Merge branch '4.3-fixes' into mips-for-linux-next
[linux-drm-fsl-dcu.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40         "deferred",
41         "skipped",
42         "continue",
43         "partial",
44         "complete",
45         "no_suitable_page",
46         "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71         struct page *page;
72
73         list_for_each_entry(page, list, lru) {
74                 arch_alloc_page(page, 0);
75                 kernel_map_pages(page, 1, 1);
76                 kasan_alloc_pages(page, 0);
77         }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103                                 unsigned long end_pfn, struct zone *zone)
104 {
105         struct page *start_page;
106         struct page *end_page;
107
108         /* end_pfn is one past the range we are checking */
109         end_pfn--;
110
111         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112                 return NULL;
113
114         start_page = pfn_to_page(start_pfn);
115
116         if (page_zone(start_page) != zone)
117                 return NULL;
118
119         end_page = pfn_to_page(end_pfn);
120
121         /* This gives a shorter code than deriving page_zone(end_page) */
122         if (page_zone_id(start_page) != page_zone_id(end_page))
123                 return NULL;
124
125         return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140         zone->compact_considered = 0;
141         zone->compact_defer_shift++;
142
143         if (order < zone->compact_order_failed)
144                 zone->compact_order_failed = order;
145
146         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149         trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157         if (order < zone->compact_order_failed)
158                 return false;
159
160         /* Avoid possible overflow */
161         if (++zone->compact_considered > defer_limit)
162                 zone->compact_considered = defer_limit;
163
164         if (zone->compact_considered >= defer_limit)
165                 return false;
166
167         trace_mm_compaction_deferred(zone, order);
168
169         return true;
170 }
171
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178                 bool alloc_success)
179 {
180         if (alloc_success) {
181                 zone->compact_considered = 0;
182                 zone->compact_defer_shift = 0;
183         }
184         if (order >= zone->compact_order_failed)
185                 zone->compact_order_failed = order + 1;
186
187         trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193         if (order < zone->compact_order_failed)
194                 return false;
195
196         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202                                         struct page *page)
203 {
204         if (cc->ignore_skip_hint)
205                 return true;
206
207         return !get_pageblock_skip(page);
208 }
209
210 static void reset_cached_positions(struct zone *zone)
211 {
212         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
213         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
214         zone->compact_cached_free_pfn = zone_end_pfn(zone);
215 }
216
217 /*
218  * This function is called to clear all cached information on pageblocks that
219  * should be skipped for page isolation when the migrate and free page scanner
220  * meet.
221  */
222 static void __reset_isolation_suitable(struct zone *zone)
223 {
224         unsigned long start_pfn = zone->zone_start_pfn;
225         unsigned long end_pfn = zone_end_pfn(zone);
226         unsigned long pfn;
227
228         zone->compact_blockskip_flush = false;
229
230         /* Walk the zone and mark every pageblock as suitable for isolation */
231         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
232                 struct page *page;
233
234                 cond_resched();
235
236                 if (!pfn_valid(pfn))
237                         continue;
238
239                 page = pfn_to_page(pfn);
240                 if (zone != page_zone(page))
241                         continue;
242
243                 clear_pageblock_skip(page);
244         }
245
246         reset_cached_positions(zone);
247 }
248
249 void reset_isolation_suitable(pg_data_t *pgdat)
250 {
251         int zoneid;
252
253         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
254                 struct zone *zone = &pgdat->node_zones[zoneid];
255                 if (!populated_zone(zone))
256                         continue;
257
258                 /* Only flush if a full compaction finished recently */
259                 if (zone->compact_blockskip_flush)
260                         __reset_isolation_suitable(zone);
261         }
262 }
263
264 /*
265  * If no pages were isolated then mark this pageblock to be skipped in the
266  * future. The information is later cleared by __reset_isolation_suitable().
267  */
268 static void update_pageblock_skip(struct compact_control *cc,
269                         struct page *page, unsigned long nr_isolated,
270                         bool migrate_scanner)
271 {
272         struct zone *zone = cc->zone;
273         unsigned long pfn;
274
275         if (cc->ignore_skip_hint)
276                 return;
277
278         if (!page)
279                 return;
280
281         if (nr_isolated)
282                 return;
283
284         set_pageblock_skip(page);
285
286         pfn = page_to_pfn(page);
287
288         /* Update where async and sync compaction should restart */
289         if (migrate_scanner) {
290                 if (pfn > zone->compact_cached_migrate_pfn[0])
291                         zone->compact_cached_migrate_pfn[0] = pfn;
292                 if (cc->mode != MIGRATE_ASYNC &&
293                     pfn > zone->compact_cached_migrate_pfn[1])
294                         zone->compact_cached_migrate_pfn[1] = pfn;
295         } else {
296                 if (pfn < zone->compact_cached_free_pfn)
297                         zone->compact_cached_free_pfn = pfn;
298         }
299 }
300 #else
301 static inline bool isolation_suitable(struct compact_control *cc,
302                                         struct page *page)
303 {
304         return true;
305 }
306
307 static void update_pageblock_skip(struct compact_control *cc,
308                         struct page *page, unsigned long nr_isolated,
309                         bool migrate_scanner)
310 {
311 }
312 #endif /* CONFIG_COMPACTION */
313
314 /*
315  * Compaction requires the taking of some coarse locks that are potentially
316  * very heavily contended. For async compaction, back out if the lock cannot
317  * be taken immediately. For sync compaction, spin on the lock if needed.
318  *
319  * Returns true if the lock is held
320  * Returns false if the lock is not held and compaction should abort
321  */
322 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
323                                                 struct compact_control *cc)
324 {
325         if (cc->mode == MIGRATE_ASYNC) {
326                 if (!spin_trylock_irqsave(lock, *flags)) {
327                         cc->contended = COMPACT_CONTENDED_LOCK;
328                         return false;
329                 }
330         } else {
331                 spin_lock_irqsave(lock, *flags);
332         }
333
334         return true;
335 }
336
337 /*
338  * Compaction requires the taking of some coarse locks that are potentially
339  * very heavily contended. The lock should be periodically unlocked to avoid
340  * having disabled IRQs for a long time, even when there is nobody waiting on
341  * the lock. It might also be that allowing the IRQs will result in
342  * need_resched() becoming true. If scheduling is needed, async compaction
343  * aborts. Sync compaction schedules.
344  * Either compaction type will also abort if a fatal signal is pending.
345  * In either case if the lock was locked, it is dropped and not regained.
346  *
347  * Returns true if compaction should abort due to fatal signal pending, or
348  *              async compaction due to need_resched()
349  * Returns false when compaction can continue (sync compaction might have
350  *              scheduled)
351  */
352 static bool compact_unlock_should_abort(spinlock_t *lock,
353                 unsigned long flags, bool *locked, struct compact_control *cc)
354 {
355         if (*locked) {
356                 spin_unlock_irqrestore(lock, flags);
357                 *locked = false;
358         }
359
360         if (fatal_signal_pending(current)) {
361                 cc->contended = COMPACT_CONTENDED_SCHED;
362                 return true;
363         }
364
365         if (need_resched()) {
366                 if (cc->mode == MIGRATE_ASYNC) {
367                         cc->contended = COMPACT_CONTENDED_SCHED;
368                         return true;
369                 }
370                 cond_resched();
371         }
372
373         return false;
374 }
375
376 /*
377  * Aside from avoiding lock contention, compaction also periodically checks
378  * need_resched() and either schedules in sync compaction or aborts async
379  * compaction. This is similar to what compact_unlock_should_abort() does, but
380  * is used where no lock is concerned.
381  *
382  * Returns false when no scheduling was needed, or sync compaction scheduled.
383  * Returns true when async compaction should abort.
384  */
385 static inline bool compact_should_abort(struct compact_control *cc)
386 {
387         /* async compaction aborts if contended */
388         if (need_resched()) {
389                 if (cc->mode == MIGRATE_ASYNC) {
390                         cc->contended = COMPACT_CONTENDED_SCHED;
391                         return true;
392                 }
393
394                 cond_resched();
395         }
396
397         return false;
398 }
399
400 /*
401  * Isolate free pages onto a private freelist. If @strict is true, will abort
402  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
403  * (even though it may still end up isolating some pages).
404  */
405 static unsigned long isolate_freepages_block(struct compact_control *cc,
406                                 unsigned long *start_pfn,
407                                 unsigned long end_pfn,
408                                 struct list_head *freelist,
409                                 bool strict)
410 {
411         int nr_scanned = 0, total_isolated = 0;
412         struct page *cursor, *valid_page = NULL;
413         unsigned long flags = 0;
414         bool locked = false;
415         unsigned long blockpfn = *start_pfn;
416
417         cursor = pfn_to_page(blockpfn);
418
419         /* Isolate free pages. */
420         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
421                 int isolated, i;
422                 struct page *page = cursor;
423
424                 /*
425                  * Periodically drop the lock (if held) regardless of its
426                  * contention, to give chance to IRQs. Abort if fatal signal
427                  * pending or async compaction detects need_resched()
428                  */
429                 if (!(blockpfn % SWAP_CLUSTER_MAX)
430                     && compact_unlock_should_abort(&cc->zone->lock, flags,
431                                                                 &locked, cc))
432                         break;
433
434                 nr_scanned++;
435                 if (!pfn_valid_within(blockpfn))
436                         goto isolate_fail;
437
438                 if (!valid_page)
439                         valid_page = page;
440
441                 /*
442                  * For compound pages such as THP and hugetlbfs, we can save
443                  * potentially a lot of iterations if we skip them at once.
444                  * The check is racy, but we can consider only valid values
445                  * and the only danger is skipping too much.
446                  */
447                 if (PageCompound(page)) {
448                         unsigned int comp_order = compound_order(page);
449
450                         if (likely(comp_order < MAX_ORDER)) {
451                                 blockpfn += (1UL << comp_order) - 1;
452                                 cursor += (1UL << comp_order) - 1;
453                         }
454
455                         goto isolate_fail;
456                 }
457
458                 if (!PageBuddy(page))
459                         goto isolate_fail;
460
461                 /*
462                  * If we already hold the lock, we can skip some rechecking.
463                  * Note that if we hold the lock now, checked_pageblock was
464                  * already set in some previous iteration (or strict is true),
465                  * so it is correct to skip the suitable migration target
466                  * recheck as well.
467                  */
468                 if (!locked) {
469                         /*
470                          * The zone lock must be held to isolate freepages.
471                          * Unfortunately this is a very coarse lock and can be
472                          * heavily contended if there are parallel allocations
473                          * or parallel compactions. For async compaction do not
474                          * spin on the lock and we acquire the lock as late as
475                          * possible.
476                          */
477                         locked = compact_trylock_irqsave(&cc->zone->lock,
478                                                                 &flags, cc);
479                         if (!locked)
480                                 break;
481
482                         /* Recheck this is a buddy page under lock */
483                         if (!PageBuddy(page))
484                                 goto isolate_fail;
485                 }
486
487                 /* Found a free page, break it into order-0 pages */
488                 isolated = split_free_page(page);
489                 total_isolated += isolated;
490                 for (i = 0; i < isolated; i++) {
491                         list_add(&page->lru, freelist);
492                         page++;
493                 }
494
495                 /* If a page was split, advance to the end of it */
496                 if (isolated) {
497                         cc->nr_freepages += isolated;
498                         if (!strict &&
499                                 cc->nr_migratepages <= cc->nr_freepages) {
500                                 blockpfn += isolated;
501                                 break;
502                         }
503
504                         blockpfn += isolated - 1;
505                         cursor += isolated - 1;
506                         continue;
507                 }
508
509 isolate_fail:
510                 if (strict)
511                         break;
512                 else
513                         continue;
514
515         }
516
517         /*
518          * There is a tiny chance that we have read bogus compound_order(),
519          * so be careful to not go outside of the pageblock.
520          */
521         if (unlikely(blockpfn > end_pfn))
522                 blockpfn = end_pfn;
523
524         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
525                                         nr_scanned, total_isolated);
526
527         /* Record how far we have got within the block */
528         *start_pfn = blockpfn;
529
530         /*
531          * If strict isolation is requested by CMA then check that all the
532          * pages requested were isolated. If there were any failures, 0 is
533          * returned and CMA will fail.
534          */
535         if (strict && blockpfn < end_pfn)
536                 total_isolated = 0;
537
538         if (locked)
539                 spin_unlock_irqrestore(&cc->zone->lock, flags);
540
541         /* Update the pageblock-skip if the whole pageblock was scanned */
542         if (blockpfn == end_pfn)
543                 update_pageblock_skip(cc, valid_page, total_isolated, false);
544
545         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
546         if (total_isolated)
547                 count_compact_events(COMPACTISOLATED, total_isolated);
548         return total_isolated;
549 }
550
551 /**
552  * isolate_freepages_range() - isolate free pages.
553  * @start_pfn: The first PFN to start isolating.
554  * @end_pfn:   The one-past-last PFN.
555  *
556  * Non-free pages, invalid PFNs, or zone boundaries within the
557  * [start_pfn, end_pfn) range are considered errors, cause function to
558  * undo its actions and return zero.
559  *
560  * Otherwise, function returns one-past-the-last PFN of isolated page
561  * (which may be greater then end_pfn if end fell in a middle of
562  * a free page).
563  */
564 unsigned long
565 isolate_freepages_range(struct compact_control *cc,
566                         unsigned long start_pfn, unsigned long end_pfn)
567 {
568         unsigned long isolated, pfn, block_end_pfn;
569         LIST_HEAD(freelist);
570
571         pfn = start_pfn;
572         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
573
574         for (; pfn < end_pfn; pfn += isolated,
575                                 block_end_pfn += pageblock_nr_pages) {
576                 /* Protect pfn from changing by isolate_freepages_block */
577                 unsigned long isolate_start_pfn = pfn;
578
579                 block_end_pfn = min(block_end_pfn, end_pfn);
580
581                 /*
582                  * pfn could pass the block_end_pfn if isolated freepage
583                  * is more than pageblock order. In this case, we adjust
584                  * scanning range to right one.
585                  */
586                 if (pfn >= block_end_pfn) {
587                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
588                         block_end_pfn = min(block_end_pfn, end_pfn);
589                 }
590
591                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
592                         break;
593
594                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
595                                                 block_end_pfn, &freelist, true);
596
597                 /*
598                  * In strict mode, isolate_freepages_block() returns 0 if
599                  * there are any holes in the block (ie. invalid PFNs or
600                  * non-free pages).
601                  */
602                 if (!isolated)
603                         break;
604
605                 /*
606                  * If we managed to isolate pages, it is always (1 << n) *
607                  * pageblock_nr_pages for some non-negative n.  (Max order
608                  * page may span two pageblocks).
609                  */
610         }
611
612         /* split_free_page does not map the pages */
613         map_pages(&freelist);
614
615         if (pfn < end_pfn) {
616                 /* Loop terminated early, cleanup. */
617                 release_freepages(&freelist);
618                 return 0;
619         }
620
621         /* We don't use freelists for anything. */
622         return pfn;
623 }
624
625 /* Update the number of anon and file isolated pages in the zone */
626 static void acct_isolated(struct zone *zone, struct compact_control *cc)
627 {
628         struct page *page;
629         unsigned int count[2] = { 0, };
630
631         if (list_empty(&cc->migratepages))
632                 return;
633
634         list_for_each_entry(page, &cc->migratepages, lru)
635                 count[!!page_is_file_cache(page)]++;
636
637         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
638         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
639 }
640
641 /* Similar to reclaim, but different enough that they don't share logic */
642 static bool too_many_isolated(struct zone *zone)
643 {
644         unsigned long active, inactive, isolated;
645
646         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
647                                         zone_page_state(zone, NR_INACTIVE_ANON);
648         active = zone_page_state(zone, NR_ACTIVE_FILE) +
649                                         zone_page_state(zone, NR_ACTIVE_ANON);
650         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
651                                         zone_page_state(zone, NR_ISOLATED_ANON);
652
653         return isolated > (inactive + active) / 2;
654 }
655
656 /**
657  * isolate_migratepages_block() - isolate all migrate-able pages within
658  *                                a single pageblock
659  * @cc:         Compaction control structure.
660  * @low_pfn:    The first PFN to isolate
661  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
662  * @isolate_mode: Isolation mode to be used.
663  *
664  * Isolate all pages that can be migrated from the range specified by
665  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
666  * Returns zero if there is a fatal signal pending, otherwise PFN of the
667  * first page that was not scanned (which may be both less, equal to or more
668  * than end_pfn).
669  *
670  * The pages are isolated on cc->migratepages list (not required to be empty),
671  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
672  * is neither read nor updated.
673  */
674 static unsigned long
675 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
676                         unsigned long end_pfn, isolate_mode_t isolate_mode)
677 {
678         struct zone *zone = cc->zone;
679         unsigned long nr_scanned = 0, nr_isolated = 0;
680         struct list_head *migratelist = &cc->migratepages;
681         struct lruvec *lruvec;
682         unsigned long flags = 0;
683         bool locked = false;
684         struct page *page = NULL, *valid_page = NULL;
685         unsigned long start_pfn = low_pfn;
686
687         /*
688          * Ensure that there are not too many pages isolated from the LRU
689          * list by either parallel reclaimers or compaction. If there are,
690          * delay for some time until fewer pages are isolated
691          */
692         while (unlikely(too_many_isolated(zone))) {
693                 /* async migration should just abort */
694                 if (cc->mode == MIGRATE_ASYNC)
695                         return 0;
696
697                 congestion_wait(BLK_RW_ASYNC, HZ/10);
698
699                 if (fatal_signal_pending(current))
700                         return 0;
701         }
702
703         if (compact_should_abort(cc))
704                 return 0;
705
706         /* Time to isolate some pages for migration */
707         for (; low_pfn < end_pfn; low_pfn++) {
708                 bool is_lru;
709
710                 /*
711                  * Periodically drop the lock (if held) regardless of its
712                  * contention, to give chance to IRQs. Abort async compaction
713                  * if contended.
714                  */
715                 if (!(low_pfn % SWAP_CLUSTER_MAX)
716                     && compact_unlock_should_abort(&zone->lru_lock, flags,
717                                                                 &locked, cc))
718                         break;
719
720                 if (!pfn_valid_within(low_pfn))
721                         continue;
722                 nr_scanned++;
723
724                 page = pfn_to_page(low_pfn);
725
726                 if (!valid_page)
727                         valid_page = page;
728
729                 /*
730                  * Skip if free. We read page order here without zone lock
731                  * which is generally unsafe, but the race window is small and
732                  * the worst thing that can happen is that we skip some
733                  * potential isolation targets.
734                  */
735                 if (PageBuddy(page)) {
736                         unsigned long freepage_order = page_order_unsafe(page);
737
738                         /*
739                          * Without lock, we cannot be sure that what we got is
740                          * a valid page order. Consider only values in the
741                          * valid order range to prevent low_pfn overflow.
742                          */
743                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
744                                 low_pfn += (1UL << freepage_order) - 1;
745                         continue;
746                 }
747
748                 /*
749                  * Check may be lockless but that's ok as we recheck later.
750                  * It's possible to migrate LRU pages and balloon pages
751                  * Skip any other type of page
752                  */
753                 is_lru = PageLRU(page);
754                 if (!is_lru) {
755                         if (unlikely(balloon_page_movable(page))) {
756                                 if (balloon_page_isolate(page)) {
757                                         /* Successfully isolated */
758                                         goto isolate_success;
759                                 }
760                         }
761                 }
762
763                 /*
764                  * Regardless of being on LRU, compound pages such as THP and
765                  * hugetlbfs are not to be compacted. We can potentially save
766                  * a lot of iterations if we skip them at once. The check is
767                  * racy, but we can consider only valid values and the only
768                  * danger is skipping too much.
769                  */
770                 if (PageCompound(page)) {
771                         unsigned int comp_order = compound_order(page);
772
773                         if (likely(comp_order < MAX_ORDER))
774                                 low_pfn += (1UL << comp_order) - 1;
775
776                         continue;
777                 }
778
779                 if (!is_lru)
780                         continue;
781
782                 /*
783                  * Migration will fail if an anonymous page is pinned in memory,
784                  * so avoid taking lru_lock and isolating it unnecessarily in an
785                  * admittedly racy check.
786                  */
787                 if (!page_mapping(page) &&
788                     page_count(page) > page_mapcount(page))
789                         continue;
790
791                 /* If we already hold the lock, we can skip some rechecking */
792                 if (!locked) {
793                         locked = compact_trylock_irqsave(&zone->lru_lock,
794                                                                 &flags, cc);
795                         if (!locked)
796                                 break;
797
798                         /* Recheck PageLRU and PageCompound under lock */
799                         if (!PageLRU(page))
800                                 continue;
801
802                         /*
803                          * Page become compound since the non-locked check,
804                          * and it's on LRU. It can only be a THP so the order
805                          * is safe to read and it's 0 for tail pages.
806                          */
807                         if (unlikely(PageCompound(page))) {
808                                 low_pfn += (1UL << compound_order(page)) - 1;
809                                 continue;
810                         }
811                 }
812
813                 lruvec = mem_cgroup_page_lruvec(page, zone);
814
815                 /* Try isolate the page */
816                 if (__isolate_lru_page(page, isolate_mode) != 0)
817                         continue;
818
819                 VM_BUG_ON_PAGE(PageCompound(page), page);
820
821                 /* Successfully isolated */
822                 del_page_from_lru_list(page, lruvec, page_lru(page));
823
824 isolate_success:
825                 list_add(&page->lru, migratelist);
826                 cc->nr_migratepages++;
827                 nr_isolated++;
828
829                 /* Avoid isolating too much */
830                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
831                         ++low_pfn;
832                         break;
833                 }
834         }
835
836         /*
837          * The PageBuddy() check could have potentially brought us outside
838          * the range to be scanned.
839          */
840         if (unlikely(low_pfn > end_pfn))
841                 low_pfn = end_pfn;
842
843         if (locked)
844                 spin_unlock_irqrestore(&zone->lru_lock, flags);
845
846         /*
847          * Update the pageblock-skip information and cached scanner pfn,
848          * if the whole pageblock was scanned without isolating any page.
849          */
850         if (low_pfn == end_pfn)
851                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
852
853         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
854                                                 nr_scanned, nr_isolated);
855
856         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
857         if (nr_isolated)
858                 count_compact_events(COMPACTISOLATED, nr_isolated);
859
860         return low_pfn;
861 }
862
863 /**
864  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
865  * @cc:        Compaction control structure.
866  * @start_pfn: The first PFN to start isolating.
867  * @end_pfn:   The one-past-last PFN.
868  *
869  * Returns zero if isolation fails fatally due to e.g. pending signal.
870  * Otherwise, function returns one-past-the-last PFN of isolated page
871  * (which may be greater than end_pfn if end fell in a middle of a THP page).
872  */
873 unsigned long
874 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
875                                                         unsigned long end_pfn)
876 {
877         unsigned long pfn, block_end_pfn;
878
879         /* Scan block by block. First and last block may be incomplete */
880         pfn = start_pfn;
881         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
882
883         for (; pfn < end_pfn; pfn = block_end_pfn,
884                                 block_end_pfn += pageblock_nr_pages) {
885
886                 block_end_pfn = min(block_end_pfn, end_pfn);
887
888                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
889                         continue;
890
891                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
892                                                         ISOLATE_UNEVICTABLE);
893
894                 /*
895                  * In case of fatal failure, release everything that might
896                  * have been isolated in the previous iteration, and signal
897                  * the failure back to caller.
898                  */
899                 if (!pfn) {
900                         putback_movable_pages(&cc->migratepages);
901                         cc->nr_migratepages = 0;
902                         break;
903                 }
904
905                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
906                         break;
907         }
908         acct_isolated(cc->zone, cc);
909
910         return pfn;
911 }
912
913 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
914 #ifdef CONFIG_COMPACTION
915
916 /* Returns true if the page is within a block suitable for migration to */
917 static bool suitable_migration_target(struct page *page)
918 {
919         /* If the page is a large free page, then disallow migration */
920         if (PageBuddy(page)) {
921                 /*
922                  * We are checking page_order without zone->lock taken. But
923                  * the only small danger is that we skip a potentially suitable
924                  * pageblock, so it's not worth to check order for valid range.
925                  */
926                 if (page_order_unsafe(page) >= pageblock_order)
927                         return false;
928         }
929
930         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
931         if (migrate_async_suitable(get_pageblock_migratetype(page)))
932                 return true;
933
934         /* Otherwise skip the block */
935         return false;
936 }
937
938 /*
939  * Test whether the free scanner has reached the same or lower pageblock than
940  * the migration scanner, and compaction should thus terminate.
941  */
942 static inline bool compact_scanners_met(struct compact_control *cc)
943 {
944         return (cc->free_pfn >> pageblock_order)
945                 <= (cc->migrate_pfn >> pageblock_order);
946 }
947
948 /*
949  * Based on information in the current compact_control, find blocks
950  * suitable for isolating free pages from and then isolate them.
951  */
952 static void isolate_freepages(struct compact_control *cc)
953 {
954         struct zone *zone = cc->zone;
955         struct page *page;
956         unsigned long block_start_pfn;  /* start of current pageblock */
957         unsigned long isolate_start_pfn; /* exact pfn we start at */
958         unsigned long block_end_pfn;    /* end of current pageblock */
959         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
960         struct list_head *freelist = &cc->freepages;
961
962         /*
963          * Initialise the free scanner. The starting point is where we last
964          * successfully isolated from, zone-cached value, or the end of the
965          * zone when isolating for the first time. For looping we also need
966          * this pfn aligned down to the pageblock boundary, because we do
967          * block_start_pfn -= pageblock_nr_pages in the for loop.
968          * For ending point, take care when isolating in last pageblock of a
969          * a zone which ends in the middle of a pageblock.
970          * The low boundary is the end of the pageblock the migration scanner
971          * is using.
972          */
973         isolate_start_pfn = cc->free_pfn;
974         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
975         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
976                                                 zone_end_pfn(zone));
977         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
978
979         /*
980          * Isolate free pages until enough are available to migrate the
981          * pages on cc->migratepages. We stop searching if the migrate
982          * and free page scanners meet or enough free pages are isolated.
983          */
984         for (; block_start_pfn >= low_pfn;
985                                 block_end_pfn = block_start_pfn,
986                                 block_start_pfn -= pageblock_nr_pages,
987                                 isolate_start_pfn = block_start_pfn) {
988
989                 /*
990                  * This can iterate a massively long zone without finding any
991                  * suitable migration targets, so periodically check if we need
992                  * to schedule, or even abort async compaction.
993                  */
994                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
995                                                 && compact_should_abort(cc))
996                         break;
997
998                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
999                                                                         zone);
1000                 if (!page)
1001                         continue;
1002
1003                 /* Check the block is suitable for migration */
1004                 if (!suitable_migration_target(page))
1005                         continue;
1006
1007                 /* If isolation recently failed, do not retry */
1008                 if (!isolation_suitable(cc, page))
1009                         continue;
1010
1011                 /* Found a block suitable for isolating free pages from. */
1012                 isolate_freepages_block(cc, &isolate_start_pfn,
1013                                         block_end_pfn, freelist, false);
1014
1015                 /*
1016                  * If we isolated enough freepages, or aborted due to async
1017                  * compaction being contended, terminate the loop.
1018                  * Remember where the free scanner should restart next time,
1019                  * which is where isolate_freepages_block() left off.
1020                  * But if it scanned the whole pageblock, isolate_start_pfn
1021                  * now points at block_end_pfn, which is the start of the next
1022                  * pageblock.
1023                  * In that case we will however want to restart at the start
1024                  * of the previous pageblock.
1025                  */
1026                 if ((cc->nr_freepages >= cc->nr_migratepages)
1027                                                         || cc->contended) {
1028                         if (isolate_start_pfn >= block_end_pfn)
1029                                 isolate_start_pfn =
1030                                         block_start_pfn - pageblock_nr_pages;
1031                         break;
1032                 } else {
1033                         /*
1034                          * isolate_freepages_block() should not terminate
1035                          * prematurely unless contended, or isolated enough
1036                          */
1037                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1038                 }
1039         }
1040
1041         /* split_free_page does not map the pages */
1042         map_pages(freelist);
1043
1044         /*
1045          * Record where the free scanner will restart next time. Either we
1046          * broke from the loop and set isolate_start_pfn based on the last
1047          * call to isolate_freepages_block(), or we met the migration scanner
1048          * and the loop terminated due to isolate_start_pfn < low_pfn
1049          */
1050         cc->free_pfn = isolate_start_pfn;
1051 }
1052
1053 /*
1054  * This is a migrate-callback that "allocates" freepages by taking pages
1055  * from the isolated freelists in the block we are migrating to.
1056  */
1057 static struct page *compaction_alloc(struct page *migratepage,
1058                                         unsigned long data,
1059                                         int **result)
1060 {
1061         struct compact_control *cc = (struct compact_control *)data;
1062         struct page *freepage;
1063
1064         /*
1065          * Isolate free pages if necessary, and if we are not aborting due to
1066          * contention.
1067          */
1068         if (list_empty(&cc->freepages)) {
1069                 if (!cc->contended)
1070                         isolate_freepages(cc);
1071
1072                 if (list_empty(&cc->freepages))
1073                         return NULL;
1074         }
1075
1076         freepage = list_entry(cc->freepages.next, struct page, lru);
1077         list_del(&freepage->lru);
1078         cc->nr_freepages--;
1079
1080         return freepage;
1081 }
1082
1083 /*
1084  * This is a migrate-callback that "frees" freepages back to the isolated
1085  * freelist.  All pages on the freelist are from the same zone, so there is no
1086  * special handling needed for NUMA.
1087  */
1088 static void compaction_free(struct page *page, unsigned long data)
1089 {
1090         struct compact_control *cc = (struct compact_control *)data;
1091
1092         list_add(&page->lru, &cc->freepages);
1093         cc->nr_freepages++;
1094 }
1095
1096 /* possible outcome of isolate_migratepages */
1097 typedef enum {
1098         ISOLATE_ABORT,          /* Abort compaction now */
1099         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1100         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1101 } isolate_migrate_t;
1102
1103 /*
1104  * Allow userspace to control policy on scanning the unevictable LRU for
1105  * compactable pages.
1106  */
1107 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1108
1109 /*
1110  * Isolate all pages that can be migrated from the first suitable block,
1111  * starting at the block pointed to by the migrate scanner pfn within
1112  * compact_control.
1113  */
1114 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1115                                         struct compact_control *cc)
1116 {
1117         unsigned long low_pfn, end_pfn;
1118         unsigned long isolate_start_pfn;
1119         struct page *page;
1120         const isolate_mode_t isolate_mode =
1121                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1122                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1123
1124         /*
1125          * Start at where we last stopped, or beginning of the zone as
1126          * initialized by compact_zone()
1127          */
1128         low_pfn = cc->migrate_pfn;
1129
1130         /* Only scan within a pageblock boundary */
1131         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1132
1133         /*
1134          * Iterate over whole pageblocks until we find the first suitable.
1135          * Do not cross the free scanner.
1136          */
1137         for (; end_pfn <= cc->free_pfn;
1138                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1139
1140                 /*
1141                  * This can potentially iterate a massively long zone with
1142                  * many pageblocks unsuitable, so periodically check if we
1143                  * need to schedule, or even abort async compaction.
1144                  */
1145                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1146                                                 && compact_should_abort(cc))
1147                         break;
1148
1149                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1150                 if (!page)
1151                         continue;
1152
1153                 /* If isolation recently failed, do not retry */
1154                 if (!isolation_suitable(cc, page))
1155                         continue;
1156
1157                 /*
1158                  * For async compaction, also only scan in MOVABLE blocks.
1159                  * Async compaction is optimistic to see if the minimum amount
1160                  * of work satisfies the allocation.
1161                  */
1162                 if (cc->mode == MIGRATE_ASYNC &&
1163                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1164                         continue;
1165
1166                 /* Perform the isolation */
1167                 isolate_start_pfn = low_pfn;
1168                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1169                                                                 isolate_mode);
1170
1171                 if (!low_pfn || cc->contended) {
1172                         acct_isolated(zone, cc);
1173                         return ISOLATE_ABORT;
1174                 }
1175
1176                 /*
1177                  * Record where we could have freed pages by migration and not
1178                  * yet flushed them to buddy allocator.
1179                  * - this is the lowest page that could have been isolated and
1180                  * then freed by migration.
1181                  */
1182                 if (cc->nr_migratepages && !cc->last_migrated_pfn)
1183                         cc->last_migrated_pfn = isolate_start_pfn;
1184
1185                 /*
1186                  * Either we isolated something and proceed with migration. Or
1187                  * we failed and compact_zone should decide if we should
1188                  * continue or not.
1189                  */
1190                 break;
1191         }
1192
1193         acct_isolated(zone, cc);
1194         /* Record where migration scanner will be restarted. */
1195         cc->migrate_pfn = low_pfn;
1196
1197         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1198 }
1199
1200 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1201                             const int migratetype)
1202 {
1203         unsigned int order;
1204         unsigned long watermark;
1205
1206         if (cc->contended || fatal_signal_pending(current))
1207                 return COMPACT_PARTIAL;
1208
1209         /* Compaction run completes if the migrate and free scanner meet */
1210         if (compact_scanners_met(cc)) {
1211                 /* Let the next compaction start anew. */
1212                 reset_cached_positions(zone);
1213
1214                 /*
1215                  * Mark that the PG_migrate_skip information should be cleared
1216                  * by kswapd when it goes to sleep. kswapd does not set the
1217                  * flag itself as the decision to be clear should be directly
1218                  * based on an allocation request.
1219                  */
1220                 if (!current_is_kswapd())
1221                         zone->compact_blockskip_flush = true;
1222
1223                 return COMPACT_COMPLETE;
1224         }
1225
1226         /*
1227          * order == -1 is expected when compacting via
1228          * /proc/sys/vm/compact_memory
1229          */
1230         if (cc->order == -1)
1231                 return COMPACT_CONTINUE;
1232
1233         /* Compaction run is not finished if the watermark is not met */
1234         watermark = low_wmark_pages(zone);
1235
1236         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1237                                                         cc->alloc_flags))
1238                 return COMPACT_CONTINUE;
1239
1240         /* Direct compactor: Is a suitable page free? */
1241         for (order = cc->order; order < MAX_ORDER; order++) {
1242                 struct free_area *area = &zone->free_area[order];
1243                 bool can_steal;
1244
1245                 /* Job done if page is free of the right migratetype */
1246                 if (!list_empty(&area->free_list[migratetype]))
1247                         return COMPACT_PARTIAL;
1248
1249 #ifdef CONFIG_CMA
1250                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1251                 if (migratetype == MIGRATE_MOVABLE &&
1252                         !list_empty(&area->free_list[MIGRATE_CMA]))
1253                         return COMPACT_PARTIAL;
1254 #endif
1255                 /*
1256                  * Job done if allocation would steal freepages from
1257                  * other migratetype buddy lists.
1258                  */
1259                 if (find_suitable_fallback(area, order, migratetype,
1260                                                 true, &can_steal) != -1)
1261                         return COMPACT_PARTIAL;
1262         }
1263
1264         return COMPACT_NO_SUITABLE_PAGE;
1265 }
1266
1267 static int compact_finished(struct zone *zone, struct compact_control *cc,
1268                             const int migratetype)
1269 {
1270         int ret;
1271
1272         ret = __compact_finished(zone, cc, migratetype);
1273         trace_mm_compaction_finished(zone, cc->order, ret);
1274         if (ret == COMPACT_NO_SUITABLE_PAGE)
1275                 ret = COMPACT_CONTINUE;
1276
1277         return ret;
1278 }
1279
1280 /*
1281  * compaction_suitable: Is this suitable to run compaction on this zone now?
1282  * Returns
1283  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1284  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1285  *   COMPACT_CONTINUE - If compaction should run now
1286  */
1287 static unsigned long __compaction_suitable(struct zone *zone, int order,
1288                                         int alloc_flags, int classzone_idx)
1289 {
1290         int fragindex;
1291         unsigned long watermark;
1292
1293         /*
1294          * order == -1 is expected when compacting via
1295          * /proc/sys/vm/compact_memory
1296          */
1297         if (order == -1)
1298                 return COMPACT_CONTINUE;
1299
1300         watermark = low_wmark_pages(zone);
1301         /*
1302          * If watermarks for high-order allocation are already met, there
1303          * should be no need for compaction at all.
1304          */
1305         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1306                                                                 alloc_flags))
1307                 return COMPACT_PARTIAL;
1308
1309         /*
1310          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1311          * This is because during migration, copies of pages need to be
1312          * allocated and for a short time, the footprint is higher
1313          */
1314         watermark += (2UL << order);
1315         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1316                 return COMPACT_SKIPPED;
1317
1318         /*
1319          * fragmentation index determines if allocation failures are due to
1320          * low memory or external fragmentation
1321          *
1322          * index of -1000 would imply allocations might succeed depending on
1323          * watermarks, but we already failed the high-order watermark check
1324          * index towards 0 implies failure is due to lack of memory
1325          * index towards 1000 implies failure is due to fragmentation
1326          *
1327          * Only compact if a failure would be due to fragmentation.
1328          */
1329         fragindex = fragmentation_index(zone, order);
1330         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1331                 return COMPACT_NOT_SUITABLE_ZONE;
1332
1333         return COMPACT_CONTINUE;
1334 }
1335
1336 unsigned long compaction_suitable(struct zone *zone, int order,
1337                                         int alloc_flags, int classzone_idx)
1338 {
1339         unsigned long ret;
1340
1341         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1342         trace_mm_compaction_suitable(zone, order, ret);
1343         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1344                 ret = COMPACT_SKIPPED;
1345
1346         return ret;
1347 }
1348
1349 static int compact_zone(struct zone *zone, struct compact_control *cc)
1350 {
1351         int ret;
1352         unsigned long start_pfn = zone->zone_start_pfn;
1353         unsigned long end_pfn = zone_end_pfn(zone);
1354         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1355         const bool sync = cc->mode != MIGRATE_ASYNC;
1356
1357         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1358                                                         cc->classzone_idx);
1359         switch (ret) {
1360         case COMPACT_PARTIAL:
1361         case COMPACT_SKIPPED:
1362                 /* Compaction is likely to fail */
1363                 return ret;
1364         case COMPACT_CONTINUE:
1365                 /* Fall through to compaction */
1366                 ;
1367         }
1368
1369         /*
1370          * Clear pageblock skip if there were failures recently and compaction
1371          * is about to be retried after being deferred. kswapd does not do
1372          * this reset as it'll reset the cached information when going to sleep.
1373          */
1374         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1375                 __reset_isolation_suitable(zone);
1376
1377         /*
1378          * Setup to move all movable pages to the end of the zone. Used cached
1379          * information on where the scanners should start but check that it
1380          * is initialised by ensuring the values are within zone boundaries.
1381          */
1382         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1383         cc->free_pfn = zone->compact_cached_free_pfn;
1384         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1385                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1386                 zone->compact_cached_free_pfn = cc->free_pfn;
1387         }
1388         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1389                 cc->migrate_pfn = start_pfn;
1390                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1391                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1392         }
1393         cc->last_migrated_pfn = 0;
1394
1395         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1396                                 cc->free_pfn, end_pfn, sync);
1397
1398         migrate_prep_local();
1399
1400         while ((ret = compact_finished(zone, cc, migratetype)) ==
1401                                                 COMPACT_CONTINUE) {
1402                 int err;
1403
1404                 switch (isolate_migratepages(zone, cc)) {
1405                 case ISOLATE_ABORT:
1406                         ret = COMPACT_PARTIAL;
1407                         putback_movable_pages(&cc->migratepages);
1408                         cc->nr_migratepages = 0;
1409                         goto out;
1410                 case ISOLATE_NONE:
1411                         /*
1412                          * We haven't isolated and migrated anything, but
1413                          * there might still be unflushed migrations from
1414                          * previous cc->order aligned block.
1415                          */
1416                         goto check_drain;
1417                 case ISOLATE_SUCCESS:
1418                         ;
1419                 }
1420
1421                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1422                                 compaction_free, (unsigned long)cc, cc->mode,
1423                                 MR_COMPACTION);
1424
1425                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1426                                                         &cc->migratepages);
1427
1428                 /* All pages were either migrated or will be released */
1429                 cc->nr_migratepages = 0;
1430                 if (err) {
1431                         putback_movable_pages(&cc->migratepages);
1432                         /*
1433                          * migrate_pages() may return -ENOMEM when scanners meet
1434                          * and we want compact_finished() to detect it
1435                          */
1436                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1437                                 ret = COMPACT_PARTIAL;
1438                                 goto out;
1439                         }
1440                 }
1441
1442 check_drain:
1443                 /*
1444                  * Has the migration scanner moved away from the previous
1445                  * cc->order aligned block where we migrated from? If yes,
1446                  * flush the pages that were freed, so that they can merge and
1447                  * compact_finished() can detect immediately if allocation
1448                  * would succeed.
1449                  */
1450                 if (cc->order > 0 && cc->last_migrated_pfn) {
1451                         int cpu;
1452                         unsigned long current_block_start =
1453                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1454
1455                         if (cc->last_migrated_pfn < current_block_start) {
1456                                 cpu = get_cpu();
1457                                 lru_add_drain_cpu(cpu);
1458                                 drain_local_pages(zone);
1459                                 put_cpu();
1460                                 /* No more flushing until we migrate again */
1461                                 cc->last_migrated_pfn = 0;
1462                         }
1463                 }
1464
1465         }
1466
1467 out:
1468         /*
1469          * Release free pages and update where the free scanner should restart,
1470          * so we don't leave any returned pages behind in the next attempt.
1471          */
1472         if (cc->nr_freepages > 0) {
1473                 unsigned long free_pfn = release_freepages(&cc->freepages);
1474
1475                 cc->nr_freepages = 0;
1476                 VM_BUG_ON(free_pfn == 0);
1477                 /* The cached pfn is always the first in a pageblock */
1478                 free_pfn &= ~(pageblock_nr_pages-1);
1479                 /*
1480                  * Only go back, not forward. The cached pfn might have been
1481                  * already reset to zone end in compact_finished()
1482                  */
1483                 if (free_pfn > zone->compact_cached_free_pfn)
1484                         zone->compact_cached_free_pfn = free_pfn;
1485         }
1486
1487         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1488                                 cc->free_pfn, end_pfn, sync, ret);
1489
1490         return ret;
1491 }
1492
1493 static unsigned long compact_zone_order(struct zone *zone, int order,
1494                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1495                 int alloc_flags, int classzone_idx)
1496 {
1497         unsigned long ret;
1498         struct compact_control cc = {
1499                 .nr_freepages = 0,
1500                 .nr_migratepages = 0,
1501                 .order = order,
1502                 .gfp_mask = gfp_mask,
1503                 .zone = zone,
1504                 .mode = mode,
1505                 .alloc_flags = alloc_flags,
1506                 .classzone_idx = classzone_idx,
1507         };
1508         INIT_LIST_HEAD(&cc.freepages);
1509         INIT_LIST_HEAD(&cc.migratepages);
1510
1511         ret = compact_zone(zone, &cc);
1512
1513         VM_BUG_ON(!list_empty(&cc.freepages));
1514         VM_BUG_ON(!list_empty(&cc.migratepages));
1515
1516         *contended = cc.contended;
1517         return ret;
1518 }
1519
1520 int sysctl_extfrag_threshold = 500;
1521
1522 /**
1523  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1524  * @gfp_mask: The GFP mask of the current allocation
1525  * @order: The order of the current allocation
1526  * @alloc_flags: The allocation flags of the current allocation
1527  * @ac: The context of current allocation
1528  * @mode: The migration mode for async, sync light, or sync migration
1529  * @contended: Return value that determines if compaction was aborted due to
1530  *             need_resched() or lock contention
1531  *
1532  * This is the main entry point for direct page compaction.
1533  */
1534 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1535                         int alloc_flags, const struct alloc_context *ac,
1536                         enum migrate_mode mode, int *contended)
1537 {
1538         int may_enter_fs = gfp_mask & __GFP_FS;
1539         int may_perform_io = gfp_mask & __GFP_IO;
1540         struct zoneref *z;
1541         struct zone *zone;
1542         int rc = COMPACT_DEFERRED;
1543         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1544
1545         *contended = COMPACT_CONTENDED_NONE;
1546
1547         /* Check if the GFP flags allow compaction */
1548         if (!order || !may_enter_fs || !may_perform_io)
1549                 return COMPACT_SKIPPED;
1550
1551         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1552
1553         /* Compact each zone in the list */
1554         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1555                                                                 ac->nodemask) {
1556                 int status;
1557                 int zone_contended;
1558
1559                 if (compaction_deferred(zone, order))
1560                         continue;
1561
1562                 status = compact_zone_order(zone, order, gfp_mask, mode,
1563                                 &zone_contended, alloc_flags,
1564                                 ac->classzone_idx);
1565                 rc = max(status, rc);
1566                 /*
1567                  * It takes at least one zone that wasn't lock contended
1568                  * to clear all_zones_contended.
1569                  */
1570                 all_zones_contended &= zone_contended;
1571
1572                 /* If a normal allocation would succeed, stop compacting */
1573                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1574                                         ac->classzone_idx, alloc_flags)) {
1575                         /*
1576                          * We think the allocation will succeed in this zone,
1577                          * but it is not certain, hence the false. The caller
1578                          * will repeat this with true if allocation indeed
1579                          * succeeds in this zone.
1580                          */
1581                         compaction_defer_reset(zone, order, false);
1582                         /*
1583                          * It is possible that async compaction aborted due to
1584                          * need_resched() and the watermarks were ok thanks to
1585                          * somebody else freeing memory. The allocation can
1586                          * however still fail so we better signal the
1587                          * need_resched() contention anyway (this will not
1588                          * prevent the allocation attempt).
1589                          */
1590                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1591                                 *contended = COMPACT_CONTENDED_SCHED;
1592
1593                         goto break_loop;
1594                 }
1595
1596                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1597                         /*
1598                          * We think that allocation won't succeed in this zone
1599                          * so we defer compaction there. If it ends up
1600                          * succeeding after all, it will be reset.
1601                          */
1602                         defer_compaction(zone, order);
1603                 }
1604
1605                 /*
1606                  * We might have stopped compacting due to need_resched() in
1607                  * async compaction, or due to a fatal signal detected. In that
1608                  * case do not try further zones and signal need_resched()
1609                  * contention.
1610                  */
1611                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1612                                         || fatal_signal_pending(current)) {
1613                         *contended = COMPACT_CONTENDED_SCHED;
1614                         goto break_loop;
1615                 }
1616
1617                 continue;
1618 break_loop:
1619                 /*
1620                  * We might not have tried all the zones, so  be conservative
1621                  * and assume they are not all lock contended.
1622                  */
1623                 all_zones_contended = 0;
1624                 break;
1625         }
1626
1627         /*
1628          * If at least one zone wasn't deferred or skipped, we report if all
1629          * zones that were tried were lock contended.
1630          */
1631         if (rc > COMPACT_SKIPPED && all_zones_contended)
1632                 *contended = COMPACT_CONTENDED_LOCK;
1633
1634         return rc;
1635 }
1636
1637
1638 /* Compact all zones within a node */
1639 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1640 {
1641         int zoneid;
1642         struct zone *zone;
1643
1644         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1645
1646                 zone = &pgdat->node_zones[zoneid];
1647                 if (!populated_zone(zone))
1648                         continue;
1649
1650                 cc->nr_freepages = 0;
1651                 cc->nr_migratepages = 0;
1652                 cc->zone = zone;
1653                 INIT_LIST_HEAD(&cc->freepages);
1654                 INIT_LIST_HEAD(&cc->migratepages);
1655
1656                 /*
1657                  * When called via /proc/sys/vm/compact_memory
1658                  * this makes sure we compact the whole zone regardless of
1659                  * cached scanner positions.
1660                  */
1661                 if (cc->order == -1)
1662                         __reset_isolation_suitable(zone);
1663
1664                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1665                         compact_zone(zone, cc);
1666
1667                 if (cc->order > 0) {
1668                         if (zone_watermark_ok(zone, cc->order,
1669                                                 low_wmark_pages(zone), 0, 0))
1670                                 compaction_defer_reset(zone, cc->order, false);
1671                 }
1672
1673                 VM_BUG_ON(!list_empty(&cc->freepages));
1674                 VM_BUG_ON(!list_empty(&cc->migratepages));
1675         }
1676 }
1677
1678 void compact_pgdat(pg_data_t *pgdat, int order)
1679 {
1680         struct compact_control cc = {
1681                 .order = order,
1682                 .mode = MIGRATE_ASYNC,
1683         };
1684
1685         if (!order)
1686                 return;
1687
1688         __compact_pgdat(pgdat, &cc);
1689 }
1690
1691 static void compact_node(int nid)
1692 {
1693         struct compact_control cc = {
1694                 .order = -1,
1695                 .mode = MIGRATE_SYNC,
1696                 .ignore_skip_hint = true,
1697         };
1698
1699         __compact_pgdat(NODE_DATA(nid), &cc);
1700 }
1701
1702 /* Compact all nodes in the system */
1703 static void compact_nodes(void)
1704 {
1705         int nid;
1706
1707         /* Flush pending updates to the LRU lists */
1708         lru_add_drain_all();
1709
1710         for_each_online_node(nid)
1711                 compact_node(nid);
1712 }
1713
1714 /* The written value is actually unused, all memory is compacted */
1715 int sysctl_compact_memory;
1716
1717 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1718 int sysctl_compaction_handler(struct ctl_table *table, int write,
1719                         void __user *buffer, size_t *length, loff_t *ppos)
1720 {
1721         if (write)
1722                 compact_nodes();
1723
1724         return 0;
1725 }
1726
1727 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1728                         void __user *buffer, size_t *length, loff_t *ppos)
1729 {
1730         proc_dointvec_minmax(table, write, buffer, length, ppos);
1731
1732         return 0;
1733 }
1734
1735 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1736 static ssize_t sysfs_compact_node(struct device *dev,
1737                         struct device_attribute *attr,
1738                         const char *buf, size_t count)
1739 {
1740         int nid = dev->id;
1741
1742         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1743                 /* Flush pending updates to the LRU lists */
1744                 lru_add_drain_all();
1745
1746                 compact_node(nid);
1747         }
1748
1749         return count;
1750 }
1751 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1752
1753 int compaction_register_node(struct node *node)
1754 {
1755         return device_create_file(&node->dev, &dev_attr_compact);
1756 }
1757
1758 void compaction_unregister_node(struct node *node)
1759 {
1760         return device_remove_file(&node->dev, &dev_attr_compact);
1761 }
1762 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1763
1764 #endif /* CONFIG_COMPACTION */