rcu: Optionally run grace-period kthreads at real-time priority
[linux-drm-fsl-dcu.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #endif /* #ifdef CONFIG_RCU_BOOST */
47
48 #ifdef CONFIG_RCU_NOCB_CPU
49 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
51 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
52 static char __initdata nocb_buf[NR_CPUS * 5];
53 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
54
55 /*
56  * Check the RCU kernel configuration parameters and print informative
57  * messages about anything out of the ordinary.  If you like #ifdef, you
58  * will love this function.
59  */
60 static void __init rcu_bootup_announce_oddness(void)
61 {
62 #ifdef CONFIG_RCU_TRACE
63         pr_info("\tRCU debugfs-based tracing is enabled.\n");
64 #endif
65 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
66         pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
67                CONFIG_RCU_FANOUT);
68 #endif
69 #ifdef CONFIG_RCU_FANOUT_EXACT
70         pr_info("\tHierarchical RCU autobalancing is disabled.\n");
71 #endif
72 #ifdef CONFIG_RCU_FAST_NO_HZ
73         pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
74 #endif
75 #ifdef CONFIG_PROVE_RCU
76         pr_info("\tRCU lockdep checking is enabled.\n");
77 #endif
78 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
79         pr_info("\tRCU torture testing starts during boot.\n");
80 #endif
81 #if defined(CONFIG_RCU_CPU_STALL_INFO)
82         pr_info("\tAdditional per-CPU info printed with stalls.\n");
83 #endif
84 #if NUM_RCU_LVL_4 != 0
85         pr_info("\tFour-level hierarchy is enabled.\n");
86 #endif
87         if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
88                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
89         if (nr_cpu_ids != NR_CPUS)
90                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
91 #ifdef CONFIG_RCU_BOOST
92         pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
93 #endif
94 }
95
96 #ifdef CONFIG_PREEMPT_RCU
97
98 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
99 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
100
101 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
102
103 /*
104  * Tell them what RCU they are running.
105  */
106 static void __init rcu_bootup_announce(void)
107 {
108         pr_info("Preemptible hierarchical RCU implementation.\n");
109         rcu_bootup_announce_oddness();
110 }
111
112 /*
113  * Return the number of RCU-preempt batches processed thus far
114  * for debug and statistics.
115  */
116 static long rcu_batches_completed_preempt(void)
117 {
118         return rcu_preempt_state.completed;
119 }
120 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
121
122 /*
123  * Return the number of RCU batches processed thus far for debug & stats.
124  */
125 long rcu_batches_completed(void)
126 {
127         return rcu_batches_completed_preempt();
128 }
129 EXPORT_SYMBOL_GPL(rcu_batches_completed);
130
131 /*
132  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
133  * that this just means that the task currently running on the CPU is
134  * not in a quiescent state.  There might be any number of tasks blocked
135  * while in an RCU read-side critical section.
136  *
137  * As with the other rcu_*_qs() functions, callers to this function
138  * must disable preemption.
139  */
140 static void rcu_preempt_qs(void)
141 {
142         if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
143                 trace_rcu_grace_period(TPS("rcu_preempt"),
144                                        __this_cpu_read(rcu_preempt_data.gpnum),
145                                        TPS("cpuqs"));
146                 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
147                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
148                 current->rcu_read_unlock_special.b.need_qs = false;
149         }
150 }
151
152 /*
153  * We have entered the scheduler, and the current task might soon be
154  * context-switched away from.  If this task is in an RCU read-side
155  * critical section, we will no longer be able to rely on the CPU to
156  * record that fact, so we enqueue the task on the blkd_tasks list.
157  * The task will dequeue itself when it exits the outermost enclosing
158  * RCU read-side critical section.  Therefore, the current grace period
159  * cannot be permitted to complete until the blkd_tasks list entries
160  * predating the current grace period drain, in other words, until
161  * rnp->gp_tasks becomes NULL.
162  *
163  * Caller must disable preemption.
164  */
165 static void rcu_preempt_note_context_switch(void)
166 {
167         struct task_struct *t = current;
168         unsigned long flags;
169         struct rcu_data *rdp;
170         struct rcu_node *rnp;
171
172         if (t->rcu_read_lock_nesting > 0 &&
173             !t->rcu_read_unlock_special.b.blocked) {
174
175                 /* Possibly blocking in an RCU read-side critical section. */
176                 rdp = this_cpu_ptr(rcu_preempt_state.rda);
177                 rnp = rdp->mynode;
178                 raw_spin_lock_irqsave(&rnp->lock, flags);
179                 smp_mb__after_unlock_lock();
180                 t->rcu_read_unlock_special.b.blocked = true;
181                 t->rcu_blocked_node = rnp;
182
183                 /*
184                  * If this CPU has already checked in, then this task
185                  * will hold up the next grace period rather than the
186                  * current grace period.  Queue the task accordingly.
187                  * If the task is queued for the current grace period
188                  * (i.e., this CPU has not yet passed through a quiescent
189                  * state for the current grace period), then as long
190                  * as that task remains queued, the current grace period
191                  * cannot end.  Note that there is some uncertainty as
192                  * to exactly when the current grace period started.
193                  * We take a conservative approach, which can result
194                  * in unnecessarily waiting on tasks that started very
195                  * slightly after the current grace period began.  C'est
196                  * la vie!!!
197                  *
198                  * But first, note that the current CPU must still be
199                  * on line!
200                  */
201                 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
202                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
203                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
204                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
205                         rnp->gp_tasks = &t->rcu_node_entry;
206 #ifdef CONFIG_RCU_BOOST
207                         if (rnp->boost_tasks != NULL)
208                                 rnp->boost_tasks = rnp->gp_tasks;
209 #endif /* #ifdef CONFIG_RCU_BOOST */
210                 } else {
211                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
212                         if (rnp->qsmask & rdp->grpmask)
213                                 rnp->gp_tasks = &t->rcu_node_entry;
214                 }
215                 trace_rcu_preempt_task(rdp->rsp->name,
216                                        t->pid,
217                                        (rnp->qsmask & rdp->grpmask)
218                                        ? rnp->gpnum
219                                        : rnp->gpnum + 1);
220                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
221         } else if (t->rcu_read_lock_nesting < 0 &&
222                    t->rcu_read_unlock_special.s) {
223
224                 /*
225                  * Complete exit from RCU read-side critical section on
226                  * behalf of preempted instance of __rcu_read_unlock().
227                  */
228                 rcu_read_unlock_special(t);
229         }
230
231         /*
232          * Either we were not in an RCU read-side critical section to
233          * begin with, or we have now recorded that critical section
234          * globally.  Either way, we can now note a quiescent state
235          * for this CPU.  Again, if we were in an RCU read-side critical
236          * section, and if that critical section was blocking the current
237          * grace period, then the fact that the task has been enqueued
238          * means that we continue to block the current grace period.
239          */
240         rcu_preempt_qs();
241 }
242
243 /*
244  * Check for preempted RCU readers blocking the current grace period
245  * for the specified rcu_node structure.  If the caller needs a reliable
246  * answer, it must hold the rcu_node's ->lock.
247  */
248 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
249 {
250         return rnp->gp_tasks != NULL;
251 }
252
253 /*
254  * Record a quiescent state for all tasks that were previously queued
255  * on the specified rcu_node structure and that were blocking the current
256  * RCU grace period.  The caller must hold the specified rnp->lock with
257  * irqs disabled, and this lock is released upon return, but irqs remain
258  * disabled.
259  */
260 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
261         __releases(rnp->lock)
262 {
263         unsigned long mask;
264         struct rcu_node *rnp_p;
265
266         if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
267                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
268                 return;  /* Still need more quiescent states! */
269         }
270
271         rnp_p = rnp->parent;
272         if (rnp_p == NULL) {
273                 /*
274                  * Either there is only one rcu_node in the tree,
275                  * or tasks were kicked up to root rcu_node due to
276                  * CPUs going offline.
277                  */
278                 rcu_report_qs_rsp(&rcu_preempt_state, flags);
279                 return;
280         }
281
282         /* Report up the rest of the hierarchy. */
283         mask = rnp->grpmask;
284         raw_spin_unlock(&rnp->lock);    /* irqs remain disabled. */
285         raw_spin_lock(&rnp_p->lock);    /* irqs already disabled. */
286         smp_mb__after_unlock_lock();
287         rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
288 }
289
290 /*
291  * Advance a ->blkd_tasks-list pointer to the next entry, instead
292  * returning NULL if at the end of the list.
293  */
294 static struct list_head *rcu_next_node_entry(struct task_struct *t,
295                                              struct rcu_node *rnp)
296 {
297         struct list_head *np;
298
299         np = t->rcu_node_entry.next;
300         if (np == &rnp->blkd_tasks)
301                 np = NULL;
302         return np;
303 }
304
305 /*
306  * Handle special cases during rcu_read_unlock(), such as needing to
307  * notify RCU core processing or task having blocked during the RCU
308  * read-side critical section.
309  */
310 void rcu_read_unlock_special(struct task_struct *t)
311 {
312         int empty;
313         int empty_exp;
314         int empty_exp_now;
315         unsigned long flags;
316         struct list_head *np;
317 #ifdef CONFIG_RCU_BOOST
318         bool drop_boost_mutex = false;
319 #endif /* #ifdef CONFIG_RCU_BOOST */
320         struct rcu_node *rnp;
321         union rcu_special special;
322
323         /* NMI handlers cannot block and cannot safely manipulate state. */
324         if (in_nmi())
325                 return;
326
327         local_irq_save(flags);
328
329         /*
330          * If RCU core is waiting for this CPU to exit critical section,
331          * let it know that we have done so.  Because irqs are disabled,
332          * t->rcu_read_unlock_special cannot change.
333          */
334         special = t->rcu_read_unlock_special;
335         if (special.b.need_qs) {
336                 rcu_preempt_qs();
337                 if (!t->rcu_read_unlock_special.s) {
338                         local_irq_restore(flags);
339                         return;
340                 }
341         }
342
343         /* Hardware IRQ handlers cannot block, complain if they get here. */
344         if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
345                 local_irq_restore(flags);
346                 return;
347         }
348
349         /* Clean up if blocked during RCU read-side critical section. */
350         if (special.b.blocked) {
351                 t->rcu_read_unlock_special.b.blocked = false;
352
353                 /*
354                  * Remove this task from the list it blocked on.  The
355                  * task can migrate while we acquire the lock, but at
356                  * most one time.  So at most two passes through loop.
357                  */
358                 for (;;) {
359                         rnp = t->rcu_blocked_node;
360                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
361                         smp_mb__after_unlock_lock();
362                         if (rnp == t->rcu_blocked_node)
363                                 break;
364                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
365                 }
366                 empty = !rcu_preempt_blocked_readers_cgp(rnp);
367                 empty_exp = !rcu_preempted_readers_exp(rnp);
368                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
369                 np = rcu_next_node_entry(t, rnp);
370                 list_del_init(&t->rcu_node_entry);
371                 t->rcu_blocked_node = NULL;
372                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
373                                                 rnp->gpnum, t->pid);
374                 if (&t->rcu_node_entry == rnp->gp_tasks)
375                         rnp->gp_tasks = np;
376                 if (&t->rcu_node_entry == rnp->exp_tasks)
377                         rnp->exp_tasks = np;
378 #ifdef CONFIG_RCU_BOOST
379                 if (&t->rcu_node_entry == rnp->boost_tasks)
380                         rnp->boost_tasks = np;
381                 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
382                 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
383 #endif /* #ifdef CONFIG_RCU_BOOST */
384
385                 /*
386                  * If this was the last task on the current list, and if
387                  * we aren't waiting on any CPUs, report the quiescent state.
388                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
389                  * so we must take a snapshot of the expedited state.
390                  */
391                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
392                 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
393                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
394                                                          rnp->gpnum,
395                                                          0, rnp->qsmask,
396                                                          rnp->level,
397                                                          rnp->grplo,
398                                                          rnp->grphi,
399                                                          !!rnp->gp_tasks);
400                         rcu_report_unblock_qs_rnp(rnp, flags);
401                 } else {
402                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
403                 }
404
405 #ifdef CONFIG_RCU_BOOST
406                 /* Unboost if we were boosted. */
407                 if (drop_boost_mutex) {
408                         rt_mutex_unlock(&rnp->boost_mtx);
409                         complete(&rnp->boost_completion);
410                 }
411 #endif /* #ifdef CONFIG_RCU_BOOST */
412
413                 /*
414                  * If this was the last task on the expedited lists,
415                  * then we need to report up the rcu_node hierarchy.
416                  */
417                 if (!empty_exp && empty_exp_now)
418                         rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
419         } else {
420                 local_irq_restore(flags);
421         }
422 }
423
424 /*
425  * Dump detailed information for all tasks blocking the current RCU
426  * grace period on the specified rcu_node structure.
427  */
428 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
429 {
430         unsigned long flags;
431         struct task_struct *t;
432
433         raw_spin_lock_irqsave(&rnp->lock, flags);
434         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
435                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
436                 return;
437         }
438         t = list_entry(rnp->gp_tasks,
439                        struct task_struct, rcu_node_entry);
440         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
441                 sched_show_task(t);
442         raw_spin_unlock_irqrestore(&rnp->lock, flags);
443 }
444
445 /*
446  * Dump detailed information for all tasks blocking the current RCU
447  * grace period.
448  */
449 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
450 {
451         struct rcu_node *rnp = rcu_get_root(rsp);
452
453         rcu_print_detail_task_stall_rnp(rnp);
454         rcu_for_each_leaf_node(rsp, rnp)
455                 rcu_print_detail_task_stall_rnp(rnp);
456 }
457
458 #ifdef CONFIG_RCU_CPU_STALL_INFO
459
460 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
461 {
462         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
463                rnp->level, rnp->grplo, rnp->grphi);
464 }
465
466 static void rcu_print_task_stall_end(void)
467 {
468         pr_cont("\n");
469 }
470
471 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
472
473 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
474 {
475 }
476
477 static void rcu_print_task_stall_end(void)
478 {
479 }
480
481 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
482
483 /*
484  * Scan the current list of tasks blocked within RCU read-side critical
485  * sections, printing out the tid of each.
486  */
487 static int rcu_print_task_stall(struct rcu_node *rnp)
488 {
489         struct task_struct *t;
490         int ndetected = 0;
491
492         if (!rcu_preempt_blocked_readers_cgp(rnp))
493                 return 0;
494         rcu_print_task_stall_begin(rnp);
495         t = list_entry(rnp->gp_tasks,
496                        struct task_struct, rcu_node_entry);
497         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
498                 pr_cont(" P%d", t->pid);
499                 ndetected++;
500         }
501         rcu_print_task_stall_end();
502         return ndetected;
503 }
504
505 /*
506  * Check that the list of blocked tasks for the newly completed grace
507  * period is in fact empty.  It is a serious bug to complete a grace
508  * period that still has RCU readers blocked!  This function must be
509  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
510  * must be held by the caller.
511  *
512  * Also, if there are blocked tasks on the list, they automatically
513  * block the newly created grace period, so set up ->gp_tasks accordingly.
514  */
515 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
516 {
517         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
518         if (!list_empty(&rnp->blkd_tasks))
519                 rnp->gp_tasks = rnp->blkd_tasks.next;
520         WARN_ON_ONCE(rnp->qsmask);
521 }
522
523 #ifdef CONFIG_HOTPLUG_CPU
524
525 /*
526  * Handle tasklist migration for case in which all CPUs covered by the
527  * specified rcu_node have gone offline.  Move them up to the root
528  * rcu_node.  The reason for not just moving them to the immediate
529  * parent is to remove the need for rcu_read_unlock_special() to
530  * make more than two attempts to acquire the target rcu_node's lock.
531  * Returns true if there were tasks blocking the current RCU grace
532  * period.
533  *
534  * Returns 1 if there was previously a task blocking the current grace
535  * period on the specified rcu_node structure.
536  *
537  * The caller must hold rnp->lock with irqs disabled.
538  */
539 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
540                                      struct rcu_node *rnp,
541                                      struct rcu_data *rdp)
542 {
543         struct list_head *lp;
544         struct list_head *lp_root;
545         int retval = 0;
546         struct rcu_node *rnp_root = rcu_get_root(rsp);
547         struct task_struct *t;
548
549         if (rnp == rnp_root) {
550                 WARN_ONCE(1, "Last CPU thought to be offlined?");
551                 return 0;  /* Shouldn't happen: at least one CPU online. */
552         }
553
554         /* If we are on an internal node, complain bitterly. */
555         WARN_ON_ONCE(rnp != rdp->mynode);
556
557         /*
558          * Move tasks up to root rcu_node.  Don't try to get fancy for
559          * this corner-case operation -- just put this node's tasks
560          * at the head of the root node's list, and update the root node's
561          * ->gp_tasks and ->exp_tasks pointers to those of this node's,
562          * if non-NULL.  This might result in waiting for more tasks than
563          * absolutely necessary, but this is a good performance/complexity
564          * tradeoff.
565          */
566         if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
567                 retval |= RCU_OFL_TASKS_NORM_GP;
568         if (rcu_preempted_readers_exp(rnp))
569                 retval |= RCU_OFL_TASKS_EXP_GP;
570         lp = &rnp->blkd_tasks;
571         lp_root = &rnp_root->blkd_tasks;
572         while (!list_empty(lp)) {
573                 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
574                 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
575                 smp_mb__after_unlock_lock();
576                 list_del(&t->rcu_node_entry);
577                 t->rcu_blocked_node = rnp_root;
578                 list_add(&t->rcu_node_entry, lp_root);
579                 if (&t->rcu_node_entry == rnp->gp_tasks)
580                         rnp_root->gp_tasks = rnp->gp_tasks;
581                 if (&t->rcu_node_entry == rnp->exp_tasks)
582                         rnp_root->exp_tasks = rnp->exp_tasks;
583 #ifdef CONFIG_RCU_BOOST
584                 if (&t->rcu_node_entry == rnp->boost_tasks)
585                         rnp_root->boost_tasks = rnp->boost_tasks;
586 #endif /* #ifdef CONFIG_RCU_BOOST */
587                 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
588         }
589
590         rnp->gp_tasks = NULL;
591         rnp->exp_tasks = NULL;
592 #ifdef CONFIG_RCU_BOOST
593         rnp->boost_tasks = NULL;
594         /*
595          * In case root is being boosted and leaf was not.  Make sure
596          * that we boost the tasks blocking the current grace period
597          * in this case.
598          */
599         raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
600         smp_mb__after_unlock_lock();
601         if (rnp_root->boost_tasks != NULL &&
602             rnp_root->boost_tasks != rnp_root->gp_tasks &&
603             rnp_root->boost_tasks != rnp_root->exp_tasks)
604                 rnp_root->boost_tasks = rnp_root->gp_tasks;
605         raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
606 #endif /* #ifdef CONFIG_RCU_BOOST */
607
608         return retval;
609 }
610
611 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
612
613 /*
614  * Check for a quiescent state from the current CPU.  When a task blocks,
615  * the task is recorded in the corresponding CPU's rcu_node structure,
616  * which is checked elsewhere.
617  *
618  * Caller must disable hard irqs.
619  */
620 static void rcu_preempt_check_callbacks(void)
621 {
622         struct task_struct *t = current;
623
624         if (t->rcu_read_lock_nesting == 0) {
625                 rcu_preempt_qs();
626                 return;
627         }
628         if (t->rcu_read_lock_nesting > 0 &&
629             __this_cpu_read(rcu_preempt_data.qs_pending) &&
630             !__this_cpu_read(rcu_preempt_data.passed_quiesce))
631                 t->rcu_read_unlock_special.b.need_qs = true;
632 }
633
634 #ifdef CONFIG_RCU_BOOST
635
636 static void rcu_preempt_do_callbacks(void)
637 {
638         rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
639 }
640
641 #endif /* #ifdef CONFIG_RCU_BOOST */
642
643 /*
644  * Queue a preemptible-RCU callback for invocation after a grace period.
645  */
646 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
647 {
648         __call_rcu(head, func, &rcu_preempt_state, -1, 0);
649 }
650 EXPORT_SYMBOL_GPL(call_rcu);
651
652 /**
653  * synchronize_rcu - wait until a grace period has elapsed.
654  *
655  * Control will return to the caller some time after a full grace
656  * period has elapsed, in other words after all currently executing RCU
657  * read-side critical sections have completed.  Note, however, that
658  * upon return from synchronize_rcu(), the caller might well be executing
659  * concurrently with new RCU read-side critical sections that began while
660  * synchronize_rcu() was waiting.  RCU read-side critical sections are
661  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
662  *
663  * See the description of synchronize_sched() for more detailed information
664  * on memory ordering guarantees.
665  */
666 void synchronize_rcu(void)
667 {
668         rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
669                            !lock_is_held(&rcu_lock_map) &&
670                            !lock_is_held(&rcu_sched_lock_map),
671                            "Illegal synchronize_rcu() in RCU read-side critical section");
672         if (!rcu_scheduler_active)
673                 return;
674         if (rcu_expedited)
675                 synchronize_rcu_expedited();
676         else
677                 wait_rcu_gp(call_rcu);
678 }
679 EXPORT_SYMBOL_GPL(synchronize_rcu);
680
681 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
682 static unsigned long sync_rcu_preempt_exp_count;
683 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
684
685 /*
686  * Return non-zero if there are any tasks in RCU read-side critical
687  * sections blocking the current preemptible-RCU expedited grace period.
688  * If there is no preemptible-RCU expedited grace period currently in
689  * progress, returns zero unconditionally.
690  */
691 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
692 {
693         return rnp->exp_tasks != NULL;
694 }
695
696 /*
697  * return non-zero if there is no RCU expedited grace period in progress
698  * for the specified rcu_node structure, in other words, if all CPUs and
699  * tasks covered by the specified rcu_node structure have done their bit
700  * for the current expedited grace period.  Works only for preemptible
701  * RCU -- other RCU implementation use other means.
702  *
703  * Caller must hold sync_rcu_preempt_exp_mutex.
704  */
705 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
706 {
707         return !rcu_preempted_readers_exp(rnp) &&
708                ACCESS_ONCE(rnp->expmask) == 0;
709 }
710
711 /*
712  * Report the exit from RCU read-side critical section for the last task
713  * that queued itself during or before the current expedited preemptible-RCU
714  * grace period.  This event is reported either to the rcu_node structure on
715  * which the task was queued or to one of that rcu_node structure's ancestors,
716  * recursively up the tree.  (Calm down, calm down, we do the recursion
717  * iteratively!)
718  *
719  * Most callers will set the "wake" flag, but the task initiating the
720  * expedited grace period need not wake itself.
721  *
722  * Caller must hold sync_rcu_preempt_exp_mutex.
723  */
724 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
725                                bool wake)
726 {
727         unsigned long flags;
728         unsigned long mask;
729
730         raw_spin_lock_irqsave(&rnp->lock, flags);
731         smp_mb__after_unlock_lock();
732         for (;;) {
733                 if (!sync_rcu_preempt_exp_done(rnp)) {
734                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
735                         break;
736                 }
737                 if (rnp->parent == NULL) {
738                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
739                         if (wake) {
740                                 smp_mb(); /* EGP done before wake_up(). */
741                                 wake_up(&sync_rcu_preempt_exp_wq);
742                         }
743                         break;
744                 }
745                 mask = rnp->grpmask;
746                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
747                 rnp = rnp->parent;
748                 raw_spin_lock(&rnp->lock); /* irqs already disabled */
749                 smp_mb__after_unlock_lock();
750                 rnp->expmask &= ~mask;
751         }
752 }
753
754 /*
755  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
756  * grace period for the specified rcu_node structure.  If there are no such
757  * tasks, report it up the rcu_node hierarchy.
758  *
759  * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
760  * CPU hotplug operations.
761  */
762 static void
763 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
764 {
765         unsigned long flags;
766         int must_wait = 0;
767
768         raw_spin_lock_irqsave(&rnp->lock, flags);
769         smp_mb__after_unlock_lock();
770         if (list_empty(&rnp->blkd_tasks)) {
771                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
772         } else {
773                 rnp->exp_tasks = rnp->blkd_tasks.next;
774                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
775                 must_wait = 1;
776         }
777         if (!must_wait)
778                 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
779 }
780
781 /**
782  * synchronize_rcu_expedited - Brute-force RCU grace period
783  *
784  * Wait for an RCU-preempt grace period, but expedite it.  The basic
785  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
786  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
787  * significant time on all CPUs and is unfriendly to real-time workloads,
788  * so is thus not recommended for any sort of common-case code.
789  * In fact, if you are using synchronize_rcu_expedited() in a loop,
790  * please restructure your code to batch your updates, and then Use a
791  * single synchronize_rcu() instead.
792  */
793 void synchronize_rcu_expedited(void)
794 {
795         unsigned long flags;
796         struct rcu_node *rnp;
797         struct rcu_state *rsp = &rcu_preempt_state;
798         unsigned long snap;
799         int trycount = 0;
800
801         smp_mb(); /* Caller's modifications seen first by other CPUs. */
802         snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
803         smp_mb(); /* Above access cannot bleed into critical section. */
804
805         /*
806          * Block CPU-hotplug operations.  This means that any CPU-hotplug
807          * operation that finds an rcu_node structure with tasks in the
808          * process of being boosted will know that all tasks blocking
809          * this expedited grace period will already be in the process of
810          * being boosted.  This simplifies the process of moving tasks
811          * from leaf to root rcu_node structures.
812          */
813         if (!try_get_online_cpus()) {
814                 /* CPU-hotplug operation in flight, fall back to normal GP. */
815                 wait_rcu_gp(call_rcu);
816                 return;
817         }
818
819         /*
820          * Acquire lock, falling back to synchronize_rcu() if too many
821          * lock-acquisition failures.  Of course, if someone does the
822          * expedited grace period for us, just leave.
823          */
824         while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
825                 if (ULONG_CMP_LT(snap,
826                     ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
827                         put_online_cpus();
828                         goto mb_ret; /* Others did our work for us. */
829                 }
830                 if (trycount++ < 10) {
831                         udelay(trycount * num_online_cpus());
832                 } else {
833                         put_online_cpus();
834                         wait_rcu_gp(call_rcu);
835                         return;
836                 }
837         }
838         if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
839                 put_online_cpus();
840                 goto unlock_mb_ret; /* Others did our work for us. */
841         }
842
843         /* force all RCU readers onto ->blkd_tasks lists. */
844         synchronize_sched_expedited();
845
846         /* Initialize ->expmask for all non-leaf rcu_node structures. */
847         rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
848                 raw_spin_lock_irqsave(&rnp->lock, flags);
849                 smp_mb__after_unlock_lock();
850                 rnp->expmask = rnp->qsmaskinit;
851                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
852         }
853
854         /* Snapshot current state of ->blkd_tasks lists. */
855         rcu_for_each_leaf_node(rsp, rnp)
856                 sync_rcu_preempt_exp_init(rsp, rnp);
857         if (NUM_RCU_NODES > 1)
858                 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
859
860         put_online_cpus();
861
862         /* Wait for snapshotted ->blkd_tasks lists to drain. */
863         rnp = rcu_get_root(rsp);
864         wait_event(sync_rcu_preempt_exp_wq,
865                    sync_rcu_preempt_exp_done(rnp));
866
867         /* Clean up and exit. */
868         smp_mb(); /* ensure expedited GP seen before counter increment. */
869         ACCESS_ONCE(sync_rcu_preempt_exp_count) =
870                                         sync_rcu_preempt_exp_count + 1;
871 unlock_mb_ret:
872         mutex_unlock(&sync_rcu_preempt_exp_mutex);
873 mb_ret:
874         smp_mb(); /* ensure subsequent action seen after grace period. */
875 }
876 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
877
878 /**
879  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
880  *
881  * Note that this primitive does not necessarily wait for an RCU grace period
882  * to complete.  For example, if there are no RCU callbacks queued anywhere
883  * in the system, then rcu_barrier() is within its rights to return
884  * immediately, without waiting for anything, much less an RCU grace period.
885  */
886 void rcu_barrier(void)
887 {
888         _rcu_barrier(&rcu_preempt_state);
889 }
890 EXPORT_SYMBOL_GPL(rcu_barrier);
891
892 /*
893  * Initialize preemptible RCU's state structures.
894  */
895 static void __init __rcu_init_preempt(void)
896 {
897         rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
898 }
899
900 /*
901  * Check for a task exiting while in a preemptible-RCU read-side
902  * critical section, clean up if so.  No need to issue warnings,
903  * as debug_check_no_locks_held() already does this if lockdep
904  * is enabled.
905  */
906 void exit_rcu(void)
907 {
908         struct task_struct *t = current;
909
910         if (likely(list_empty(&current->rcu_node_entry)))
911                 return;
912         t->rcu_read_lock_nesting = 1;
913         barrier();
914         t->rcu_read_unlock_special.b.blocked = true;
915         __rcu_read_unlock();
916 }
917
918 #else /* #ifdef CONFIG_PREEMPT_RCU */
919
920 static struct rcu_state *rcu_state_p = &rcu_sched_state;
921
922 /*
923  * Tell them what RCU they are running.
924  */
925 static void __init rcu_bootup_announce(void)
926 {
927         pr_info("Hierarchical RCU implementation.\n");
928         rcu_bootup_announce_oddness();
929 }
930
931 /*
932  * Return the number of RCU batches processed thus far for debug & stats.
933  */
934 long rcu_batches_completed(void)
935 {
936         return rcu_batches_completed_sched();
937 }
938 EXPORT_SYMBOL_GPL(rcu_batches_completed);
939
940 /*
941  * Because preemptible RCU does not exist, we never have to check for
942  * CPUs being in quiescent states.
943  */
944 static void rcu_preempt_note_context_switch(void)
945 {
946 }
947
948 /*
949  * Because preemptible RCU does not exist, there are never any preempted
950  * RCU readers.
951  */
952 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
953 {
954         return 0;
955 }
956
957 #ifdef CONFIG_HOTPLUG_CPU
958
959 /* Because preemptible RCU does not exist, no quieting of tasks. */
960 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
961         __releases(rnp->lock)
962 {
963         raw_spin_unlock_irqrestore(&rnp->lock, flags);
964 }
965
966 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
967
968 /*
969  * Because preemptible RCU does not exist, we never have to check for
970  * tasks blocked within RCU read-side critical sections.
971  */
972 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
973 {
974 }
975
976 /*
977  * Because preemptible RCU does not exist, we never have to check for
978  * tasks blocked within RCU read-side critical sections.
979  */
980 static int rcu_print_task_stall(struct rcu_node *rnp)
981 {
982         return 0;
983 }
984
985 /*
986  * Because there is no preemptible RCU, there can be no readers blocked,
987  * so there is no need to check for blocked tasks.  So check only for
988  * bogus qsmask values.
989  */
990 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
991 {
992         WARN_ON_ONCE(rnp->qsmask);
993 }
994
995 #ifdef CONFIG_HOTPLUG_CPU
996
997 /*
998  * Because preemptible RCU does not exist, it never needs to migrate
999  * tasks that were blocked within RCU read-side critical sections, and
1000  * such non-existent tasks cannot possibly have been blocking the current
1001  * grace period.
1002  */
1003 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1004                                      struct rcu_node *rnp,
1005                                      struct rcu_data *rdp)
1006 {
1007         return 0;
1008 }
1009
1010 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1011
1012 /*
1013  * Because preemptible RCU does not exist, it never has any callbacks
1014  * to check.
1015  */
1016 static void rcu_preempt_check_callbacks(void)
1017 {
1018 }
1019
1020 /*
1021  * Wait for an rcu-preempt grace period, but make it happen quickly.
1022  * But because preemptible RCU does not exist, map to rcu-sched.
1023  */
1024 void synchronize_rcu_expedited(void)
1025 {
1026         synchronize_sched_expedited();
1027 }
1028 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1029
1030 #ifdef CONFIG_HOTPLUG_CPU
1031
1032 /*
1033  * Because preemptible RCU does not exist, there is never any need to
1034  * report on tasks preempted in RCU read-side critical sections during
1035  * expedited RCU grace periods.
1036  */
1037 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1038                                bool wake)
1039 {
1040 }
1041
1042 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1043
1044 /*
1045  * Because preemptible RCU does not exist, rcu_barrier() is just
1046  * another name for rcu_barrier_sched().
1047  */
1048 void rcu_barrier(void)
1049 {
1050         rcu_barrier_sched();
1051 }
1052 EXPORT_SYMBOL_GPL(rcu_barrier);
1053
1054 /*
1055  * Because preemptible RCU does not exist, it need not be initialized.
1056  */
1057 static void __init __rcu_init_preempt(void)
1058 {
1059 }
1060
1061 /*
1062  * Because preemptible RCU does not exist, tasks cannot possibly exit
1063  * while in preemptible RCU read-side critical sections.
1064  */
1065 void exit_rcu(void)
1066 {
1067 }
1068
1069 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1070
1071 #ifdef CONFIG_RCU_BOOST
1072
1073 #include "../locking/rtmutex_common.h"
1074
1075 #ifdef CONFIG_RCU_TRACE
1076
1077 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1078 {
1079         if (list_empty(&rnp->blkd_tasks))
1080                 rnp->n_balk_blkd_tasks++;
1081         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1082                 rnp->n_balk_exp_gp_tasks++;
1083         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1084                 rnp->n_balk_boost_tasks++;
1085         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1086                 rnp->n_balk_notblocked++;
1087         else if (rnp->gp_tasks != NULL &&
1088                  ULONG_CMP_LT(jiffies, rnp->boost_time))
1089                 rnp->n_balk_notyet++;
1090         else
1091                 rnp->n_balk_nos++;
1092 }
1093
1094 #else /* #ifdef CONFIG_RCU_TRACE */
1095
1096 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1097 {
1098 }
1099
1100 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1101
1102 static void rcu_wake_cond(struct task_struct *t, int status)
1103 {
1104         /*
1105          * If the thread is yielding, only wake it when this
1106          * is invoked from idle
1107          */
1108         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1109                 wake_up_process(t);
1110 }
1111
1112 /*
1113  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1114  * or ->boost_tasks, advancing the pointer to the next task in the
1115  * ->blkd_tasks list.
1116  *
1117  * Note that irqs must be enabled: boosting the task can block.
1118  * Returns 1 if there are more tasks needing to be boosted.
1119  */
1120 static int rcu_boost(struct rcu_node *rnp)
1121 {
1122         unsigned long flags;
1123         struct task_struct *t;
1124         struct list_head *tb;
1125
1126         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1127                 return 0;  /* Nothing left to boost. */
1128
1129         raw_spin_lock_irqsave(&rnp->lock, flags);
1130         smp_mb__after_unlock_lock();
1131
1132         /*
1133          * Recheck under the lock: all tasks in need of boosting
1134          * might exit their RCU read-side critical sections on their own.
1135          */
1136         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1137                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1138                 return 0;
1139         }
1140
1141         /*
1142          * Preferentially boost tasks blocking expedited grace periods.
1143          * This cannot starve the normal grace periods because a second
1144          * expedited grace period must boost all blocked tasks, including
1145          * those blocking the pre-existing normal grace period.
1146          */
1147         if (rnp->exp_tasks != NULL) {
1148                 tb = rnp->exp_tasks;
1149                 rnp->n_exp_boosts++;
1150         } else {
1151                 tb = rnp->boost_tasks;
1152                 rnp->n_normal_boosts++;
1153         }
1154         rnp->n_tasks_boosted++;
1155
1156         /*
1157          * We boost task t by manufacturing an rt_mutex that appears to
1158          * be held by task t.  We leave a pointer to that rt_mutex where
1159          * task t can find it, and task t will release the mutex when it
1160          * exits its outermost RCU read-side critical section.  Then
1161          * simply acquiring this artificial rt_mutex will boost task
1162          * t's priority.  (Thanks to tglx for suggesting this approach!)
1163          *
1164          * Note that task t must acquire rnp->lock to remove itself from
1165          * the ->blkd_tasks list, which it will do from exit() if from
1166          * nowhere else.  We therefore are guaranteed that task t will
1167          * stay around at least until we drop rnp->lock.  Note that
1168          * rnp->lock also resolves races between our priority boosting
1169          * and task t's exiting its outermost RCU read-side critical
1170          * section.
1171          */
1172         t = container_of(tb, struct task_struct, rcu_node_entry);
1173         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1174         init_completion(&rnp->boost_completion);
1175         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1176         /* Lock only for side effect: boosts task t's priority. */
1177         rt_mutex_lock(&rnp->boost_mtx);
1178         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1179
1180         /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1181         wait_for_completion(&rnp->boost_completion);
1182
1183         return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1184                ACCESS_ONCE(rnp->boost_tasks) != NULL;
1185 }
1186
1187 /*
1188  * Priority-boosting kthread.  One per leaf rcu_node and one for the
1189  * root rcu_node.
1190  */
1191 static int rcu_boost_kthread(void *arg)
1192 {
1193         struct rcu_node *rnp = (struct rcu_node *)arg;
1194         int spincnt = 0;
1195         int more2boost;
1196
1197         trace_rcu_utilization(TPS("Start boost kthread@init"));
1198         for (;;) {
1199                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1200                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1201                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1202                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1203                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1204                 more2boost = rcu_boost(rnp);
1205                 if (more2boost)
1206                         spincnt++;
1207                 else
1208                         spincnt = 0;
1209                 if (spincnt > 10) {
1210                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1211                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1212                         schedule_timeout_interruptible(2);
1213                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1214                         spincnt = 0;
1215                 }
1216         }
1217         /* NOTREACHED */
1218         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1219         return 0;
1220 }
1221
1222 /*
1223  * Check to see if it is time to start boosting RCU readers that are
1224  * blocking the current grace period, and, if so, tell the per-rcu_node
1225  * kthread to start boosting them.  If there is an expedited grace
1226  * period in progress, it is always time to boost.
1227  *
1228  * The caller must hold rnp->lock, which this function releases.
1229  * The ->boost_kthread_task is immortal, so we don't need to worry
1230  * about it going away.
1231  */
1232 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1233         __releases(rnp->lock)
1234 {
1235         struct task_struct *t;
1236
1237         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1238                 rnp->n_balk_exp_gp_tasks++;
1239                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1240                 return;
1241         }
1242         if (rnp->exp_tasks != NULL ||
1243             (rnp->gp_tasks != NULL &&
1244              rnp->boost_tasks == NULL &&
1245              rnp->qsmask == 0 &&
1246              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1247                 if (rnp->exp_tasks == NULL)
1248                         rnp->boost_tasks = rnp->gp_tasks;
1249                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1250                 t = rnp->boost_kthread_task;
1251                 if (t)
1252                         rcu_wake_cond(t, rnp->boost_kthread_status);
1253         } else {
1254                 rcu_initiate_boost_trace(rnp);
1255                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1256         }
1257 }
1258
1259 /*
1260  * Wake up the per-CPU kthread to invoke RCU callbacks.
1261  */
1262 static void invoke_rcu_callbacks_kthread(void)
1263 {
1264         unsigned long flags;
1265
1266         local_irq_save(flags);
1267         __this_cpu_write(rcu_cpu_has_work, 1);
1268         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1269             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1270                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1271                               __this_cpu_read(rcu_cpu_kthread_status));
1272         }
1273         local_irq_restore(flags);
1274 }
1275
1276 /*
1277  * Is the current CPU running the RCU-callbacks kthread?
1278  * Caller must have preemption disabled.
1279  */
1280 static bool rcu_is_callbacks_kthread(void)
1281 {
1282         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1283 }
1284
1285 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1286
1287 /*
1288  * Do priority-boost accounting for the start of a new grace period.
1289  */
1290 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1291 {
1292         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1293 }
1294
1295 /*
1296  * Create an RCU-boost kthread for the specified node if one does not
1297  * already exist.  We only create this kthread for preemptible RCU.
1298  * Returns zero if all is well, a negated errno otherwise.
1299  */
1300 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1301                                                  struct rcu_node *rnp)
1302 {
1303         int rnp_index = rnp - &rsp->node[0];
1304         unsigned long flags;
1305         struct sched_param sp;
1306         struct task_struct *t;
1307
1308         if (&rcu_preempt_state != rsp)
1309                 return 0;
1310
1311         if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1312                 return 0;
1313
1314         rsp->boost = 1;
1315         if (rnp->boost_kthread_task != NULL)
1316                 return 0;
1317         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1318                            "rcub/%d", rnp_index);
1319         if (IS_ERR(t))
1320                 return PTR_ERR(t);
1321         raw_spin_lock_irqsave(&rnp->lock, flags);
1322         smp_mb__after_unlock_lock();
1323         rnp->boost_kthread_task = t;
1324         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1325         sp.sched_priority = kthread_prio;
1326         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1327         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1328         return 0;
1329 }
1330
1331 static void rcu_kthread_do_work(void)
1332 {
1333         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1334         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1335         rcu_preempt_do_callbacks();
1336 }
1337
1338 static void rcu_cpu_kthread_setup(unsigned int cpu)
1339 {
1340         struct sched_param sp;
1341
1342         sp.sched_priority = kthread_prio;
1343         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1344 }
1345
1346 static void rcu_cpu_kthread_park(unsigned int cpu)
1347 {
1348         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1349 }
1350
1351 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1352 {
1353         return __this_cpu_read(rcu_cpu_has_work);
1354 }
1355
1356 /*
1357  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1358  * RCU softirq used in flavors and configurations of RCU that do not
1359  * support RCU priority boosting.
1360  */
1361 static void rcu_cpu_kthread(unsigned int cpu)
1362 {
1363         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1364         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1365         int spincnt;
1366
1367         for (spincnt = 0; spincnt < 10; spincnt++) {
1368                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1369                 local_bh_disable();
1370                 *statusp = RCU_KTHREAD_RUNNING;
1371                 this_cpu_inc(rcu_cpu_kthread_loops);
1372                 local_irq_disable();
1373                 work = *workp;
1374                 *workp = 0;
1375                 local_irq_enable();
1376                 if (work)
1377                         rcu_kthread_do_work();
1378                 local_bh_enable();
1379                 if (*workp == 0) {
1380                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1381                         *statusp = RCU_KTHREAD_WAITING;
1382                         return;
1383                 }
1384         }
1385         *statusp = RCU_KTHREAD_YIELDING;
1386         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1387         schedule_timeout_interruptible(2);
1388         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1389         *statusp = RCU_KTHREAD_WAITING;
1390 }
1391
1392 /*
1393  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1394  * served by the rcu_node in question.  The CPU hotplug lock is still
1395  * held, so the value of rnp->qsmaskinit will be stable.
1396  *
1397  * We don't include outgoingcpu in the affinity set, use -1 if there is
1398  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1399  * this function allows the kthread to execute on any CPU.
1400  */
1401 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1402 {
1403         struct task_struct *t = rnp->boost_kthread_task;
1404         unsigned long mask = rnp->qsmaskinit;
1405         cpumask_var_t cm;
1406         int cpu;
1407
1408         if (!t)
1409                 return;
1410         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1411                 return;
1412         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1413                 if ((mask & 0x1) && cpu != outgoingcpu)
1414                         cpumask_set_cpu(cpu, cm);
1415         if (cpumask_weight(cm) == 0) {
1416                 cpumask_setall(cm);
1417                 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1418                         cpumask_clear_cpu(cpu, cm);
1419                 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1420         }
1421         set_cpus_allowed_ptr(t, cm);
1422         free_cpumask_var(cm);
1423 }
1424
1425 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1426         .store                  = &rcu_cpu_kthread_task,
1427         .thread_should_run      = rcu_cpu_kthread_should_run,
1428         .thread_fn              = rcu_cpu_kthread,
1429         .thread_comm            = "rcuc/%u",
1430         .setup                  = rcu_cpu_kthread_setup,
1431         .park                   = rcu_cpu_kthread_park,
1432 };
1433
1434 /*
1435  * Spawn boost kthreads -- called as soon as the scheduler is running.
1436  */
1437 static void __init rcu_spawn_boost_kthreads(void)
1438 {
1439         struct rcu_node *rnp;
1440         int cpu;
1441
1442         for_each_possible_cpu(cpu)
1443                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1444         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1445         rnp = rcu_get_root(rcu_state_p);
1446         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1447         if (NUM_RCU_NODES > 1) {
1448                 rcu_for_each_leaf_node(rcu_state_p, rnp)
1449                         (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1450         }
1451 }
1452
1453 static void rcu_prepare_kthreads(int cpu)
1454 {
1455         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1456         struct rcu_node *rnp = rdp->mynode;
1457
1458         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1459         if (rcu_scheduler_fully_active)
1460                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1461 }
1462
1463 #else /* #ifdef CONFIG_RCU_BOOST */
1464
1465 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1466         __releases(rnp->lock)
1467 {
1468         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1469 }
1470
1471 static void invoke_rcu_callbacks_kthread(void)
1472 {
1473         WARN_ON_ONCE(1);
1474 }
1475
1476 static bool rcu_is_callbacks_kthread(void)
1477 {
1478         return false;
1479 }
1480
1481 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1482 {
1483 }
1484
1485 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1486 {
1487 }
1488
1489 static void __init rcu_spawn_boost_kthreads(void)
1490 {
1491 }
1492
1493 static void rcu_prepare_kthreads(int cpu)
1494 {
1495 }
1496
1497 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1498
1499 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1500
1501 /*
1502  * Check to see if any future RCU-related work will need to be done
1503  * by the current CPU, even if none need be done immediately, returning
1504  * 1 if so.  This function is part of the RCU implementation; it is -not-
1505  * an exported member of the RCU API.
1506  *
1507  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1508  * any flavor of RCU.
1509  */
1510 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1511 int rcu_needs_cpu(unsigned long *delta_jiffies)
1512 {
1513         *delta_jiffies = ULONG_MAX;
1514         return rcu_cpu_has_callbacks(NULL);
1515 }
1516 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1517
1518 /*
1519  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1520  * after it.
1521  */
1522 static void rcu_cleanup_after_idle(void)
1523 {
1524 }
1525
1526 /*
1527  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1528  * is nothing.
1529  */
1530 static void rcu_prepare_for_idle(void)
1531 {
1532 }
1533
1534 /*
1535  * Don't bother keeping a running count of the number of RCU callbacks
1536  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1537  */
1538 static void rcu_idle_count_callbacks_posted(void)
1539 {
1540 }
1541
1542 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1543
1544 /*
1545  * This code is invoked when a CPU goes idle, at which point we want
1546  * to have the CPU do everything required for RCU so that it can enter
1547  * the energy-efficient dyntick-idle mode.  This is handled by a
1548  * state machine implemented by rcu_prepare_for_idle() below.
1549  *
1550  * The following three proprocessor symbols control this state machine:
1551  *
1552  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1553  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1554  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1555  *      benchmarkers who might otherwise be tempted to set this to a large
1556  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1557  *      system.  And if you are -that- concerned about energy efficiency,
1558  *      just power the system down and be done with it!
1559  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1560  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1561  *      callbacks pending.  Setting this too high can OOM your system.
1562  *
1563  * The values below work well in practice.  If future workloads require
1564  * adjustment, they can be converted into kernel config parameters, though
1565  * making the state machine smarter might be a better option.
1566  */
1567 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1568 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1569
1570 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1571 module_param(rcu_idle_gp_delay, int, 0644);
1572 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1573 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1574
1575 extern int tick_nohz_active;
1576
1577 /*
1578  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1579  * only if it has been awhile since the last time we did so.  Afterwards,
1580  * if there are any callbacks ready for immediate invocation, return true.
1581  */
1582 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1583 {
1584         bool cbs_ready = false;
1585         struct rcu_data *rdp;
1586         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1587         struct rcu_node *rnp;
1588         struct rcu_state *rsp;
1589
1590         /* Exit early if we advanced recently. */
1591         if (jiffies == rdtp->last_advance_all)
1592                 return false;
1593         rdtp->last_advance_all = jiffies;
1594
1595         for_each_rcu_flavor(rsp) {
1596                 rdp = this_cpu_ptr(rsp->rda);
1597                 rnp = rdp->mynode;
1598
1599                 /*
1600                  * Don't bother checking unless a grace period has
1601                  * completed since we last checked and there are
1602                  * callbacks not yet ready to invoke.
1603                  */
1604                 if ((rdp->completed != rnp->completed ||
1605                      unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
1606                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1607                         note_gp_changes(rsp, rdp);
1608
1609                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1610                         cbs_ready = true;
1611         }
1612         return cbs_ready;
1613 }
1614
1615 /*
1616  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1617  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1618  * caller to set the timeout based on whether or not there are non-lazy
1619  * callbacks.
1620  *
1621  * The caller must have disabled interrupts.
1622  */
1623 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1624 int rcu_needs_cpu(unsigned long *dj)
1625 {
1626         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1627
1628         /* Snapshot to detect later posting of non-lazy callback. */
1629         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1630
1631         /* If no callbacks, RCU doesn't need the CPU. */
1632         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1633                 *dj = ULONG_MAX;
1634                 return 0;
1635         }
1636
1637         /* Attempt to advance callbacks. */
1638         if (rcu_try_advance_all_cbs()) {
1639                 /* Some ready to invoke, so initiate later invocation. */
1640                 invoke_rcu_core();
1641                 return 1;
1642         }
1643         rdtp->last_accelerate = jiffies;
1644
1645         /* Request timer delay depending on laziness, and round. */
1646         if (!rdtp->all_lazy) {
1647                 *dj = round_up(rcu_idle_gp_delay + jiffies,
1648                                rcu_idle_gp_delay) - jiffies;
1649         } else {
1650                 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1651         }
1652         return 0;
1653 }
1654 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1655
1656 /*
1657  * Prepare a CPU for idle from an RCU perspective.  The first major task
1658  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1659  * The second major task is to check to see if a non-lazy callback has
1660  * arrived at a CPU that previously had only lazy callbacks.  The third
1661  * major task is to accelerate (that is, assign grace-period numbers to)
1662  * any recently arrived callbacks.
1663  *
1664  * The caller must have disabled interrupts.
1665  */
1666 static void rcu_prepare_for_idle(void)
1667 {
1668 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1669         bool needwake;
1670         struct rcu_data *rdp;
1671         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1672         struct rcu_node *rnp;
1673         struct rcu_state *rsp;
1674         int tne;
1675
1676         /* Handle nohz enablement switches conservatively. */
1677         tne = ACCESS_ONCE(tick_nohz_active);
1678         if (tne != rdtp->tick_nohz_enabled_snap) {
1679                 if (rcu_cpu_has_callbacks(NULL))
1680                         invoke_rcu_core(); /* force nohz to see update. */
1681                 rdtp->tick_nohz_enabled_snap = tne;
1682                 return;
1683         }
1684         if (!tne)
1685                 return;
1686
1687         /* If this is a no-CBs CPU, no callbacks, just return. */
1688         if (rcu_is_nocb_cpu(smp_processor_id()))
1689                 return;
1690
1691         /*
1692          * If a non-lazy callback arrived at a CPU having only lazy
1693          * callbacks, invoke RCU core for the side-effect of recalculating
1694          * idle duration on re-entry to idle.
1695          */
1696         if (rdtp->all_lazy &&
1697             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1698                 rdtp->all_lazy = false;
1699                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1700                 invoke_rcu_core();
1701                 return;
1702         }
1703
1704         /*
1705          * If we have not yet accelerated this jiffy, accelerate all
1706          * callbacks on this CPU.
1707          */
1708         if (rdtp->last_accelerate == jiffies)
1709                 return;
1710         rdtp->last_accelerate = jiffies;
1711         for_each_rcu_flavor(rsp) {
1712                 rdp = this_cpu_ptr(rsp->rda);
1713                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1714                         continue;
1715                 rnp = rdp->mynode;
1716                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1717                 smp_mb__after_unlock_lock();
1718                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1719                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1720                 if (needwake)
1721                         rcu_gp_kthread_wake(rsp);
1722         }
1723 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1724 }
1725
1726 /*
1727  * Clean up for exit from idle.  Attempt to advance callbacks based on
1728  * any grace periods that elapsed while the CPU was idle, and if any
1729  * callbacks are now ready to invoke, initiate invocation.
1730  */
1731 static void rcu_cleanup_after_idle(void)
1732 {
1733 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1734         if (rcu_is_nocb_cpu(smp_processor_id()))
1735                 return;
1736         if (rcu_try_advance_all_cbs())
1737                 invoke_rcu_core();
1738 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1739 }
1740
1741 /*
1742  * Keep a running count of the number of non-lazy callbacks posted
1743  * on this CPU.  This running counter (which is never decremented) allows
1744  * rcu_prepare_for_idle() to detect when something out of the idle loop
1745  * posts a callback, even if an equal number of callbacks are invoked.
1746  * Of course, callbacks should only be posted from within a trace event
1747  * designed to be called from idle or from within RCU_NONIDLE().
1748  */
1749 static void rcu_idle_count_callbacks_posted(void)
1750 {
1751         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1752 }
1753
1754 /*
1755  * Data for flushing lazy RCU callbacks at OOM time.
1756  */
1757 static atomic_t oom_callback_count;
1758 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1759
1760 /*
1761  * RCU OOM callback -- decrement the outstanding count and deliver the
1762  * wake-up if we are the last one.
1763  */
1764 static void rcu_oom_callback(struct rcu_head *rhp)
1765 {
1766         if (atomic_dec_and_test(&oom_callback_count))
1767                 wake_up(&oom_callback_wq);
1768 }
1769
1770 /*
1771  * Post an rcu_oom_notify callback on the current CPU if it has at
1772  * least one lazy callback.  This will unnecessarily post callbacks
1773  * to CPUs that already have a non-lazy callback at the end of their
1774  * callback list, but this is an infrequent operation, so accept some
1775  * extra overhead to keep things simple.
1776  */
1777 static void rcu_oom_notify_cpu(void *unused)
1778 {
1779         struct rcu_state *rsp;
1780         struct rcu_data *rdp;
1781
1782         for_each_rcu_flavor(rsp) {
1783                 rdp = raw_cpu_ptr(rsp->rda);
1784                 if (rdp->qlen_lazy != 0) {
1785                         atomic_inc(&oom_callback_count);
1786                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1787                 }
1788         }
1789 }
1790
1791 /*
1792  * If low on memory, ensure that each CPU has a non-lazy callback.
1793  * This will wake up CPUs that have only lazy callbacks, in turn
1794  * ensuring that they free up the corresponding memory in a timely manner.
1795  * Because an uncertain amount of memory will be freed in some uncertain
1796  * timeframe, we do not claim to have freed anything.
1797  */
1798 static int rcu_oom_notify(struct notifier_block *self,
1799                           unsigned long notused, void *nfreed)
1800 {
1801         int cpu;
1802
1803         /* Wait for callbacks from earlier instance to complete. */
1804         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1805         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1806
1807         /*
1808          * Prevent premature wakeup: ensure that all increments happen
1809          * before there is a chance of the counter reaching zero.
1810          */
1811         atomic_set(&oom_callback_count, 1);
1812
1813         get_online_cpus();
1814         for_each_online_cpu(cpu) {
1815                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1816                 cond_resched_rcu_qs();
1817         }
1818         put_online_cpus();
1819
1820         /* Unconditionally decrement: no need to wake ourselves up. */
1821         atomic_dec(&oom_callback_count);
1822
1823         return NOTIFY_OK;
1824 }
1825
1826 static struct notifier_block rcu_oom_nb = {
1827         .notifier_call = rcu_oom_notify
1828 };
1829
1830 static int __init rcu_register_oom_notifier(void)
1831 {
1832         register_oom_notifier(&rcu_oom_nb);
1833         return 0;
1834 }
1835 early_initcall(rcu_register_oom_notifier);
1836
1837 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1838
1839 #ifdef CONFIG_RCU_CPU_STALL_INFO
1840
1841 #ifdef CONFIG_RCU_FAST_NO_HZ
1842
1843 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1844 {
1845         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1846         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1847
1848         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1849                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1850                 ulong2long(nlpd),
1851                 rdtp->all_lazy ? 'L' : '.',
1852                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1853 }
1854
1855 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1856
1857 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1858 {
1859         *cp = '\0';
1860 }
1861
1862 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1863
1864 /* Initiate the stall-info list. */
1865 static void print_cpu_stall_info_begin(void)
1866 {
1867         pr_cont("\n");
1868 }
1869
1870 /*
1871  * Print out diagnostic information for the specified stalled CPU.
1872  *
1873  * If the specified CPU is aware of the current RCU grace period
1874  * (flavor specified by rsp), then print the number of scheduling
1875  * clock interrupts the CPU has taken during the time that it has
1876  * been aware.  Otherwise, print the number of RCU grace periods
1877  * that this CPU is ignorant of, for example, "1" if the CPU was
1878  * aware of the previous grace period.
1879  *
1880  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1881  */
1882 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1883 {
1884         char fast_no_hz[72];
1885         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1886         struct rcu_dynticks *rdtp = rdp->dynticks;
1887         char *ticks_title;
1888         unsigned long ticks_value;
1889
1890         if (rsp->gpnum == rdp->gpnum) {
1891                 ticks_title = "ticks this GP";
1892                 ticks_value = rdp->ticks_this_gp;
1893         } else {
1894                 ticks_title = "GPs behind";
1895                 ticks_value = rsp->gpnum - rdp->gpnum;
1896         }
1897         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1898         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1899                cpu, ticks_value, ticks_title,
1900                atomic_read(&rdtp->dynticks) & 0xfff,
1901                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1902                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1903                ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1904                fast_no_hz);
1905 }
1906
1907 /* Terminate the stall-info list. */
1908 static void print_cpu_stall_info_end(void)
1909 {
1910         pr_err("\t");
1911 }
1912
1913 /* Zero ->ticks_this_gp for all flavors of RCU. */
1914 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1915 {
1916         rdp->ticks_this_gp = 0;
1917         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1918 }
1919
1920 /* Increment ->ticks_this_gp for all flavors of RCU. */
1921 static void increment_cpu_stall_ticks(void)
1922 {
1923         struct rcu_state *rsp;
1924
1925         for_each_rcu_flavor(rsp)
1926                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1927 }
1928
1929 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1930
1931 static void print_cpu_stall_info_begin(void)
1932 {
1933         pr_cont(" {");
1934 }
1935
1936 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1937 {
1938         pr_cont(" %d", cpu);
1939 }
1940
1941 static void print_cpu_stall_info_end(void)
1942 {
1943         pr_cont("} ");
1944 }
1945
1946 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1947 {
1948 }
1949
1950 static void increment_cpu_stall_ticks(void)
1951 {
1952 }
1953
1954 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1955
1956 #ifdef CONFIG_RCU_NOCB_CPU
1957
1958 /*
1959  * Offload callback processing from the boot-time-specified set of CPUs
1960  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1961  * kthread created that pulls the callbacks from the corresponding CPU,
1962  * waits for a grace period to elapse, and invokes the callbacks.
1963  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1964  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1965  * has been specified, in which case each kthread actively polls its
1966  * CPU.  (Which isn't so great for energy efficiency, but which does
1967  * reduce RCU's overhead on that CPU.)
1968  *
1969  * This is intended to be used in conjunction with Frederic Weisbecker's
1970  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1971  * running CPU-bound user-mode computations.
1972  *
1973  * Offloading of callback processing could also in theory be used as
1974  * an energy-efficiency measure because CPUs with no RCU callbacks
1975  * queued are more aggressive about entering dyntick-idle mode.
1976  */
1977
1978
1979 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1980 static int __init rcu_nocb_setup(char *str)
1981 {
1982         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1983         have_rcu_nocb_mask = true;
1984         cpulist_parse(str, rcu_nocb_mask);
1985         return 1;
1986 }
1987 __setup("rcu_nocbs=", rcu_nocb_setup);
1988
1989 static int __init parse_rcu_nocb_poll(char *arg)
1990 {
1991         rcu_nocb_poll = 1;
1992         return 0;
1993 }
1994 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1995
1996 /*
1997  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1998  * grace period.
1999  */
2000 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2001 {
2002         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2003 }
2004
2005 /*
2006  * Set the root rcu_node structure's ->need_future_gp field
2007  * based on the sum of those of all rcu_node structures.  This does
2008  * double-count the root rcu_node structure's requests, but this
2009  * is necessary to handle the possibility of a rcu_nocb_kthread()
2010  * having awakened during the time that the rcu_node structures
2011  * were being updated for the end of the previous grace period.
2012  */
2013 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2014 {
2015         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2016 }
2017
2018 static void rcu_init_one_nocb(struct rcu_node *rnp)
2019 {
2020         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2021         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2022 }
2023
2024 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2025 /* Is the specified CPU a no-CBs CPU? */
2026 bool rcu_is_nocb_cpu(int cpu)
2027 {
2028         if (have_rcu_nocb_mask)
2029                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2030         return false;
2031 }
2032 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2033
2034 /*
2035  * Kick the leader kthread for this NOCB group.
2036  */
2037 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2038 {
2039         struct rcu_data *rdp_leader = rdp->nocb_leader;
2040
2041         if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2042                 return;
2043         if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2044                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
2045                 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2046                 wake_up(&rdp_leader->nocb_wq);
2047         }
2048 }
2049
2050 /*
2051  * Does the specified CPU need an RCU callback for the specified flavor
2052  * of rcu_barrier()?
2053  */
2054 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2055 {
2056         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2057         struct rcu_head *rhp;
2058
2059         /* No-CBs CPUs might have callbacks on any of three lists. */
2060         rhp = ACCESS_ONCE(rdp->nocb_head);
2061         if (!rhp)
2062                 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
2063         if (!rhp)
2064                 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
2065
2066         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2067         if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
2068                 /* RCU callback enqueued before CPU first came online??? */
2069                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2070                        cpu, rhp->func);
2071                 WARN_ON_ONCE(1);
2072         }
2073
2074         return !!rhp;
2075 }
2076
2077 /*
2078  * Enqueue the specified string of rcu_head structures onto the specified
2079  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2080  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2081  * counts are supplied by rhcount and rhcount_lazy.
2082  *
2083  * If warranted, also wake up the kthread servicing this CPUs queues.
2084  */
2085 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2086                                     struct rcu_head *rhp,
2087                                     struct rcu_head **rhtp,
2088                                     int rhcount, int rhcount_lazy,
2089                                     unsigned long flags)
2090 {
2091         int len;
2092         struct rcu_head **old_rhpp;
2093         struct task_struct *t;
2094
2095         /* Enqueue the callback on the nocb list and update counts. */
2096         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2097         ACCESS_ONCE(*old_rhpp) = rhp;
2098         atomic_long_add(rhcount, &rdp->nocb_q_count);
2099         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2100         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2101
2102         /* If we are not being polled and there is a kthread, awaken it ... */
2103         t = ACCESS_ONCE(rdp->nocb_kthread);
2104         if (rcu_nocb_poll || !t) {
2105                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2106                                     TPS("WakeNotPoll"));
2107                 return;
2108         }
2109         len = atomic_long_read(&rdp->nocb_q_count);
2110         if (old_rhpp == &rdp->nocb_head) {
2111                 if (!irqs_disabled_flags(flags)) {
2112                         /* ... if queue was empty ... */
2113                         wake_nocb_leader(rdp, false);
2114                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2115                                             TPS("WakeEmpty"));
2116                 } else {
2117                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2118                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119                                             TPS("WakeEmptyIsDeferred"));
2120                 }
2121                 rdp->qlen_last_fqs_check = 0;
2122         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2123                 /* ... or if many callbacks queued. */
2124                 if (!irqs_disabled_flags(flags)) {
2125                         wake_nocb_leader(rdp, true);
2126                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2127                                             TPS("WakeOvf"));
2128                 } else {
2129                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2130                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2131                                             TPS("WakeOvfIsDeferred"));
2132                 }
2133                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2134         } else {
2135                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2136         }
2137         return;
2138 }
2139
2140 /*
2141  * This is a helper for __call_rcu(), which invokes this when the normal
2142  * callback queue is inoperable.  If this is not a no-CBs CPU, this
2143  * function returns failure back to __call_rcu(), which can complain
2144  * appropriately.
2145  *
2146  * Otherwise, this function queues the callback where the corresponding
2147  * "rcuo" kthread can find it.
2148  */
2149 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2150                             bool lazy, unsigned long flags)
2151 {
2152
2153         if (!rcu_is_nocb_cpu(rdp->cpu))
2154                 return false;
2155         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2156         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2157                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2158                                          (unsigned long)rhp->func,
2159                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
2160                                          -atomic_long_read(&rdp->nocb_q_count));
2161         else
2162                 trace_rcu_callback(rdp->rsp->name, rhp,
2163                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
2164                                    -atomic_long_read(&rdp->nocb_q_count));
2165
2166         /*
2167          * If called from an extended quiescent state with interrupts
2168          * disabled, invoke the RCU core in order to allow the idle-entry
2169          * deferred-wakeup check to function.
2170          */
2171         if (irqs_disabled_flags(flags) &&
2172             !rcu_is_watching() &&
2173             cpu_online(smp_processor_id()))
2174                 invoke_rcu_core();
2175
2176         return true;
2177 }
2178
2179 /*
2180  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2181  * not a no-CBs CPU.
2182  */
2183 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2184                                                      struct rcu_data *rdp,
2185                                                      unsigned long flags)
2186 {
2187         long ql = rsp->qlen;
2188         long qll = rsp->qlen_lazy;
2189
2190         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2191         if (!rcu_is_nocb_cpu(smp_processor_id()))
2192                 return false;
2193         rsp->qlen = 0;
2194         rsp->qlen_lazy = 0;
2195
2196         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
2197         if (rsp->orphan_donelist != NULL) {
2198                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2199                                         rsp->orphan_donetail, ql, qll, flags);
2200                 ql = qll = 0;
2201                 rsp->orphan_donelist = NULL;
2202                 rsp->orphan_donetail = &rsp->orphan_donelist;
2203         }
2204         if (rsp->orphan_nxtlist != NULL) {
2205                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2206                                         rsp->orphan_nxttail, ql, qll, flags);
2207                 ql = qll = 0;
2208                 rsp->orphan_nxtlist = NULL;
2209                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2210         }
2211         return true;
2212 }
2213
2214 /*
2215  * If necessary, kick off a new grace period, and either way wait
2216  * for a subsequent grace period to complete.
2217  */
2218 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2219 {
2220         unsigned long c;
2221         bool d;
2222         unsigned long flags;
2223         bool needwake;
2224         struct rcu_node *rnp = rdp->mynode;
2225
2226         raw_spin_lock_irqsave(&rnp->lock, flags);
2227         smp_mb__after_unlock_lock();
2228         needwake = rcu_start_future_gp(rnp, rdp, &c);
2229         raw_spin_unlock_irqrestore(&rnp->lock, flags);
2230         if (needwake)
2231                 rcu_gp_kthread_wake(rdp->rsp);
2232
2233         /*
2234          * Wait for the grace period.  Do so interruptibly to avoid messing
2235          * up the load average.
2236          */
2237         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2238         for (;;) {
2239                 wait_event_interruptible(
2240                         rnp->nocb_gp_wq[c & 0x1],
2241                         (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2242                 if (likely(d))
2243                         break;
2244                 WARN_ON(signal_pending(current));
2245                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2246         }
2247         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2248         smp_mb(); /* Ensure that CB invocation happens after GP end. */
2249 }
2250
2251 /*
2252  * Leaders come here to wait for additional callbacks to show up.
2253  * This function does not return until callbacks appear.
2254  */
2255 static void nocb_leader_wait(struct rcu_data *my_rdp)
2256 {
2257         bool firsttime = true;
2258         bool gotcbs;
2259         struct rcu_data *rdp;
2260         struct rcu_head **tail;
2261
2262 wait_again:
2263
2264         /* Wait for callbacks to appear. */
2265         if (!rcu_nocb_poll) {
2266                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2267                 wait_event_interruptible(my_rdp->nocb_wq,
2268                                 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2269                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2270         } else if (firsttime) {
2271                 firsttime = false; /* Don't drown trace log with "Poll"! */
2272                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2273         }
2274
2275         /*
2276          * Each pass through the following loop checks a follower for CBs.
2277          * We are our own first follower.  Any CBs found are moved to
2278          * nocb_gp_head, where they await a grace period.
2279          */
2280         gotcbs = false;
2281         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2282                 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2283                 if (!rdp->nocb_gp_head)
2284                         continue;  /* No CBs here, try next follower. */
2285
2286                 /* Move callbacks to wait-for-GP list, which is empty. */
2287                 ACCESS_ONCE(rdp->nocb_head) = NULL;
2288                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2289                 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2290                 rdp->nocb_gp_count_lazy =
2291                         atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2292                 gotcbs = true;
2293         }
2294
2295         /*
2296          * If there were no callbacks, sleep a bit, rescan after a
2297          * memory barrier, and go retry.
2298          */
2299         if (unlikely(!gotcbs)) {
2300                 if (!rcu_nocb_poll)
2301                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2302                                             "WokeEmpty");
2303                 WARN_ON(signal_pending(current));
2304                 schedule_timeout_interruptible(1);
2305
2306                 /* Rescan in case we were a victim of memory ordering. */
2307                 my_rdp->nocb_leader_sleep = true;
2308                 smp_mb();  /* Ensure _sleep true before scan. */
2309                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2310                         if (ACCESS_ONCE(rdp->nocb_head)) {
2311                                 /* Found CB, so short-circuit next wait. */
2312                                 my_rdp->nocb_leader_sleep = false;
2313                                 break;
2314                         }
2315                 goto wait_again;
2316         }
2317
2318         /* Wait for one grace period. */
2319         rcu_nocb_wait_gp(my_rdp);
2320
2321         /*
2322          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2323          * We set it now, but recheck for new callbacks while
2324          * traversing our follower list.
2325          */
2326         my_rdp->nocb_leader_sleep = true;
2327         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2328
2329         /* Each pass through the following loop wakes a follower, if needed. */
2330         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2331                 if (ACCESS_ONCE(rdp->nocb_head))
2332                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2333                 if (!rdp->nocb_gp_head)
2334                         continue; /* No CBs, so no need to wake follower. */
2335
2336                 /* Append callbacks to follower's "done" list. */
2337                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2338                 *tail = rdp->nocb_gp_head;
2339                 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2340                 atomic_long_add(rdp->nocb_gp_count_lazy,
2341                                 &rdp->nocb_follower_count_lazy);
2342                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2343                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2344                         /*
2345                          * List was empty, wake up the follower.
2346                          * Memory barriers supplied by atomic_long_add().
2347                          */
2348                         wake_up(&rdp->nocb_wq);
2349                 }
2350         }
2351
2352         /* If we (the leader) don't have CBs, go wait some more. */
2353         if (!my_rdp->nocb_follower_head)
2354                 goto wait_again;
2355 }
2356
2357 /*
2358  * Followers come here to wait for additional callbacks to show up.
2359  * This function does not return until callbacks appear.
2360  */
2361 static void nocb_follower_wait(struct rcu_data *rdp)
2362 {
2363         bool firsttime = true;
2364
2365         for (;;) {
2366                 if (!rcu_nocb_poll) {
2367                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2368                                             "FollowerSleep");
2369                         wait_event_interruptible(rdp->nocb_wq,
2370                                                  ACCESS_ONCE(rdp->nocb_follower_head));
2371                 } else if (firsttime) {
2372                         /* Don't drown trace log with "Poll"! */
2373                         firsttime = false;
2374                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2375                 }
2376                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2377                         /* ^^^ Ensure CB invocation follows _head test. */
2378                         return;
2379                 }
2380                 if (!rcu_nocb_poll)
2381                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2382                                             "WokeEmpty");
2383                 WARN_ON(signal_pending(current));
2384                 schedule_timeout_interruptible(1);
2385         }
2386 }
2387
2388 /*
2389  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2390  * callbacks queued by the corresponding no-CBs CPU, however, there is
2391  * an optional leader-follower relationship so that the grace-period
2392  * kthreads don't have to do quite so many wakeups.
2393  */
2394 static int rcu_nocb_kthread(void *arg)
2395 {
2396         int c, cl;
2397         struct rcu_head *list;
2398         struct rcu_head *next;
2399         struct rcu_head **tail;
2400         struct rcu_data *rdp = arg;
2401
2402         /* Each pass through this loop invokes one batch of callbacks */
2403         for (;;) {
2404                 /* Wait for callbacks. */
2405                 if (rdp->nocb_leader == rdp)
2406                         nocb_leader_wait(rdp);
2407                 else
2408                         nocb_follower_wait(rdp);
2409
2410                 /* Pull the ready-to-invoke callbacks onto local list. */
2411                 list = ACCESS_ONCE(rdp->nocb_follower_head);
2412                 BUG_ON(!list);
2413                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2414                 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2415                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2416                 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2417                 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2418                 rdp->nocb_p_count += c;
2419                 rdp->nocb_p_count_lazy += cl;
2420
2421                 /* Each pass through the following loop invokes a callback. */
2422                 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2423                 c = cl = 0;
2424                 while (list) {
2425                         next = list->next;
2426                         /* Wait for enqueuing to complete, if needed. */
2427                         while (next == NULL && &list->next != tail) {
2428                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2429                                                     TPS("WaitQueue"));
2430                                 schedule_timeout_interruptible(1);
2431                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2432                                                     TPS("WokeQueue"));
2433                                 next = list->next;
2434                         }
2435                         debug_rcu_head_unqueue(list);
2436                         local_bh_disable();
2437                         if (__rcu_reclaim(rdp->rsp->name, list))
2438                                 cl++;
2439                         c++;
2440                         local_bh_enable();
2441                         list = next;
2442                 }
2443                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2444                 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2445                 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2446                                                 rdp->nocb_p_count_lazy - cl;
2447                 rdp->n_nocbs_invoked += c;
2448         }
2449         return 0;
2450 }
2451
2452 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2453 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2454 {
2455         return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2456 }
2457
2458 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2459 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2460 {
2461         int ndw;
2462
2463         if (!rcu_nocb_need_deferred_wakeup(rdp))
2464                 return;
2465         ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2466         ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2467         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2468         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2469 }
2470
2471 void __init rcu_init_nohz(void)
2472 {
2473         int cpu;
2474         bool need_rcu_nocb_mask = true;
2475         struct rcu_state *rsp;
2476
2477 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2478         need_rcu_nocb_mask = false;
2479 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2480
2481 #if defined(CONFIG_NO_HZ_FULL)
2482         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2483                 need_rcu_nocb_mask = true;
2484 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2485
2486         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2487                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2488                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2489                         return;
2490                 }
2491                 have_rcu_nocb_mask = true;
2492         }
2493         if (!have_rcu_nocb_mask)
2494                 return;
2495
2496 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2497         pr_info("\tOffload RCU callbacks from CPU 0\n");
2498         cpumask_set_cpu(0, rcu_nocb_mask);
2499 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2500 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2501         pr_info("\tOffload RCU callbacks from all CPUs\n");
2502         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2503 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2504 #if defined(CONFIG_NO_HZ_FULL)
2505         if (tick_nohz_full_running)
2506                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2507 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2508
2509         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2510                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2511                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2512                             rcu_nocb_mask);
2513         }
2514         cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2515         pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2516         if (rcu_nocb_poll)
2517                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2518
2519         for_each_rcu_flavor(rsp) {
2520                 for_each_cpu(cpu, rcu_nocb_mask) {
2521                         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2522
2523                         /*
2524                          * If there are early callbacks, they will need
2525                          * to be moved to the nocb lists.
2526                          */
2527                         WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2528                                      &rdp->nxtlist &&
2529                                      rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2530                         init_nocb_callback_list(rdp);
2531                 }
2532                 rcu_organize_nocb_kthreads(rsp);
2533         }
2534 }
2535
2536 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2537 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2538 {
2539         rdp->nocb_tail = &rdp->nocb_head;
2540         init_waitqueue_head(&rdp->nocb_wq);
2541         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2542 }
2543
2544 /*
2545  * If the specified CPU is a no-CBs CPU that does not already have its
2546  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2547  * brought online out of order, this can require re-organizing the
2548  * leader-follower relationships.
2549  */
2550 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2551 {
2552         struct rcu_data *rdp;
2553         struct rcu_data *rdp_last;
2554         struct rcu_data *rdp_old_leader;
2555         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2556         struct task_struct *t;
2557
2558         /*
2559          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2560          * then nothing to do.
2561          */
2562         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2563                 return;
2564
2565         /* If we didn't spawn the leader first, reorganize! */
2566         rdp_old_leader = rdp_spawn->nocb_leader;
2567         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2568                 rdp_last = NULL;
2569                 rdp = rdp_old_leader;
2570                 do {
2571                         rdp->nocb_leader = rdp_spawn;
2572                         if (rdp_last && rdp != rdp_spawn)
2573                                 rdp_last->nocb_next_follower = rdp;
2574                         if (rdp == rdp_spawn) {
2575                                 rdp = rdp->nocb_next_follower;
2576                         } else {
2577                                 rdp_last = rdp;
2578                                 rdp = rdp->nocb_next_follower;
2579                                 rdp_last->nocb_next_follower = NULL;
2580                         }
2581                 } while (rdp);
2582                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2583         }
2584
2585         /* Spawn the kthread for this CPU and RCU flavor. */
2586         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2587                         "rcuo%c/%d", rsp->abbr, cpu);
2588         BUG_ON(IS_ERR(t));
2589         ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2590 }
2591
2592 /*
2593  * If the specified CPU is a no-CBs CPU that does not already have its
2594  * rcuo kthreads, spawn them.
2595  */
2596 static void rcu_spawn_all_nocb_kthreads(int cpu)
2597 {
2598         struct rcu_state *rsp;
2599
2600         if (rcu_scheduler_fully_active)
2601                 for_each_rcu_flavor(rsp)
2602                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2603 }
2604
2605 /*
2606  * Once the scheduler is running, spawn rcuo kthreads for all online
2607  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2608  * non-boot CPUs come online -- if this changes, we will need to add
2609  * some mutual exclusion.
2610  */
2611 static void __init rcu_spawn_nocb_kthreads(void)
2612 {
2613         int cpu;
2614
2615         for_each_online_cpu(cpu)
2616                 rcu_spawn_all_nocb_kthreads(cpu);
2617 }
2618
2619 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2620 static int rcu_nocb_leader_stride = -1;
2621 module_param(rcu_nocb_leader_stride, int, 0444);
2622
2623 /*
2624  * Initialize leader-follower relationships for all no-CBs CPU.
2625  */
2626 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2627 {
2628         int cpu;
2629         int ls = rcu_nocb_leader_stride;
2630         int nl = 0;  /* Next leader. */
2631         struct rcu_data *rdp;
2632         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2633         struct rcu_data *rdp_prev = NULL;
2634
2635         if (!have_rcu_nocb_mask)
2636                 return;
2637         if (ls == -1) {
2638                 ls = int_sqrt(nr_cpu_ids);
2639                 rcu_nocb_leader_stride = ls;
2640         }
2641
2642         /*
2643          * Each pass through this loop sets up one rcu_data structure and
2644          * spawns one rcu_nocb_kthread().
2645          */
2646         for_each_cpu(cpu, rcu_nocb_mask) {
2647                 rdp = per_cpu_ptr(rsp->rda, cpu);
2648                 if (rdp->cpu >= nl) {
2649                         /* New leader, set up for followers & next leader. */
2650                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2651                         rdp->nocb_leader = rdp;
2652                         rdp_leader = rdp;
2653                 } else {
2654                         /* Another follower, link to previous leader. */
2655                         rdp->nocb_leader = rdp_leader;
2656                         rdp_prev->nocb_next_follower = rdp;
2657                 }
2658                 rdp_prev = rdp;
2659         }
2660 }
2661
2662 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2663 static bool init_nocb_callback_list(struct rcu_data *rdp)
2664 {
2665         if (!rcu_is_nocb_cpu(rdp->cpu))
2666                 return false;
2667
2668         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2669         return true;
2670 }
2671
2672 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2673
2674 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2675 {
2676         WARN_ON_ONCE(1); /* Should be dead code. */
2677         return false;
2678 }
2679
2680 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2681 {
2682 }
2683
2684 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2685 {
2686 }
2687
2688 static void rcu_init_one_nocb(struct rcu_node *rnp)
2689 {
2690 }
2691
2692 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2693                             bool lazy, unsigned long flags)
2694 {
2695         return false;
2696 }
2697
2698 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2699                                                      struct rcu_data *rdp,
2700                                                      unsigned long flags)
2701 {
2702         return false;
2703 }
2704
2705 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2706 {
2707 }
2708
2709 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2710 {
2711         return false;
2712 }
2713
2714 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2715 {
2716 }
2717
2718 static void rcu_spawn_all_nocb_kthreads(int cpu)
2719 {
2720 }
2721
2722 static void __init rcu_spawn_nocb_kthreads(void)
2723 {
2724 }
2725
2726 static bool init_nocb_callback_list(struct rcu_data *rdp)
2727 {
2728         return false;
2729 }
2730
2731 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2732
2733 /*
2734  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2735  * arbitrarily long period of time with the scheduling-clock tick turned
2736  * off.  RCU will be paying attention to this CPU because it is in the
2737  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2738  * machine because the scheduling-clock tick has been disabled.  Therefore,
2739  * if an adaptive-ticks CPU is failing to respond to the current grace
2740  * period and has not be idle from an RCU perspective, kick it.
2741  */
2742 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2743 {
2744 #ifdef CONFIG_NO_HZ_FULL
2745         if (tick_nohz_full_cpu(cpu))
2746                 smp_send_reschedule(cpu);
2747 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2748 }
2749
2750
2751 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2752
2753 static int full_sysidle_state;          /* Current system-idle state. */
2754 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2755 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2756 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2757 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2758 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2759
2760 /*
2761  * Invoked to note exit from irq or task transition to idle.  Note that
2762  * usermode execution does -not- count as idle here!  After all, we want
2763  * to detect full-system idle states, not RCU quiescent states and grace
2764  * periods.  The caller must have disabled interrupts.
2765  */
2766 static void rcu_sysidle_enter(int irq)
2767 {
2768         unsigned long j;
2769         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2770
2771         /* If there are no nohz_full= CPUs, no need to track this. */
2772         if (!tick_nohz_full_enabled())
2773                 return;
2774
2775         /* Adjust nesting, check for fully idle. */
2776         if (irq) {
2777                 rdtp->dynticks_idle_nesting--;
2778                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2779                 if (rdtp->dynticks_idle_nesting != 0)
2780                         return;  /* Still not fully idle. */
2781         } else {
2782                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2783                     DYNTICK_TASK_NEST_VALUE) {
2784                         rdtp->dynticks_idle_nesting = 0;
2785                 } else {
2786                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2787                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2788                         return;  /* Still not fully idle. */
2789                 }
2790         }
2791
2792         /* Record start of fully idle period. */
2793         j = jiffies;
2794         ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2795         smp_mb__before_atomic();
2796         atomic_inc(&rdtp->dynticks_idle);
2797         smp_mb__after_atomic();
2798         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2799 }
2800
2801 /*
2802  * Unconditionally force exit from full system-idle state.  This is
2803  * invoked when a normal CPU exits idle, but must be called separately
2804  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2805  * is that the timekeeping CPU is permitted to take scheduling-clock
2806  * interrupts while the system is in system-idle state, and of course
2807  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2808  * interrupt from any other type of interrupt.
2809  */
2810 void rcu_sysidle_force_exit(void)
2811 {
2812         int oldstate = ACCESS_ONCE(full_sysidle_state);
2813         int newoldstate;
2814
2815         /*
2816          * Each pass through the following loop attempts to exit full
2817          * system-idle state.  If contention proves to be a problem,
2818          * a trylock-based contention tree could be used here.
2819          */
2820         while (oldstate > RCU_SYSIDLE_SHORT) {
2821                 newoldstate = cmpxchg(&full_sysidle_state,
2822                                       oldstate, RCU_SYSIDLE_NOT);
2823                 if (oldstate == newoldstate &&
2824                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2825                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2826                         return; /* We cleared it, done! */
2827                 }
2828                 oldstate = newoldstate;
2829         }
2830         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2831 }
2832
2833 /*
2834  * Invoked to note entry to irq or task transition from idle.  Note that
2835  * usermode execution does -not- count as idle here!  The caller must
2836  * have disabled interrupts.
2837  */
2838 static void rcu_sysidle_exit(int irq)
2839 {
2840         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2841
2842         /* If there are no nohz_full= CPUs, no need to track this. */
2843         if (!tick_nohz_full_enabled())
2844                 return;
2845
2846         /* Adjust nesting, check for already non-idle. */
2847         if (irq) {
2848                 rdtp->dynticks_idle_nesting++;
2849                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2850                 if (rdtp->dynticks_idle_nesting != 1)
2851                         return; /* Already non-idle. */
2852         } else {
2853                 /*
2854                  * Allow for irq misnesting.  Yes, it really is possible
2855                  * to enter an irq handler then never leave it, and maybe
2856                  * also vice versa.  Handle both possibilities.
2857                  */
2858                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2859                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2860                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2861                         return; /* Already non-idle. */
2862                 } else {
2863                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2864                 }
2865         }
2866
2867         /* Record end of idle period. */
2868         smp_mb__before_atomic();
2869         atomic_inc(&rdtp->dynticks_idle);
2870         smp_mb__after_atomic();
2871         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2872
2873         /*
2874          * If we are the timekeeping CPU, we are permitted to be non-idle
2875          * during a system-idle state.  This must be the case, because
2876          * the timekeeping CPU has to take scheduling-clock interrupts
2877          * during the time that the system is transitioning to full
2878          * system-idle state.  This means that the timekeeping CPU must
2879          * invoke rcu_sysidle_force_exit() directly if it does anything
2880          * more than take a scheduling-clock interrupt.
2881          */
2882         if (smp_processor_id() == tick_do_timer_cpu)
2883                 return;
2884
2885         /* Update system-idle state: We are clearly no longer fully idle! */
2886         rcu_sysidle_force_exit();
2887 }
2888
2889 /*
2890  * Check to see if the current CPU is idle.  Note that usermode execution
2891  * does not count as idle.  The caller must have disabled interrupts.
2892  */
2893 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2894                                   unsigned long *maxj)
2895 {
2896         int cur;
2897         unsigned long j;
2898         struct rcu_dynticks *rdtp = rdp->dynticks;
2899
2900         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2901         if (!tick_nohz_full_enabled())
2902                 return;
2903
2904         /*
2905          * If some other CPU has already reported non-idle, if this is
2906          * not the flavor of RCU that tracks sysidle state, or if this
2907          * is an offline or the timekeeping CPU, nothing to do.
2908          */
2909         if (!*isidle || rdp->rsp != rcu_state_p ||
2910             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2911                 return;
2912         if (rcu_gp_in_progress(rdp->rsp))
2913                 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2914
2915         /* Pick up current idle and NMI-nesting counter and check. */
2916         cur = atomic_read(&rdtp->dynticks_idle);
2917         if (cur & 0x1) {
2918                 *isidle = false; /* We are not idle! */
2919                 return;
2920         }
2921         smp_mb(); /* Read counters before timestamps. */
2922
2923         /* Pick up timestamps. */
2924         j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2925         /* If this CPU entered idle more recently, update maxj timestamp. */
2926         if (ULONG_CMP_LT(*maxj, j))
2927                 *maxj = j;
2928 }
2929
2930 /*
2931  * Is this the flavor of RCU that is handling full-system idle?
2932  */
2933 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2934 {
2935         return rsp == rcu_state_p;
2936 }
2937
2938 /*
2939  * Return a delay in jiffies based on the number of CPUs, rcu_node
2940  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2941  * systems more time to transition to full-idle state in order to
2942  * avoid the cache thrashing that otherwise occur on the state variable.
2943  * Really small systems (less than a couple of tens of CPUs) should
2944  * instead use a single global atomically incremented counter, and later
2945  * versions of this will automatically reconfigure themselves accordingly.
2946  */
2947 static unsigned long rcu_sysidle_delay(void)
2948 {
2949         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2950                 return 0;
2951         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2952 }
2953
2954 /*
2955  * Advance the full-system-idle state.  This is invoked when all of
2956  * the non-timekeeping CPUs are idle.
2957  */
2958 static void rcu_sysidle(unsigned long j)
2959 {
2960         /* Check the current state. */
2961         switch (ACCESS_ONCE(full_sysidle_state)) {
2962         case RCU_SYSIDLE_NOT:
2963
2964                 /* First time all are idle, so note a short idle period. */
2965                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2966                 break;
2967
2968         case RCU_SYSIDLE_SHORT:
2969
2970                 /*
2971                  * Idle for a bit, time to advance to next state?
2972                  * cmpxchg failure means race with non-idle, let them win.
2973                  */
2974                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2975                         (void)cmpxchg(&full_sysidle_state,
2976                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2977                 break;
2978
2979         case RCU_SYSIDLE_LONG:
2980
2981                 /*
2982                  * Do an additional check pass before advancing to full.
2983                  * cmpxchg failure means race with non-idle, let them win.
2984                  */
2985                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2986                         (void)cmpxchg(&full_sysidle_state,
2987                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2988                 break;
2989
2990         default:
2991                 break;
2992         }
2993 }
2994
2995 /*
2996  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2997  * back to the beginning.
2998  */
2999 static void rcu_sysidle_cancel(void)
3000 {
3001         smp_mb();
3002         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
3003                 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
3004 }
3005
3006 /*
3007  * Update the sysidle state based on the results of a force-quiescent-state
3008  * scan of the CPUs' dyntick-idle state.
3009  */
3010 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
3011                                unsigned long maxj, bool gpkt)
3012 {
3013         if (rsp != rcu_state_p)
3014                 return;  /* Wrong flavor, ignore. */
3015         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
3016                 return;  /* Running state machine from timekeeping CPU. */
3017         if (isidle)
3018                 rcu_sysidle(maxj);    /* More idle! */
3019         else
3020                 rcu_sysidle_cancel(); /* Idle is over. */
3021 }
3022
3023 /*
3024  * Wrapper for rcu_sysidle_report() when called from the grace-period
3025  * kthread's context.
3026  */
3027 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3028                                   unsigned long maxj)
3029 {
3030         /* If there are no nohz_full= CPUs, no need to track this. */
3031         if (!tick_nohz_full_enabled())
3032                 return;
3033
3034         rcu_sysidle_report(rsp, isidle, maxj, true);
3035 }
3036
3037 /* Callback and function for forcing an RCU grace period. */
3038 struct rcu_sysidle_head {
3039         struct rcu_head rh;
3040         int inuse;
3041 };
3042
3043 static void rcu_sysidle_cb(struct rcu_head *rhp)
3044 {
3045         struct rcu_sysidle_head *rshp;
3046
3047         /*
3048          * The following memory barrier is needed to replace the
3049          * memory barriers that would normally be in the memory
3050          * allocator.
3051          */
3052         smp_mb();  /* grace period precedes setting inuse. */
3053
3054         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3055         ACCESS_ONCE(rshp->inuse) = 0;
3056 }
3057
3058 /*
3059  * Check to see if the system is fully idle, other than the timekeeping CPU.
3060  * The caller must have disabled interrupts.  This is not intended to be
3061  * called unless tick_nohz_full_enabled().
3062  */
3063 bool rcu_sys_is_idle(void)
3064 {
3065         static struct rcu_sysidle_head rsh;
3066         int rss = ACCESS_ONCE(full_sysidle_state);
3067
3068         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3069                 return false;
3070
3071         /* Handle small-system case by doing a full scan of CPUs. */
3072         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3073                 int oldrss = rss - 1;
3074
3075                 /*
3076                  * One pass to advance to each state up to _FULL.
3077                  * Give up if any pass fails to advance the state.
3078                  */
3079                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3080                         int cpu;
3081                         bool isidle = true;
3082                         unsigned long maxj = jiffies - ULONG_MAX / 4;
3083                         struct rcu_data *rdp;
3084
3085                         /* Scan all the CPUs looking for nonidle CPUs. */
3086                         for_each_possible_cpu(cpu) {
3087                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3088                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3089                                 if (!isidle)
3090                                         break;
3091                         }
3092                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3093                         oldrss = rss;
3094                         rss = ACCESS_ONCE(full_sysidle_state);
3095                 }
3096         }
3097
3098         /* If this is the first observation of an idle period, record it. */
3099         if (rss == RCU_SYSIDLE_FULL) {
3100                 rss = cmpxchg(&full_sysidle_state,
3101                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3102                 return rss == RCU_SYSIDLE_FULL;
3103         }
3104
3105         smp_mb(); /* ensure rss load happens before later caller actions. */
3106
3107         /* If already fully idle, tell the caller (in case of races). */
3108         if (rss == RCU_SYSIDLE_FULL_NOTED)
3109                 return true;
3110
3111         /*
3112          * If we aren't there yet, and a grace period is not in flight,
3113          * initiate a grace period.  Either way, tell the caller that
3114          * we are not there yet.  We use an xchg() rather than an assignment
3115          * to make up for the memory barriers that would otherwise be
3116          * provided by the memory allocator.
3117          */
3118         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3119             !rcu_gp_in_progress(rcu_state_p) &&
3120             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3121                 call_rcu(&rsh.rh, rcu_sysidle_cb);
3122         return false;
3123 }
3124
3125 /*
3126  * Initialize dynticks sysidle state for CPUs coming online.
3127  */
3128 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3129 {
3130         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3131 }
3132
3133 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3134
3135 static void rcu_sysidle_enter(int irq)
3136 {
3137 }
3138
3139 static void rcu_sysidle_exit(int irq)
3140 {
3141 }
3142
3143 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3144                                   unsigned long *maxj)
3145 {
3146 }
3147
3148 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3149 {
3150         return false;
3151 }
3152
3153 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3154                                   unsigned long maxj)
3155 {
3156 }
3157
3158 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3159 {
3160 }
3161
3162 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3163
3164 /*
3165  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3166  * grace-period kthread will do force_quiescent_state() processing?
3167  * The idea is to avoid waking up RCU core processing on such a
3168  * CPU unless the grace period has extended for too long.
3169  *
3170  * This code relies on the fact that all NO_HZ_FULL CPUs are also
3171  * CONFIG_RCU_NOCB_CPU CPUs.
3172  */
3173 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3174 {
3175 #ifdef CONFIG_NO_HZ_FULL
3176         if (tick_nohz_full_cpu(smp_processor_id()) &&
3177             (!rcu_gp_in_progress(rsp) ||
3178              ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3179                 return 1;
3180 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3181         return 0;
3182 }
3183
3184 /*
3185  * Bind the grace-period kthread for the sysidle flavor of RCU to the
3186  * timekeeping CPU.
3187  */
3188 static void rcu_bind_gp_kthread(void)
3189 {
3190         int __maybe_unused cpu;
3191
3192         if (!tick_nohz_full_enabled())
3193                 return;
3194 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3195         cpu = tick_do_timer_cpu;
3196         if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3197                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3198 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3199         if (!is_housekeeping_cpu(raw_smp_processor_id()))
3200                 housekeeping_affine(current);
3201 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3202 }
3203
3204 /* Record the current task on dyntick-idle entry. */
3205 static void rcu_dynticks_task_enter(void)
3206 {
3207 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3208         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3209 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3210 }
3211
3212 /* Record no current task on dyntick-idle exit. */
3213 static void rcu_dynticks_task_exit(void)
3214 {
3215 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3216         ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3217 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3218 }