Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / include / linux / spi / spi.h
1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18
19 #ifndef __LINUX_SPI_H
20 #define __LINUX_SPI_H
21
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/slab.h>
25 #include <linux/kthread.h>
26 #include <linux/completion.h>
27 #include <linux/scatterlist.h>
28
29 struct dma_chan;
30
31 /*
32  * INTERFACES between SPI master-side drivers and SPI infrastructure.
33  * (There's no SPI slave support for Linux yet...)
34  */
35 extern struct bus_type spi_bus_type;
36
37 /**
38  * struct spi_device - Master side proxy for an SPI slave device
39  * @dev: Driver model representation of the device.
40  * @master: SPI controller used with the device.
41  * @max_speed_hz: Maximum clock rate to be used with this chip
42  *      (on this board); may be changed by the device's driver.
43  *      The spi_transfer.speed_hz can override this for each transfer.
44  * @chip_select: Chipselect, distinguishing chips handled by @master.
45  * @mode: The spi mode defines how data is clocked out and in.
46  *      This may be changed by the device's driver.
47  *      The "active low" default for chipselect mode can be overridden
48  *      (by specifying SPI_CS_HIGH) as can the "MSB first" default for
49  *      each word in a transfer (by specifying SPI_LSB_FIRST).
50  * @bits_per_word: Data transfers involve one or more words; word sizes
51  *      like eight or 12 bits are common.  In-memory wordsizes are
52  *      powers of two bytes (e.g. 20 bit samples use 32 bits).
53  *      This may be changed by the device's driver, or left at the
54  *      default (0) indicating protocol words are eight bit bytes.
55  *      The spi_transfer.bits_per_word can override this for each transfer.
56  * @irq: Negative, or the number passed to request_irq() to receive
57  *      interrupts from this device.
58  * @controller_state: Controller's runtime state
59  * @controller_data: Board-specific definitions for controller, such as
60  *      FIFO initialization parameters; from board_info.controller_data
61  * @modalias: Name of the driver to use with this device, or an alias
62  *      for that name.  This appears in the sysfs "modalias" attribute
63  *      for driver coldplugging, and in uevents used for hotplugging
64  * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
65  *      when not using a GPIO line)
66  *
67  * A @spi_device is used to interchange data between an SPI slave
68  * (usually a discrete chip) and CPU memory.
69  *
70  * In @dev, the platform_data is used to hold information about this
71  * device that's meaningful to the device's protocol driver, but not
72  * to its controller.  One example might be an identifier for a chip
73  * variant with slightly different functionality; another might be
74  * information about how this particular board wires the chip's pins.
75  */
76 struct spi_device {
77         struct device           dev;
78         struct spi_master       *master;
79         u32                     max_speed_hz;
80         u8                      chip_select;
81         u8                      bits_per_word;
82         u16                     mode;
83 #define SPI_CPHA        0x01                    /* clock phase */
84 #define SPI_CPOL        0x02                    /* clock polarity */
85 #define SPI_MODE_0      (0|0)                   /* (original MicroWire) */
86 #define SPI_MODE_1      (0|SPI_CPHA)
87 #define SPI_MODE_2      (SPI_CPOL|0)
88 #define SPI_MODE_3      (SPI_CPOL|SPI_CPHA)
89 #define SPI_CS_HIGH     0x04                    /* chipselect active high? */
90 #define SPI_LSB_FIRST   0x08                    /* per-word bits-on-wire */
91 #define SPI_3WIRE       0x10                    /* SI/SO signals shared */
92 #define SPI_LOOP        0x20                    /* loopback mode */
93 #define SPI_NO_CS       0x40                    /* 1 dev/bus, no chipselect */
94 #define SPI_READY       0x80                    /* slave pulls low to pause */
95 #define SPI_TX_DUAL     0x100                   /* transmit with 2 wires */
96 #define SPI_TX_QUAD     0x200                   /* transmit with 4 wires */
97 #define SPI_RX_DUAL     0x400                   /* receive with 2 wires */
98 #define SPI_RX_QUAD     0x800                   /* receive with 4 wires */
99         int                     irq;
100         void                    *controller_state;
101         void                    *controller_data;
102         char                    modalias[SPI_NAME_SIZE];
103         int                     cs_gpio;        /* chip select gpio */
104
105         /*
106          * likely need more hooks for more protocol options affecting how
107          * the controller talks to each chip, like:
108          *  - memory packing (12 bit samples into low bits, others zeroed)
109          *  - priority
110          *  - drop chipselect after each word
111          *  - chipselect delays
112          *  - ...
113          */
114 };
115
116 static inline struct spi_device *to_spi_device(struct device *dev)
117 {
118         return dev ? container_of(dev, struct spi_device, dev) : NULL;
119 }
120
121 /* most drivers won't need to care about device refcounting */
122 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
123 {
124         return (spi && get_device(&spi->dev)) ? spi : NULL;
125 }
126
127 static inline void spi_dev_put(struct spi_device *spi)
128 {
129         if (spi)
130                 put_device(&spi->dev);
131 }
132
133 /* ctldata is for the bus_master driver's runtime state */
134 static inline void *spi_get_ctldata(struct spi_device *spi)
135 {
136         return spi->controller_state;
137 }
138
139 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
140 {
141         spi->controller_state = state;
142 }
143
144 /* device driver data */
145
146 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
147 {
148         dev_set_drvdata(&spi->dev, data);
149 }
150
151 static inline void *spi_get_drvdata(struct spi_device *spi)
152 {
153         return dev_get_drvdata(&spi->dev);
154 }
155
156 struct spi_message;
157 struct spi_transfer;
158
159 /**
160  * struct spi_driver - Host side "protocol" driver
161  * @id_table: List of SPI devices supported by this driver
162  * @probe: Binds this driver to the spi device.  Drivers can verify
163  *      that the device is actually present, and may need to configure
164  *      characteristics (such as bits_per_word) which weren't needed for
165  *      the initial configuration done during system setup.
166  * @remove: Unbinds this driver from the spi device
167  * @shutdown: Standard shutdown callback used during system state
168  *      transitions such as powerdown/halt and kexec
169  * @suspend: Standard suspend callback used during system state transitions
170  * @resume: Standard resume callback used during system state transitions
171  * @driver: SPI device drivers should initialize the name and owner
172  *      field of this structure.
173  *
174  * This represents the kind of device driver that uses SPI messages to
175  * interact with the hardware at the other end of a SPI link.  It's called
176  * a "protocol" driver because it works through messages rather than talking
177  * directly to SPI hardware (which is what the underlying SPI controller
178  * driver does to pass those messages).  These protocols are defined in the
179  * specification for the device(s) supported by the driver.
180  *
181  * As a rule, those device protocols represent the lowest level interface
182  * supported by a driver, and it will support upper level interfaces too.
183  * Examples of such upper levels include frameworks like MTD, networking,
184  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
185  */
186 struct spi_driver {
187         const struct spi_device_id *id_table;
188         int                     (*probe)(struct spi_device *spi);
189         int                     (*remove)(struct spi_device *spi);
190         void                    (*shutdown)(struct spi_device *spi);
191         int                     (*suspend)(struct spi_device *spi, pm_message_t mesg);
192         int                     (*resume)(struct spi_device *spi);
193         struct device_driver    driver;
194 };
195
196 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
197 {
198         return drv ? container_of(drv, struct spi_driver, driver) : NULL;
199 }
200
201 extern int spi_register_driver(struct spi_driver *sdrv);
202
203 /**
204  * spi_unregister_driver - reverse effect of spi_register_driver
205  * @sdrv: the driver to unregister
206  * Context: can sleep
207  */
208 static inline void spi_unregister_driver(struct spi_driver *sdrv)
209 {
210         if (sdrv)
211                 driver_unregister(&sdrv->driver);
212 }
213
214 /**
215  * module_spi_driver() - Helper macro for registering a SPI driver
216  * @__spi_driver: spi_driver struct
217  *
218  * Helper macro for SPI drivers which do not do anything special in module
219  * init/exit. This eliminates a lot of boilerplate. Each module may only
220  * use this macro once, and calling it replaces module_init() and module_exit()
221  */
222 #define module_spi_driver(__spi_driver) \
223         module_driver(__spi_driver, spi_register_driver, \
224                         spi_unregister_driver)
225
226 /**
227  * struct spi_master - interface to SPI master controller
228  * @dev: device interface to this driver
229  * @list: link with the global spi_master list
230  * @bus_num: board-specific (and often SOC-specific) identifier for a
231  *      given SPI controller.
232  * @num_chipselect: chipselects are used to distinguish individual
233  *      SPI slaves, and are numbered from zero to num_chipselects.
234  *      each slave has a chipselect signal, but it's common that not
235  *      every chipselect is connected to a slave.
236  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
237  * @mode_bits: flags understood by this controller driver
238  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
239  *      supported by the driver. Bit n indicates that a bits_per_word n+1 is
240  *      supported. If set, the SPI core will reject any transfer with an
241  *      unsupported bits_per_word. If not set, this value is simply ignored,
242  *      and it's up to the individual driver to perform any validation.
243  * @min_speed_hz: Lowest supported transfer speed
244  * @max_speed_hz: Highest supported transfer speed
245  * @flags: other constraints relevant to this driver
246  * @bus_lock_spinlock: spinlock for SPI bus locking
247  * @bus_lock_mutex: mutex for SPI bus locking
248  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
249  * @setup: updates the device mode and clocking records used by a
250  *      device's SPI controller; protocol code may call this.  This
251  *      must fail if an unrecognized or unsupported mode is requested.
252  *      It's always safe to call this unless transfers are pending on
253  *      the device whose settings are being modified.
254  * @transfer: adds a message to the controller's transfer queue.
255  * @cleanup: frees controller-specific state
256  * @can_dma: determine whether this master supports DMA
257  * @queued: whether this master is providing an internal message queue
258  * @kworker: thread struct for message pump
259  * @kworker_task: pointer to task for message pump kworker thread
260  * @pump_messages: work struct for scheduling work to the message pump
261  * @queue_lock: spinlock to syncronise access to message queue
262  * @queue: message queue
263  * @cur_msg: the currently in-flight message
264  * @cur_msg_prepared: spi_prepare_message was called for the currently
265  *                    in-flight message
266  * @cur_msg_mapped: message has been mapped for DMA
267  * @xfer_completion: used by core transfer_one_message()
268  * @busy: message pump is busy
269  * @running: message pump is running
270  * @rt: whether this queue is set to run as a realtime task
271  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
272  *                   while the hardware is prepared, using the parent
273  *                   device for the spidev
274  * @max_dma_len: Maximum length of a DMA transfer for the device.
275  * @prepare_transfer_hardware: a message will soon arrive from the queue
276  *      so the subsystem requests the driver to prepare the transfer hardware
277  *      by issuing this call
278  * @transfer_one_message: the subsystem calls the driver to transfer a single
279  *      message while queuing transfers that arrive in the meantime. When the
280  *      driver is finished with this message, it must call
281  *      spi_finalize_current_message() so the subsystem can issue the next
282  *      message
283  * @unprepare_transfer_hardware: there are currently no more messages on the
284  *      queue so the subsystem notifies the driver that it may relax the
285  *      hardware by issuing this call
286  * @set_cs: set the logic level of the chip select line.  May be called
287  *          from interrupt context.
288  * @prepare_message: set up the controller to transfer a single message,
289  *                   for example doing DMA mapping.  Called from threaded
290  *                   context.
291  * @transfer_one: transfer a single spi_transfer.
292  *                  - return 0 if the transfer is finished,
293  *                  - return 1 if the transfer is still in progress. When
294  *                    the driver is finished with this transfer it must
295  *                    call spi_finalize_current_transfer() so the subsystem
296  *                    can issue the next transfer. Note: transfer_one and
297  *                    transfer_one_message are mutually exclusive; when both
298  *                    are set, the generic subsystem does not call your
299  *                    transfer_one callback.
300  * @unprepare_message: undo any work done by prepare_message().
301  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
302  *      number. Any individual value may be -ENOENT for CS lines that
303  *      are not GPIOs (driven by the SPI controller itself).
304  * @dma_tx: DMA transmit channel
305  * @dma_rx: DMA receive channel
306  * @dummy_rx: dummy receive buffer for full-duplex devices
307  * @dummy_tx: dummy transmit buffer for full-duplex devices
308  *
309  * Each SPI master controller can communicate with one or more @spi_device
310  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
311  * but not chip select signals.  Each device may be configured to use a
312  * different clock rate, since those shared signals are ignored unless
313  * the chip is selected.
314  *
315  * The driver for an SPI controller manages access to those devices through
316  * a queue of spi_message transactions, copying data between CPU memory and
317  * an SPI slave device.  For each such message it queues, it calls the
318  * message's completion function when the transaction completes.
319  */
320 struct spi_master {
321         struct device   dev;
322
323         struct list_head list;
324
325         /* other than negative (== assign one dynamically), bus_num is fully
326          * board-specific.  usually that simplifies to being SOC-specific.
327          * example:  one SOC has three SPI controllers, numbered 0..2,
328          * and one board's schematics might show it using SPI-2.  software
329          * would normally use bus_num=2 for that controller.
330          */
331         s16                     bus_num;
332
333         /* chipselects will be integral to many controllers; some others
334          * might use board-specific GPIOs.
335          */
336         u16                     num_chipselect;
337
338         /* some SPI controllers pose alignment requirements on DMAable
339          * buffers; let protocol drivers know about these requirements.
340          */
341         u16                     dma_alignment;
342
343         /* spi_device.mode flags understood by this controller driver */
344         u16                     mode_bits;
345
346         /* bitmask of supported bits_per_word for transfers */
347         u32                     bits_per_word_mask;
348 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
349 #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
350 #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
351
352         /* limits on transfer speed */
353         u32                     min_speed_hz;
354         u32                     max_speed_hz;
355
356         /* other constraints relevant to this driver */
357         u16                     flags;
358 #define SPI_MASTER_HALF_DUPLEX  BIT(0)          /* can't do full duplex */
359 #define SPI_MASTER_NO_RX        BIT(1)          /* can't do buffer read */
360 #define SPI_MASTER_NO_TX        BIT(2)          /* can't do buffer write */
361 #define SPI_MASTER_MUST_RX      BIT(3)          /* requires rx */
362 #define SPI_MASTER_MUST_TX      BIT(4)          /* requires tx */
363
364         /* lock and mutex for SPI bus locking */
365         spinlock_t              bus_lock_spinlock;
366         struct mutex            bus_lock_mutex;
367
368         /* flag indicating that the SPI bus is locked for exclusive use */
369         bool                    bus_lock_flag;
370
371         /* Setup mode and clock, etc (spi driver may call many times).
372          *
373          * IMPORTANT:  this may be called when transfers to another
374          * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
375          * which could break those transfers.
376          */
377         int                     (*setup)(struct spi_device *spi);
378
379         /* bidirectional bulk transfers
380          *
381          * + The transfer() method may not sleep; its main role is
382          *   just to add the message to the queue.
383          * + For now there's no remove-from-queue operation, or
384          *   any other request management
385          * + To a given spi_device, message queueing is pure fifo
386          *
387          * + The master's main job is to process its message queue,
388          *   selecting a chip then transferring data
389          * + If there are multiple spi_device children, the i/o queue
390          *   arbitration algorithm is unspecified (round robin, fifo,
391          *   priority, reservations, preemption, etc)
392          *
393          * + Chipselect stays active during the entire message
394          *   (unless modified by spi_transfer.cs_change != 0).
395          * + The message transfers use clock and SPI mode parameters
396          *   previously established by setup() for this device
397          */
398         int                     (*transfer)(struct spi_device *spi,
399                                                 struct spi_message *mesg);
400
401         /* called on release() to free memory provided by spi_master */
402         void                    (*cleanup)(struct spi_device *spi);
403
404         /*
405          * Used to enable core support for DMA handling, if can_dma()
406          * exists and returns true then the transfer will be mapped
407          * prior to transfer_one() being called.  The driver should
408          * not modify or store xfer and dma_tx and dma_rx must be set
409          * while the device is prepared.
410          */
411         bool                    (*can_dma)(struct spi_master *master,
412                                            struct spi_device *spi,
413                                            struct spi_transfer *xfer);
414
415         /*
416          * These hooks are for drivers that want to use the generic
417          * master transfer queueing mechanism. If these are used, the
418          * transfer() function above must NOT be specified by the driver.
419          * Over time we expect SPI drivers to be phased over to this API.
420          */
421         bool                            queued;
422         struct kthread_worker           kworker;
423         struct task_struct              *kworker_task;
424         struct kthread_work             pump_messages;
425         spinlock_t                      queue_lock;
426         struct list_head                queue;
427         struct spi_message              *cur_msg;
428         bool                            busy;
429         bool                            running;
430         bool                            rt;
431         bool                            auto_runtime_pm;
432         bool                            cur_msg_prepared;
433         bool                            cur_msg_mapped;
434         struct completion               xfer_completion;
435         size_t                          max_dma_len;
436
437         int (*prepare_transfer_hardware)(struct spi_master *master);
438         int (*transfer_one_message)(struct spi_master *master,
439                                     struct spi_message *mesg);
440         int (*unprepare_transfer_hardware)(struct spi_master *master);
441         int (*prepare_message)(struct spi_master *master,
442                                struct spi_message *message);
443         int (*unprepare_message)(struct spi_master *master,
444                                  struct spi_message *message);
445
446         /*
447          * These hooks are for drivers that use a generic implementation
448          * of transfer_one_message() provied by the core.
449          */
450         void (*set_cs)(struct spi_device *spi, bool enable);
451         int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
452                             struct spi_transfer *transfer);
453
454         /* gpio chip select */
455         int                     *cs_gpios;
456
457         /* DMA channels for use with core dmaengine helpers */
458         struct dma_chan         *dma_tx;
459         struct dma_chan         *dma_rx;
460
461         /* dummy data for full duplex devices */
462         void                    *dummy_rx;
463         void                    *dummy_tx;
464 };
465
466 static inline void *spi_master_get_devdata(struct spi_master *master)
467 {
468         return dev_get_drvdata(&master->dev);
469 }
470
471 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
472 {
473         dev_set_drvdata(&master->dev, data);
474 }
475
476 static inline struct spi_master *spi_master_get(struct spi_master *master)
477 {
478         if (!master || !get_device(&master->dev))
479                 return NULL;
480         return master;
481 }
482
483 static inline void spi_master_put(struct spi_master *master)
484 {
485         if (master)
486                 put_device(&master->dev);
487 }
488
489 /* PM calls that need to be issued by the driver */
490 extern int spi_master_suspend(struct spi_master *master);
491 extern int spi_master_resume(struct spi_master *master);
492
493 /* Calls the driver make to interact with the message queue */
494 extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
495 extern void spi_finalize_current_message(struct spi_master *master);
496 extern void spi_finalize_current_transfer(struct spi_master *master);
497
498 /* the spi driver core manages memory for the spi_master classdev */
499 extern struct spi_master *
500 spi_alloc_master(struct device *host, unsigned size);
501
502 extern int spi_register_master(struct spi_master *master);
503 extern int devm_spi_register_master(struct device *dev,
504                                     struct spi_master *master);
505 extern void spi_unregister_master(struct spi_master *master);
506
507 extern struct spi_master *spi_busnum_to_master(u16 busnum);
508
509 /*---------------------------------------------------------------------------*/
510
511 /*
512  * I/O INTERFACE between SPI controller and protocol drivers
513  *
514  * Protocol drivers use a queue of spi_messages, each transferring data
515  * between the controller and memory buffers.
516  *
517  * The spi_messages themselves consist of a series of read+write transfer
518  * segments.  Those segments always read the same number of bits as they
519  * write; but one or the other is easily ignored by passing a null buffer
520  * pointer.  (This is unlike most types of I/O API, because SPI hardware
521  * is full duplex.)
522  *
523  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
524  * up to the protocol driver, which guarantees the integrity of both (as
525  * well as the data buffers) for as long as the message is queued.
526  */
527
528 /**
529  * struct spi_transfer - a read/write buffer pair
530  * @tx_buf: data to be written (dma-safe memory), or NULL
531  * @rx_buf: data to be read (dma-safe memory), or NULL
532  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
533  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
534  * @tx_nbits: number of bits used for writing. If 0 the default
535  *      (SPI_NBITS_SINGLE) is used.
536  * @rx_nbits: number of bits used for reading. If 0 the default
537  *      (SPI_NBITS_SINGLE) is used.
538  * @len: size of rx and tx buffers (in bytes)
539  * @speed_hz: Select a speed other than the device default for this
540  *      transfer. If 0 the default (from @spi_device) is used.
541  * @bits_per_word: select a bits_per_word other than the device default
542  *      for this transfer. If 0 the default (from @spi_device) is used.
543  * @cs_change: affects chipselect after this transfer completes
544  * @delay_usecs: microseconds to delay after this transfer before
545  *      (optionally) changing the chipselect status, then starting
546  *      the next transfer or completing this @spi_message.
547  * @transfer_list: transfers are sequenced through @spi_message.transfers
548  * @tx_sg: Scatterlist for transmit, currently not for client use
549  * @rx_sg: Scatterlist for receive, currently not for client use
550  *
551  * SPI transfers always write the same number of bytes as they read.
552  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
553  * In some cases, they may also want to provide DMA addresses for
554  * the data being transferred; that may reduce overhead, when the
555  * underlying driver uses dma.
556  *
557  * If the transmit buffer is null, zeroes will be shifted out
558  * while filling @rx_buf.  If the receive buffer is null, the data
559  * shifted in will be discarded.  Only "len" bytes shift out (or in).
560  * It's an error to try to shift out a partial word.  (For example, by
561  * shifting out three bytes with word size of sixteen or twenty bits;
562  * the former uses two bytes per word, the latter uses four bytes.)
563  *
564  * In-memory data values are always in native CPU byte order, translated
565  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
566  * for example when bits_per_word is sixteen, buffers are 2N bytes long
567  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
568  *
569  * When the word size of the SPI transfer is not a power-of-two multiple
570  * of eight bits, those in-memory words include extra bits.  In-memory
571  * words are always seen by protocol drivers as right-justified, so the
572  * undefined (rx) or unused (tx) bits are always the most significant bits.
573  *
574  * All SPI transfers start with the relevant chipselect active.  Normally
575  * it stays selected until after the last transfer in a message.  Drivers
576  * can affect the chipselect signal using cs_change.
577  *
578  * (i) If the transfer isn't the last one in the message, this flag is
579  * used to make the chipselect briefly go inactive in the middle of the
580  * message.  Toggling chipselect in this way may be needed to terminate
581  * a chip command, letting a single spi_message perform all of group of
582  * chip transactions together.
583  *
584  * (ii) When the transfer is the last one in the message, the chip may
585  * stay selected until the next transfer.  On multi-device SPI busses
586  * with nothing blocking messages going to other devices, this is just
587  * a performance hint; starting a message to another device deselects
588  * this one.  But in other cases, this can be used to ensure correctness.
589  * Some devices need protocol transactions to be built from a series of
590  * spi_message submissions, where the content of one message is determined
591  * by the results of previous messages and where the whole transaction
592  * ends when the chipselect goes intactive.
593  *
594  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
595  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
596  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
597  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
598  *
599  * The code that submits an spi_message (and its spi_transfers)
600  * to the lower layers is responsible for managing its memory.
601  * Zero-initialize every field you don't set up explicitly, to
602  * insulate against future API updates.  After you submit a message
603  * and its transfers, ignore them until its completion callback.
604  */
605 struct spi_transfer {
606         /* it's ok if tx_buf == rx_buf (right?)
607          * for MicroWire, one buffer must be null
608          * buffers must work with dma_*map_single() calls, unless
609          *   spi_message.is_dma_mapped reports a pre-existing mapping
610          */
611         const void      *tx_buf;
612         void            *rx_buf;
613         unsigned        len;
614
615         dma_addr_t      tx_dma;
616         dma_addr_t      rx_dma;
617         struct sg_table tx_sg;
618         struct sg_table rx_sg;
619
620         unsigned        cs_change:1;
621         unsigned        tx_nbits:3;
622         unsigned        rx_nbits:3;
623 #define SPI_NBITS_SINGLE        0x01 /* 1bit transfer */
624 #define SPI_NBITS_DUAL          0x02 /* 2bits transfer */
625 #define SPI_NBITS_QUAD          0x04 /* 4bits transfer */
626         u8              bits_per_word;
627         u16             delay_usecs;
628         u32             speed_hz;
629
630         struct list_head transfer_list;
631 };
632
633 /**
634  * struct spi_message - one multi-segment SPI transaction
635  * @transfers: list of transfer segments in this transaction
636  * @spi: SPI device to which the transaction is queued
637  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
638  *      addresses for each transfer buffer
639  * @complete: called to report transaction completions
640  * @context: the argument to complete() when it's called
641  * @frame_length: the total number of bytes in the message
642  * @actual_length: the total number of bytes that were transferred in all
643  *      successful segments
644  * @status: zero for success, else negative errno
645  * @queue: for use by whichever driver currently owns the message
646  * @state: for use by whichever driver currently owns the message
647  *
648  * A @spi_message is used to execute an atomic sequence of data transfers,
649  * each represented by a struct spi_transfer.  The sequence is "atomic"
650  * in the sense that no other spi_message may use that SPI bus until that
651  * sequence completes.  On some systems, many such sequences can execute as
652  * as single programmed DMA transfer.  On all systems, these messages are
653  * queued, and might complete after transactions to other devices.  Messages
654  * sent to a given spi_device are alway executed in FIFO order.
655  *
656  * The code that submits an spi_message (and its spi_transfers)
657  * to the lower layers is responsible for managing its memory.
658  * Zero-initialize every field you don't set up explicitly, to
659  * insulate against future API updates.  After you submit a message
660  * and its transfers, ignore them until its completion callback.
661  */
662 struct spi_message {
663         struct list_head        transfers;
664
665         struct spi_device       *spi;
666
667         unsigned                is_dma_mapped:1;
668
669         /* REVISIT:  we might want a flag affecting the behavior of the
670          * last transfer ... allowing things like "read 16 bit length L"
671          * immediately followed by "read L bytes".  Basically imposing
672          * a specific message scheduling algorithm.
673          *
674          * Some controller drivers (message-at-a-time queue processing)
675          * could provide that as their default scheduling algorithm.  But
676          * others (with multi-message pipelines) could need a flag to
677          * tell them about such special cases.
678          */
679
680         /* completion is reported through a callback */
681         void                    (*complete)(void *context);
682         void                    *context;
683         unsigned                frame_length;
684         unsigned                actual_length;
685         int                     status;
686
687         /* for optional use by whatever driver currently owns the
688          * spi_message ...  between calls to spi_async and then later
689          * complete(), that's the spi_master controller driver.
690          */
691         struct list_head        queue;
692         void                    *state;
693 };
694
695 static inline void spi_message_init(struct spi_message *m)
696 {
697         memset(m, 0, sizeof *m);
698         INIT_LIST_HEAD(&m->transfers);
699 }
700
701 static inline void
702 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
703 {
704         list_add_tail(&t->transfer_list, &m->transfers);
705 }
706
707 static inline void
708 spi_transfer_del(struct spi_transfer *t)
709 {
710         list_del(&t->transfer_list);
711 }
712
713 /**
714  * spi_message_init_with_transfers - Initialize spi_message and append transfers
715  * @m: spi_message to be initialized
716  * @xfers: An array of spi transfers
717  * @num_xfers: Number of items in the xfer array
718  *
719  * This function initializes the given spi_message and adds each spi_transfer in
720  * the given array to the message.
721  */
722 static inline void
723 spi_message_init_with_transfers(struct spi_message *m,
724 struct spi_transfer *xfers, unsigned int num_xfers)
725 {
726         unsigned int i;
727
728         spi_message_init(m);
729         for (i = 0; i < num_xfers; ++i)
730                 spi_message_add_tail(&xfers[i], m);
731 }
732
733 /* It's fine to embed message and transaction structures in other data
734  * structures so long as you don't free them while they're in use.
735  */
736
737 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
738 {
739         struct spi_message *m;
740
741         m = kzalloc(sizeof(struct spi_message)
742                         + ntrans * sizeof(struct spi_transfer),
743                         flags);
744         if (m) {
745                 unsigned i;
746                 struct spi_transfer *t = (struct spi_transfer *)(m + 1);
747
748                 INIT_LIST_HEAD(&m->transfers);
749                 for (i = 0; i < ntrans; i++, t++)
750                         spi_message_add_tail(t, m);
751         }
752         return m;
753 }
754
755 static inline void spi_message_free(struct spi_message *m)
756 {
757         kfree(m);
758 }
759
760 extern int spi_setup(struct spi_device *spi);
761 extern int spi_async(struct spi_device *spi, struct spi_message *message);
762 extern int spi_async_locked(struct spi_device *spi,
763                             struct spi_message *message);
764
765 /*---------------------------------------------------------------------------*/
766
767 /* All these synchronous SPI transfer routines are utilities layered
768  * over the core async transfer primitive.  Here, "synchronous" means
769  * they will sleep uninterruptibly until the async transfer completes.
770  */
771
772 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
773 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
774 extern int spi_bus_lock(struct spi_master *master);
775 extern int spi_bus_unlock(struct spi_master *master);
776
777 /**
778  * spi_write - SPI synchronous write
779  * @spi: device to which data will be written
780  * @buf: data buffer
781  * @len: data buffer size
782  * Context: can sleep
783  *
784  * This writes the buffer and returns zero or a negative error code.
785  * Callable only from contexts that can sleep.
786  */
787 static inline int
788 spi_write(struct spi_device *spi, const void *buf, size_t len)
789 {
790         struct spi_transfer     t = {
791                         .tx_buf         = buf,
792                         .len            = len,
793                 };
794         struct spi_message      m;
795
796         spi_message_init(&m);
797         spi_message_add_tail(&t, &m);
798         return spi_sync(spi, &m);
799 }
800
801 /**
802  * spi_read - SPI synchronous read
803  * @spi: device from which data will be read
804  * @buf: data buffer
805  * @len: data buffer size
806  * Context: can sleep
807  *
808  * This reads the buffer and returns zero or a negative error code.
809  * Callable only from contexts that can sleep.
810  */
811 static inline int
812 spi_read(struct spi_device *spi, void *buf, size_t len)
813 {
814         struct spi_transfer     t = {
815                         .rx_buf         = buf,
816                         .len            = len,
817                 };
818         struct spi_message      m;
819
820         spi_message_init(&m);
821         spi_message_add_tail(&t, &m);
822         return spi_sync(spi, &m);
823 }
824
825 /**
826  * spi_sync_transfer - synchronous SPI data transfer
827  * @spi: device with which data will be exchanged
828  * @xfers: An array of spi_transfers
829  * @num_xfers: Number of items in the xfer array
830  * Context: can sleep
831  *
832  * Does a synchronous SPI data transfer of the given spi_transfer array.
833  *
834  * For more specific semantics see spi_sync().
835  *
836  * It returns zero on success, else a negative error code.
837  */
838 static inline int
839 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
840         unsigned int num_xfers)
841 {
842         struct spi_message msg;
843
844         spi_message_init_with_transfers(&msg, xfers, num_xfers);
845
846         return spi_sync(spi, &msg);
847 }
848
849 /* this copies txbuf and rxbuf data; for small transfers only! */
850 extern int spi_write_then_read(struct spi_device *spi,
851                 const void *txbuf, unsigned n_tx,
852                 void *rxbuf, unsigned n_rx);
853
854 /**
855  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
856  * @spi: device with which data will be exchanged
857  * @cmd: command to be written before data is read back
858  * Context: can sleep
859  *
860  * This returns the (unsigned) eight bit number returned by the
861  * device, or else a negative error code.  Callable only from
862  * contexts that can sleep.
863  */
864 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
865 {
866         ssize_t                 status;
867         u8                      result;
868
869         status = spi_write_then_read(spi, &cmd, 1, &result, 1);
870
871         /* return negative errno or unsigned value */
872         return (status < 0) ? status : result;
873 }
874
875 /**
876  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
877  * @spi: device with which data will be exchanged
878  * @cmd: command to be written before data is read back
879  * Context: can sleep
880  *
881  * This returns the (unsigned) sixteen bit number returned by the
882  * device, or else a negative error code.  Callable only from
883  * contexts that can sleep.
884  *
885  * The number is returned in wire-order, which is at least sometimes
886  * big-endian.
887  */
888 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
889 {
890         ssize_t                 status;
891         u16                     result;
892
893         status = spi_write_then_read(spi, &cmd, 1, &result, 2);
894
895         /* return negative errno or unsigned value */
896         return (status < 0) ? status : result;
897 }
898
899 /**
900  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
901  * @spi: device with which data will be exchanged
902  * @cmd: command to be written before data is read back
903  * Context: can sleep
904  *
905  * This returns the (unsigned) sixteen bit number returned by the device in cpu
906  * endianness, or else a negative error code. Callable only from contexts that
907  * can sleep.
908  *
909  * This function is similar to spi_w8r16, with the exception that it will
910  * convert the read 16 bit data word from big-endian to native endianness.
911  *
912  */
913 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
914
915 {
916         ssize_t status;
917         __be16 result;
918
919         status = spi_write_then_read(spi, &cmd, 1, &result, 2);
920         if (status < 0)
921                 return status;
922
923         return be16_to_cpu(result);
924 }
925
926 /*---------------------------------------------------------------------------*/
927
928 /*
929  * INTERFACE between board init code and SPI infrastructure.
930  *
931  * No SPI driver ever sees these SPI device table segments, but
932  * it's how the SPI core (or adapters that get hotplugged) grows
933  * the driver model tree.
934  *
935  * As a rule, SPI devices can't be probed.  Instead, board init code
936  * provides a table listing the devices which are present, with enough
937  * information to bind and set up the device's driver.  There's basic
938  * support for nonstatic configurations too; enough to handle adding
939  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
940  */
941
942 /**
943  * struct spi_board_info - board-specific template for a SPI device
944  * @modalias: Initializes spi_device.modalias; identifies the driver.
945  * @platform_data: Initializes spi_device.platform_data; the particular
946  *      data stored there is driver-specific.
947  * @controller_data: Initializes spi_device.controller_data; some
948  *      controllers need hints about hardware setup, e.g. for DMA.
949  * @irq: Initializes spi_device.irq; depends on how the board is wired.
950  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
951  *      from the chip datasheet and board-specific signal quality issues.
952  * @bus_num: Identifies which spi_master parents the spi_device; unused
953  *      by spi_new_device(), and otherwise depends on board wiring.
954  * @chip_select: Initializes spi_device.chip_select; depends on how
955  *      the board is wired.
956  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
957  *      wiring (some devices support both 3WIRE and standard modes), and
958  *      possibly presence of an inverter in the chipselect path.
959  *
960  * When adding new SPI devices to the device tree, these structures serve
961  * as a partial device template.  They hold information which can't always
962  * be determined by drivers.  Information that probe() can establish (such
963  * as the default transfer wordsize) is not included here.
964  *
965  * These structures are used in two places.  Their primary role is to
966  * be stored in tables of board-specific device descriptors, which are
967  * declared early in board initialization and then used (much later) to
968  * populate a controller's device tree after the that controller's driver
969  * initializes.  A secondary (and atypical) role is as a parameter to
970  * spi_new_device() call, which happens after those controller drivers
971  * are active in some dynamic board configuration models.
972  */
973 struct spi_board_info {
974         /* the device name and module name are coupled, like platform_bus;
975          * "modalias" is normally the driver name.
976          *
977          * platform_data goes to spi_device.dev.platform_data,
978          * controller_data goes to spi_device.controller_data,
979          * irq is copied too
980          */
981         char            modalias[SPI_NAME_SIZE];
982         const void      *platform_data;
983         void            *controller_data;
984         int             irq;
985
986         /* slower signaling on noisy or low voltage boards */
987         u32             max_speed_hz;
988
989
990         /* bus_num is board specific and matches the bus_num of some
991          * spi_master that will probably be registered later.
992          *
993          * chip_select reflects how this chip is wired to that master;
994          * it's less than num_chipselect.
995          */
996         u16             bus_num;
997         u16             chip_select;
998
999         /* mode becomes spi_device.mode, and is essential for chips
1000          * where the default of SPI_CS_HIGH = 0 is wrong.
1001          */
1002         u16             mode;
1003
1004         /* ... may need additional spi_device chip config data here.
1005          * avoid stuff protocol drivers can set; but include stuff
1006          * needed to behave without being bound to a driver:
1007          *  - quirks like clock rate mattering when not selected
1008          */
1009 };
1010
1011 #ifdef  CONFIG_SPI
1012 extern int
1013 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1014 #else
1015 /* board init code may ignore whether SPI is configured or not */
1016 static inline int
1017 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1018         { return 0; }
1019 #endif
1020
1021
1022 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1023  * use spi_new_device() to describe each device.  You can also call
1024  * spi_unregister_device() to start making that device vanish, but
1025  * normally that would be handled by spi_unregister_master().
1026  *
1027  * You can also use spi_alloc_device() and spi_add_device() to use a two
1028  * stage registration sequence for each spi_device.  This gives the caller
1029  * some more control over the spi_device structure before it is registered,
1030  * but requires that caller to initialize fields that would otherwise
1031  * be defined using the board info.
1032  */
1033 extern struct spi_device *
1034 spi_alloc_device(struct spi_master *master);
1035
1036 extern int
1037 spi_add_device(struct spi_device *spi);
1038
1039 extern struct spi_device *
1040 spi_new_device(struct spi_master *, struct spi_board_info *);
1041
1042 static inline void
1043 spi_unregister_device(struct spi_device *spi)
1044 {
1045         if (spi)
1046                 device_unregister(&spi->dev);
1047 }
1048
1049 extern const struct spi_device_id *
1050 spi_get_device_id(const struct spi_device *sdev);
1051
1052 static inline bool
1053 spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
1054 {
1055         return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
1056 }
1057
1058 #endif /* __LINUX_SPI_H */