
324  */
325 static bool color_white(const struct kmemleak_object *object)
326 {
327         return object->count != KMEMLEAK_BLACK &&
328                 object->count < object->min_count;
329 }
330
331 static bool color_gray(const struct kmemleak_object *object)
332 {
333         return object->min_count != KMEMLEAK_BLACK &&
334                 object->count >= object->min_count;
335 }
336
337 /*
338  * Objects are considered unreferenced only if their color is white, they have
339  * not be deleted and have a minimum age to avoid false positives caused by
340  * pointers temporarily stored in CPU registers.
341  */
342 static bool unreferenced_object(struct kmemleak_object *object)
343 {
344         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
345                 time_before_eq(object->jiffies + jiffies_min_age,
346                                jiffies_last_scan);
347 }
348
349 /*
350  * Printing of the unreferenced objects information to the seq file. The
351  * print_unreferenced function must be called with the object->lock held.
352  */
353 static void print_unreferenced(struct seq_file *seq,
354                                struct kmemleak_object *object)
355 {
356         int i;
357         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
358
359         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
360                    object->pointer, object->size);
361         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362                    object->comm, object->pid, object->jiffies,
363                    msecs_age / 1000, msecs_age % 1000);
364         hex_dump_object(seq, object);
365         seq_printf(seq, "  backtrace:\n");
366
367         for (i = 0; i < object->trace_len; i++) {
368                 void *ptr = (void *)object->trace[i];
369                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
370         }
371 }
372
373 /*
374  * Print the kmemleak_object information. This function is used mainly for
375  * debugging special cases when kmemleak operations. It must be called with
376  * the object->lock held.
377  */
378 static void dump_object_info(struct kmemleak_object *object)
379 {
380         struct stack_trace trace;
381
382         trace.nr_entries = object->trace_len;
383         trace.entries = object->trace;
384
385         pr_notice("Object 0x%08lx (size %zu):\n",
386                   object->pointer, object->size);
387         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
388                   object->comm, object->pid, object->jiffies);
389         pr_notice("  min_count = %d\n", object->min_count);
390         pr_notice("  count = %d\n", object->count);
391         pr_notice("  flags = 0x%lx\n", object->flags);
392         pr_notice("  checksum = %u\n", object->checksum);
393         pr_notice("  backtrace:\n");
394         print_stack_trace(&trace, 4);
395 }
396
397 /*
398  * Look-up a memory block metadata (kmemleak_object) in the object search
399  * tree based on a pointer value. If alias is 0, only values pointing to the
400  * beginning of the memory block are allowed. The kmemleak_lock must be held
401  * when calling this function.
402  */
403 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
404 {
405         struct rb_node *rb = object_tree_root.rb_node;
406
407         while (rb) {
408                 struct kmemleak_object *object =
409                         rb_entry(rb, struct kmemleak_object, rb_node);
410                 if (ptr < object->pointer)
411                         rb = object->rb_node.rb_left;
412                 else if (object->pointer + object->size <= ptr)
413                         rb = object->rb_node.rb_right;
414                 else if (object->pointer == ptr || alias)
415                         return object;
416                 else {
417                         kmemleak_warn("Found object by alias at 0x%08lx\n",
418                                       ptr);
419                         dump_object_info(object);
420                         break;
421                 }
422         }
423         return NULL;
424 }
425
426 /*
427  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428  * that once an object's use_count reached 0, the RCU freeing was already
429  * registered and the object should no longer be used. This function must be
430  * called under the protection of rcu_read_lock().
431  */
432 static int get_object(struct kmemleak_object *object)
433 {
434         return atomic_inc_not_zero(&object->use_count);
435 }
436
437 /*
438  * RCU callback to free a kmemleak_object.
439  */
440 static void free_object_rcu(struct rcu_head *rcu)
441 {
442         struct hlist_node *tmp;
443         struct kmemleak_scan_area *area;
444         struct kmemleak_object *object =
445                 container_of(rcu, struct kmemleak_object, rcu);
446
447         /*
448          * Once use_count is 0 (guaranteed by put_object), there is no other
449          * code accessing this object, hence no need for locking.
450          */
451         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
452                 hlist_del(&area->node);
453                 kmem_cache_free(scan_area_cache, area);
454         }
455         kmem_cache_free(object_cache, object);
456 }
457
458 /*
459  * Decrement the object use_count. Once the count is 0, free the object using
460  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461  * delete_object() path, the delayed RCU freeing ensures that there is no
462  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
463  * is also possible.
464  */
465 static void put_object(struct kmemleak_object *object)
466 {
467         if (!atomic_dec_and_test(&object->use_count))
468                 return;
469
470         /* should only get here after delete_object was called */
471         WARN_ON(object->flags & OBJECT_ALLOCATED);
472
473         call_rcu(&object->rcu, free_object_rcu);
474 }
475
476 /*
477  * Look up an object in the object search tree and increase its use_count.
478  */
479 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
480 {
481         unsigned long flags;
482         struct kmemleak_object *object = NULL;
483
484         rcu_read_lock();
485         read_lock_irqsave(&kmemleak_lock, flags);
486         if (ptr >= min_addr && ptr < max_addr)
487                 object = lookup_object(ptr, alias);
488         read_unlock_irqrestore(&kmemleak_lock, flags);
489
490         /* check whether the object is still available */
491         if (object && !get_object(object))
492                 object = NULL;
493         rcu_read_unlock();
494
495         return object;
496 }
497
498 /*
499  * Save stack trace to the given array of MAX_TRACE size.
500  */
501 static int __save_stack_trace(unsigned long *trace)
502 {
503         struct stack_trace stack_trace;
504
505         stack_trace.max_entries = MAX_TRACE;
506         stack_trace.nr_entries = 0;
507         stack_trace.entries = trace;
508         stack_trace.skip = 2;
509         save_stack_trace(&stack_trace);
510
511         return stack_trace.nr_entries;
512 }
513
514 /*
515  * Create the metadata (struct kmemleak_object) corresponding to an allocated
516  * memory block and add it to the object_list and object_tree_root.
517  */
518 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
519                                              int min_count, gfp_t gfp)
520 {
521         unsigned long flags;
522         struct kmemleak_object *object, *parent;
523         struct rb_node **link, *rb_parent;
524
525         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
526         if (!object) {
527                 pr_warning("Cannot allocate a kmemleak_object structure\n");
528                 kmemleak_disable();
529                 return NULL;
530         }
531
532         INIT_LIST_HEAD(&object->object_list);
533         INIT_LIST_HEAD(&object->gray_list);
534         INIT_HLIST_HEAD(&object->area_list);
535         spin_lock_init(&object->lock);
536         atomic_set(&object->use_count, 1);
537         object->flags = OBJECT_ALLOCATED;
538         object->pointer = ptr;
539         object->size = size;
540         object->min_count = min_count;
541         object->count = 0;                      /* white color initially */
542         object->jiffies = jiffies;
543         object->checksum = 0;
544
545         /* task information */
546         if (in_irq()) {
547                 object->pid = 0;
548                 strncpy(object->comm, "hardirq", sizeof(object->comm));
549         } else if (in_softirq()) {
550                 object->pid = 0;
551                 strncpy(object->comm, "softirq", sizeof(object->comm));
552         } else {
553                 object->pid = current->pid;
554                 /*
555                  * There is a small chance of a race with set_task_comm(),
556                  * however using get_task_comm() here may cause locking
557                  * dependency issues with current->alloc_lock. In the worst
558                  * case, the command line is not correct.
559                  */
560                 strncpy(object->comm, current->comm, sizeof(object->comm));
561         }
562
563         /* kernel backtrace */
564         object->trace_len = __save_stack_trace(object->trace);
565
566         write_lock_irqsave(&kmemleak_lock, flags);
567
568         min_addr = min(min_addr, ptr);
569         max_addr = max(max_addr, ptr + size);
570         link = &object_tree_root.rb_node;
571         rb_parent = NULL;
572         while (*link) {
573                 rb_parent = *link;
574                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
575                 if (ptr + size <= parent->pointer)
576                         link = &parent->rb_node.rb_left;
577                 else if (parent->pointer + parent->size <= ptr)
578                         link = &parent->rb_node.rb_right;
579                 else {
580                         kmemleak_stop("Cannot insert 0x%lx into the object "
581                                       "search tree (overlaps existing)\n",
582                                       ptr);
583                         kmem_cache_free(object_cache, object);
584                         object = parent;
585                         spin_lock(&object->lock);
586                         dump_object_info(object);
587                         spin_unlock(&object->lock);
588                         goto out;
589                 }
590         }
591         rb_link_node(&object->rb_node, rb_parent, link);
592         rb_insert_color(&object->rb_node, &object_tree_root);
593
594         list_add_tail_rcu(&object->object_list, &object_list);
595 out:
596         write_unlock_irqrestore(&kmemleak_lock, flags);
597         return object;
598 }
599
600 /*
601  * Remove the metadata (struct kmemleak_object) for a memory block from the
602  * object_list and object_tree_root and decrement its use_count.
603  */
604 static void __delete_object(struct kmemleak_object *object)
605 {
606         unsigned long flags;
607
608         write_lock_irqsave(&kmemleak_lock, flags);
609         rb_erase(&object->rb_node, &object_tree_root);
610         list_del_rcu(&object->object_list);
611         write_unlock_irqrestore(&kmemleak_lock, flags);
612
613         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
614         WARN_ON(atomic_read(&object->use_count) < 2);
615
616         /*
617          * Locking here also ensures that the corresponding memory block
618          * cannot be freed when it is being scanned.
619          */
620         spin_lock_irqsave(&object->lock, flags);
621         object->flags &= ~OBJECT_ALLOCATED;
622         spin_unlock_irqrestore(&object->lock, flags);
623         put_object(object);
624 }
625
626 /*
627  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
628  * delete it.
629  */
630 static void delete_object_full(unsigned long ptr)
631 {
632         struct kmemleak_object *object;
633
634         object = find_and_get_object(ptr, 0);
635         if (!object) {
636 #ifdef DEBUG
637                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
638                               ptr);
639 #endif
640                 return;
641         }
642         __delete_object(object);
643         put_object(object);
644 }
645
646 /*
647  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648  * delete it. If the memory block is partially freed, the function may create
649  * additional metadata for the remaining parts of the block.
650  */
651 static void delete_object_part(unsigned long ptr, size_t size)
652 {
653         struct kmemleak_object *object;
654         unsigned long start, end;
655
656         object = find_and_get_object(ptr, 1);
657         if (!object) {
658 #ifdef DEBUG
659                 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
660                               "(size %zu)\n", ptr, size);
661 #endif
662                 return;
663         }
664         __delete_object(object);
665
666         /*
667          * Create one or two objects that may result from the memory block
668          * split. Note that partial freeing is only done by free_bootmem() and
669          * this happens before kmemleak_init() is called. The path below is
670          * only executed during early log recording in kmemleak_init(), so
671          * GFP_KERNEL is enough.
672          */
673         start = object->pointer;
674         end = object->pointer + object->size;
675         if (ptr > start)
676                 create_object(start, ptr - start, object->min_count,
677                               GFP_KERNEL);
678         if (ptr + size < end)
679                 create_object(ptr + size, end - ptr - size, object->min_count,
680                               GFP_KERNEL);
681
682         put_object(object);
683 }
684
685 static void __paint_it(struct kmemleak_object *object, int color)
686 {
687         object->min_count = color;
688         if (color == KMEMLEAK_BLACK)
689                 object->flags |= OBJECT_NO_SCAN;
690 }
691
692 static void paint_it(struct kmemleak_object *object, int color)
693 {
694         unsigned long flags;
695
696         spin_lock_irqsave(&object->lock, flags);
697         __paint_it(object, color);
698         spin_unlock_irqrestore(&object->lock, flags);
699 }
700
701 static void paint_ptr(unsigned long ptr, int color)
702 {
703         struct kmemleak_object *object;
704
705         object = find_and_get_object(ptr, 0);
706         if (!object) {
707                 kmemleak_warn("Trying to color unknown object "
708                               "at 0x%08lx as %s\n", ptr,
709                               (color == KMEMLEAK_GREY) ? "Grey" :
710                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
711                 return;
712         }
713         paint_it(object, color);
714         put_object(object);
715 }
716
717 /*
718  * Mark an object permanently as gray-colored so that it can no longer be
719  * reported as a leak. This is used in general to mark a false positive.
720  */
721 static void make_gray_object(unsigned long ptr)
722 {
723         paint_ptr(ptr, KMEMLEAK_GREY);
724 }
725
726 /*
727  * Mark the object as black-colored so that it is ignored from scans and
728  * reporting.
729  */
730 static void make_black_object(unsigned long ptr)
731 {
732         paint_ptr(ptr, KMEMLEAK_BLACK);
733 }
734
735 /*
736  * Add a scanning area to the object. If at least one such area is added,
737  * kmemleak will only scan these ranges rather than the whole memory block.
738  */
739 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
740 {
741         unsigned long flags;
742         struct kmemleak_object *object;
743         struct kmemleak_scan_area *area;
744
745         object = find_and_get_object(ptr, 1);
746         if (!object) {
747                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
748                               ptr);
749                 return;
750         }
751
752         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
753         if (!area) {
754                 pr_warning("Cannot allocate a scan area\n");
755                 goto out;
756         }
757
758         spin_lock_irqsave(&object->lock, flags);
759         if (size == SIZE_MAX) {
760                 size = object->pointer + object->size - ptr;
761         } else if (ptr + size > object->pointer + object->size) {
762                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
763                 dump_object_info(object);
764                 kmem_cache_free(scan_area_cache, area);
765                 goto out_unlock;
766         }
767
768         INIT_HLIST_NODE(&area->node);
769         area->start = ptr;
770         area->size = size;
771
772         hlist_add_head(&area->node, &object->area_list);
773 out_unlock:
774         spin_unlock_irqrestore(&object->lock, flags);
775 out:
776         put_object(object);
777 }
778
779 /*
780  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
781  * pointer. Such object will not be scanned by kmemleak but references to it
782  * are searched.
783  */
784 static void object_no_scan(unsigned long ptr)
785 {
786         unsigned long flags;
787         struct kmemleak_object *object;
788
789         object = find_and_get_object(ptr, 0);
790         if (!object) {
791                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
792                 return;
793         }
794
795         spin_lock_irqsave(&object->lock, flags);
796         object->flags |= OBJECT_NO_SCAN;
797         spin_unlock_irqrestore(&object->lock, flags);
798         put_object(object);
799 }
800
801 /*
802  * Log an early kmemleak_* call to the early_log buffer. These calls will be
803  * processed later once kmemleak is fully initialized.
804  */
805 static void __init log_early(int op_type, const void *ptr, size_t size,
806                              int min_count)
807 {
808         unsigned long flags;
809         struct early_log *log;
810
811         if (kmemleak_error) {
812                 /* kmemleak stopped recording, just count the requests */
813                 crt_early_log++;
814                 return;
815         }
816
817         if (crt_early_log >= ARRAY_SIZE(early_log)) {
818                 kmemleak_disable();
819                 return;
820         }
821
822         /*
823          * There is no need for locking since the kernel is still in UP mode
824          * at this stage. Disabling the IRQs is enough.
825          */
826         local_irq_save(flags);
827         log = &early_log[crt_early_log];
828         log->op_type = op_type;
829         log->ptr = ptr;
830         log->size = size;
831         log->min_count = min_count;
832         log->trace_len = __save_stack_trace(log->trace);
833         crt_early_log++;
834         local_irq_restore(flags);
835 }
836
837 /*
838  * Log an early allocated block and populate the stack trace.
839  */
840 static void early_alloc(struct early_log *log)
841 {
842         struct kmemleak_object *object;
843         unsigned long flags;
844         int i;
845
846         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
847                 return;
848
849         /*
850          * RCU locking needed to ensure object is not freed via put_object().
851          */
852         rcu_read_lock();
853         object = create_object((unsigned long)log->ptr, log->size,
854                                log->min_count, GFP_ATOMIC);
855         if (!object)
856                 goto out;
857         spin_lock_irqsave(&object->lock, flags);
858         for (i = 0; i < log->trace_len; i++)
859                 object->trace[i] = log->trace[i];
860         object->trace_len = log->trace_len;
861         spin_unlock_irqrestore(&object->lock, flags);
862 out:
863         rcu_read_unlock();
864 }
865
866 /*
867  * Log an early allocated block and populate the stack trace.
868  */
869 static void early_alloc_percpu(struct early_log *log)
870 {
871         unsigned int cpu;
872         const void __percpu *ptr = log->ptr;
873
874         for_each_possible_cpu(cpu) {
875                 log->ptr = per_cpu_ptr(ptr, cpu);
876                 early_alloc(log);
877         }
878 }
879
880 /**
881  * kmemleak_alloc - register a newly allocated object
882  * @ptr:        pointer to beginning of the object
883  * @size:       size of the object
884  * @min_count:  minimum number of references to this object. If during memory
885  *              scanning a number of references less than @min_count is found,
886  *              the object is reported as a memory leak. If @min_count is 0,
887  *              the object is never reported as a leak. If @min_count is -1,
888  *              the object is ignored (not scanned and not reported as a leak)
889  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
890  *
891  * This function is called from the kernel allocators when a new object
892  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
893  */
894 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
895                           gfp_t gfp)
896 {
897         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
898
899         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
900                 create_object((unsigned long)ptr, size, min_count, gfp);
901         else if (kmemleak_early_log)
902                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
903 }
904 EXPORT_SYMBOL_GPL(kmemleak_alloc);
905
906 /**
907  * kmemleak_alloc_percpu - register a newly allocated __percpu object
908  * @ptr:        __percpu pointer to beginning of the object
909  * @size:       size of the object
910  *
911  * This function is called from the kernel percpu allocator when a new object
912  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
913  * allocation.
914  */
915 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
916 {
917         unsigned int cpu;
918
919         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
920
921         /*
922          * Percpu allocations are only scanned and not reported as leaks
923          * (min_count is set to 0).
924          */
925         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
926                 for_each_possible_cpu(cpu)
927                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
928                                       size, 0, GFP_KERNEL);
929         else if (kmemleak_early_log)
930                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
931 }
932 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
933
934 /**
935  * kmemleak_free - unregister a previously registered object
936  * @ptr:        pointer to beginning of the object
937  *
938  * This function is called from the kernel allocators when an object (memory
939  * block) is freed (kmem_cache_free, kfree, vfree etc.).
940  */
941 void __ref kmemleak_free(const void *ptr)
942 {
943         pr_debug("%s(0x%p)\n", __func__, ptr);
944
945         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
946                 delete_object_full((unsigned long)ptr);
947         else if (kmemleak_early_log)
948                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
949 }
950 EXPORT_SYMBOL_GPL(kmemleak_free);
951
952 /**
953  * kmemleak_free_part - partially unregister a previously registered object
954  * @ptr:        pointer to the beginning or inside the object. This also
955  *              represents the start of the range to be freed
956  * @size:       size to be unregistered
957  *
958  * This function is called when only a part of a memory block is freed
959  * (usually from the bootmem allocator).
960  */
961 void __ref kmemleak_free_part(const void *ptr, size_t size)
962 {
963         pr_debug("%s(0x%p)\n", __func__, ptr);
964
965         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966                 delete_object_part((unsigned long)ptr, size);
967         else if (kmemleak_early_log)
968                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
969 }
970 EXPORT_SYMBOL_GPL(kmemleak_free_part);
971
972 /**
973  * kmemleak_free_percpu - unregister a previously registered __percpu object
974  * @ptr:        __percpu pointer to beginning of the object
975  *
976  * This function is called from the kernel percpu allocator when an object
977  * (memory block) is freed (free_percpu).
978  */
979 void __ref kmemleak_free_percpu(const void __percpu *ptr)
980 {
981         unsigned int cpu;
982
983         pr_debug("%s(0x%p)\n", __func__, ptr);
984
985         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
986                 for_each_possible_cpu(cpu)
987                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
988                                                                       cpu));
989         else if (kmemleak_early_log)
990                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
991 }
992 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
993
994 /**
995  * kmemleak_update_trace - update object allocation stack trace
996  * @ptr:        pointer to beginning of the object
997  *
998  * Override the object allocation stack trace for cases where the actual
999  * allocation place is not always useful.
1000  */
1001 void __ref kmemleak_update_trace(const void *ptr)
1002 {
1003         struct kmemleak_object *object;
1004         unsigned long flags;
1005
1006         pr_debug("%s(0x%p)\n", __func__, ptr);
1007
1008         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1009                 return;
1010
1011         object = find_and_get_object((unsigned long)ptr, 1);
1012         if (!object) {
1013 #ifdef DEBUG
1014                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1015                               ptr);
1016 #endif
1017                 return;
1018         }
1019
1020         spin_lock_irqsave(&object->lock, flags);
1021         object->trace_len = __save_stack_trace(object->trace);
1022         spin_unlock_irqrestore(&object->lock, flags);
1023
1024         put_object(object);
1025 }
1026 EXPORT_SYMBOL(kmemleak_update_trace);
1027
1028 /**
1029  * kmemleak_not_leak - mark an allocated object as false positive
1030  * @ptr:        pointer to beginning of the object
1031  *
1032  * Calling this function on an object will cause the memory block to no longer
1033  * be reported as leak and always be scanned.
1034  */
1035 void __ref kmemleak_not_leak(const void *ptr)
1036 {
1037         pr_debug("%s(0x%p)\n", __func__, ptr);
1038
1039         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1040                 make_gray_object((unsigned long)ptr);
1041         else if (kmemleak_early_log)
1042                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1043 }
1044 EXPORT_SYMBOL(kmemleak_not_leak);
1045
1046 /**
1047  * kmemleak_ignore - ignore an allocated object
1048  * @ptr:        pointer to beginning of the object
1049  *
1050  * Calling this function on an object will cause the memory block to be
1051  * ignored (not scanned and not reported as a leak). This is usually done when
1052  * it is known that the corresponding block is not a leak and does not contain
1053  * any references to other allocated memory blocks.
1054  */
1055 void __ref kmemleak_ignore(const void *ptr)
1056 {
1057         pr_debug("%s(0x%p)\n", __func__, ptr);
1058
1059         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1060                 make_black_object((unsigned long)ptr);
1061         else if (kmemleak_early_log)
1062                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1063 }
1064 EXPORT_SYMBOL(kmemleak_ignore);
1065
1066 /**
1067  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1068  * @ptr:        pointer to beginning or inside the object. This also
1069  *              represents the start of the scan area
1070  * @size:       size of the scan area
1071  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1072  *
1073  * This function is used when it is known that only certain parts of an object
1074  * contain references to other objects. Kmemleak will only scan these areas
1075  * reducing the number false negatives.
1076  */
1077 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1078 {
1079         pr_debug("%s(0x%p)\n", __func__, ptr);
1080
1081         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1082                 add_scan_area((unsigned long)ptr, size, gfp);
1083         else if (kmemleak_early_log)
1084                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1085 }
1086 EXPORT_SYMBOL(kmemleak_scan_area);
1087
1088 /**
1089  * kmemleak_no_scan - do not scan an allocated object
1090  * @ptr:        pointer to beginning of the object
1091  *
1092  * This function notifies kmemleak not to scan the given memory block. Useful
1093  * in situations where it is known that the given object does not contain any
1094  * references to other objects. Kmemleak will not scan such objects reducing
1095  * the number of false negatives.
1096  */
1097 void __ref kmemleak_no_scan(const void *ptr)
1098 {
1099         pr_debug("%s(0x%p)\n", __func__, ptr);
1100
1101         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1102                 object_no_scan((unsigned long)ptr);
1103         else if (kmemleak_early_log)
1104                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1105 }
1106 EXPORT_SYMBOL(kmemleak_no_scan);
1107
1108 /*
1109  * Update an object's checksum and return true if it was modified.
1110  */
1111 static bool update_checksum(struct kmemleak_object *object)
1112 {
1113         u32 old_csum = object->checksum;
1114
1115         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1116                 return false;
1117
1118         kasan_disable_current();
1119         object->checksum = crc32(0, (void *)object->pointer, object->size);
1120         kasan_enable_current();
1121
1122         return object->checksum != old_csum;
1123 }
1124
1125 /*
1126  * Memory scanning is a long process and it needs to be interruptable. This
1127  * function checks whether such interrupt condition occurred.
1128  */
1129 static int scan_should_stop(void)
1130 {
1131         if (!kmemleak_enabled)
1132                 return 1;
1133
1134         /*
1135          * This function may be called from either process or kthread context,
1136          * hence the need to check for both stop conditions.
1137          */
1138         if (current->mm)
1139                 return signal_pending(current);
1140         else
1141                 return kthread_should_stop();
1142
1143         return 0;
1144 }
1145
1146 /*
1147  * Scan a memory block (exclusive range) for valid pointers and add those
1148  * found to the gray list.
1149  */
1150 static void scan_block(void *_start, void *_end,
1151                        struct kmemleak_object *scanned, int allow_resched)
1152 {
1153         unsigned long *ptr;
1154         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1155         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1156
1157         for (ptr = start; ptr < end; ptr++) {
1158                 struct kmemleak_object *object;
1159                 unsigned long flags;
1160                 unsigned long pointer;
1161
1162                 if (allow_resched)
1163                         cond_resched();
1164                 if (scan_should_stop())
1165                         break;
1166
1167                 /* don't scan uninitialized memory */
1168                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1169                                                   BYTES_PER_POINTER))
1170                         continue;
1171
1172                 kasan_disable_current();
1173                 pointer = *ptr;
1174                 kasan_enable_current();
1175
1176                 object = find_and_get_object(pointer, 1);
1177                 if (!object)
1178                         continue;
1179                 if (object == scanned) {
1180                         /* self referenced, ignore */
1181                         put_object(object);
1182                         continue;
1183                 }
1184
1185                 /*
1186                  * Avoid the lockdep recursive warning on object->lock being
1187                  * previously acquired in scan_object(). These locks are
1188                  * enclosed by scan_mutex.
1189                  */
1190                 spin_lock_irqsave_nested(&object->lock, flags,
1191                                          SINGLE_DEPTH_NESTING);
1192                 if (!color_white(object)) {
1193                         /* non-orphan, ignored or new */
1194                         spin_unlock_irqrestore(&object->lock, flags);
1195                         put_object(object);
1196                         continue;
1197                 }
1198
1199                 /*
1200                  * Increase the object's reference count (number of pointers
1201                  * to the memory block). If this count reaches the required
1202                  * minimum, the object's color will become gray and it will be
1203                  * added to the gray_list.
1204                  */
1205                 object->count++;
1206                 if (color_gray(object)) {
1207                         list_add_tail(&object->gray_list, &gray_list);
1208                         spin_unlock_irqrestore(&object->lock, flags);
1209                         continue;
1210                 }
1211
1212                 spin_unlock_irqrestore(&object->lock, flags);
1213                 put_object(object);
1214         }
1215 }
1216
1217 /*
1218  * Scan a memory block corresponding to a kmemleak_object. A condition is
1219  * that object->use_count >= 1.
1220  */
1221 static void scan_object(struct kmemleak_object *object)
1222 {
1223         struct kmemleak_scan_area *area;
1224         unsigned long flags;
1225
1226         /*
1227          * Once the object->lock is acquired, the corresponding memory block
1228          * cannot be freed (the same lock is acquired in delete_object).
1229          */
1230         spin_lock_irqsave(&object->lock, flags);
1231         if (object->flags & OBJECT_NO_SCAN)
1232                 goto out;
1233         if (!(object->flags & OBJECT_ALLOCATED))
1234                 /* already freed object */
1235                 goto out;
1236         if (hlist_empty(&object->area_list)) {
1237                 void *start = (void *)object->pointer;
1238                 void *end = (void *)(object->pointer + object->size);
1239
1240                 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1241                        !(object->flags & OBJECT_NO_SCAN)) {
1242                         scan_block(start, min(start + MAX_SCAN_SIZE, end),
1243                                    object, 0);
1244                         start += MAX_SCAN_SIZE;
1245
1246                         spin_unlock_irqrestore(&object->lock, flags);
1247                         cond_resched();
1248                         spin_lock_irqsave(&object->lock, flags);
1249                 }
1250         } else
1251                 hlist_for_each_entry(area, &object->area_list, node)
1252                         scan_block((void *)area->start,
1253                                    (void *)(area->start + area->size),
1254                                    object, 0);
1255 out:
1256         spin_unlock_irqrestore(&object->lock, flags);
1257 }
1258
1259 /*
1260  * Scan the objects already referenced (gray objects). More objects will be
1261  * referenced and, if there are no memory leaks, all the objects are scanned.
1262  */
1263 static void scan_gray_list(void)
1264 {
1265         struct kmemleak_object *object, *tmp;
1266
1267         /*
1268          * The list traversal is safe for both tail additions and removals
1269          * from inside the loop. The kmemleak objects cannot be freed from
1270          * outside the loop because their use_count was incremented.
1271          */
1272         object = list_entry(gray_list.next, typeof(*object), gray_list);
1273         while (&object->gray_list != &gray_list) {
1274                 cond_resched();
1275
1276                 /* may add new objects to the list */
1277                 if (!scan_should_stop())
1278                         scan_object(object);
1279
1280                 tmp = list_entry(object->gray_list.next, typeof(*object),
1281                                  gray_list);
1282
1283                 /* remove the object from the list and release it */
1284                 list_del(&object->gray_list);
1285                 put_object(object);
1286
1287                 object = tmp;
1288         }
1289         WARN_ON(!list_empty(&gray_list));
1290 }
1291
1292 /*
1293  * Scan data sections and all the referenced memory blocks allocated via the
1294  * kernel's standard allocators. This function must be called with the
1295  * scan_mutex held.
1296  */
1297 static void kmemleak_scan(void)
1298 {
1299         unsigned long flags;
1300         struct kmemleak_object *object;
1301         int i;
1302         int new_leaks = 0;
1303
1304         jiffies_last_scan = jiffies;
1305
1306         /* prepare the kmemleak_object's */
1307         rcu_read_lock();
1308         list_for_each_entry_rcu(object, &object_list, object_list) {
1309                 spin_lock_irqsave(&object->lock, flags);
1310 #ifdef DEBUG
1311                 /*
1312                  * With a few exceptions there should be a maximum of
1313                  * 1 reference to any object at this point.
1314                  */
1315                 if (atomic_read(&object->use_count) > 1) {
1316                         pr_debug("object->use_count = %d\n",
1317                                  atomic_read(&object->use_count));
1318                         dump_object_info(object);
1319                 }
1320 #endif
1321                 /* reset the reference count (whiten the object) */
1322                 object->count = 0;
1323                 if (color_gray(object) && get_object(object))
1324                         list_add_tail(&object->gray_list, &gray_list);
1325
1326                 spin_unlock_irqrestore(&object->lock, flags);
1327         }
1328         rcu_read_unlock();
1329
1330         /* data/bss scanning */
1331         scan_block(_sdata, _edata, NULL, 1);
1332         scan_block(__bss_start, __bss_stop, NULL, 1);
1333
1334 #ifdef CONFIG_SMP
1335         /* per-cpu sections scanning */
1336         for_each_possible_cpu(i)
1337                 scan_block(__per_cpu_start + per_cpu_offset(i),
1338                            __per_cpu_end + per_cpu_offset(i), NULL, 1);
1339 #endif
1340
1341         /*
1342          * Struct page scanning for each node.
1343          */
1344         get_online_mems();
1345         for_each_online_node(i) {
1346                 unsigned long start_pfn = node_start_pfn(i);
1347                 unsigned long end_pfn = node_end_pfn(i);
1348                 unsigned long pfn;
1349
1350                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1351                         struct page *page;
1352
1353                         if (!pfn_valid(pfn))
1354                                 continue;
1355                         page = pfn_to_page(pfn);
1356                         /* only scan if page is in use */
1357                         if (page_count(page) == 0)
1358                                 continue;
1359                         scan_block(page, page + 1, NULL, 1);
1360                 }
1361         }
1362         put_online_mems();
1363
1364         /*
1365          * Scanning the task stacks (may introduce false negatives).
1366          */
1367         if (kmemleak_stack_scan) {
1368                 struct task_struct *p, *g;
1369
1370                 read_lock(&tasklist_lock);
1371                 do_each_thread(g, p) {
1372                         scan_block(task_stack_page(p), task_stack_page(p) +
1373                                    THREAD_SIZE, NULL, 0);
1374                 } while_each_thread(g, p);
1375                 read_unlock(&tasklist_lock);
1376         }
1377
1378         /*
1379          * Scan the objects already referenced from the sections scanned
1380          * above.
1381          */
1382         scan_gray_list();
1383
1384         /*
1385          * Check for new or unreferenced objects modified since the previous
1386          * scan and color them gray until the next scan.
1387          */
1388         rcu_read_lock();
1389         list_for_each_entry_rcu(object, &object_list, object_list) {
1390                 spin_lock_irqsave(&object->lock, flags);
1391                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1392                     && update_checksum(object) && get_object(object)) {
1393                         /* color it gray temporarily */
1394                         object->count = object->min_count;
1395                         list_add_tail(&object->gray_list, &gray_list);
1396                 }
1397                 spin_unlock_irqrestore(&object->lock, flags);
1398         }
1399         rcu_read_unlock();
1400
1401         /*
1402          * Re-scan the gray list for modified unreferenced objects.
1403          */
1404         scan_gray_list();
1405
1406         /*
1407          * If scanning was stopped do not report any new unreferenced objects.
1408          */
1409         if (scan_should_stop())
1410                 return;
1411
1412         /*
1413          * Scanning result reporting.
1414          */
1415         rcu_read_lock();
1416         list_for_each_entry_rcu(object, &object_list, object_list) {
1417                 spin_lock_irqsave(&object->lock, flags);
1418                 if (unreferenced_object(object) &&
1419                     !(object->flags & OBJECT_REPORTED)) {
1420                         object->flags |= OBJECT_REPORTED;
1421                         new_leaks++;
1422                 }
1423                 spin_unlock_irqrestore(&object->lock, flags);
1424         }
1425         rcu_read_unlock();
1426
1427         if (new_leaks) {
1428                 kmemleak_found_leaks = true;
1429
1430                 pr_info("%d new suspected memory leaks (see "
1431                         "/sys/kernel/debug/kmemleak)\n", new_leaks);
1432         }
1433
1434 }
1435
1436 /*
1437  * Thread function performing automatic memory scanning. Unreferenced objects
1438  * at the end of a memory scan are reported but only the first time.
1439  */
1440 static int kmemleak_scan_thread(void *arg)
1441 {
1442         static int first_run = 1;
1443
1444         pr_info("Automatic memory scanning thread started\n");
1445         set_user_nice(current, 10);
1446
1447         /*
1448          * Wait before the first scan to allow the system to fully initialize.
1449          */
1450         if (first_run) {
1451                 first_run = 0;
1452                 ssleep(SECS_FIRST_SCAN);
1453         }
1454
1455         while (!kthread_should_stop()) {
1456                 signed long timeout = jiffies_scan_wait;
1457
1458                 mutex_lock(&scan_mutex);
1459                 kmemleak_scan();
1460                 mutex_unlock(&scan_mutex);
1461
1462                 /* wait before the next scan */
1463                 while (timeout && !kthread_should_stop())
1464                         timeout = schedule_timeout_interruptible(timeout);
1465         }
1466
1467         pr_info("Automatic memory scanning thread ended\n");
1468
1469         return 0;
1470 }
1471
1472 /*
1473  * Start the automatic memory scanning thread. This function must be called
1474  * with the scan_mutex held.
1475  */
1476 static void start_scan_thread(void)
1477 {
1478         if (scan_thread)
1479                 return;
1480         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1481         if (IS_ERR(scan_thread)) {
1482                 pr_warning("Failed to create the scan thread\n");
1483                 scan_thread = NULL;
1484         }
1485 }
1486
1487 /*
1488  * Stop the automatic memory scanning thread. This function must be called
1489  * with the scan_mutex held.
1490  */
1491 static void stop_scan_thread(void)
1492 {
1493         if (scan_thread) {
1494                 kthread_stop(scan_thread);
1495                 scan_thread = NULL;
1496         }
1497 }
1498
1499 /*
1500  * Iterate over the object_list and return the first valid object at or after
1501  * the required position with its use_count incremented. The function triggers
1502  * a memory scanning when the pos argument points to the first position.
1503  */
1504 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1505 {
1506         struct kmemleak_object *object;
1507         loff_t n = *pos;
1508         int err;
1509
1510         err = mutex_lock_interruptible(&scan_mutex);
1511         if (err < 0)
1512                 return ERR_PTR(err);
1513
1514         rcu_read_lock();
1515         list_for_each_entry_rcu(object, &object_list, object_list) {
1516                 if (n-- > 0)
1517                         continue;
1518                 if (get_object(object))
1519                         goto out;
1520         }
1521         object = NULL;
1522 out:
1523         return object;
1524 }
1525
1526 /*
1527  * Return the next object in the object_list. The function decrements the
1528  * use_count of the previous object and increases that of the next one.
1529  */
1530 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1531 {
1532         struct kmemleak_object *prev_obj = v;
1533         struct kmemleak_object *next_obj = NULL;
1534         struct kmemleak_object *obj = prev_obj;
1535
1536         ++(*pos);
1537
1538         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1539                 if (get_object(obj)) {
1540                         next_obj = obj;
1541                         break;
1542                 }
1543         }
1544
1545         put_object(prev_obj);
1546         return next_obj;
1547 }
1548
1549 /*
1550  * Decrement the use_count of the last object required, if any.
1551  */
1552 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1553 {
1554         if (!IS_ERR(v)) {
1555                 /*
1556                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1557                  * waiting was interrupted, so only release it if !IS_ERR.
1558                  */
1559                 rcu_read_unlock();
1560                 mutex_unlock(&scan_mutex);
1561                 if (v)
1562                         put_object(v);
1563         }
1564 }
1565
1566 /*
1567  * Print the information for an unreferenced object to the seq file.
1568  */
1569 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1570 {
1571         struct kmemleak_object *object = v;
1572         unsigned long flags;
1573
1574         spin_lock_irqsave(&object->lock, flags);
1575         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1576                 print_unreferenced(seq, object);
1577         spin_unlock_irqrestore(&object->lock, flags);
1578         return 0;
1579 }
1580
1581 static const struct seq_operations kmemleak_seq_ops = {
1582         .start = kmemleak_seq_start,
1583         .next  = kmemleak_seq_next,
1584         .stop  = kmemleak_seq_stop,
1585         .show  = kmemleak_seq_show,
1586 };
1587
1588 static int kmemleak_open(struct inode *inode, struct file *file)
1589 {
1590         return seq_open(file, &kmemleak_seq_ops);
1591 }
1592
1593 static int dump_str_object_info(const char *str)
1594 {
1595         unsigned long flags;
1596         struct kmemleak_object *object;
1597         unsigned long addr;
1598
1599         if (kstrtoul(str, 0, &addr))
1600                 return -EINVAL;
1601         object = find_and_get_object(addr, 0);
1602         if (!object) {
1603                 pr_info("Unknown object at 0x%08lx\n", addr);
1604                 return -EINVAL;
1605         }
1606
1607         spin_lock_irqsave(&object->lock, flags);
1608         dump_object_info(object);
1609         spin_unlock_irqrestore(&object->lock, flags);
1610
1611         put_object(object);
1612         return 0;
1613 }
1614
1615 /*
1616  * We use grey instead of black to ensure we can do future scans on the same
1617  * objects. If we did not do future scans these black objects could
1618  * potentially contain references to newly allocated objects in the future and
1619  * we'd end up with false positives.
1620  */
1621 static void kmemleak_clear(void)
1622 {
1623         struct kmemleak_object *object;
1624         unsigned long flags;
1625
1626         rcu_read_lock();
1627         list_for_each_entry_rcu(object, &object_list, object_list) {
1628                 spin_lock_irqsave(&object->lock, flags);
1629                 if ((object->flags & OBJECT_REPORTED) &&
1630                     unreferenced_object(object))
1631                         __paint_it(object, KMEMLEAK_GREY);
1632                 spin_unlock_irqrestore(&object->lock, flags);
1633         }
1634         rcu_read_unlock();
1635
1636         kmemleak_found_leaks = false;
1637 }
1638
1639 static void __kmemleak_do_cleanup(void);
1640
1641 /*
1642  * File write operation to configure kmemleak at run-time. The following
1643  * commands can be written to the /sys/kernel/debug/kmemleak file:
1644  *   off        - disable kmemleak (irreversible)
1645  *   stack=on   - enable the task stacks scanning
1646  *   stack=off  - disable the tasks stacks scanning
1647  *   scan=on    - start the automatic memory scanning thread
1648  *   scan=off   - stop the automatic memory scanning thread
1649  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1650  *                disable it)
1651  *   scan       - trigger a memory scan
1652  *   clear      - mark all current reported unreferenced kmemleak objects as
1653  *                grey to ignore printing them, or free all kmemleak objects
1654  *                if kmemleak has been disabled.
1655  *   dump=...   - dump information about the object found at the given address
1656  */
1657 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1658                               size_t size, loff_t *ppos)
1659 {
1660         char buf[64];
1661         int buf_size;
1662         int ret;
1663
1664         buf_size = min(size, (sizeof(buf) - 1));
1665         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1666                 return -EFAULT;
1667         buf[buf_size] = 0;
1668
1669         ret = mutex_lock_interruptible(&scan_mutex);
1670         if (ret < 0)
1671                 return ret;
1672
1673         if (strncmp(buf, "clear", 5) == 0) {
1674                 if (kmemleak_enabled)
1675                         kmemleak_clear();
1676                 else
1677                         __kmemleak_do_cleanup();
1678                 goto out;
1679         }
1680
1681         if (!kmemleak_enabled) {
1682                 ret = -EBUSY;
1683                 goto out;
1684         }
1685
1686         if (strncmp(buf, "off", 3) == 0)
1687                 kmemleak_disable();
1688         else if (strncmp(buf, "stack=on", 8) == 0)
1689                 kmemleak_stack_scan = 1;
1690         else if (strncmp(buf, "stack=off", 9) == 0)
1691                 kmemleak_stack_scan = 0;
1692         else if (strncmp(buf, "scan=on", 7) == 0)
1693                 start_scan_thread();
1694         else if (strncmp(buf, "scan=off", 8) == 0)
1695                 stop_scan_thread();
1696         else if (strncmp(buf, "scan=", 5) == 0) {
1697                 unsigned long secs;
1698
1699                 ret = kstrtoul(buf + 5, 0, &secs);
1700                 if (ret < 0)
1701                         goto out;
1702                 stop_scan_thread();
1703                 if (secs) {
1704                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1705                         start_scan_thread();
1706                 }
1707         } else if (strncmp(buf, "scan", 4) == 0)
1708                 kmemleak_scan();
1709         else if (strncmp(buf, "dump=", 5) == 0)
1710                 ret = dump_str_object_info(buf + 5);
1711         else
1712                 ret = -EINVAL;
1713
1714 out:
1715         mutex_unlock(&scan_mutex);
1716         if (ret < 0)
1717                 return ret;
1718
1719         /* ignore the rest of the buffer, only one command at a time */
1720         *ppos += size;
1721         return size;
1722 }
1723
1724 static const struct file_operations kmemleak_fops = {
1725         .owner          = THIS_MODULE,
1726         .open           = kmemleak_open,
1727         .read           = seq_read,
1728         .write          = kmemleak_write,
1729         .llseek         = seq_lseek,
1730         .release        = seq_release,
1731 };
1732
1733 static void __kmemleak_do_cleanup(void)
1734 {
1735         struct kmemleak_object *object;
1736
1737         rcu_read_lock();
1738         list_for_each_entry_rcu(object, &object_list, object_list)
1739                 delete_object_full(object->pointer);
1740         rcu_read_unlock();
1741 }
1742
1743 /*
1744  * Stop the memory scanning thread and free the kmemleak internal objects if
1745  * no previous scan thread (otherwise, kmemleak may still have some useful
1746  * information on memory leaks).
1747  */
1748 static void kmemleak_do_cleanup(struct work_struct *work)
1749 {
1750         mutex_lock(&scan_mutex);
1751         stop_scan_thread();
1752
1753         if (!kmemleak_found_leaks)
1754                 __kmemleak_do_cleanup();
1755         else
1756                 pr_info("Kmemleak disabled without freeing internal data. "
1757                         "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1758         mutex_unlock(&scan_mutex);
1759 }
1760
1761 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1762
1763 /*
1764  * Disable kmemleak. No memory allocation/freeing will be traced once this
1765  * function is called. Disabling kmemleak is an irreversible operation.
1766  */
1767 static void kmemleak_disable(void)
1768 {
1769         /* atomically check whether it was already invoked */
1770         if (cmpxchg(&kmemleak_error, 0, 1))
1771                 return;
1772
1773         /* stop any memory operation tracing */
1774         kmemleak_enabled = 0;
1775
1776         /* check whether it is too early for a kernel thread */
1777         if (kmemleak_initialized)
1778                 schedule_work(&cleanup_work);
1779
1780         pr_info("Kernel memory leak detector disabled\n");
1781 }
1782
1783 /*
1784  * Allow boot-time kmemleak disabling (enabled by default).
1785  */
1786 static int kmemleak_boot_config(char *str)
1787 {
1788         if (!str)
1789                 return -EINVAL;
1790         if (strcmp(str, "off") == 0)
1791                 kmemleak_disable();
1792         else if (strcmp(str, "on") == 0)
1793                 kmemleak_skip_disable = 1;
1794         else
1795                 return -EINVAL;
1796         return 0;
1797 }
1798 early_param("kmemleak", kmemleak_boot_config);
1799
1800 static void __init print_log_trace(struct early_log *log)
1801 {
1802         struct stack_trace trace;
1803
1804         trace.nr_entries = log->trace_len;
1805         trace.entries = log->trace;
1806
1807         pr_notice("Early log backtrace:\n");
1808         print_stack_trace(&trace, 2);
1809 }
1810
1811 /*
1812  * Kmemleak initialization.
1813  */
1814 void __init kmemleak_init(void)
1815 {
1816         int i;
1817         unsigned long flags;
1818
1819 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1820         if (!kmemleak_skip_disable) {
1821                 kmemleak_early_log = 0;
1822                 kmemleak_disable();
1823                 return;
1824         }
1825 #endif
1826
1827         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1828         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1829
1830         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1831         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1832
1833         if (crt_early_log >= ARRAY_SIZE(early_log))
1834                 pr_warning("Early log buffer exceeded (%d), please increase "
1835                            "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1836
1837         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1838         local_irq_save(flags);
1839         kmemleak_early_log = 0;
1840         if (kmemleak_error) {
1841                 local_irq_restore(flags);
1842                 return;
1843         } else
1844                 kmemleak_enabled = 1;
1845         local_irq_restore(flags);
1846
1847         /*
1848          * This is the point where tracking allocations is safe. Automatic
1849          * scanning is started during the late initcall. Add the early logged
1850          * callbacks to the kmemleak infrastructure.
1851          */
1852         for (i = 0; i < crt_early_log; i++) {
1853                 struct early_log *log = &early_log[i];
1854
1855                 switch (log->op_type) {
1856                 case KMEMLEAK_ALLOC:
1857                         early_alloc(log);
1858                         break;
1859                 case KMEMLEAK_ALLOC_PERCPU:
1860                         early_alloc_percpu(log);
1861                         break;
1862                 case KMEMLEAK_FREE:
1863                         kmemleak_free(log->ptr);
1864                         break;
1865                 case KMEMLEAK_FREE_PART:
1866                         kmemleak_free_part(log->ptr, log->size);
1867                         break;
1868                 case KMEMLEAK_FREE_PERCPU:
1869                         kmemleak_free_percpu(log->ptr);
1870                         break;
1871                 case KMEMLEAK_NOT_LEAK:
1872                         kmemleak_not_leak(log->ptr);
1873                         break;
1874                 case KMEMLEAK_IGNORE:
1875                         kmemleak_ignore(log->ptr);
1876                         break;
1877                 case KMEMLEAK_SCAN_AREA:
1878                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1879                         break;
1880                 case KMEMLEAK_NO_SCAN:
1881                         kmemleak_no_scan(log->ptr);
1882                         break;
1883                 default:
1884                         kmemleak_warn("Unknown early log operation: %d\n",
1885                                       log->op_type);
1886                 }
1887
1888                 if (kmemleak_warning) {
1889                         print_log_trace(log);
1890                         kmemleak_warning = 0;
1891                 }
1892         }
1893 }
1894
1895 /*
1896  * Late initialization function.
1897  */
1898 static int __init kmemleak_late_init(void)
1899 {
1900         struct dentry *dentry;
1901
1902         kmemleak_initialized = 1;
1903
1904         if (kmemleak_error) {
1905                 /*
1906                  * Some error occurred and kmemleak was disabled. There is a
1907                  * small chance that kmemleak_disable() was called immediately
1908                  * after setting kmemleak_initialized and we may end up with
1909                  * two clean-up threads but serialized by scan_mutex.
1910                  */
1911                 schedule_work(&cleanup_work);
1912                 return -ENOMEM;
1913         }
1914
1915         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1916                                      &kmemleak_fops);
1917         if (!dentry)
1918                 pr_warning("Failed to create the debugfs kmemleak file\n");
1919         mutex_lock(&scan_mutex);
1920         start_scan_thread();
1921         mutex_unlock(&scan_mutex);
1922
1923         pr_info("Kernel memory leak detector initialized\n");
1924
1925         return 0;
1926 }
1927 late_initcall(kmemleak_late_init);