MIPS: Octeon: Don't set .owner.
[linux-drm-fsl-dcu.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40         "deferred",
41         "skipped",
42         "continue",
43         "partial",
44         "complete",
45         "no_suitable_page",
46         "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71         struct page *page;
72
73         list_for_each_entry(page, list, lru) {
74                 arch_alloc_page(page, 0);
75                 kernel_map_pages(page, 1, 1);
76                 kasan_alloc_pages(page, 0);
77         }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103                                 unsigned long end_pfn, struct zone *zone)
104 {
105         struct page *start_page;
106         struct page *end_page;
107
108         /* end_pfn is one past the range we are checking */
109         end_pfn--;
110
111         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112                 return NULL;
113
114         start_page = pfn_to_page(start_pfn);
115
116         if (page_zone(start_page) != zone)
117                 return NULL;
118
119         end_page = pfn_to_page(end_pfn);
120
121         /* This gives a shorter code than deriving page_zone(end_page) */
122         if (page_zone_id(start_page) != page_zone_id(end_page))
123                 return NULL;
124
125         return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140         zone->compact_considered = 0;
141         zone->compact_defer_shift++;
142
143         if (order < zone->compact_order_failed)
144                 zone->compact_order_failed = order;
145
146         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149         trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157         if (order < zone->compact_order_failed)
158                 return false;
159
160         /* Avoid possible overflow */
161         if (++zone->compact_considered > defer_limit)
162                 zone->compact_considered = defer_limit;
163
164         if (zone->compact_considered >= defer_limit)
165                 return false;
166
167         trace_mm_compaction_deferred(zone, order);
168
169         return true;
170 }
171
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178                 bool alloc_success)
179 {
180         if (alloc_success) {
181                 zone->compact_considered = 0;
182                 zone->compact_defer_shift = 0;
183         }
184         if (order >= zone->compact_order_failed)
185                 zone->compact_order_failed = order + 1;
186
187         trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193         if (order < zone->compact_order_failed)
194                 return false;
195
196         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202                                         struct page *page)
203 {
204         if (cc->ignore_skip_hint)
205                 return true;
206
207         return !get_pageblock_skip(page);
208 }
209
210 /*
211  * This function is called to clear all cached information on pageblocks that
212  * should be skipped for page isolation when the migrate and free page scanner
213  * meet.
214  */
215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217         unsigned long start_pfn = zone->zone_start_pfn;
218         unsigned long end_pfn = zone_end_pfn(zone);
219         unsigned long pfn;
220
221         zone->compact_cached_migrate_pfn[0] = start_pfn;
222         zone->compact_cached_migrate_pfn[1] = start_pfn;
223         zone->compact_cached_free_pfn = end_pfn;
224         zone->compact_blockskip_flush = false;
225
226         /* Walk the zone and mark every pageblock as suitable for isolation */
227         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228                 struct page *page;
229
230                 cond_resched();
231
232                 if (!pfn_valid(pfn))
233                         continue;
234
235                 page = pfn_to_page(pfn);
236                 if (zone != page_zone(page))
237                         continue;
238
239                 clear_pageblock_skip(page);
240         }
241 }
242
243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245         int zoneid;
246
247         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248                 struct zone *zone = &pgdat->node_zones[zoneid];
249                 if (!populated_zone(zone))
250                         continue;
251
252                 /* Only flush if a full compaction finished recently */
253                 if (zone->compact_blockskip_flush)
254                         __reset_isolation_suitable(zone);
255         }
256 }
257
258 /*
259  * If no pages were isolated then mark this pageblock to be skipped in the
260  * future. The information is later cleared by __reset_isolation_suitable().
261  */
262 static void update_pageblock_skip(struct compact_control *cc,
263                         struct page *page, unsigned long nr_isolated,
264                         bool migrate_scanner)
265 {
266         struct zone *zone = cc->zone;
267         unsigned long pfn;
268
269         if (cc->ignore_skip_hint)
270                 return;
271
272         if (!page)
273                 return;
274
275         if (nr_isolated)
276                 return;
277
278         set_pageblock_skip(page);
279
280         pfn = page_to_pfn(page);
281
282         /* Update where async and sync compaction should restart */
283         if (migrate_scanner) {
284                 if (pfn > zone->compact_cached_migrate_pfn[0])
285                         zone->compact_cached_migrate_pfn[0] = pfn;
286                 if (cc->mode != MIGRATE_ASYNC &&
287                     pfn > zone->compact_cached_migrate_pfn[1])
288                         zone->compact_cached_migrate_pfn[1] = pfn;
289         } else {
290                 if (pfn < zone->compact_cached_free_pfn)
291                         zone->compact_cached_free_pfn = pfn;
292         }
293 }
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296                                         struct page *page)
297 {
298         return true;
299 }
300
301 static void update_pageblock_skip(struct compact_control *cc,
302                         struct page *page, unsigned long nr_isolated,
303                         bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307
308 /*
309  * Compaction requires the taking of some coarse locks that are potentially
310  * very heavily contended. For async compaction, back out if the lock cannot
311  * be taken immediately. For sync compaction, spin on the lock if needed.
312  *
313  * Returns true if the lock is held
314  * Returns false if the lock is not held and compaction should abort
315  */
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317                                                 struct compact_control *cc)
318 {
319         if (cc->mode == MIGRATE_ASYNC) {
320                 if (!spin_trylock_irqsave(lock, *flags)) {
321                         cc->contended = COMPACT_CONTENDED_LOCK;
322                         return false;
323                 }
324         } else {
325                 spin_lock_irqsave(lock, *flags);
326         }
327
328         return true;
329 }
330
331 /*
332  * Compaction requires the taking of some coarse locks that are potentially
333  * very heavily contended. The lock should be periodically unlocked to avoid
334  * having disabled IRQs for a long time, even when there is nobody waiting on
335  * the lock. It might also be that allowing the IRQs will result in
336  * need_resched() becoming true. If scheduling is needed, async compaction
337  * aborts. Sync compaction schedules.
338  * Either compaction type will also abort if a fatal signal is pending.
339  * In either case if the lock was locked, it is dropped and not regained.
340  *
341  * Returns true if compaction should abort due to fatal signal pending, or
342  *              async compaction due to need_resched()
343  * Returns false when compaction can continue (sync compaction might have
344  *              scheduled)
345  */
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347                 unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349         if (*locked) {
350                 spin_unlock_irqrestore(lock, flags);
351                 *locked = false;
352         }
353
354         if (fatal_signal_pending(current)) {
355                 cc->contended = COMPACT_CONTENDED_SCHED;
356                 return true;
357         }
358
359         if (need_resched()) {
360                 if (cc->mode == MIGRATE_ASYNC) {
361                         cc->contended = COMPACT_CONTENDED_SCHED;
362                         return true;
363                 }
364                 cond_resched();
365         }
366
367         return false;
368 }
369
370 /*
371  * Aside from avoiding lock contention, compaction also periodically checks
372  * need_resched() and either schedules in sync compaction or aborts async
373  * compaction. This is similar to what compact_unlock_should_abort() does, but
374  * is used where no lock is concerned.
375  *
376  * Returns false when no scheduling was needed, or sync compaction scheduled.
377  * Returns true when async compaction should abort.
378  */
379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381         /* async compaction aborts if contended */
382         if (need_resched()) {
383                 if (cc->mode == MIGRATE_ASYNC) {
384                         cc->contended = COMPACT_CONTENDED_SCHED;
385                         return true;
386                 }
387
388                 cond_resched();
389         }
390
391         return false;
392 }
393
394 /* Returns true if the page is within a block suitable for migration to */
395 static bool suitable_migration_target(struct page *page)
396 {
397         /* If the page is a large free page, then disallow migration */
398         if (PageBuddy(page)) {
399                 /*
400                  * We are checking page_order without zone->lock taken. But
401                  * the only small danger is that we skip a potentially suitable
402                  * pageblock, so it's not worth to check order for valid range.
403                  */
404                 if (page_order_unsafe(page) >= pageblock_order)
405                         return false;
406         }
407
408         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
409         if (migrate_async_suitable(get_pageblock_migratetype(page)))
410                 return true;
411
412         /* Otherwise skip the block */
413         return false;
414 }
415
416 /*
417  * Isolate free pages onto a private freelist. If @strict is true, will abort
418  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
419  * (even though it may still end up isolating some pages).
420  */
421 static unsigned long isolate_freepages_block(struct compact_control *cc,
422                                 unsigned long *start_pfn,
423                                 unsigned long end_pfn,
424                                 struct list_head *freelist,
425                                 bool strict)
426 {
427         int nr_scanned = 0, total_isolated = 0;
428         struct page *cursor, *valid_page = NULL;
429         unsigned long flags = 0;
430         bool locked = false;
431         unsigned long blockpfn = *start_pfn;
432
433         cursor = pfn_to_page(blockpfn);
434
435         /* Isolate free pages. */
436         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
437                 int isolated, i;
438                 struct page *page = cursor;
439
440                 /*
441                  * Periodically drop the lock (if held) regardless of its
442                  * contention, to give chance to IRQs. Abort if fatal signal
443                  * pending or async compaction detects need_resched()
444                  */
445                 if (!(blockpfn % SWAP_CLUSTER_MAX)
446                     && compact_unlock_should_abort(&cc->zone->lock, flags,
447                                                                 &locked, cc))
448                         break;
449
450                 nr_scanned++;
451                 if (!pfn_valid_within(blockpfn))
452                         goto isolate_fail;
453
454                 if (!valid_page)
455                         valid_page = page;
456                 if (!PageBuddy(page))
457                         goto isolate_fail;
458
459                 /*
460                  * If we already hold the lock, we can skip some rechecking.
461                  * Note that if we hold the lock now, checked_pageblock was
462                  * already set in some previous iteration (or strict is true),
463                  * so it is correct to skip the suitable migration target
464                  * recheck as well.
465                  */
466                 if (!locked) {
467                         /*
468                          * The zone lock must be held to isolate freepages.
469                          * Unfortunately this is a very coarse lock and can be
470                          * heavily contended if there are parallel allocations
471                          * or parallel compactions. For async compaction do not
472                          * spin on the lock and we acquire the lock as late as
473                          * possible.
474                          */
475                         locked = compact_trylock_irqsave(&cc->zone->lock,
476                                                                 &flags, cc);
477                         if (!locked)
478                                 break;
479
480                         /* Recheck this is a buddy page under lock */
481                         if (!PageBuddy(page))
482                                 goto isolate_fail;
483                 }
484
485                 /* Found a free page, break it into order-0 pages */
486                 isolated = split_free_page(page);
487                 total_isolated += isolated;
488                 for (i = 0; i < isolated; i++) {
489                         list_add(&page->lru, freelist);
490                         page++;
491                 }
492
493                 /* If a page was split, advance to the end of it */
494                 if (isolated) {
495                         cc->nr_freepages += isolated;
496                         if (!strict &&
497                                 cc->nr_migratepages <= cc->nr_freepages) {
498                                 blockpfn += isolated;
499                                 break;
500                         }
501
502                         blockpfn += isolated - 1;
503                         cursor += isolated - 1;
504                         continue;
505                 }
506
507 isolate_fail:
508                 if (strict)
509                         break;
510                 else
511                         continue;
512
513         }
514
515         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
516                                         nr_scanned, total_isolated);
517
518         /* Record how far we have got within the block */
519         *start_pfn = blockpfn;
520
521         /*
522          * If strict isolation is requested by CMA then check that all the
523          * pages requested were isolated. If there were any failures, 0 is
524          * returned and CMA will fail.
525          */
526         if (strict && blockpfn < end_pfn)
527                 total_isolated = 0;
528
529         if (locked)
530                 spin_unlock_irqrestore(&cc->zone->lock, flags);
531
532         /* Update the pageblock-skip if the whole pageblock was scanned */
533         if (blockpfn == end_pfn)
534                 update_pageblock_skip(cc, valid_page, total_isolated, false);
535
536         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
537         if (total_isolated)
538                 count_compact_events(COMPACTISOLATED, total_isolated);
539         return total_isolated;
540 }
541
542 /**
543  * isolate_freepages_range() - isolate free pages.
544  * @start_pfn: The first PFN to start isolating.
545  * @end_pfn:   The one-past-last PFN.
546  *
547  * Non-free pages, invalid PFNs, or zone boundaries within the
548  * [start_pfn, end_pfn) range are considered errors, cause function to
549  * undo its actions and return zero.
550  *
551  * Otherwise, function returns one-past-the-last PFN of isolated page
552  * (which may be greater then end_pfn if end fell in a middle of
553  * a free page).
554  */
555 unsigned long
556 isolate_freepages_range(struct compact_control *cc,
557                         unsigned long start_pfn, unsigned long end_pfn)
558 {
559         unsigned long isolated, pfn, block_end_pfn;
560         LIST_HEAD(freelist);
561
562         pfn = start_pfn;
563         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
564
565         for (; pfn < end_pfn; pfn += isolated,
566                                 block_end_pfn += pageblock_nr_pages) {
567                 /* Protect pfn from changing by isolate_freepages_block */
568                 unsigned long isolate_start_pfn = pfn;
569
570                 block_end_pfn = min(block_end_pfn, end_pfn);
571
572                 /*
573                  * pfn could pass the block_end_pfn if isolated freepage
574                  * is more than pageblock order. In this case, we adjust
575                  * scanning range to right one.
576                  */
577                 if (pfn >= block_end_pfn) {
578                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
579                         block_end_pfn = min(block_end_pfn, end_pfn);
580                 }
581
582                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
583                         break;
584
585                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
586                                                 block_end_pfn, &freelist, true);
587
588                 /*
589                  * In strict mode, isolate_freepages_block() returns 0 if
590                  * there are any holes in the block (ie. invalid PFNs or
591                  * non-free pages).
592                  */
593                 if (!isolated)
594                         break;
595
596                 /*
597                  * If we managed to isolate pages, it is always (1 << n) *
598                  * pageblock_nr_pages for some non-negative n.  (Max order
599                  * page may span two pageblocks).
600                  */
601         }
602
603         /* split_free_page does not map the pages */
604         map_pages(&freelist);
605
606         if (pfn < end_pfn) {
607                 /* Loop terminated early, cleanup. */
608                 release_freepages(&freelist);
609                 return 0;
610         }
611
612         /* We don't use freelists for anything. */
613         return pfn;
614 }
615
616 /* Update the number of anon and file isolated pages in the zone */
617 static void acct_isolated(struct zone *zone, struct compact_control *cc)
618 {
619         struct page *page;
620         unsigned int count[2] = { 0, };
621
622         if (list_empty(&cc->migratepages))
623                 return;
624
625         list_for_each_entry(page, &cc->migratepages, lru)
626                 count[!!page_is_file_cache(page)]++;
627
628         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
629         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
630 }
631
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone *zone)
634 {
635         unsigned long active, inactive, isolated;
636
637         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
638                                         zone_page_state(zone, NR_INACTIVE_ANON);
639         active = zone_page_state(zone, NR_ACTIVE_FILE) +
640                                         zone_page_state(zone, NR_ACTIVE_ANON);
641         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
642                                         zone_page_state(zone, NR_ISOLATED_ANON);
643
644         return isolated > (inactive + active) / 2;
645 }
646
647 /**
648  * isolate_migratepages_block() - isolate all migrate-able pages within
649  *                                a single pageblock
650  * @cc:         Compaction control structure.
651  * @low_pfn:    The first PFN to isolate
652  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
653  * @isolate_mode: Isolation mode to be used.
654  *
655  * Isolate all pages that can be migrated from the range specified by
656  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657  * Returns zero if there is a fatal signal pending, otherwise PFN of the
658  * first page that was not scanned (which may be both less, equal to or more
659  * than end_pfn).
660  *
661  * The pages are isolated on cc->migratepages list (not required to be empty),
662  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663  * is neither read nor updated.
664  */
665 static unsigned long
666 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
667                         unsigned long end_pfn, isolate_mode_t isolate_mode)
668 {
669         struct zone *zone = cc->zone;
670         unsigned long nr_scanned = 0, nr_isolated = 0;
671         struct list_head *migratelist = &cc->migratepages;
672         struct lruvec *lruvec;
673         unsigned long flags = 0;
674         bool locked = false;
675         struct page *page = NULL, *valid_page = NULL;
676         unsigned long start_pfn = low_pfn;
677
678         /*
679          * Ensure that there are not too many pages isolated from the LRU
680          * list by either parallel reclaimers or compaction. If there are,
681          * delay for some time until fewer pages are isolated
682          */
683         while (unlikely(too_many_isolated(zone))) {
684                 /* async migration should just abort */
685                 if (cc->mode == MIGRATE_ASYNC)
686                         return 0;
687
688                 congestion_wait(BLK_RW_ASYNC, HZ/10);
689
690                 if (fatal_signal_pending(current))
691                         return 0;
692         }
693
694         if (compact_should_abort(cc))
695                 return 0;
696
697         /* Time to isolate some pages for migration */
698         for (; low_pfn < end_pfn; low_pfn++) {
699                 /*
700                  * Periodically drop the lock (if held) regardless of its
701                  * contention, to give chance to IRQs. Abort async compaction
702                  * if contended.
703                  */
704                 if (!(low_pfn % SWAP_CLUSTER_MAX)
705                     && compact_unlock_should_abort(&zone->lru_lock, flags,
706                                                                 &locked, cc))
707                         break;
708
709                 if (!pfn_valid_within(low_pfn))
710                         continue;
711                 nr_scanned++;
712
713                 page = pfn_to_page(low_pfn);
714
715                 if (!valid_page)
716                         valid_page = page;
717
718                 /*
719                  * Skip if free. We read page order here without zone lock
720                  * which is generally unsafe, but the race window is small and
721                  * the worst thing that can happen is that we skip some
722                  * potential isolation targets.
723                  */
724                 if (PageBuddy(page)) {
725                         unsigned long freepage_order = page_order_unsafe(page);
726
727                         /*
728                          * Without lock, we cannot be sure that what we got is
729                          * a valid page order. Consider only values in the
730                          * valid order range to prevent low_pfn overflow.
731                          */
732                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
733                                 low_pfn += (1UL << freepage_order) - 1;
734                         continue;
735                 }
736
737                 /*
738                  * Check may be lockless but that's ok as we recheck later.
739                  * It's possible to migrate LRU pages and balloon pages
740                  * Skip any other type of page
741                  */
742                 if (!PageLRU(page)) {
743                         if (unlikely(balloon_page_movable(page))) {
744                                 if (balloon_page_isolate(page)) {
745                                         /* Successfully isolated */
746                                         goto isolate_success;
747                                 }
748                         }
749                         continue;
750                 }
751
752                 /*
753                  * PageLRU is set. lru_lock normally excludes isolation
754                  * splitting and collapsing (collapsing has already happened
755                  * if PageLRU is set) but the lock is not necessarily taken
756                  * here and it is wasteful to take it just to check transhuge.
757                  * Check TransHuge without lock and skip the whole pageblock if
758                  * it's either a transhuge or hugetlbfs page, as calling
759                  * compound_order() without preventing THP from splitting the
760                  * page underneath us may return surprising results.
761                  */
762                 if (PageTransHuge(page)) {
763                         if (!locked)
764                                 low_pfn = ALIGN(low_pfn + 1,
765                                                 pageblock_nr_pages) - 1;
766                         else
767                                 low_pfn += (1 << compound_order(page)) - 1;
768
769                         continue;
770                 }
771
772                 /*
773                  * Migration will fail if an anonymous page is pinned in memory,
774                  * so avoid taking lru_lock and isolating it unnecessarily in an
775                  * admittedly racy check.
776                  */
777                 if (!page_mapping(page) &&
778                     page_count(page) > page_mapcount(page))
779                         continue;
780
781                 /* If we already hold the lock, we can skip some rechecking */
782                 if (!locked) {
783                         locked = compact_trylock_irqsave(&zone->lru_lock,
784                                                                 &flags, cc);
785                         if (!locked)
786                                 break;
787
788                         /* Recheck PageLRU and PageTransHuge under lock */
789                         if (!PageLRU(page))
790                                 continue;
791                         if (PageTransHuge(page)) {
792                                 low_pfn += (1 << compound_order(page)) - 1;
793                                 continue;
794                         }
795                 }
796
797                 lruvec = mem_cgroup_page_lruvec(page, zone);
798
799                 /* Try isolate the page */
800                 if (__isolate_lru_page(page, isolate_mode) != 0)
801                         continue;
802
803                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
804
805                 /* Successfully isolated */
806                 del_page_from_lru_list(page, lruvec, page_lru(page));
807
808 isolate_success:
809                 list_add(&page->lru, migratelist);
810                 cc->nr_migratepages++;
811                 nr_isolated++;
812
813                 /* Avoid isolating too much */
814                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
815                         ++low_pfn;
816                         break;
817                 }
818         }
819
820         /*
821          * The PageBuddy() check could have potentially brought us outside
822          * the range to be scanned.
823          */
824         if (unlikely(low_pfn > end_pfn))
825                 low_pfn = end_pfn;
826
827         if (locked)
828                 spin_unlock_irqrestore(&zone->lru_lock, flags);
829
830         /*
831          * Update the pageblock-skip information and cached scanner pfn,
832          * if the whole pageblock was scanned without isolating any page.
833          */
834         if (low_pfn == end_pfn)
835                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
836
837         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
838                                                 nr_scanned, nr_isolated);
839
840         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
841         if (nr_isolated)
842                 count_compact_events(COMPACTISOLATED, nr_isolated);
843
844         return low_pfn;
845 }
846
847 /**
848  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
849  * @cc:        Compaction control structure.
850  * @start_pfn: The first PFN to start isolating.
851  * @end_pfn:   The one-past-last PFN.
852  *
853  * Returns zero if isolation fails fatally due to e.g. pending signal.
854  * Otherwise, function returns one-past-the-last PFN of isolated page
855  * (which may be greater than end_pfn if end fell in a middle of a THP page).
856  */
857 unsigned long
858 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
859                                                         unsigned long end_pfn)
860 {
861         unsigned long pfn, block_end_pfn;
862
863         /* Scan block by block. First and last block may be incomplete */
864         pfn = start_pfn;
865         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
866
867         for (; pfn < end_pfn; pfn = block_end_pfn,
868                                 block_end_pfn += pageblock_nr_pages) {
869
870                 block_end_pfn = min(block_end_pfn, end_pfn);
871
872                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
873                         continue;
874
875                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
876                                                         ISOLATE_UNEVICTABLE);
877
878                 /*
879                  * In case of fatal failure, release everything that might
880                  * have been isolated in the previous iteration, and signal
881                  * the failure back to caller.
882                  */
883                 if (!pfn) {
884                         putback_movable_pages(&cc->migratepages);
885                         cc->nr_migratepages = 0;
886                         break;
887                 }
888
889                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
890                         break;
891         }
892         acct_isolated(cc->zone, cc);
893
894         return pfn;
895 }
896
897 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
898 #ifdef CONFIG_COMPACTION
899 /*
900  * Based on information in the current compact_control, find blocks
901  * suitable for isolating free pages from and then isolate them.
902  */
903 static void isolate_freepages(struct compact_control *cc)
904 {
905         struct zone *zone = cc->zone;
906         struct page *page;
907         unsigned long block_start_pfn;  /* start of current pageblock */
908         unsigned long isolate_start_pfn; /* exact pfn we start at */
909         unsigned long block_end_pfn;    /* end of current pageblock */
910         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
911         struct list_head *freelist = &cc->freepages;
912
913         /*
914          * Initialise the free scanner. The starting point is where we last
915          * successfully isolated from, zone-cached value, or the end of the
916          * zone when isolating for the first time. For looping we also need
917          * this pfn aligned down to the pageblock boundary, because we do
918          * block_start_pfn -= pageblock_nr_pages in the for loop.
919          * For ending point, take care when isolating in last pageblock of a
920          * a zone which ends in the middle of a pageblock.
921          * The low boundary is the end of the pageblock the migration scanner
922          * is using.
923          */
924         isolate_start_pfn = cc->free_pfn;
925         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
926         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
927                                                 zone_end_pfn(zone));
928         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
929
930         /*
931          * Isolate free pages until enough are available to migrate the
932          * pages on cc->migratepages. We stop searching if the migrate
933          * and free page scanners meet or enough free pages are isolated.
934          */
935         for (; block_start_pfn >= low_pfn &&
936                         cc->nr_migratepages > cc->nr_freepages;
937                                 block_end_pfn = block_start_pfn,
938                                 block_start_pfn -= pageblock_nr_pages,
939                                 isolate_start_pfn = block_start_pfn) {
940
941                 /*
942                  * This can iterate a massively long zone without finding any
943                  * suitable migration targets, so periodically check if we need
944                  * to schedule, or even abort async compaction.
945                  */
946                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
947                                                 && compact_should_abort(cc))
948                         break;
949
950                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
951                                                                         zone);
952                 if (!page)
953                         continue;
954
955                 /* Check the block is suitable for migration */
956                 if (!suitable_migration_target(page))
957                         continue;
958
959                 /* If isolation recently failed, do not retry */
960                 if (!isolation_suitable(cc, page))
961                         continue;
962
963                 /* Found a block suitable for isolating free pages from. */
964                 isolate_freepages_block(cc, &isolate_start_pfn,
965                                         block_end_pfn, freelist, false);
966
967                 /*
968                  * Remember where the free scanner should restart next time,
969                  * which is where isolate_freepages_block() left off.
970                  * But if it scanned the whole pageblock, isolate_start_pfn
971                  * now points at block_end_pfn, which is the start of the next
972                  * pageblock.
973                  * In that case we will however want to restart at the start
974                  * of the previous pageblock.
975                  */
976                 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
977                                 isolate_start_pfn :
978                                 block_start_pfn - pageblock_nr_pages;
979
980                 /*
981                  * isolate_freepages_block() might have aborted due to async
982                  * compaction being contended
983                  */
984                 if (cc->contended)
985                         break;
986         }
987
988         /* split_free_page does not map the pages */
989         map_pages(freelist);
990
991         /*
992          * If we crossed the migrate scanner, we want to keep it that way
993          * so that compact_finished() may detect this
994          */
995         if (block_start_pfn < low_pfn)
996                 cc->free_pfn = cc->migrate_pfn;
997 }
998
999 /*
1000  * This is a migrate-callback that "allocates" freepages by taking pages
1001  * from the isolated freelists in the block we are migrating to.
1002  */
1003 static struct page *compaction_alloc(struct page *migratepage,
1004                                         unsigned long data,
1005                                         int **result)
1006 {
1007         struct compact_control *cc = (struct compact_control *)data;
1008         struct page *freepage;
1009
1010         /*
1011          * Isolate free pages if necessary, and if we are not aborting due to
1012          * contention.
1013          */
1014         if (list_empty(&cc->freepages)) {
1015                 if (!cc->contended)
1016                         isolate_freepages(cc);
1017
1018                 if (list_empty(&cc->freepages))
1019                         return NULL;
1020         }
1021
1022         freepage = list_entry(cc->freepages.next, struct page, lru);
1023         list_del(&freepage->lru);
1024         cc->nr_freepages--;
1025
1026         return freepage;
1027 }
1028
1029 /*
1030  * This is a migrate-callback that "frees" freepages back to the isolated
1031  * freelist.  All pages on the freelist are from the same zone, so there is no
1032  * special handling needed for NUMA.
1033  */
1034 static void compaction_free(struct page *page, unsigned long data)
1035 {
1036         struct compact_control *cc = (struct compact_control *)data;
1037
1038         list_add(&page->lru, &cc->freepages);
1039         cc->nr_freepages++;
1040 }
1041
1042 /* possible outcome of isolate_migratepages */
1043 typedef enum {
1044         ISOLATE_ABORT,          /* Abort compaction now */
1045         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1046         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1047 } isolate_migrate_t;
1048
1049 /*
1050  * Isolate all pages that can be migrated from the first suitable block,
1051  * starting at the block pointed to by the migrate scanner pfn within
1052  * compact_control.
1053  */
1054 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1055                                         struct compact_control *cc)
1056 {
1057         unsigned long low_pfn, end_pfn;
1058         struct page *page;
1059         const isolate_mode_t isolate_mode =
1060                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1061
1062         /*
1063          * Start at where we last stopped, or beginning of the zone as
1064          * initialized by compact_zone()
1065          */
1066         low_pfn = cc->migrate_pfn;
1067
1068         /* Only scan within a pageblock boundary */
1069         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1070
1071         /*
1072          * Iterate over whole pageblocks until we find the first suitable.
1073          * Do not cross the free scanner.
1074          */
1075         for (; end_pfn <= cc->free_pfn;
1076                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1077
1078                 /*
1079                  * This can potentially iterate a massively long zone with
1080                  * many pageblocks unsuitable, so periodically check if we
1081                  * need to schedule, or even abort async compaction.
1082                  */
1083                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1084                                                 && compact_should_abort(cc))
1085                         break;
1086
1087                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1088                 if (!page)
1089                         continue;
1090
1091                 /* If isolation recently failed, do not retry */
1092                 if (!isolation_suitable(cc, page))
1093                         continue;
1094
1095                 /*
1096                  * For async compaction, also only scan in MOVABLE blocks.
1097                  * Async compaction is optimistic to see if the minimum amount
1098                  * of work satisfies the allocation.
1099                  */
1100                 if (cc->mode == MIGRATE_ASYNC &&
1101                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1102                         continue;
1103
1104                 /* Perform the isolation */
1105                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1106                                                                 isolate_mode);
1107
1108                 if (!low_pfn || cc->contended) {
1109                         acct_isolated(zone, cc);
1110                         return ISOLATE_ABORT;
1111                 }
1112
1113                 /*
1114                  * Either we isolated something and proceed with migration. Or
1115                  * we failed and compact_zone should decide if we should
1116                  * continue or not.
1117                  */
1118                 break;
1119         }
1120
1121         acct_isolated(zone, cc);
1122         /*
1123          * Record where migration scanner will be restarted. If we end up in
1124          * the same pageblock as the free scanner, make the scanners fully
1125          * meet so that compact_finished() terminates compaction.
1126          */
1127         cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1128
1129         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1130 }
1131
1132 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1133                             const int migratetype)
1134 {
1135         unsigned int order;
1136         unsigned long watermark;
1137
1138         if (cc->contended || fatal_signal_pending(current))
1139                 return COMPACT_PARTIAL;
1140
1141         /* Compaction run completes if the migrate and free scanner meet */
1142         if (cc->free_pfn <= cc->migrate_pfn) {
1143                 /* Let the next compaction start anew. */
1144                 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1145                 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1146                 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1147
1148                 /*
1149                  * Mark that the PG_migrate_skip information should be cleared
1150                  * by kswapd when it goes to sleep. kswapd does not set the
1151                  * flag itself as the decision to be clear should be directly
1152                  * based on an allocation request.
1153                  */
1154                 if (!current_is_kswapd())
1155                         zone->compact_blockskip_flush = true;
1156
1157                 return COMPACT_COMPLETE;
1158         }
1159
1160         /*
1161          * order == -1 is expected when compacting via
1162          * /proc/sys/vm/compact_memory
1163          */
1164         if (cc->order == -1)
1165                 return COMPACT_CONTINUE;
1166
1167         /* Compaction run is not finished if the watermark is not met */
1168         watermark = low_wmark_pages(zone);
1169
1170         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1171                                                         cc->alloc_flags))
1172                 return COMPACT_CONTINUE;
1173
1174         /* Direct compactor: Is a suitable page free? */
1175         for (order = cc->order; order < MAX_ORDER; order++) {
1176                 struct free_area *area = &zone->free_area[order];
1177
1178                 /* Job done if page is free of the right migratetype */
1179                 if (!list_empty(&area->free_list[migratetype]))
1180                         return COMPACT_PARTIAL;
1181
1182                 /* Job done if allocation would set block type */
1183                 if (order >= pageblock_order && area->nr_free)
1184                         return COMPACT_PARTIAL;
1185         }
1186
1187         return COMPACT_NO_SUITABLE_PAGE;
1188 }
1189
1190 static int compact_finished(struct zone *zone, struct compact_control *cc,
1191                             const int migratetype)
1192 {
1193         int ret;
1194
1195         ret = __compact_finished(zone, cc, migratetype);
1196         trace_mm_compaction_finished(zone, cc->order, ret);
1197         if (ret == COMPACT_NO_SUITABLE_PAGE)
1198                 ret = COMPACT_CONTINUE;
1199
1200         return ret;
1201 }
1202
1203 /*
1204  * compaction_suitable: Is this suitable to run compaction on this zone now?
1205  * Returns
1206  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1207  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1208  *   COMPACT_CONTINUE - If compaction should run now
1209  */
1210 static unsigned long __compaction_suitable(struct zone *zone, int order,
1211                                         int alloc_flags, int classzone_idx)
1212 {
1213         int fragindex;
1214         unsigned long watermark;
1215
1216         /*
1217          * order == -1 is expected when compacting via
1218          * /proc/sys/vm/compact_memory
1219          */
1220         if (order == -1)
1221                 return COMPACT_CONTINUE;
1222
1223         watermark = low_wmark_pages(zone);
1224         /*
1225          * If watermarks for high-order allocation are already met, there
1226          * should be no need for compaction at all.
1227          */
1228         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1229                                                                 alloc_flags))
1230                 return COMPACT_PARTIAL;
1231
1232         /*
1233          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1234          * This is because during migration, copies of pages need to be
1235          * allocated and for a short time, the footprint is higher
1236          */
1237         watermark += (2UL << order);
1238         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1239                 return COMPACT_SKIPPED;
1240
1241         /*
1242          * fragmentation index determines if allocation failures are due to
1243          * low memory or external fragmentation
1244          *
1245          * index of -1000 would imply allocations might succeed depending on
1246          * watermarks, but we already failed the high-order watermark check
1247          * index towards 0 implies failure is due to lack of memory
1248          * index towards 1000 implies failure is due to fragmentation
1249          *
1250          * Only compact if a failure would be due to fragmentation.
1251          */
1252         fragindex = fragmentation_index(zone, order);
1253         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1254                 return COMPACT_NOT_SUITABLE_ZONE;
1255
1256         return COMPACT_CONTINUE;
1257 }
1258
1259 unsigned long compaction_suitable(struct zone *zone, int order,
1260                                         int alloc_flags, int classzone_idx)
1261 {
1262         unsigned long ret;
1263
1264         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1265         trace_mm_compaction_suitable(zone, order, ret);
1266         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1267                 ret = COMPACT_SKIPPED;
1268
1269         return ret;
1270 }
1271
1272 static int compact_zone(struct zone *zone, struct compact_control *cc)
1273 {
1274         int ret;
1275         unsigned long start_pfn = zone->zone_start_pfn;
1276         unsigned long end_pfn = zone_end_pfn(zone);
1277         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1278         const bool sync = cc->mode != MIGRATE_ASYNC;
1279         unsigned long last_migrated_pfn = 0;
1280
1281         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1282                                                         cc->classzone_idx);
1283         switch (ret) {
1284         case COMPACT_PARTIAL:
1285         case COMPACT_SKIPPED:
1286                 /* Compaction is likely to fail */
1287                 return ret;
1288         case COMPACT_CONTINUE:
1289                 /* Fall through to compaction */
1290                 ;
1291         }
1292
1293         /*
1294          * Clear pageblock skip if there were failures recently and compaction
1295          * is about to be retried after being deferred. kswapd does not do
1296          * this reset as it'll reset the cached information when going to sleep.
1297          */
1298         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1299                 __reset_isolation_suitable(zone);
1300
1301         /*
1302          * Setup to move all movable pages to the end of the zone. Used cached
1303          * information on where the scanners should start but check that it
1304          * is initialised by ensuring the values are within zone boundaries.
1305          */
1306         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1307         cc->free_pfn = zone->compact_cached_free_pfn;
1308         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1309                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1310                 zone->compact_cached_free_pfn = cc->free_pfn;
1311         }
1312         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1313                 cc->migrate_pfn = start_pfn;
1314                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1315                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1316         }
1317
1318         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1319                                 cc->free_pfn, end_pfn, sync);
1320
1321         migrate_prep_local();
1322
1323         while ((ret = compact_finished(zone, cc, migratetype)) ==
1324                                                 COMPACT_CONTINUE) {
1325                 int err;
1326                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1327
1328                 switch (isolate_migratepages(zone, cc)) {
1329                 case ISOLATE_ABORT:
1330                         ret = COMPACT_PARTIAL;
1331                         putback_movable_pages(&cc->migratepages);
1332                         cc->nr_migratepages = 0;
1333                         goto out;
1334                 case ISOLATE_NONE:
1335                         /*
1336                          * We haven't isolated and migrated anything, but
1337                          * there might still be unflushed migrations from
1338                          * previous cc->order aligned block.
1339                          */
1340                         goto check_drain;
1341                 case ISOLATE_SUCCESS:
1342                         ;
1343                 }
1344
1345                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1346                                 compaction_free, (unsigned long)cc, cc->mode,
1347                                 MR_COMPACTION);
1348
1349                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1350                                                         &cc->migratepages);
1351
1352                 /* All pages were either migrated or will be released */
1353                 cc->nr_migratepages = 0;
1354                 if (err) {
1355                         putback_movable_pages(&cc->migratepages);
1356                         /*
1357                          * migrate_pages() may return -ENOMEM when scanners meet
1358                          * and we want compact_finished() to detect it
1359                          */
1360                         if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1361                                 ret = COMPACT_PARTIAL;
1362                                 goto out;
1363                         }
1364                 }
1365
1366                 /*
1367                  * Record where we could have freed pages by migration and not
1368                  * yet flushed them to buddy allocator. We use the pfn that
1369                  * isolate_migratepages() started from in this loop iteration
1370                  * - this is the lowest page that could have been isolated and
1371                  * then freed by migration.
1372                  */
1373                 if (!last_migrated_pfn)
1374                         last_migrated_pfn = isolate_start_pfn;
1375
1376 check_drain:
1377                 /*
1378                  * Has the migration scanner moved away from the previous
1379                  * cc->order aligned block where we migrated from? If yes,
1380                  * flush the pages that were freed, so that they can merge and
1381                  * compact_finished() can detect immediately if allocation
1382                  * would succeed.
1383                  */
1384                 if (cc->order > 0 && last_migrated_pfn) {
1385                         int cpu;
1386                         unsigned long current_block_start =
1387                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1388
1389                         if (last_migrated_pfn < current_block_start) {
1390                                 cpu = get_cpu();
1391                                 lru_add_drain_cpu(cpu);
1392                                 drain_local_pages(zone);
1393                                 put_cpu();
1394                                 /* No more flushing until we migrate again */
1395                                 last_migrated_pfn = 0;
1396                         }
1397                 }
1398
1399         }
1400
1401 out:
1402         /*
1403          * Release free pages and update where the free scanner should restart,
1404          * so we don't leave any returned pages behind in the next attempt.
1405          */
1406         if (cc->nr_freepages > 0) {
1407                 unsigned long free_pfn = release_freepages(&cc->freepages);
1408
1409                 cc->nr_freepages = 0;
1410                 VM_BUG_ON(free_pfn == 0);
1411                 /* The cached pfn is always the first in a pageblock */
1412                 free_pfn &= ~(pageblock_nr_pages-1);
1413                 /*
1414                  * Only go back, not forward. The cached pfn might have been
1415                  * already reset to zone end in compact_finished()
1416                  */
1417                 if (free_pfn > zone->compact_cached_free_pfn)
1418                         zone->compact_cached_free_pfn = free_pfn;
1419         }
1420
1421         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1422                                 cc->free_pfn, end_pfn, sync, ret);
1423
1424         return ret;
1425 }
1426
1427 static unsigned long compact_zone_order(struct zone *zone, int order,
1428                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1429                 int alloc_flags, int classzone_idx)
1430 {
1431         unsigned long ret;
1432         struct compact_control cc = {
1433                 .nr_freepages = 0,
1434                 .nr_migratepages = 0,
1435                 .order = order,
1436                 .gfp_mask = gfp_mask,
1437                 .zone = zone,
1438                 .mode = mode,
1439                 .alloc_flags = alloc_flags,
1440                 .classzone_idx = classzone_idx,
1441         };
1442         INIT_LIST_HEAD(&cc.freepages);
1443         INIT_LIST_HEAD(&cc.migratepages);
1444
1445         ret = compact_zone(zone, &cc);
1446
1447         VM_BUG_ON(!list_empty(&cc.freepages));
1448         VM_BUG_ON(!list_empty(&cc.migratepages));
1449
1450         *contended = cc.contended;
1451         return ret;
1452 }
1453
1454 int sysctl_extfrag_threshold = 500;
1455
1456 /**
1457  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1458  * @gfp_mask: The GFP mask of the current allocation
1459  * @order: The order of the current allocation
1460  * @alloc_flags: The allocation flags of the current allocation
1461  * @ac: The context of current allocation
1462  * @mode: The migration mode for async, sync light, or sync migration
1463  * @contended: Return value that determines if compaction was aborted due to
1464  *             need_resched() or lock contention
1465  *
1466  * This is the main entry point for direct page compaction.
1467  */
1468 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1469                         int alloc_flags, const struct alloc_context *ac,
1470                         enum migrate_mode mode, int *contended)
1471 {
1472         int may_enter_fs = gfp_mask & __GFP_FS;
1473         int may_perform_io = gfp_mask & __GFP_IO;
1474         struct zoneref *z;
1475         struct zone *zone;
1476         int rc = COMPACT_DEFERRED;
1477         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1478
1479         *contended = COMPACT_CONTENDED_NONE;
1480
1481         /* Check if the GFP flags allow compaction */
1482         if (!order || !may_enter_fs || !may_perform_io)
1483                 return COMPACT_SKIPPED;
1484
1485         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1486
1487         /* Compact each zone in the list */
1488         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1489                                                                 ac->nodemask) {
1490                 int status;
1491                 int zone_contended;
1492
1493                 if (compaction_deferred(zone, order))
1494                         continue;
1495
1496                 status = compact_zone_order(zone, order, gfp_mask, mode,
1497                                 &zone_contended, alloc_flags,
1498                                 ac->classzone_idx);
1499                 rc = max(status, rc);
1500                 /*
1501                  * It takes at least one zone that wasn't lock contended
1502                  * to clear all_zones_contended.
1503                  */
1504                 all_zones_contended &= zone_contended;
1505
1506                 /* If a normal allocation would succeed, stop compacting */
1507                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1508                                         ac->classzone_idx, alloc_flags)) {
1509                         /*
1510                          * We think the allocation will succeed in this zone,
1511                          * but it is not certain, hence the false. The caller
1512                          * will repeat this with true if allocation indeed
1513                          * succeeds in this zone.
1514                          */
1515                         compaction_defer_reset(zone, order, false);
1516                         /*
1517                          * It is possible that async compaction aborted due to
1518                          * need_resched() and the watermarks were ok thanks to
1519                          * somebody else freeing memory. The allocation can
1520                          * however still fail so we better signal the
1521                          * need_resched() contention anyway (this will not
1522                          * prevent the allocation attempt).
1523                          */
1524                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1525                                 *contended = COMPACT_CONTENDED_SCHED;
1526
1527                         goto break_loop;
1528                 }
1529
1530                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1531                         /*
1532                          * We think that allocation won't succeed in this zone
1533                          * so we defer compaction there. If it ends up
1534                          * succeeding after all, it will be reset.
1535                          */
1536                         defer_compaction(zone, order);
1537                 }
1538
1539                 /*
1540                  * We might have stopped compacting due to need_resched() in
1541                  * async compaction, or due to a fatal signal detected. In that
1542                  * case do not try further zones and signal need_resched()
1543                  * contention.
1544                  */
1545                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1546                                         || fatal_signal_pending(current)) {
1547                         *contended = COMPACT_CONTENDED_SCHED;
1548                         goto break_loop;
1549                 }
1550
1551                 continue;
1552 break_loop:
1553                 /*
1554                  * We might not have tried all the zones, so  be conservative
1555                  * and assume they are not all lock contended.
1556                  */
1557                 all_zones_contended = 0;
1558                 break;
1559         }
1560
1561         /*
1562          * If at least one zone wasn't deferred or skipped, we report if all
1563          * zones that were tried were lock contended.
1564          */
1565         if (rc > COMPACT_SKIPPED && all_zones_contended)
1566                 *contended = COMPACT_CONTENDED_LOCK;
1567
1568         return rc;
1569 }
1570
1571
1572 /* Compact all zones within a node */
1573 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1574 {
1575         int zoneid;
1576         struct zone *zone;
1577
1578         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1579
1580                 zone = &pgdat->node_zones[zoneid];
1581                 if (!populated_zone(zone))
1582                         continue;
1583
1584                 cc->nr_freepages = 0;
1585                 cc->nr_migratepages = 0;
1586                 cc->zone = zone;
1587                 INIT_LIST_HEAD(&cc->freepages);
1588                 INIT_LIST_HEAD(&cc->migratepages);
1589
1590                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1591                         compact_zone(zone, cc);
1592
1593                 if (cc->order > 0) {
1594                         if (zone_watermark_ok(zone, cc->order,
1595                                                 low_wmark_pages(zone), 0, 0))
1596                                 compaction_defer_reset(zone, cc->order, false);
1597                 }
1598
1599                 VM_BUG_ON(!list_empty(&cc->freepages));
1600                 VM_BUG_ON(!list_empty(&cc->migratepages));
1601         }
1602 }
1603
1604 void compact_pgdat(pg_data_t *pgdat, int order)
1605 {
1606         struct compact_control cc = {
1607                 .order = order,
1608                 .mode = MIGRATE_ASYNC,
1609         };
1610
1611         if (!order)
1612                 return;
1613
1614         __compact_pgdat(pgdat, &cc);
1615 }
1616
1617 static void compact_node(int nid)
1618 {
1619         struct compact_control cc = {
1620                 .order = -1,
1621                 .mode = MIGRATE_SYNC,
1622                 .ignore_skip_hint = true,
1623         };
1624
1625         __compact_pgdat(NODE_DATA(nid), &cc);
1626 }
1627
1628 /* Compact all nodes in the system */
1629 static void compact_nodes(void)
1630 {
1631         int nid;
1632
1633         /* Flush pending updates to the LRU lists */
1634         lru_add_drain_all();
1635
1636         for_each_online_node(nid)
1637                 compact_node(nid);
1638 }
1639
1640 /* The written value is actually unused, all memory is compacted */
1641 int sysctl_compact_memory;
1642
1643 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1644 int sysctl_compaction_handler(struct ctl_table *table, int write,
1645                         void __user *buffer, size_t *length, loff_t *ppos)
1646 {
1647         if (write)
1648                 compact_nodes();
1649
1650         return 0;
1651 }
1652
1653 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1654                         void __user *buffer, size_t *length, loff_t *ppos)
1655 {
1656         proc_dointvec_minmax(table, write, buffer, length, ppos);
1657
1658         return 0;
1659 }
1660
1661 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1662 static ssize_t sysfs_compact_node(struct device *dev,
1663                         struct device_attribute *attr,
1664                         const char *buf, size_t count)
1665 {
1666         int nid = dev->id;
1667
1668         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1669                 /* Flush pending updates to the LRU lists */
1670                 lru_add_drain_all();
1671
1672                 compact_node(nid);
1673         }
1674
1675         return count;
1676 }
1677 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1678
1679 int compaction_register_node(struct node *node)
1680 {
1681         return device_create_file(&node->dev, &dev_attr_compact);
1682 }
1683
1684 void compaction_unregister_node(struct node *node)
1685 {
1686         return device_remove_file(&node->dev, &dev_attr_compact);
1687 }
1688 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1689
1690 #endif /* CONFIG_COMPACTION */