Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[linux-drm-fsl-dcu.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_perform_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    ->memcg->move_lock        (page_remove_rmap->mem_cgroup_begin_page_stat)
104  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
106  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111
112 static void page_cache_tree_delete(struct address_space *mapping,
113                                    struct page *page, void *shadow)
114 {
115         struct radix_tree_node *node;
116         unsigned long index;
117         unsigned int offset;
118         unsigned int tag;
119         void **slot;
120
121         VM_BUG_ON(!PageLocked(page));
122
123         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125         if (shadow) {
126                 mapping->nrshadows++;
127                 /*
128                  * Make sure the nrshadows update is committed before
129                  * the nrpages update so that final truncate racing
130                  * with reclaim does not see both counters 0 at the
131                  * same time and miss a shadow entry.
132                  */
133                 smp_wmb();
134         }
135         mapping->nrpages--;
136
137         if (!node) {
138                 /* Clear direct pointer tags in root node */
139                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140                 radix_tree_replace_slot(slot, shadow);
141                 return;
142         }
143
144         /* Clear tree tags for the removed page */
145         index = page->index;
146         offset = index & RADIX_TREE_MAP_MASK;
147         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148                 if (test_bit(offset, node->tags[tag]))
149                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
150         }
151
152         /* Delete page, swap shadow entry */
153         radix_tree_replace_slot(slot, shadow);
154         workingset_node_pages_dec(node);
155         if (shadow)
156                 workingset_node_shadows_inc(node);
157         else
158                 if (__radix_tree_delete_node(&mapping->page_tree, node))
159                         return;
160
161         /*
162          * Track node that only contains shadow entries.
163          *
164          * Avoid acquiring the list_lru lock if already tracked.  The
165          * list_empty() test is safe as node->private_list is
166          * protected by mapping->tree_lock.
167          */
168         if (!workingset_node_pages(node) &&
169             list_empty(&node->private_list)) {
170                 node->private_data = mapping;
171                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172         }
173 }
174
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock and
179  * mem_cgroup_begin_page_stat().
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow,
182                               struct mem_cgroup *memcg)
183 {
184         struct address_space *mapping = page->mapping;
185
186         trace_mm_filemap_delete_from_page_cache(page);
187         /*
188          * if we're uptodate, flush out into the cleancache, otherwise
189          * invalidate any existing cleancache entries.  We can't leave
190          * stale data around in the cleancache once our page is gone
191          */
192         if (PageUptodate(page) && PageMappedToDisk(page))
193                 cleancache_put_page(page);
194         else
195                 cleancache_invalidate_page(mapping, page);
196
197         page_cache_tree_delete(mapping, page, shadow);
198
199         page->mapping = NULL;
200         /* Leave page->index set: truncation lookup relies upon it */
201
202         /* hugetlb pages do not participate in page cache accounting. */
203         if (!PageHuge(page))
204                 __dec_zone_page_state(page, NR_FILE_PAGES);
205         if (PageSwapBacked(page))
206                 __dec_zone_page_state(page, NR_SHMEM);
207         VM_BUG_ON_PAGE(page_mapped(page), page);
208
209         /*
210          * At this point page must be either written or cleaned by truncate.
211          * Dirty page here signals a bug and loss of unwritten data.
212          *
213          * This fixes dirty accounting after removing the page entirely but
214          * leaves PageDirty set: it has no effect for truncated page and
215          * anyway will be cleared before returning page into buddy allocator.
216          */
217         if (WARN_ON_ONCE(PageDirty(page)))
218                 account_page_cleaned(page, mapping, memcg,
219                                      inode_to_wb(mapping->host));
220 }
221
222 /**
223  * delete_from_page_cache - delete page from page cache
224  * @page: the page which the kernel is trying to remove from page cache
225  *
226  * This must be called only on pages that have been verified to be in the page
227  * cache and locked.  It will never put the page into the free list, the caller
228  * has a reference on the page.
229  */
230 void delete_from_page_cache(struct page *page)
231 {
232         struct address_space *mapping = page->mapping;
233         struct mem_cgroup *memcg;
234         unsigned long flags;
235
236         void (*freepage)(struct page *);
237
238         BUG_ON(!PageLocked(page));
239
240         freepage = mapping->a_ops->freepage;
241
242         memcg = mem_cgroup_begin_page_stat(page);
243         spin_lock_irqsave(&mapping->tree_lock, flags);
244         __delete_from_page_cache(page, NULL, memcg);
245         spin_unlock_irqrestore(&mapping->tree_lock, flags);
246         mem_cgroup_end_page_stat(memcg);
247
248         if (freepage)
249                 freepage(page);
250         page_cache_release(page);
251 }
252 EXPORT_SYMBOL(delete_from_page_cache);
253
254 static int filemap_check_errors(struct address_space *mapping)
255 {
256         int ret = 0;
257         /* Check for outstanding write errors */
258         if (test_bit(AS_ENOSPC, &mapping->flags) &&
259             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
260                 ret = -ENOSPC;
261         if (test_bit(AS_EIO, &mapping->flags) &&
262             test_and_clear_bit(AS_EIO, &mapping->flags))
263                 ret = -EIO;
264         return ret;
265 }
266
267 /**
268  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269  * @mapping:    address space structure to write
270  * @start:      offset in bytes where the range starts
271  * @end:        offset in bytes where the range ends (inclusive)
272  * @sync_mode:  enable synchronous operation
273  *
274  * Start writeback against all of a mapping's dirty pages that lie
275  * within the byte offsets <start, end> inclusive.
276  *
277  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278  * opposed to a regular memory cleansing writeback.  The difference between
279  * these two operations is that if a dirty page/buffer is encountered, it must
280  * be waited upon, and not just skipped over.
281  */
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283                                 loff_t end, int sync_mode)
284 {
285         int ret;
286         struct writeback_control wbc = {
287                 .sync_mode = sync_mode,
288                 .nr_to_write = LONG_MAX,
289                 .range_start = start,
290                 .range_end = end,
291         };
292
293         if (!mapping_cap_writeback_dirty(mapping))
294                 return 0;
295
296         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
297         ret = do_writepages(mapping, &wbc);
298         wbc_detach_inode(&wbc);
299         return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303         int sync_mode)
304 {
305         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315                                 loff_t end)
316 {
317         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:    target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 static int __filemap_fdatawait_range(struct address_space *mapping,
335                                      loff_t start_byte, loff_t end_byte)
336 {
337         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
338         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
339         struct pagevec pvec;
340         int nr_pages;
341         int ret = 0;
342
343         if (end_byte < start_byte)
344                 goto out;
345
346         pagevec_init(&pvec, 0);
347         while ((index <= end) &&
348                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
349                         PAGECACHE_TAG_WRITEBACK,
350                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
351                 unsigned i;
352
353                 for (i = 0; i < nr_pages; i++) {
354                         struct page *page = pvec.pages[i];
355
356                         /* until radix tree lookup accepts end_index */
357                         if (page->index > end)
358                                 continue;
359
360                         wait_on_page_writeback(page);
361                         if (TestClearPageError(page))
362                                 ret = -EIO;
363                 }
364                 pagevec_release(&pvec);
365                 cond_resched();
366         }
367 out:
368         return ret;
369 }
370
371 /**
372  * filemap_fdatawait_range - wait for writeback to complete
373  * @mapping:            address space structure to wait for
374  * @start_byte:         offset in bytes where the range starts
375  * @end_byte:           offset in bytes where the range ends (inclusive)
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * in the given range and wait for all of them.  Check error status of
379  * the address space and return it.
380  *
381  * Since the error status of the address space is cleared by this function,
382  * callers are responsible for checking the return value and handling and/or
383  * reporting the error.
384  */
385 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
386                             loff_t end_byte)
387 {
388         int ret, ret2;
389
390         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
391         ret2 = filemap_check_errors(mapping);
392         if (!ret)
393                 ret = ret2;
394
395         return ret;
396 }
397 EXPORT_SYMBOL(filemap_fdatawait_range);
398
399 /**
400  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
401  * @mapping: address space structure to wait for
402  *
403  * Walk the list of under-writeback pages of the given address space
404  * and wait for all of them.  Unlike filemap_fdatawait(), this function
405  * does not clear error status of the address space.
406  *
407  * Use this function if callers don't handle errors themselves.  Expected
408  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
409  * fsfreeze(8)
410  */
411 void filemap_fdatawait_keep_errors(struct address_space *mapping)
412 {
413         loff_t i_size = i_size_read(mapping->host);
414
415         if (i_size == 0)
416                 return;
417
418         __filemap_fdatawait_range(mapping, 0, i_size - 1);
419 }
420
421 /**
422  * filemap_fdatawait - wait for all under-writeback pages to complete
423  * @mapping: address space structure to wait for
424  *
425  * Walk the list of under-writeback pages of the given address space
426  * and wait for all of them.  Check error status of the address space
427  * and return it.
428  *
429  * Since the error status of the address space is cleared by this function,
430  * callers are responsible for checking the return value and handling and/or
431  * reporting the error.
432  */
433 int filemap_fdatawait(struct address_space *mapping)
434 {
435         loff_t i_size = i_size_read(mapping->host);
436
437         if (i_size == 0)
438                 return 0;
439
440         return filemap_fdatawait_range(mapping, 0, i_size - 1);
441 }
442 EXPORT_SYMBOL(filemap_fdatawait);
443
444 int filemap_write_and_wait(struct address_space *mapping)
445 {
446         int err = 0;
447
448         if (mapping->nrpages) {
449                 err = filemap_fdatawrite(mapping);
450                 /*
451                  * Even if the above returned error, the pages may be
452                  * written partially (e.g. -ENOSPC), so we wait for it.
453                  * But the -EIO is special case, it may indicate the worst
454                  * thing (e.g. bug) happened, so we avoid waiting for it.
455                  */
456                 if (err != -EIO) {
457                         int err2 = filemap_fdatawait(mapping);
458                         if (!err)
459                                 err = err2;
460                 }
461         } else {
462                 err = filemap_check_errors(mapping);
463         }
464         return err;
465 }
466 EXPORT_SYMBOL(filemap_write_and_wait);
467
468 /**
469  * filemap_write_and_wait_range - write out & wait on a file range
470  * @mapping:    the address_space for the pages
471  * @lstart:     offset in bytes where the range starts
472  * @lend:       offset in bytes where the range ends (inclusive)
473  *
474  * Write out and wait upon file offsets lstart->lend, inclusive.
475  *
476  * Note that `lend' is inclusive (describes the last byte to be written) so
477  * that this function can be used to write to the very end-of-file (end = -1).
478  */
479 int filemap_write_and_wait_range(struct address_space *mapping,
480                                  loff_t lstart, loff_t lend)
481 {
482         int err = 0;
483
484         if (mapping->nrpages) {
485                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
486                                                  WB_SYNC_ALL);
487                 /* See comment of filemap_write_and_wait() */
488                 if (err != -EIO) {
489                         int err2 = filemap_fdatawait_range(mapping,
490                                                 lstart, lend);
491                         if (!err)
492                                 err = err2;
493                 }
494         } else {
495                 err = filemap_check_errors(mapping);
496         }
497         return err;
498 }
499 EXPORT_SYMBOL(filemap_write_and_wait_range);
500
501 /**
502  * replace_page_cache_page - replace a pagecache page with a new one
503  * @old:        page to be replaced
504  * @new:        page to replace with
505  * @gfp_mask:   allocation mode
506  *
507  * This function replaces a page in the pagecache with a new one.  On
508  * success it acquires the pagecache reference for the new page and
509  * drops it for the old page.  Both the old and new pages must be
510  * locked.  This function does not add the new page to the LRU, the
511  * caller must do that.
512  *
513  * The remove + add is atomic.  The only way this function can fail is
514  * memory allocation failure.
515  */
516 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
517 {
518         int error;
519
520         VM_BUG_ON_PAGE(!PageLocked(old), old);
521         VM_BUG_ON_PAGE(!PageLocked(new), new);
522         VM_BUG_ON_PAGE(new->mapping, new);
523
524         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
525         if (!error) {
526                 struct address_space *mapping = old->mapping;
527                 void (*freepage)(struct page *);
528                 struct mem_cgroup *memcg;
529                 unsigned long flags;
530
531                 pgoff_t offset = old->index;
532                 freepage = mapping->a_ops->freepage;
533
534                 page_cache_get(new);
535                 new->mapping = mapping;
536                 new->index = offset;
537
538                 memcg = mem_cgroup_begin_page_stat(old);
539                 spin_lock_irqsave(&mapping->tree_lock, flags);
540                 __delete_from_page_cache(old, NULL, memcg);
541                 error = radix_tree_insert(&mapping->page_tree, offset, new);
542                 BUG_ON(error);
543                 mapping->nrpages++;
544
545                 /*
546                  * hugetlb pages do not participate in page cache accounting.
547                  */
548                 if (!PageHuge(new))
549                         __inc_zone_page_state(new, NR_FILE_PAGES);
550                 if (PageSwapBacked(new))
551                         __inc_zone_page_state(new, NR_SHMEM);
552                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
553                 mem_cgroup_end_page_stat(memcg);
554                 mem_cgroup_replace_page(old, new);
555                 radix_tree_preload_end();
556                 if (freepage)
557                         freepage(old);
558                 page_cache_release(old);
559         }
560
561         return error;
562 }
563 EXPORT_SYMBOL_GPL(replace_page_cache_page);
564
565 static int page_cache_tree_insert(struct address_space *mapping,
566                                   struct page *page, void **shadowp)
567 {
568         struct radix_tree_node *node;
569         void **slot;
570         int error;
571
572         error = __radix_tree_create(&mapping->page_tree, page->index,
573                                     &node, &slot);
574         if (error)
575                 return error;
576         if (*slot) {
577                 void *p;
578
579                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
580                 if (!radix_tree_exceptional_entry(p))
581                         return -EEXIST;
582                 if (shadowp)
583                         *shadowp = p;
584                 mapping->nrshadows--;
585                 if (node)
586                         workingset_node_shadows_dec(node);
587         }
588         radix_tree_replace_slot(slot, page);
589         mapping->nrpages++;
590         if (node) {
591                 workingset_node_pages_inc(node);
592                 /*
593                  * Don't track node that contains actual pages.
594                  *
595                  * Avoid acquiring the list_lru lock if already
596                  * untracked.  The list_empty() test is safe as
597                  * node->private_list is protected by
598                  * mapping->tree_lock.
599                  */
600                 if (!list_empty(&node->private_list))
601                         list_lru_del(&workingset_shadow_nodes,
602                                      &node->private_list);
603         }
604         return 0;
605 }
606
607 static int __add_to_page_cache_locked(struct page *page,
608                                       struct address_space *mapping,
609                                       pgoff_t offset, gfp_t gfp_mask,
610                                       void **shadowp)
611 {
612         int huge = PageHuge(page);
613         struct mem_cgroup *memcg;
614         int error;
615
616         VM_BUG_ON_PAGE(!PageLocked(page), page);
617         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618
619         if (!huge) {
620                 error = mem_cgroup_try_charge(page, current->mm,
621                                               gfp_mask, &memcg, false);
622                 if (error)
623                         return error;
624         }
625
626         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627         if (error) {
628                 if (!huge)
629                         mem_cgroup_cancel_charge(page, memcg, false);
630                 return error;
631         }
632
633         page_cache_get(page);
634         page->mapping = mapping;
635         page->index = offset;
636
637         spin_lock_irq(&mapping->tree_lock);
638         error = page_cache_tree_insert(mapping, page, shadowp);
639         radix_tree_preload_end();
640         if (unlikely(error))
641                 goto err_insert;
642
643         /* hugetlb pages do not participate in page cache accounting. */
644         if (!huge)
645                 __inc_zone_page_state(page, NR_FILE_PAGES);
646         spin_unlock_irq(&mapping->tree_lock);
647         if (!huge)
648                 mem_cgroup_commit_charge(page, memcg, false, false);
649         trace_mm_filemap_add_to_page_cache(page);
650         return 0;
651 err_insert:
652         page->mapping = NULL;
653         /* Leave page->index set: truncation relies upon it */
654         spin_unlock_irq(&mapping->tree_lock);
655         if (!huge)
656                 mem_cgroup_cancel_charge(page, memcg, false);
657         page_cache_release(page);
658         return error;
659 }
660
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:       page to add
664  * @mapping:    the page's address_space
665  * @offset:     page index
666  * @gfp_mask:   page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672                 pgoff_t offset, gfp_t gfp_mask)
673 {
674         return __add_to_page_cache_locked(page, mapping, offset,
675                                           gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680                                 pgoff_t offset, gfp_t gfp_mask)
681 {
682         void *shadow = NULL;
683         int ret;
684
685         __SetPageLocked(page);
686         ret = __add_to_page_cache_locked(page, mapping, offset,
687                                          gfp_mask, &shadow);
688         if (unlikely(ret))
689                 __ClearPageLocked(page);
690         else {
691                 /*
692                  * The page might have been evicted from cache only
693                  * recently, in which case it should be activated like
694                  * any other repeatedly accessed page.
695                  */
696                 if (shadow && workingset_refault(shadow)) {
697                         SetPageActive(page);
698                         workingset_activation(page);
699                 } else
700                         ClearPageActive(page);
701                 lru_cache_add(page);
702         }
703         return ret;
704 }
705 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
706
707 #ifdef CONFIG_NUMA
708 struct page *__page_cache_alloc(gfp_t gfp)
709 {
710         int n;
711         struct page *page;
712
713         if (cpuset_do_page_mem_spread()) {
714                 unsigned int cpuset_mems_cookie;
715                 do {
716                         cpuset_mems_cookie = read_mems_allowed_begin();
717                         n = cpuset_mem_spread_node();
718                         page = __alloc_pages_node(n, gfp, 0);
719                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
720
721                 return page;
722         }
723         return alloc_pages(gfp, 0);
724 }
725 EXPORT_SYMBOL(__page_cache_alloc);
726 #endif
727
728 /*
729  * In order to wait for pages to become available there must be
730  * waitqueues associated with pages. By using a hash table of
731  * waitqueues where the bucket discipline is to maintain all
732  * waiters on the same queue and wake all when any of the pages
733  * become available, and for the woken contexts to check to be
734  * sure the appropriate page became available, this saves space
735  * at a cost of "thundering herd" phenomena during rare hash
736  * collisions.
737  */
738 wait_queue_head_t *page_waitqueue(struct page *page)
739 {
740         const struct zone *zone = page_zone(page);
741
742         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
743 }
744 EXPORT_SYMBOL(page_waitqueue);
745
746 void wait_on_page_bit(struct page *page, int bit_nr)
747 {
748         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
749
750         if (test_bit(bit_nr, &page->flags))
751                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
752                                                         TASK_UNINTERRUPTIBLE);
753 }
754 EXPORT_SYMBOL(wait_on_page_bit);
755
756 int wait_on_page_bit_killable(struct page *page, int bit_nr)
757 {
758         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
759
760         if (!test_bit(bit_nr, &page->flags))
761                 return 0;
762
763         return __wait_on_bit(page_waitqueue(page), &wait,
764                              bit_wait_io, TASK_KILLABLE);
765 }
766
767 int wait_on_page_bit_killable_timeout(struct page *page,
768                                        int bit_nr, unsigned long timeout)
769 {
770         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
771
772         wait.key.timeout = jiffies + timeout;
773         if (!test_bit(bit_nr, &page->flags))
774                 return 0;
775         return __wait_on_bit(page_waitqueue(page), &wait,
776                              bit_wait_io_timeout, TASK_KILLABLE);
777 }
778 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
779
780 /**
781  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
782  * @page: Page defining the wait queue of interest
783  * @waiter: Waiter to add to the queue
784  *
785  * Add an arbitrary @waiter to the wait queue for the nominated @page.
786  */
787 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
788 {
789         wait_queue_head_t *q = page_waitqueue(page);
790         unsigned long flags;
791
792         spin_lock_irqsave(&q->lock, flags);
793         __add_wait_queue(q, waiter);
794         spin_unlock_irqrestore(&q->lock, flags);
795 }
796 EXPORT_SYMBOL_GPL(add_page_wait_queue);
797
798 /**
799  * unlock_page - unlock a locked page
800  * @page: the page
801  *
802  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
803  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
804  * mechanism between PageLocked pages and PageWriteback pages is shared.
805  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
806  *
807  * The mb is necessary to enforce ordering between the clear_bit and the read
808  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
809  */
810 void unlock_page(struct page *page)
811 {
812         page = compound_head(page);
813         VM_BUG_ON_PAGE(!PageLocked(page), page);
814         clear_bit_unlock(PG_locked, &page->flags);
815         smp_mb__after_atomic();
816         wake_up_page(page, PG_locked);
817 }
818 EXPORT_SYMBOL(unlock_page);
819
820 /**
821  * end_page_writeback - end writeback against a page
822  * @page: the page
823  */
824 void end_page_writeback(struct page *page)
825 {
826         /*
827          * TestClearPageReclaim could be used here but it is an atomic
828          * operation and overkill in this particular case. Failing to
829          * shuffle a page marked for immediate reclaim is too mild to
830          * justify taking an atomic operation penalty at the end of
831          * ever page writeback.
832          */
833         if (PageReclaim(page)) {
834                 ClearPageReclaim(page);
835                 rotate_reclaimable_page(page);
836         }
837
838         if (!test_clear_page_writeback(page))
839                 BUG();
840
841         smp_mb__after_atomic();
842         wake_up_page(page, PG_writeback);
843 }
844 EXPORT_SYMBOL(end_page_writeback);
845
846 /*
847  * After completing I/O on a page, call this routine to update the page
848  * flags appropriately
849  */
850 void page_endio(struct page *page, int rw, int err)
851 {
852         if (rw == READ) {
853                 if (!err) {
854                         SetPageUptodate(page);
855                 } else {
856                         ClearPageUptodate(page);
857                         SetPageError(page);
858                 }
859                 unlock_page(page);
860         } else { /* rw == WRITE */
861                 if (err) {
862                         SetPageError(page);
863                         if (page->mapping)
864                                 mapping_set_error(page->mapping, err);
865                 }
866                 end_page_writeback(page);
867         }
868 }
869 EXPORT_SYMBOL_GPL(page_endio);
870
871 /**
872  * __lock_page - get a lock on the page, assuming we need to sleep to get it
873  * @page: the page to lock
874  */
875 void __lock_page(struct page *page)
876 {
877         struct page *page_head = compound_head(page);
878         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
879
880         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
881                                                         TASK_UNINTERRUPTIBLE);
882 }
883 EXPORT_SYMBOL(__lock_page);
884
885 int __lock_page_killable(struct page *page)
886 {
887         struct page *page_head = compound_head(page);
888         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
889
890         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
891                                         bit_wait_io, TASK_KILLABLE);
892 }
893 EXPORT_SYMBOL_GPL(__lock_page_killable);
894
895 /*
896  * Return values:
897  * 1 - page is locked; mmap_sem is still held.
898  * 0 - page is not locked.
899  *     mmap_sem has been released (up_read()), unless flags had both
900  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
901  *     which case mmap_sem is still held.
902  *
903  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
904  * with the page locked and the mmap_sem unperturbed.
905  */
906 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
907                          unsigned int flags)
908 {
909         if (flags & FAULT_FLAG_ALLOW_RETRY) {
910                 /*
911                  * CAUTION! In this case, mmap_sem is not released
912                  * even though return 0.
913                  */
914                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
915                         return 0;
916
917                 up_read(&mm->mmap_sem);
918                 if (flags & FAULT_FLAG_KILLABLE)
919                         wait_on_page_locked_killable(page);
920                 else
921                         wait_on_page_locked(page);
922                 return 0;
923         } else {
924                 if (flags & FAULT_FLAG_KILLABLE) {
925                         int ret;
926
927                         ret = __lock_page_killable(page);
928                         if (ret) {
929                                 up_read(&mm->mmap_sem);
930                                 return 0;
931                         }
932                 } else
933                         __lock_page(page);
934                 return 1;
935         }
936 }
937
938 /**
939  * page_cache_next_hole - find the next hole (not-present entry)
940  * @mapping: mapping
941  * @index: index
942  * @max_scan: maximum range to search
943  *
944  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
945  * lowest indexed hole.
946  *
947  * Returns: the index of the hole if found, otherwise returns an index
948  * outside of the set specified (in which case 'return - index >=
949  * max_scan' will be true). In rare cases of index wrap-around, 0 will
950  * be returned.
951  *
952  * page_cache_next_hole may be called under rcu_read_lock. However,
953  * like radix_tree_gang_lookup, this will not atomically search a
954  * snapshot of the tree at a single point in time. For example, if a
955  * hole is created at index 5, then subsequently a hole is created at
956  * index 10, page_cache_next_hole covering both indexes may return 10
957  * if called under rcu_read_lock.
958  */
959 pgoff_t page_cache_next_hole(struct address_space *mapping,
960                              pgoff_t index, unsigned long max_scan)
961 {
962         unsigned long i;
963
964         for (i = 0; i < max_scan; i++) {
965                 struct page *page;
966
967                 page = radix_tree_lookup(&mapping->page_tree, index);
968                 if (!page || radix_tree_exceptional_entry(page))
969                         break;
970                 index++;
971                 if (index == 0)
972                         break;
973         }
974
975         return index;
976 }
977 EXPORT_SYMBOL(page_cache_next_hole);
978
979 /**
980  * page_cache_prev_hole - find the prev hole (not-present entry)
981  * @mapping: mapping
982  * @index: index
983  * @max_scan: maximum range to search
984  *
985  * Search backwards in the range [max(index-max_scan+1, 0), index] for
986  * the first hole.
987  *
988  * Returns: the index of the hole if found, otherwise returns an index
989  * outside of the set specified (in which case 'index - return >=
990  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
991  * will be returned.
992  *
993  * page_cache_prev_hole may be called under rcu_read_lock. However,
994  * like radix_tree_gang_lookup, this will not atomically search a
995  * snapshot of the tree at a single point in time. For example, if a
996  * hole is created at index 10, then subsequently a hole is created at
997  * index 5, page_cache_prev_hole covering both indexes may return 5 if
998  * called under rcu_read_lock.
999  */
1000 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1001                              pgoff_t index, unsigned long max_scan)
1002 {
1003         unsigned long i;
1004
1005         for (i = 0; i < max_scan; i++) {
1006                 struct page *page;
1007
1008                 page = radix_tree_lookup(&mapping->page_tree, index);
1009                 if (!page || radix_tree_exceptional_entry(page))
1010                         break;
1011                 index--;
1012                 if (index == ULONG_MAX)
1013                         break;
1014         }
1015
1016         return index;
1017 }
1018 EXPORT_SYMBOL(page_cache_prev_hole);
1019
1020 /**
1021  * find_get_entry - find and get a page cache entry
1022  * @mapping: the address_space to search
1023  * @offset: the page cache index
1024  *
1025  * Looks up the page cache slot at @mapping & @offset.  If there is a
1026  * page cache page, it is returned with an increased refcount.
1027  *
1028  * If the slot holds a shadow entry of a previously evicted page, or a
1029  * swap entry from shmem/tmpfs, it is returned.
1030  *
1031  * Otherwise, %NULL is returned.
1032  */
1033 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1034 {
1035         void **pagep;
1036         struct page *page;
1037
1038         rcu_read_lock();
1039 repeat:
1040         page = NULL;
1041         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1042         if (pagep) {
1043                 page = radix_tree_deref_slot(pagep);
1044                 if (unlikely(!page))
1045                         goto out;
1046                 if (radix_tree_exception(page)) {
1047                         if (radix_tree_deref_retry(page))
1048                                 goto repeat;
1049                         /*
1050                          * A shadow entry of a recently evicted page,
1051                          * or a swap entry from shmem/tmpfs.  Return
1052                          * it without attempting to raise page count.
1053                          */
1054                         goto out;
1055                 }
1056                 if (!page_cache_get_speculative(page))
1057                         goto repeat;
1058
1059                 /*
1060                  * Has the page moved?
1061                  * This is part of the lockless pagecache protocol. See
1062                  * include/linux/pagemap.h for details.
1063                  */
1064                 if (unlikely(page != *pagep)) {
1065                         page_cache_release(page);
1066                         goto repeat;
1067                 }
1068         }
1069 out:
1070         rcu_read_unlock();
1071
1072         return page;
1073 }
1074 EXPORT_SYMBOL(find_get_entry);
1075
1076 /**
1077  * find_lock_entry - locate, pin and lock a page cache entry
1078  * @mapping: the address_space to search
1079  * @offset: the page cache index
1080  *
1081  * Looks up the page cache slot at @mapping & @offset.  If there is a
1082  * page cache page, it is returned locked and with an increased
1083  * refcount.
1084  *
1085  * If the slot holds a shadow entry of a previously evicted page, or a
1086  * swap entry from shmem/tmpfs, it is returned.
1087  *
1088  * Otherwise, %NULL is returned.
1089  *
1090  * find_lock_entry() may sleep.
1091  */
1092 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1093 {
1094         struct page *page;
1095
1096 repeat:
1097         page = find_get_entry(mapping, offset);
1098         if (page && !radix_tree_exception(page)) {
1099                 lock_page(page);
1100                 /* Has the page been truncated? */
1101                 if (unlikely(page->mapping != mapping)) {
1102                         unlock_page(page);
1103                         page_cache_release(page);
1104                         goto repeat;
1105                 }
1106                 VM_BUG_ON_PAGE(page->index != offset, page);
1107         }
1108         return page;
1109 }
1110 EXPORT_SYMBOL(find_lock_entry);
1111
1112 /**
1113  * pagecache_get_page - find and get a page reference
1114  * @mapping: the address_space to search
1115  * @offset: the page index
1116  * @fgp_flags: PCG flags
1117  * @gfp_mask: gfp mask to use for the page cache data page allocation
1118  *
1119  * Looks up the page cache slot at @mapping & @offset.
1120  *
1121  * PCG flags modify how the page is returned.
1122  *
1123  * FGP_ACCESSED: the page will be marked accessed
1124  * FGP_LOCK: Page is return locked
1125  * FGP_CREAT: If page is not present then a new page is allocated using
1126  *              @gfp_mask and added to the page cache and the VM's LRU
1127  *              list. The page is returned locked and with an increased
1128  *              refcount. Otherwise, %NULL is returned.
1129  *
1130  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1131  * if the GFP flags specified for FGP_CREAT are atomic.
1132  *
1133  * If there is a page cache page, it is returned with an increased refcount.
1134  */
1135 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1136         int fgp_flags, gfp_t gfp_mask)
1137 {
1138         struct page *page;
1139
1140 repeat:
1141         page = find_get_entry(mapping, offset);
1142         if (radix_tree_exceptional_entry(page))
1143                 page = NULL;
1144         if (!page)
1145                 goto no_page;
1146
1147         if (fgp_flags & FGP_LOCK) {
1148                 if (fgp_flags & FGP_NOWAIT) {
1149                         if (!trylock_page(page)) {
1150                                 page_cache_release(page);
1151                                 return NULL;
1152                         }
1153                 } else {
1154                         lock_page(page);
1155                 }
1156
1157                 /* Has the page been truncated? */
1158                 if (unlikely(page->mapping != mapping)) {
1159                         unlock_page(page);
1160                         page_cache_release(page);
1161                         goto repeat;
1162                 }
1163                 VM_BUG_ON_PAGE(page->index != offset, page);
1164         }
1165
1166         if (page && (fgp_flags & FGP_ACCESSED))
1167                 mark_page_accessed(page);
1168
1169 no_page:
1170         if (!page && (fgp_flags & FGP_CREAT)) {
1171                 int err;
1172                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1173                         gfp_mask |= __GFP_WRITE;
1174                 if (fgp_flags & FGP_NOFS)
1175                         gfp_mask &= ~__GFP_FS;
1176
1177                 page = __page_cache_alloc(gfp_mask);
1178                 if (!page)
1179                         return NULL;
1180
1181                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1182                         fgp_flags |= FGP_LOCK;
1183
1184                 /* Init accessed so avoid atomic mark_page_accessed later */
1185                 if (fgp_flags & FGP_ACCESSED)
1186                         __SetPageReferenced(page);
1187
1188                 err = add_to_page_cache_lru(page, mapping, offset,
1189                                 gfp_mask & GFP_RECLAIM_MASK);
1190                 if (unlikely(err)) {
1191                         page_cache_release(page);
1192                         page = NULL;
1193                         if (err == -EEXIST)
1194                                 goto repeat;
1195                 }
1196         }
1197
1198         return page;
1199 }
1200 EXPORT_SYMBOL(pagecache_get_page);
1201
1202 /**
1203  * find_get_entries - gang pagecache lookup
1204  * @mapping:    The address_space to search
1205  * @start:      The starting page cache index
1206  * @nr_entries: The maximum number of entries
1207  * @entries:    Where the resulting entries are placed
1208  * @indices:    The cache indices corresponding to the entries in @entries
1209  *
1210  * find_get_entries() will search for and return a group of up to
1211  * @nr_entries entries in the mapping.  The entries are placed at
1212  * @entries.  find_get_entries() takes a reference against any actual
1213  * pages it returns.
1214  *
1215  * The search returns a group of mapping-contiguous page cache entries
1216  * with ascending indexes.  There may be holes in the indices due to
1217  * not-present pages.
1218  *
1219  * Any shadow entries of evicted pages, or swap entries from
1220  * shmem/tmpfs, are included in the returned array.
1221  *
1222  * find_get_entries() returns the number of pages and shadow entries
1223  * which were found.
1224  */
1225 unsigned find_get_entries(struct address_space *mapping,
1226                           pgoff_t start, unsigned int nr_entries,
1227                           struct page **entries, pgoff_t *indices)
1228 {
1229         void **slot;
1230         unsigned int ret = 0;
1231         struct radix_tree_iter iter;
1232
1233         if (!nr_entries)
1234                 return 0;
1235
1236         rcu_read_lock();
1237 restart:
1238         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1239                 struct page *page;
1240 repeat:
1241                 page = radix_tree_deref_slot(slot);
1242                 if (unlikely(!page))
1243                         continue;
1244                 if (radix_tree_exception(page)) {
1245                         if (radix_tree_deref_retry(page))
1246                                 goto restart;
1247                         /*
1248                          * A shadow entry of a recently evicted page,
1249                          * or a swap entry from shmem/tmpfs.  Return
1250                          * it without attempting to raise page count.
1251                          */
1252                         goto export;
1253                 }
1254                 if (!page_cache_get_speculative(page))
1255                         goto repeat;
1256
1257                 /* Has the page moved? */
1258                 if (unlikely(page != *slot)) {
1259                         page_cache_release(page);
1260                         goto repeat;
1261                 }
1262 export:
1263                 indices[ret] = iter.index;
1264                 entries[ret] = page;
1265                 if (++ret == nr_entries)
1266                         break;
1267         }
1268         rcu_read_unlock();
1269         return ret;
1270 }
1271
1272 /**
1273  * find_get_pages - gang pagecache lookup
1274  * @mapping:    The address_space to search
1275  * @start:      The starting page index
1276  * @nr_pages:   The maximum number of pages
1277  * @pages:      Where the resulting pages are placed
1278  *
1279  * find_get_pages() will search for and return a group of up to
1280  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1281  * find_get_pages() takes a reference against the returned pages.
1282  *
1283  * The search returns a group of mapping-contiguous pages with ascending
1284  * indexes.  There may be holes in the indices due to not-present pages.
1285  *
1286  * find_get_pages() returns the number of pages which were found.
1287  */
1288 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1289                             unsigned int nr_pages, struct page **pages)
1290 {
1291         struct radix_tree_iter iter;
1292         void **slot;
1293         unsigned ret = 0;
1294
1295         if (unlikely(!nr_pages))
1296                 return 0;
1297
1298         rcu_read_lock();
1299 restart:
1300         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1301                 struct page *page;
1302 repeat:
1303                 page = radix_tree_deref_slot(slot);
1304                 if (unlikely(!page))
1305                         continue;
1306
1307                 if (radix_tree_exception(page)) {
1308                         if (radix_tree_deref_retry(page)) {
1309                                 /*
1310                                  * Transient condition which can only trigger
1311                                  * when entry at index 0 moves out of or back
1312                                  * to root: none yet gotten, safe to restart.
1313                                  */
1314                                 WARN_ON(iter.index);
1315                                 goto restart;
1316                         }
1317                         /*
1318                          * A shadow entry of a recently evicted page,
1319                          * or a swap entry from shmem/tmpfs.  Skip
1320                          * over it.
1321                          */
1322                         continue;
1323                 }
1324
1325                 if (!page_cache_get_speculative(page))
1326                         goto repeat;
1327
1328                 /* Has the page moved? */
1329                 if (unlikely(page != *slot)) {
1330                         page_cache_release(page);
1331                         goto repeat;
1332                 }
1333
1334                 pages[ret] = page;
1335                 if (++ret == nr_pages)
1336                         break;
1337         }
1338
1339         rcu_read_unlock();
1340         return ret;
1341 }
1342
1343 /**
1344  * find_get_pages_contig - gang contiguous pagecache lookup
1345  * @mapping:    The address_space to search
1346  * @index:      The starting page index
1347  * @nr_pages:   The maximum number of pages
1348  * @pages:      Where the resulting pages are placed
1349  *
1350  * find_get_pages_contig() works exactly like find_get_pages(), except
1351  * that the returned number of pages are guaranteed to be contiguous.
1352  *
1353  * find_get_pages_contig() returns the number of pages which were found.
1354  */
1355 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1356                                unsigned int nr_pages, struct page **pages)
1357 {
1358         struct radix_tree_iter iter;
1359         void **slot;
1360         unsigned int ret = 0;
1361
1362         if (unlikely(!nr_pages))
1363                 return 0;
1364
1365         rcu_read_lock();
1366 restart:
1367         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1368                 struct page *page;
1369 repeat:
1370                 page = radix_tree_deref_slot(slot);
1371                 /* The hole, there no reason to continue */
1372                 if (unlikely(!page))
1373                         break;
1374
1375                 if (radix_tree_exception(page)) {
1376                         if (radix_tree_deref_retry(page)) {
1377                                 /*
1378                                  * Transient condition which can only trigger
1379                                  * when entry at index 0 moves out of or back
1380                                  * to root: none yet gotten, safe to restart.
1381                                  */
1382                                 goto restart;
1383                         }
1384                         /*
1385                          * A shadow entry of a recently evicted page,
1386                          * or a swap entry from shmem/tmpfs.  Stop
1387                          * looking for contiguous pages.
1388                          */
1389                         break;
1390                 }
1391
1392                 if (!page_cache_get_speculative(page))
1393                         goto repeat;
1394
1395                 /* Has the page moved? */
1396                 if (unlikely(page != *slot)) {
1397                         page_cache_release(page);
1398                         goto repeat;
1399                 }
1400
1401                 /*
1402                  * must check mapping and index after taking the ref.
1403                  * otherwise we can get both false positives and false
1404                  * negatives, which is just confusing to the caller.
1405                  */
1406                 if (page->mapping == NULL || page->index != iter.index) {
1407                         page_cache_release(page);
1408                         break;
1409                 }
1410
1411                 pages[ret] = page;
1412                 if (++ret == nr_pages)
1413                         break;
1414         }
1415         rcu_read_unlock();
1416         return ret;
1417 }
1418 EXPORT_SYMBOL(find_get_pages_contig);
1419
1420 /**
1421  * find_get_pages_tag - find and return pages that match @tag
1422  * @mapping:    the address_space to search
1423  * @index:      the starting page index
1424  * @tag:        the tag index
1425  * @nr_pages:   the maximum number of pages
1426  * @pages:      where the resulting pages are placed
1427  *
1428  * Like find_get_pages, except we only return pages which are tagged with
1429  * @tag.   We update @index to index the next page for the traversal.
1430  */
1431 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1432                         int tag, unsigned int nr_pages, struct page **pages)
1433 {
1434         struct radix_tree_iter iter;
1435         void **slot;
1436         unsigned ret = 0;
1437
1438         if (unlikely(!nr_pages))
1439                 return 0;
1440
1441         rcu_read_lock();
1442 restart:
1443         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1444                                    &iter, *index, tag) {
1445                 struct page *page;
1446 repeat:
1447                 page = radix_tree_deref_slot(slot);
1448                 if (unlikely(!page))
1449                         continue;
1450
1451                 if (radix_tree_exception(page)) {
1452                         if (radix_tree_deref_retry(page)) {
1453                                 /*
1454                                  * Transient condition which can only trigger
1455                                  * when entry at index 0 moves out of or back
1456                                  * to root: none yet gotten, safe to restart.
1457                                  */
1458                                 goto restart;
1459                         }
1460                         /*
1461                          * A shadow entry of a recently evicted page.
1462                          *
1463                          * Those entries should never be tagged, but
1464                          * this tree walk is lockless and the tags are
1465                          * looked up in bulk, one radix tree node at a
1466                          * time, so there is a sizable window for page
1467                          * reclaim to evict a page we saw tagged.
1468                          *
1469                          * Skip over it.
1470                          */
1471                         continue;
1472                 }
1473
1474                 if (!page_cache_get_speculative(page))
1475                         goto repeat;
1476
1477                 /* Has the page moved? */
1478                 if (unlikely(page != *slot)) {
1479                         page_cache_release(page);
1480                         goto repeat;
1481                 }
1482
1483                 pages[ret] = page;
1484                 if (++ret == nr_pages)
1485                         break;
1486         }
1487
1488         rcu_read_unlock();
1489
1490         if (ret)
1491                 *index = pages[ret - 1]->index + 1;
1492
1493         return ret;
1494 }
1495 EXPORT_SYMBOL(find_get_pages_tag);
1496
1497 /*
1498  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1499  * a _large_ part of the i/o request. Imagine the worst scenario:
1500  *
1501  *      ---R__________________________________________B__________
1502  *         ^ reading here                             ^ bad block(assume 4k)
1503  *
1504  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1505  * => failing the whole request => read(R) => read(R+1) =>
1506  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1507  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1508  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1509  *
1510  * It is going insane. Fix it by quickly scaling down the readahead size.
1511  */
1512 static void shrink_readahead_size_eio(struct file *filp,
1513                                         struct file_ra_state *ra)
1514 {
1515         ra->ra_pages /= 4;
1516 }
1517
1518 /**
1519  * do_generic_file_read - generic file read routine
1520  * @filp:       the file to read
1521  * @ppos:       current file position
1522  * @iter:       data destination
1523  * @written:    already copied
1524  *
1525  * This is a generic file read routine, and uses the
1526  * mapping->a_ops->readpage() function for the actual low-level stuff.
1527  *
1528  * This is really ugly. But the goto's actually try to clarify some
1529  * of the logic when it comes to error handling etc.
1530  */
1531 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1532                 struct iov_iter *iter, ssize_t written)
1533 {
1534         struct address_space *mapping = filp->f_mapping;
1535         struct inode *inode = mapping->host;
1536         struct file_ra_state *ra = &filp->f_ra;
1537         pgoff_t index;
1538         pgoff_t last_index;
1539         pgoff_t prev_index;
1540         unsigned long offset;      /* offset into pagecache page */
1541         unsigned int prev_offset;
1542         int error = 0;
1543
1544         index = *ppos >> PAGE_CACHE_SHIFT;
1545         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1546         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1547         last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1548         offset = *ppos & ~PAGE_CACHE_MASK;
1549
1550         for (;;) {
1551                 struct page *page;
1552                 pgoff_t end_index;
1553                 loff_t isize;
1554                 unsigned long nr, ret;
1555
1556                 cond_resched();
1557 find_page:
1558                 page = find_get_page(mapping, index);
1559                 if (!page) {
1560                         page_cache_sync_readahead(mapping,
1561                                         ra, filp,
1562                                         index, last_index - index);
1563                         page = find_get_page(mapping, index);
1564                         if (unlikely(page == NULL))
1565                                 goto no_cached_page;
1566                 }
1567                 if (PageReadahead(page)) {
1568                         page_cache_async_readahead(mapping,
1569                                         ra, filp, page,
1570                                         index, last_index - index);
1571                 }
1572                 if (!PageUptodate(page)) {
1573                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1574                                         !mapping->a_ops->is_partially_uptodate)
1575                                 goto page_not_up_to_date;
1576                         if (!trylock_page(page))
1577                                 goto page_not_up_to_date;
1578                         /* Did it get truncated before we got the lock? */
1579                         if (!page->mapping)
1580                                 goto page_not_up_to_date_locked;
1581                         if (!mapping->a_ops->is_partially_uptodate(page,
1582                                                         offset, iter->count))
1583                                 goto page_not_up_to_date_locked;
1584                         unlock_page(page);
1585                 }
1586 page_ok:
1587                 /*
1588                  * i_size must be checked after we know the page is Uptodate.
1589                  *
1590                  * Checking i_size after the check allows us to calculate
1591                  * the correct value for "nr", which means the zero-filled
1592                  * part of the page is not copied back to userspace (unless
1593                  * another truncate extends the file - this is desired though).
1594                  */
1595
1596                 isize = i_size_read(inode);
1597                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1598                 if (unlikely(!isize || index > end_index)) {
1599                         page_cache_release(page);
1600                         goto out;
1601                 }
1602
1603                 /* nr is the maximum number of bytes to copy from this page */
1604                 nr = PAGE_CACHE_SIZE;
1605                 if (index == end_index) {
1606                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1607                         if (nr <= offset) {
1608                                 page_cache_release(page);
1609                                 goto out;
1610                         }
1611                 }
1612                 nr = nr - offset;
1613
1614                 /* If users can be writing to this page using arbitrary
1615                  * virtual addresses, take care about potential aliasing
1616                  * before reading the page on the kernel side.
1617                  */
1618                 if (mapping_writably_mapped(mapping))
1619                         flush_dcache_page(page);
1620
1621                 /*
1622                  * When a sequential read accesses a page several times,
1623                  * only mark it as accessed the first time.
1624                  */
1625                 if (prev_index != index || offset != prev_offset)
1626                         mark_page_accessed(page);
1627                 prev_index = index;
1628
1629                 /*
1630                  * Ok, we have the page, and it's up-to-date, so
1631                  * now we can copy it to user space...
1632                  */
1633
1634                 ret = copy_page_to_iter(page, offset, nr, iter);
1635                 offset += ret;
1636                 index += offset >> PAGE_CACHE_SHIFT;
1637                 offset &= ~PAGE_CACHE_MASK;
1638                 prev_offset = offset;
1639
1640                 page_cache_release(page);
1641                 written += ret;
1642                 if (!iov_iter_count(iter))
1643                         goto out;
1644                 if (ret < nr) {
1645                         error = -EFAULT;
1646                         goto out;
1647                 }
1648                 continue;
1649
1650 page_not_up_to_date:
1651                 /* Get exclusive access to the page ... */
1652                 error = lock_page_killable(page);
1653                 if (unlikely(error))
1654                         goto readpage_error;
1655
1656 page_not_up_to_date_locked:
1657                 /* Did it get truncated before we got the lock? */
1658                 if (!page->mapping) {
1659                         unlock_page(page);
1660                         page_cache_release(page);
1661                         continue;
1662                 }
1663
1664                 /* Did somebody else fill it already? */
1665                 if (PageUptodate(page)) {
1666                         unlock_page(page);
1667                         goto page_ok;
1668                 }
1669
1670 readpage:
1671                 /*
1672                  * A previous I/O error may have been due to temporary
1673                  * failures, eg. multipath errors.
1674                  * PG_error will be set again if readpage fails.
1675                  */
1676                 ClearPageError(page);
1677                 /* Start the actual read. The read will unlock the page. */
1678                 error = mapping->a_ops->readpage(filp, page);
1679
1680                 if (unlikely(error)) {
1681                         if (error == AOP_TRUNCATED_PAGE) {
1682                                 page_cache_release(page);
1683                                 error = 0;
1684                                 goto find_page;
1685                         }
1686                         goto readpage_error;
1687                 }
1688
1689                 if (!PageUptodate(page)) {
1690                         error = lock_page_killable(page);
1691                         if (unlikely(error))
1692                                 goto readpage_error;
1693                         if (!PageUptodate(page)) {
1694                                 if (page->mapping == NULL) {
1695                                         /*
1696                                          * invalidate_mapping_pages got it
1697                                          */
1698                                         unlock_page(page);
1699                                         page_cache_release(page);
1700                                         goto find_page;
1701                                 }
1702                                 unlock_page(page);
1703                                 shrink_readahead_size_eio(filp, ra);
1704                                 error = -EIO;
1705                                 goto readpage_error;
1706                         }
1707                         unlock_page(page);
1708                 }
1709
1710                 goto page_ok;
1711
1712 readpage_error:
1713                 /* UHHUH! A synchronous read error occurred. Report it */
1714                 page_cache_release(page);
1715                 goto out;
1716
1717 no_cached_page:
1718                 /*
1719                  * Ok, it wasn't cached, so we need to create a new
1720                  * page..
1721                  */
1722                 page = page_cache_alloc_cold(mapping);
1723                 if (!page) {
1724                         error = -ENOMEM;
1725                         goto out;
1726                 }
1727                 error = add_to_page_cache_lru(page, mapping, index,
1728                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1729                 if (error) {
1730                         page_cache_release(page);
1731                         if (error == -EEXIST) {
1732                                 error = 0;
1733                                 goto find_page;
1734                         }
1735                         goto out;
1736                 }
1737                 goto readpage;
1738         }
1739
1740 out:
1741         ra->prev_pos = prev_index;
1742         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1743         ra->prev_pos |= prev_offset;
1744
1745         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1746         file_accessed(filp);
1747         return written ? written : error;
1748 }
1749
1750 /**
1751  * generic_file_read_iter - generic filesystem read routine
1752  * @iocb:       kernel I/O control block
1753  * @iter:       destination for the data read
1754  *
1755  * This is the "read_iter()" routine for all filesystems
1756  * that can use the page cache directly.
1757  */
1758 ssize_t
1759 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1760 {
1761         struct file *file = iocb->ki_filp;
1762         ssize_t retval = 0;
1763         loff_t *ppos = &iocb->ki_pos;
1764         loff_t pos = *ppos;
1765
1766         if (iocb->ki_flags & IOCB_DIRECT) {
1767                 struct address_space *mapping = file->f_mapping;
1768                 struct inode *inode = mapping->host;
1769                 size_t count = iov_iter_count(iter);
1770                 loff_t size;
1771
1772                 if (!count)
1773                         goto out; /* skip atime */
1774                 size = i_size_read(inode);
1775                 retval = filemap_write_and_wait_range(mapping, pos,
1776                                         pos + count - 1);
1777                 if (!retval) {
1778                         struct iov_iter data = *iter;
1779                         retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1780                 }
1781
1782                 if (retval > 0) {
1783                         *ppos = pos + retval;
1784                         iov_iter_advance(iter, retval);
1785                 }
1786
1787                 /*
1788                  * Btrfs can have a short DIO read if we encounter
1789                  * compressed extents, so if there was an error, or if
1790                  * we've already read everything we wanted to, or if
1791                  * there was a short read because we hit EOF, go ahead
1792                  * and return.  Otherwise fallthrough to buffered io for
1793                  * the rest of the read.  Buffered reads will not work for
1794                  * DAX files, so don't bother trying.
1795                  */
1796                 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1797                     IS_DAX(inode)) {
1798                         file_accessed(file);
1799                         goto out;
1800                 }
1801         }
1802
1803         retval = do_generic_file_read(file, ppos, iter, retval);
1804 out:
1805         return retval;
1806 }
1807 EXPORT_SYMBOL(generic_file_read_iter);
1808
1809 #ifdef CONFIG_MMU
1810 /**
1811  * page_cache_read - adds requested page to the page cache if not already there
1812  * @file:       file to read
1813  * @offset:     page index
1814  *
1815  * This adds the requested page to the page cache if it isn't already there,
1816  * and schedules an I/O to read in its contents from disk.
1817  */
1818 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1819 {
1820         struct address_space *mapping = file->f_mapping;
1821         struct page *page;
1822         int ret;
1823
1824         do {
1825                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1826                 if (!page)
1827                         return -ENOMEM;
1828
1829                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1830                 if (ret == 0)
1831                         ret = mapping->a_ops->readpage(file, page);
1832                 else if (ret == -EEXIST)
1833                         ret = 0; /* losing race to add is OK */
1834
1835                 page_cache_release(page);
1836
1837         } while (ret == AOP_TRUNCATED_PAGE);
1838
1839         return ret;
1840 }
1841
1842 #define MMAP_LOTSAMISS  (100)
1843
1844 /*
1845  * Synchronous readahead happens when we don't even find
1846  * a page in the page cache at all.
1847  */
1848 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1849                                    struct file_ra_state *ra,
1850                                    struct file *file,
1851                                    pgoff_t offset)
1852 {
1853         struct address_space *mapping = file->f_mapping;
1854
1855         /* If we don't want any read-ahead, don't bother */
1856         if (vma->vm_flags & VM_RAND_READ)
1857                 return;
1858         if (!ra->ra_pages)
1859                 return;
1860
1861         if (vma->vm_flags & VM_SEQ_READ) {
1862                 page_cache_sync_readahead(mapping, ra, file, offset,
1863                                           ra->ra_pages);
1864                 return;
1865         }
1866
1867         /* Avoid banging the cache line if not needed */
1868         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1869                 ra->mmap_miss++;
1870
1871         /*
1872          * Do we miss much more than hit in this file? If so,
1873          * stop bothering with read-ahead. It will only hurt.
1874          */
1875         if (ra->mmap_miss > MMAP_LOTSAMISS)
1876                 return;
1877
1878         /*
1879          * mmap read-around
1880          */
1881         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1882         ra->size = ra->ra_pages;
1883         ra->async_size = ra->ra_pages / 4;
1884         ra_submit(ra, mapping, file);
1885 }
1886
1887 /*
1888  * Asynchronous readahead happens when we find the page and PG_readahead,
1889  * so we want to possibly extend the readahead further..
1890  */
1891 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1892                                     struct file_ra_state *ra,
1893                                     struct file *file,
1894                                     struct page *page,
1895                                     pgoff_t offset)
1896 {
1897         struct address_space *mapping = file->f_mapping;
1898
1899         /* If we don't want any read-ahead, don't bother */
1900         if (vma->vm_flags & VM_RAND_READ)
1901                 return;
1902         if (ra->mmap_miss > 0)
1903                 ra->mmap_miss--;
1904         if (PageReadahead(page))
1905                 page_cache_async_readahead(mapping, ra, file,
1906                                            page, offset, ra->ra_pages);
1907 }
1908
1909 /**
1910  * filemap_fault - read in file data for page fault handling
1911  * @vma:        vma in which the fault was taken
1912  * @vmf:        struct vm_fault containing details of the fault
1913  *
1914  * filemap_fault() is invoked via the vma operations vector for a
1915  * mapped memory region to read in file data during a page fault.
1916  *
1917  * The goto's are kind of ugly, but this streamlines the normal case of having
1918  * it in the page cache, and handles the special cases reasonably without
1919  * having a lot of duplicated code.
1920  *
1921  * vma->vm_mm->mmap_sem must be held on entry.
1922  *
1923  * If our return value has VM_FAULT_RETRY set, it's because
1924  * lock_page_or_retry() returned 0.
1925  * The mmap_sem has usually been released in this case.
1926  * See __lock_page_or_retry() for the exception.
1927  *
1928  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1929  * has not been released.
1930  *
1931  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1932  */
1933 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1934 {
1935         int error;
1936         struct file *file = vma->vm_file;
1937         struct address_space *mapping = file->f_mapping;
1938         struct file_ra_state *ra = &file->f_ra;
1939         struct inode *inode = mapping->host;
1940         pgoff_t offset = vmf->pgoff;
1941         struct page *page;
1942         loff_t size;
1943         int ret = 0;
1944
1945         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1946         if (offset >= size >> PAGE_CACHE_SHIFT)
1947                 return VM_FAULT_SIGBUS;
1948
1949         /*
1950          * Do we have something in the page cache already?
1951          */
1952         page = find_get_page(mapping, offset);
1953         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1954                 /*
1955                  * We found the page, so try async readahead before
1956                  * waiting for the lock.
1957                  */
1958                 do_async_mmap_readahead(vma, ra, file, page, offset);
1959         } else if (!page) {
1960                 /* No page in the page cache at all */
1961                 do_sync_mmap_readahead(vma, ra, file, offset);
1962                 count_vm_event(PGMAJFAULT);
1963                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1964                 ret = VM_FAULT_MAJOR;
1965 retry_find:
1966                 page = find_get_page(mapping, offset);
1967                 if (!page)
1968                         goto no_cached_page;
1969         }
1970
1971         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1972                 page_cache_release(page);
1973                 return ret | VM_FAULT_RETRY;
1974         }
1975
1976         /* Did it get truncated? */
1977         if (unlikely(page->mapping != mapping)) {
1978                 unlock_page(page);
1979                 put_page(page);
1980                 goto retry_find;
1981         }
1982         VM_BUG_ON_PAGE(page->index != offset, page);
1983
1984         /*
1985          * We have a locked page in the page cache, now we need to check
1986          * that it's up-to-date. If not, it is going to be due to an error.
1987          */
1988         if (unlikely(!PageUptodate(page)))
1989                 goto page_not_uptodate;
1990
1991         /*
1992          * Found the page and have a reference on it.
1993          * We must recheck i_size under page lock.
1994          */
1995         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1996         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1997                 unlock_page(page);
1998                 page_cache_release(page);
1999                 return VM_FAULT_SIGBUS;
2000         }
2001
2002         vmf->page = page;
2003         return ret | VM_FAULT_LOCKED;
2004
2005 no_cached_page:
2006         /*
2007          * We're only likely to ever get here if MADV_RANDOM is in
2008          * effect.
2009          */
2010         error = page_cache_read(file, offset, vmf->gfp_mask);
2011
2012         /*
2013          * The page we want has now been added to the page cache.
2014          * In the unlikely event that someone removed it in the
2015          * meantime, we'll just come back here and read it again.
2016          */
2017         if (error >= 0)
2018                 goto retry_find;
2019
2020         /*
2021          * An error return from page_cache_read can result if the
2022          * system is low on memory, or a problem occurs while trying
2023          * to schedule I/O.
2024          */
2025         if (error == -ENOMEM)
2026                 return VM_FAULT_OOM;
2027         return VM_FAULT_SIGBUS;
2028
2029 page_not_uptodate:
2030         /*
2031          * Umm, take care of errors if the page isn't up-to-date.
2032          * Try to re-read it _once_. We do this synchronously,
2033          * because there really aren't any performance issues here
2034          * and we need to check for errors.
2035          */
2036         ClearPageError(page);
2037         error = mapping->a_ops->readpage(file, page);
2038         if (!error) {
2039                 wait_on_page_locked(page);
2040                 if (!PageUptodate(page))
2041                         error = -EIO;
2042         }
2043         page_cache_release(page);
2044
2045         if (!error || error == AOP_TRUNCATED_PAGE)
2046                 goto retry_find;
2047
2048         /* Things didn't work out. Return zero to tell the mm layer so. */
2049         shrink_readahead_size_eio(file, ra);
2050         return VM_FAULT_SIGBUS;
2051 }
2052 EXPORT_SYMBOL(filemap_fault);
2053
2054 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2055 {
2056         struct radix_tree_iter iter;
2057         void **slot;
2058         struct file *file = vma->vm_file;
2059         struct address_space *mapping = file->f_mapping;
2060         loff_t size;
2061         struct page *page;
2062         unsigned long address = (unsigned long) vmf->virtual_address;
2063         unsigned long addr;
2064         pte_t *pte;
2065
2066         rcu_read_lock();
2067         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2068                 if (iter.index > vmf->max_pgoff)
2069                         break;
2070 repeat:
2071                 page = radix_tree_deref_slot(slot);
2072                 if (unlikely(!page))
2073                         goto next;
2074                 if (radix_tree_exception(page)) {
2075                         if (radix_tree_deref_retry(page))
2076                                 break;
2077                         else
2078                                 goto next;
2079                 }
2080
2081                 if (!page_cache_get_speculative(page))
2082                         goto repeat;
2083
2084                 /* Has the page moved? */
2085                 if (unlikely(page != *slot)) {
2086                         page_cache_release(page);
2087                         goto repeat;
2088                 }
2089
2090                 if (!PageUptodate(page) ||
2091                                 PageReadahead(page) ||
2092                                 PageHWPoison(page))
2093                         goto skip;
2094                 if (!trylock_page(page))
2095                         goto skip;
2096
2097                 if (page->mapping != mapping || !PageUptodate(page))
2098                         goto unlock;
2099
2100                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2101                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2102                         goto unlock;
2103
2104                 pte = vmf->pte + page->index - vmf->pgoff;
2105                 if (!pte_none(*pte))
2106                         goto unlock;
2107
2108                 if (file->f_ra.mmap_miss > 0)
2109                         file->f_ra.mmap_miss--;
2110                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2111                 do_set_pte(vma, addr, page, pte, false, false);
2112                 unlock_page(page);
2113                 goto next;
2114 unlock:
2115                 unlock_page(page);
2116 skip:
2117                 page_cache_release(page);
2118 next:
2119                 if (iter.index == vmf->max_pgoff)
2120                         break;
2121         }
2122         rcu_read_unlock();
2123 }
2124 EXPORT_SYMBOL(filemap_map_pages);
2125
2126 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2127 {
2128         struct page *page = vmf->page;
2129         struct inode *inode = file_inode(vma->vm_file);
2130         int ret = VM_FAULT_LOCKED;
2131
2132         sb_start_pagefault(inode->i_sb);
2133         file_update_time(vma->vm_file);
2134         lock_page(page);
2135         if (page->mapping != inode->i_mapping) {
2136                 unlock_page(page);
2137                 ret = VM_FAULT_NOPAGE;
2138                 goto out;
2139         }
2140         /*
2141          * We mark the page dirty already here so that when freeze is in
2142          * progress, we are guaranteed that writeback during freezing will
2143          * see the dirty page and writeprotect it again.
2144          */
2145         set_page_dirty(page);
2146         wait_for_stable_page(page);
2147 out:
2148         sb_end_pagefault(inode->i_sb);
2149         return ret;
2150 }
2151 EXPORT_SYMBOL(filemap_page_mkwrite);
2152
2153 const struct vm_operations_struct generic_file_vm_ops = {
2154         .fault          = filemap_fault,
2155         .map_pages      = filemap_map_pages,
2156         .page_mkwrite   = filemap_page_mkwrite,
2157 };
2158
2159 /* This is used for a general mmap of a disk file */
2160
2161 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2162 {
2163         struct address_space *mapping = file->f_mapping;
2164
2165         if (!mapping->a_ops->readpage)
2166                 return -ENOEXEC;
2167         file_accessed(file);
2168         vma->vm_ops = &generic_file_vm_ops;
2169         return 0;
2170 }
2171
2172 /*
2173  * This is for filesystems which do not implement ->writepage.
2174  */
2175 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2176 {
2177         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2178                 return -EINVAL;
2179         return generic_file_mmap(file, vma);
2180 }
2181 #else
2182 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2183 {
2184         return -ENOSYS;
2185 }
2186 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2187 {
2188         return -ENOSYS;
2189 }
2190 #endif /* CONFIG_MMU */
2191
2192 EXPORT_SYMBOL(generic_file_mmap);
2193 EXPORT_SYMBOL(generic_file_readonly_mmap);
2194
2195 static struct page *wait_on_page_read(struct page *page)
2196 {
2197         if (!IS_ERR(page)) {
2198                 wait_on_page_locked(page);
2199                 if (!PageUptodate(page)) {
2200                         page_cache_release(page);
2201                         page = ERR_PTR(-EIO);
2202                 }
2203         }
2204         return page;
2205 }
2206
2207 static struct page *__read_cache_page(struct address_space *mapping,
2208                                 pgoff_t index,
2209                                 int (*filler)(void *, struct page *),
2210                                 void *data,
2211                                 gfp_t gfp)
2212 {
2213         struct page *page;
2214         int err;
2215 repeat:
2216         page = find_get_page(mapping, index);
2217         if (!page) {
2218                 page = __page_cache_alloc(gfp | __GFP_COLD);
2219                 if (!page)
2220                         return ERR_PTR(-ENOMEM);
2221                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2222                 if (unlikely(err)) {
2223                         page_cache_release(page);
2224                         if (err == -EEXIST)
2225                                 goto repeat;
2226                         /* Presumably ENOMEM for radix tree node */
2227                         return ERR_PTR(err);
2228                 }
2229                 err = filler(data, page);
2230                 if (err < 0) {
2231                         page_cache_release(page);
2232                         page = ERR_PTR(err);
2233                 } else {
2234                         page = wait_on_page_read(page);
2235                 }
2236         }
2237         return page;
2238 }
2239
2240 static struct page *do_read_cache_page(struct address_space *mapping,
2241                                 pgoff_t index,
2242                                 int (*filler)(void *, struct page *),
2243                                 void *data,
2244                                 gfp_t gfp)
2245
2246 {
2247         struct page *page;
2248         int err;
2249
2250 retry:
2251         page = __read_cache_page(mapping, index, filler, data, gfp);
2252         if (IS_ERR(page))
2253                 return page;
2254         if (PageUptodate(page))
2255                 goto out;
2256
2257         lock_page(page);
2258         if (!page->mapping) {
2259                 unlock_page(page);
2260                 page_cache_release(page);
2261                 goto retry;
2262         }
2263         if (PageUptodate(page)) {
2264                 unlock_page(page);
2265                 goto out;
2266         }
2267         err = filler(data, page);
2268         if (err < 0) {
2269                 page_cache_release(page);
2270                 return ERR_PTR(err);
2271         } else {
2272                 page = wait_on_page_read(page);
2273                 if (IS_ERR(page))
2274                         return page;
2275         }
2276 out:
2277         mark_page_accessed(page);
2278         return page;
2279 }
2280
2281 /**
2282  * read_cache_page - read into page cache, fill it if needed
2283  * @mapping:    the page's address_space
2284  * @index:      the page index
2285  * @filler:     function to perform the read
2286  * @data:       first arg to filler(data, page) function, often left as NULL
2287  *
2288  * Read into the page cache. If a page already exists, and PageUptodate() is
2289  * not set, try to fill the page and wait for it to become unlocked.
2290  *
2291  * If the page does not get brought uptodate, return -EIO.
2292  */
2293 struct page *read_cache_page(struct address_space *mapping,
2294                                 pgoff_t index,
2295                                 int (*filler)(void *, struct page *),
2296                                 void *data)
2297 {
2298         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2299 }
2300 EXPORT_SYMBOL(read_cache_page);
2301
2302 /**
2303  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2304  * @mapping:    the page's address_space
2305  * @index:      the page index
2306  * @gfp:        the page allocator flags to use if allocating
2307  *
2308  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2309  * any new page allocations done using the specified allocation flags.
2310  *
2311  * If the page does not get brought uptodate, return -EIO.
2312  */
2313 struct page *read_cache_page_gfp(struct address_space *mapping,
2314                                 pgoff_t index,
2315                                 gfp_t gfp)
2316 {
2317         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2318
2319         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2320 }
2321 EXPORT_SYMBOL(read_cache_page_gfp);
2322
2323 /*
2324  * Performs necessary checks before doing a write
2325  *
2326  * Can adjust writing position or amount of bytes to write.
2327  * Returns appropriate error code that caller should return or
2328  * zero in case that write should be allowed.
2329  */
2330 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2331 {
2332         struct file *file = iocb->ki_filp;
2333         struct inode *inode = file->f_mapping->host;
2334         unsigned long limit = rlimit(RLIMIT_FSIZE);
2335         loff_t pos;
2336
2337         if (!iov_iter_count(from))
2338                 return 0;
2339
2340         /* FIXME: this is for backwards compatibility with 2.4 */
2341         if (iocb->ki_flags & IOCB_APPEND)
2342                 iocb->ki_pos = i_size_read(inode);
2343
2344         pos = iocb->ki_pos;
2345
2346         if (limit != RLIM_INFINITY) {
2347                 if (iocb->ki_pos >= limit) {
2348                         send_sig(SIGXFSZ, current, 0);
2349                         return -EFBIG;
2350                 }
2351                 iov_iter_truncate(from, limit - (unsigned long)pos);
2352         }
2353
2354         /*
2355          * LFS rule
2356          */
2357         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2358                                 !(file->f_flags & O_LARGEFILE))) {
2359                 if (pos >= MAX_NON_LFS)
2360                         return -EFBIG;
2361                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2362         }
2363
2364         /*
2365          * Are we about to exceed the fs block limit ?
2366          *
2367          * If we have written data it becomes a short write.  If we have
2368          * exceeded without writing data we send a signal and return EFBIG.
2369          * Linus frestrict idea will clean these up nicely..
2370          */
2371         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2372                 return -EFBIG;
2373
2374         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2375         return iov_iter_count(from);
2376 }
2377 EXPORT_SYMBOL(generic_write_checks);
2378
2379 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2380                                 loff_t pos, unsigned len, unsigned flags,
2381                                 struct page **pagep, void **fsdata)
2382 {
2383         const struct address_space_operations *aops = mapping->a_ops;
2384
2385         return aops->write_begin(file, mapping, pos, len, flags,
2386                                                         pagep, fsdata);
2387 }
2388 EXPORT_SYMBOL(pagecache_write_begin);
2389
2390 int pagecache_write_end(struct file *file, struct address_space *mapping,
2391                                 loff_t pos, unsigned len, unsigned copied,
2392                                 struct page *page, void *fsdata)
2393 {
2394         const struct address_space_operations *aops = mapping->a_ops;
2395
2396         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2397 }
2398 EXPORT_SYMBOL(pagecache_write_end);
2399
2400 ssize_t
2401 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2402 {
2403         struct file     *file = iocb->ki_filp;
2404         struct address_space *mapping = file->f_mapping;
2405         struct inode    *inode = mapping->host;
2406         ssize_t         written;
2407         size_t          write_len;
2408         pgoff_t         end;
2409         struct iov_iter data;
2410
2411         write_len = iov_iter_count(from);
2412         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2413
2414         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2415         if (written)
2416                 goto out;
2417
2418         /*
2419          * After a write we want buffered reads to be sure to go to disk to get
2420          * the new data.  We invalidate clean cached page from the region we're
2421          * about to write.  We do this *before* the write so that we can return
2422          * without clobbering -EIOCBQUEUED from ->direct_IO().
2423          */
2424         if (mapping->nrpages) {
2425                 written = invalidate_inode_pages2_range(mapping,
2426                                         pos >> PAGE_CACHE_SHIFT, end);
2427                 /*
2428                  * If a page can not be invalidated, return 0 to fall back
2429                  * to buffered write.
2430                  */
2431                 if (written) {
2432                         if (written == -EBUSY)
2433                                 return 0;
2434                         goto out;
2435                 }
2436         }
2437
2438         data = *from;
2439         written = mapping->a_ops->direct_IO(iocb, &data, pos);
2440
2441         /*
2442          * Finally, try again to invalidate clean pages which might have been
2443          * cached by non-direct readahead, or faulted in by get_user_pages()
2444          * if the source of the write was an mmap'ed region of the file
2445          * we're writing.  Either one is a pretty crazy thing to do,
2446          * so we don't support it 100%.  If this invalidation
2447          * fails, tough, the write still worked...
2448          */
2449         if (mapping->nrpages) {
2450                 invalidate_inode_pages2_range(mapping,
2451                                               pos >> PAGE_CACHE_SHIFT, end);
2452         }
2453
2454         if (written > 0) {
2455                 pos += written;
2456                 iov_iter_advance(from, written);
2457                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2458                         i_size_write(inode, pos);
2459                         mark_inode_dirty(inode);
2460                 }
2461                 iocb->ki_pos = pos;
2462         }
2463 out:
2464         return written;
2465 }
2466 EXPORT_SYMBOL(generic_file_direct_write);
2467
2468 /*
2469  * Find or create a page at the given pagecache position. Return the locked
2470  * page. This function is specifically for buffered writes.
2471  */
2472 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2473                                         pgoff_t index, unsigned flags)
2474 {
2475         struct page *page;
2476         int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2477
2478         if (flags & AOP_FLAG_NOFS)
2479                 fgp_flags |= FGP_NOFS;
2480
2481         page = pagecache_get_page(mapping, index, fgp_flags,
2482                         mapping_gfp_mask(mapping));
2483         if (page)
2484                 wait_for_stable_page(page);
2485
2486         return page;
2487 }
2488 EXPORT_SYMBOL(grab_cache_page_write_begin);
2489
2490 ssize_t generic_perform_write(struct file *file,
2491                                 struct iov_iter *i, loff_t pos)
2492 {
2493         struct address_space *mapping = file->f_mapping;
2494         const struct address_space_operations *a_ops = mapping->a_ops;
2495         long status = 0;
2496         ssize_t written = 0;
2497         unsigned int flags = 0;
2498
2499         /*
2500          * Copies from kernel address space cannot fail (NFSD is a big user).
2501          */
2502         if (!iter_is_iovec(i))
2503                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2504
2505         do {
2506                 struct page *page;
2507                 unsigned long offset;   /* Offset into pagecache page */
2508                 unsigned long bytes;    /* Bytes to write to page */
2509                 size_t copied;          /* Bytes copied from user */
2510                 void *fsdata;
2511
2512                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2513                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2514                                                 iov_iter_count(i));
2515
2516 again:
2517                 /*
2518                  * Bring in the user page that we will copy from _first_.
2519                  * Otherwise there's a nasty deadlock on copying from the
2520                  * same page as we're writing to, without it being marked
2521                  * up-to-date.
2522                  *
2523                  * Not only is this an optimisation, but it is also required
2524                  * to check that the address is actually valid, when atomic
2525                  * usercopies are used, below.
2526                  */
2527                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2528                         status = -EFAULT;
2529                         break;
2530                 }
2531
2532                 if (fatal_signal_pending(current)) {
2533                         status = -EINTR;
2534                         break;
2535                 }
2536
2537                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2538                                                 &page, &fsdata);
2539                 if (unlikely(status < 0))
2540                         break;
2541
2542                 if (mapping_writably_mapped(mapping))
2543                         flush_dcache_page(page);
2544
2545                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2546                 flush_dcache_page(page);
2547
2548                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2549                                                 page, fsdata);
2550                 if (unlikely(status < 0))
2551                         break;
2552                 copied = status;
2553
2554                 cond_resched();
2555
2556                 iov_iter_advance(i, copied);
2557                 if (unlikely(copied == 0)) {
2558                         /*
2559                          * If we were unable to copy any data at all, we must
2560                          * fall back to a single segment length write.
2561                          *
2562                          * If we didn't fallback here, we could livelock
2563                          * because not all segments in the iov can be copied at
2564                          * once without a pagefault.
2565                          */
2566                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2567                                                 iov_iter_single_seg_count(i));
2568                         goto again;
2569                 }
2570                 pos += copied;
2571                 written += copied;
2572
2573                 balance_dirty_pages_ratelimited(mapping);
2574         } while (iov_iter_count(i));
2575
2576         return written ? written : status;
2577 }
2578 EXPORT_SYMBOL(generic_perform_write);
2579
2580 /**
2581  * __generic_file_write_iter - write data to a file
2582  * @iocb:       IO state structure (file, offset, etc.)
2583  * @from:       iov_iter with data to write
2584  *
2585  * This function does all the work needed for actually writing data to a
2586  * file. It does all basic checks, removes SUID from the file, updates
2587  * modification times and calls proper subroutines depending on whether we
2588  * do direct IO or a standard buffered write.
2589  *
2590  * It expects i_mutex to be grabbed unless we work on a block device or similar
2591  * object which does not need locking at all.
2592  *
2593  * This function does *not* take care of syncing data in case of O_SYNC write.
2594  * A caller has to handle it. This is mainly due to the fact that we want to
2595  * avoid syncing under i_mutex.
2596  */
2597 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2598 {
2599         struct file *file = iocb->ki_filp;
2600         struct address_space * mapping = file->f_mapping;
2601         struct inode    *inode = mapping->host;
2602         ssize_t         written = 0;
2603         ssize_t         err;
2604         ssize_t         status;
2605
2606         /* We can write back this queue in page reclaim */
2607         current->backing_dev_info = inode_to_bdi(inode);
2608         err = file_remove_privs(file);
2609         if (err)
2610                 goto out;
2611
2612         err = file_update_time(file);
2613         if (err)
2614                 goto out;
2615
2616         if (iocb->ki_flags & IOCB_DIRECT) {
2617                 loff_t pos, endbyte;
2618
2619                 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2620                 /*
2621                  * If the write stopped short of completing, fall back to
2622                  * buffered writes.  Some filesystems do this for writes to
2623                  * holes, for example.  For DAX files, a buffered write will
2624                  * not succeed (even if it did, DAX does not handle dirty
2625                  * page-cache pages correctly).
2626                  */
2627                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2628                         goto out;
2629
2630                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2631                 /*
2632                  * If generic_perform_write() returned a synchronous error
2633                  * then we want to return the number of bytes which were
2634                  * direct-written, or the error code if that was zero.  Note
2635                  * that this differs from normal direct-io semantics, which
2636                  * will return -EFOO even if some bytes were written.
2637                  */
2638                 if (unlikely(status < 0)) {
2639                         err = status;
2640                         goto out;
2641                 }
2642                 /*
2643                  * We need to ensure that the page cache pages are written to
2644                  * disk and invalidated to preserve the expected O_DIRECT
2645                  * semantics.
2646                  */
2647                 endbyte = pos + status - 1;
2648                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2649                 if (err == 0) {
2650                         iocb->ki_pos = endbyte + 1;
2651                         written += status;
2652                         invalidate_mapping_pages(mapping,
2653                                                  pos >> PAGE_CACHE_SHIFT,
2654                                                  endbyte >> PAGE_CACHE_SHIFT);
2655                 } else {
2656                         /*
2657                          * We don't know how much we wrote, so just return
2658                          * the number of bytes which were direct-written
2659                          */
2660                 }
2661         } else {
2662                 written = generic_perform_write(file, from, iocb->ki_pos);
2663                 if (likely(written > 0))
2664                         iocb->ki_pos += written;
2665         }
2666 out:
2667         current->backing_dev_info = NULL;
2668         return written ? written : err;
2669 }
2670 EXPORT_SYMBOL(__generic_file_write_iter);
2671
2672 /**
2673  * generic_file_write_iter - write data to a file
2674  * @iocb:       IO state structure
2675  * @from:       iov_iter with data to write
2676  *
2677  * This is a wrapper around __generic_file_write_iter() to be used by most
2678  * filesystems. It takes care of syncing the file in case of O_SYNC file
2679  * and acquires i_mutex as needed.
2680  */
2681 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2682 {
2683         struct file *file = iocb->ki_filp;
2684         struct inode *inode = file->f_mapping->host;
2685         ssize_t ret;
2686
2687         mutex_lock(&inode->i_mutex);
2688         ret = generic_write_checks(iocb, from);
2689         if (ret > 0)
2690                 ret = __generic_file_write_iter(iocb, from);
2691         mutex_unlock(&inode->i_mutex);
2692
2693         if (ret > 0) {
2694                 ssize_t err;
2695
2696                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2697                 if (err < 0)
2698                         ret = err;
2699         }
2700         return ret;
2701 }
2702 EXPORT_SYMBOL(generic_file_write_iter);
2703
2704 /**
2705  * try_to_release_page() - release old fs-specific metadata on a page
2706  *
2707  * @page: the page which the kernel is trying to free
2708  * @gfp_mask: memory allocation flags (and I/O mode)
2709  *
2710  * The address_space is to try to release any data against the page
2711  * (presumably at page->private).  If the release was successful, return `1'.
2712  * Otherwise return zero.
2713  *
2714  * This may also be called if PG_fscache is set on a page, indicating that the
2715  * page is known to the local caching routines.
2716  *
2717  * The @gfp_mask argument specifies whether I/O may be performed to release
2718  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2719  *
2720  */
2721 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2722 {
2723         struct address_space * const mapping = page->mapping;
2724
2725         BUG_ON(!PageLocked(page));
2726         if (PageWriteback(page))
2727                 return 0;
2728
2729         if (mapping && mapping->a_ops->releasepage)
2730                 return mapping->a_ops->releasepage(page, gfp_mask);
2731         return try_to_free_buffers(page);
2732 }
2733
2734 EXPORT_SYMBOL(try_to_release_page);