Merge branch '4.3-fixes' into mips-for-linux-next
[linux-drm-fsl-dcu.git] / kernel / smpboot.c
1 /*
2  * Common SMP CPU bringup/teardown functions
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16
17 #include "smpboot.h"
18
19 #ifdef CONFIG_SMP
20
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23  * For the hotplug case we keep the task structs around and reuse
24  * them.
25  */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30         struct task_struct *tsk = per_cpu(idle_threads, cpu);
31
32         if (!tsk)
33                 return ERR_PTR(-ENOMEM);
34         init_idle(tsk, cpu);
35         return tsk;
36 }
37
38 void __init idle_thread_set_boot_cpu(void)
39 {
40         per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42
43 /**
44  * idle_init - Initialize the idle thread for a cpu
45  * @cpu:        The cpu for which the idle thread should be initialized
46  *
47  * Creates the thread if it does not exist.
48  */
49 static inline void idle_init(unsigned int cpu)
50 {
51         struct task_struct *tsk = per_cpu(idle_threads, cpu);
52
53         if (!tsk) {
54                 tsk = fork_idle(cpu);
55                 if (IS_ERR(tsk))
56                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57                 else
58                         per_cpu(idle_threads, cpu) = tsk;
59         }
60 }
61
62 /**
63  * idle_threads_init - Initialize idle threads for all cpus
64  */
65 void __init idle_threads_init(void)
66 {
67         unsigned int cpu, boot_cpu;
68
69         boot_cpu = smp_processor_id();
70
71         for_each_possible_cpu(cpu) {
72                 if (cpu != boot_cpu)
73                         idle_init(cpu);
74         }
75 }
76 #endif
77
78 #endif /* #ifdef CONFIG_SMP */
79
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82
83 struct smpboot_thread_data {
84         unsigned int                    cpu;
85         unsigned int                    status;
86         struct smp_hotplug_thread       *ht;
87 };
88
89 enum {
90         HP_THREAD_NONE = 0,
91         HP_THREAD_ACTIVE,
92         HP_THREAD_PARKED,
93 };
94
95 /**
96  * smpboot_thread_fn - percpu hotplug thread loop function
97  * @data:       thread data pointer
98  *
99  * Checks for thread stop and park conditions. Calls the necessary
100  * setup, cleanup, park and unpark functions for the registered
101  * thread.
102  *
103  * Returns 1 when the thread should exit, 0 otherwise.
104  */
105 static int smpboot_thread_fn(void *data)
106 {
107         struct smpboot_thread_data *td = data;
108         struct smp_hotplug_thread *ht = td->ht;
109
110         while (1) {
111                 set_current_state(TASK_INTERRUPTIBLE);
112                 preempt_disable();
113                 if (kthread_should_stop()) {
114                         __set_current_state(TASK_RUNNING);
115                         preempt_enable();
116                         /* cleanup must mirror setup */
117                         if (ht->cleanup && td->status != HP_THREAD_NONE)
118                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
119                         kfree(td);
120                         return 0;
121                 }
122
123                 if (kthread_should_park()) {
124                         __set_current_state(TASK_RUNNING);
125                         preempt_enable();
126                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
127                                 BUG_ON(td->cpu != smp_processor_id());
128                                 ht->park(td->cpu);
129                                 td->status = HP_THREAD_PARKED;
130                         }
131                         kthread_parkme();
132                         /* We might have been woken for stop */
133                         continue;
134                 }
135
136                 BUG_ON(td->cpu != smp_processor_id());
137
138                 /* Check for state change setup */
139                 switch (td->status) {
140                 case HP_THREAD_NONE:
141                         __set_current_state(TASK_RUNNING);
142                         preempt_enable();
143                         if (ht->setup)
144                                 ht->setup(td->cpu);
145                         td->status = HP_THREAD_ACTIVE;
146                         continue;
147
148                 case HP_THREAD_PARKED:
149                         __set_current_state(TASK_RUNNING);
150                         preempt_enable();
151                         if (ht->unpark)
152                                 ht->unpark(td->cpu);
153                         td->status = HP_THREAD_ACTIVE;
154                         continue;
155                 }
156
157                 if (!ht->thread_should_run(td->cpu)) {
158                         preempt_enable_no_resched();
159                         schedule();
160                 } else {
161                         __set_current_state(TASK_RUNNING);
162                         preempt_enable();
163                         ht->thread_fn(td->cpu);
164                 }
165         }
166 }
167
168 static int
169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170 {
171         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172         struct smpboot_thread_data *td;
173
174         if (tsk)
175                 return 0;
176
177         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178         if (!td)
179                 return -ENOMEM;
180         td->cpu = cpu;
181         td->ht = ht;
182
183         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184                                     ht->thread_comm);
185         if (IS_ERR(tsk)) {
186                 kfree(td);
187                 return PTR_ERR(tsk);
188         }
189         get_task_struct(tsk);
190         *per_cpu_ptr(ht->store, cpu) = tsk;
191         if (ht->create) {
192                 /*
193                  * Make sure that the task has actually scheduled out
194                  * into park position, before calling the create
195                  * callback. At least the migration thread callback
196                  * requires that the task is off the runqueue.
197                  */
198                 if (!wait_task_inactive(tsk, TASK_PARKED))
199                         WARN_ON(1);
200                 else
201                         ht->create(cpu);
202         }
203         return 0;
204 }
205
206 int smpboot_create_threads(unsigned int cpu)
207 {
208         struct smp_hotplug_thread *cur;
209         int ret = 0;
210
211         mutex_lock(&smpboot_threads_lock);
212         list_for_each_entry(cur, &hotplug_threads, list) {
213                 ret = __smpboot_create_thread(cur, cpu);
214                 if (ret)
215                         break;
216         }
217         mutex_unlock(&smpboot_threads_lock);
218         return ret;
219 }
220
221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
222 {
223         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
224
225         if (ht->pre_unpark)
226                 ht->pre_unpark(cpu);
227         kthread_unpark(tsk);
228 }
229
230 void smpboot_unpark_threads(unsigned int cpu)
231 {
232         struct smp_hotplug_thread *cur;
233
234         mutex_lock(&smpboot_threads_lock);
235         list_for_each_entry(cur, &hotplug_threads, list)
236                 if (cpumask_test_cpu(cpu, cur->cpumask))
237                         smpboot_unpark_thread(cur, cpu);
238         mutex_unlock(&smpboot_threads_lock);
239 }
240
241 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
242 {
243         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
244
245         if (tsk && !ht->selfparking)
246                 kthread_park(tsk);
247 }
248
249 void smpboot_park_threads(unsigned int cpu)
250 {
251         struct smp_hotplug_thread *cur;
252
253         mutex_lock(&smpboot_threads_lock);
254         list_for_each_entry_reverse(cur, &hotplug_threads, list)
255                 smpboot_park_thread(cur, cpu);
256         mutex_unlock(&smpboot_threads_lock);
257 }
258
259 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
260 {
261         unsigned int cpu;
262
263         /* We need to destroy also the parked threads of offline cpus */
264         for_each_possible_cpu(cpu) {
265                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
266
267                 if (tsk) {
268                         kthread_stop(tsk);
269                         put_task_struct(tsk);
270                         *per_cpu_ptr(ht->store, cpu) = NULL;
271                 }
272         }
273 }
274
275 /**
276  * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
277  *                                          to hotplug
278  * @plug_thread:        Hotplug thread descriptor
279  * @cpumask:            The cpumask where threads run
280  *
281  * Creates and starts the threads on all online cpus.
282  */
283 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
284                                            const struct cpumask *cpumask)
285 {
286         unsigned int cpu;
287         int ret = 0;
288
289         if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
290                 return -ENOMEM;
291         cpumask_copy(plug_thread->cpumask, cpumask);
292
293         get_online_cpus();
294         mutex_lock(&smpboot_threads_lock);
295         for_each_online_cpu(cpu) {
296                 ret = __smpboot_create_thread(plug_thread, cpu);
297                 if (ret) {
298                         smpboot_destroy_threads(plug_thread);
299                         free_cpumask_var(plug_thread->cpumask);
300                         goto out;
301                 }
302                 if (cpumask_test_cpu(cpu, cpumask))
303                         smpboot_unpark_thread(plug_thread, cpu);
304         }
305         list_add(&plug_thread->list, &hotplug_threads);
306 out:
307         mutex_unlock(&smpboot_threads_lock);
308         put_online_cpus();
309         return ret;
310 }
311 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
312
313 /**
314  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
315  * @plug_thread:        Hotplug thread descriptor
316  *
317  * Stops all threads on all possible cpus.
318  */
319 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
320 {
321         get_online_cpus();
322         mutex_lock(&smpboot_threads_lock);
323         list_del(&plug_thread->list);
324         smpboot_destroy_threads(plug_thread);
325         mutex_unlock(&smpboot_threads_lock);
326         put_online_cpus();
327         free_cpumask_var(plug_thread->cpumask);
328 }
329 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
330
331 /**
332  * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
333  * @plug_thread:        Hotplug thread descriptor
334  * @new:                Revised mask to use
335  *
336  * The cpumask field in the smp_hotplug_thread must not be updated directly
337  * by the client, but only by calling this function.
338  * This function can only be called on a registered smp_hotplug_thread.
339  */
340 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
341                                          const struct cpumask *new)
342 {
343         struct cpumask *old = plug_thread->cpumask;
344         cpumask_var_t tmp;
345         unsigned int cpu;
346
347         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
348                 return -ENOMEM;
349
350         get_online_cpus();
351         mutex_lock(&smpboot_threads_lock);
352
353         /* Park threads that were exclusively enabled on the old mask. */
354         cpumask_andnot(tmp, old, new);
355         for_each_cpu_and(cpu, tmp, cpu_online_mask)
356                 smpboot_park_thread(plug_thread, cpu);
357
358         /* Unpark threads that are exclusively enabled on the new mask. */
359         cpumask_andnot(tmp, new, old);
360         for_each_cpu_and(cpu, tmp, cpu_online_mask)
361                 smpboot_unpark_thread(plug_thread, cpu);
362
363         cpumask_copy(old, new);
364
365         mutex_unlock(&smpboot_threads_lock);
366         put_online_cpus();
367
368         free_cpumask_var(tmp);
369
370         return 0;
371 }
372 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
373
374 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
375
376 /*
377  * Called to poll specified CPU's state, for example, when waiting for
378  * a CPU to come online.
379  */
380 int cpu_report_state(int cpu)
381 {
382         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
383 }
384
385 /*
386  * If CPU has died properly, set its state to CPU_UP_PREPARE and
387  * return success.  Otherwise, return -EBUSY if the CPU died after
388  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
389  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
390  * to dying.  In the latter two cases, the CPU might not be set up
391  * properly, but it is up to the arch-specific code to decide.
392  * Finally, -EIO indicates an unanticipated problem.
393  *
394  * Note that it is permissible to omit this call entirely, as is
395  * done in architectures that do no CPU-hotplug error checking.
396  */
397 int cpu_check_up_prepare(int cpu)
398 {
399         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
400                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
401                 return 0;
402         }
403
404         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
405
406         case CPU_POST_DEAD:
407
408                 /* The CPU died properly, so just start it up again. */
409                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
410                 return 0;
411
412         case CPU_DEAD_FROZEN:
413
414                 /*
415                  * Timeout during CPU death, so let caller know.
416                  * The outgoing CPU completed its processing, but after
417                  * cpu_wait_death() timed out and reported the error. The
418                  * caller is free to proceed, in which case the state
419                  * will be reset properly by cpu_set_state_online().
420                  * Proceeding despite this -EBUSY return makes sense
421                  * for systems where the outgoing CPUs take themselves
422                  * offline, with no post-death manipulation required from
423                  * a surviving CPU.
424                  */
425                 return -EBUSY;
426
427         case CPU_BROKEN:
428
429                 /*
430                  * The most likely reason we got here is that there was
431                  * a timeout during CPU death, and the outgoing CPU never
432                  * did complete its processing.  This could happen on
433                  * a virtualized system if the outgoing VCPU gets preempted
434                  * for more than five seconds, and the user attempts to
435                  * immediately online that same CPU.  Trying again later
436                  * might return -EBUSY above, hence -EAGAIN.
437                  */
438                 return -EAGAIN;
439
440         default:
441
442                 /* Should not happen.  Famous last words. */
443                 return -EIO;
444         }
445 }
446
447 /*
448  * Mark the specified CPU online.
449  *
450  * Note that it is permissible to omit this call entirely, as is
451  * done in architectures that do no CPU-hotplug error checking.
452  */
453 void cpu_set_state_online(int cpu)
454 {
455         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
456 }
457
458 #ifdef CONFIG_HOTPLUG_CPU
459
460 /*
461  * Wait for the specified CPU to exit the idle loop and die.
462  */
463 bool cpu_wait_death(unsigned int cpu, int seconds)
464 {
465         int jf_left = seconds * HZ;
466         int oldstate;
467         bool ret = true;
468         int sleep_jf = 1;
469
470         might_sleep();
471
472         /* The outgoing CPU will normally get done quite quickly. */
473         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
474                 goto update_state;
475         udelay(5);
476
477         /* But if the outgoing CPU dawdles, wait increasingly long times. */
478         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
479                 schedule_timeout_uninterruptible(sleep_jf);
480                 jf_left -= sleep_jf;
481                 if (jf_left <= 0)
482                         break;
483                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
484         }
485 update_state:
486         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
487         if (oldstate == CPU_DEAD) {
488                 /* Outgoing CPU died normally, update state. */
489                 smp_mb(); /* atomic_read() before update. */
490                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
491         } else {
492                 /* Outgoing CPU still hasn't died, set state accordingly. */
493                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
494                                    oldstate, CPU_BROKEN) != oldstate)
495                         goto update_state;
496                 ret = false;
497         }
498         return ret;
499 }
500
501 /*
502  * Called by the outgoing CPU to report its successful death.  Return
503  * false if this report follows the surviving CPU's timing out.
504  *
505  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
506  * timed out.  This approach allows architectures to omit calls to
507  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
508  * the next cpu_wait_death()'s polling loop.
509  */
510 bool cpu_report_death(void)
511 {
512         int oldstate;
513         int newstate;
514         int cpu = smp_processor_id();
515
516         do {
517                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
518                 if (oldstate != CPU_BROKEN)
519                         newstate = CPU_DEAD;
520                 else
521                         newstate = CPU_DEAD_FROZEN;
522         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
523                                 oldstate, newstate) != oldstate);
524         return newstate == CPU_DEAD;
525 }
526
527 #endif /* #ifdef CONFIG_HOTPLUG_CPU */