Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / fs / xfs / xfs_log_recover.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49
50 STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void     xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53                                                xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void     xlog_recover_check_summary(xlog_t *);
56 STATIC void     xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define xlog_recover_check_summary(log)
59 #define xlog_recover_check_ail(mp, lip, gen)
60 #endif
61
62
63 /*
64  * Sector aligned buffer routines for buffer create/read/write/access
65  */
66
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)   \
68         ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69         ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)   ((bno) & ~(log)->l_sectbb_mask)
71
72 xfs_buf_t *
73 xlog_get_bp(
74         xlog_t          *log,
75         int             num_bblks)
76 {
77         ASSERT(num_bblks > 0);
78
79         if (log->l_sectbb_log) {
80                 if (num_bblks > 1)
81                         num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82                 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83         }
84         return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86
87 void
88 xlog_put_bp(
89         xfs_buf_t       *bp)
90 {
91         xfs_buf_free(bp);
92 }
93
94
95 /*
96  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
97  */
98 int
99 xlog_bread(
100         xlog_t          *log,
101         xfs_daddr_t     blk_no,
102         int             nbblks,
103         xfs_buf_t       *bp)
104 {
105         int             error;
106
107         if (log->l_sectbb_log) {
108                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110         }
111
112         ASSERT(nbblks > 0);
113         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114         ASSERT(bp);
115
116         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117         XFS_BUF_READ(bp);
118         XFS_BUF_BUSY(bp);
119         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121
122         xfsbdstrat(log->l_mp, bp);
123         if ((error = xfs_iowait(bp)))
124                 xfs_ioerror_alert("xlog_bread", log->l_mp,
125                                   bp, XFS_BUF_ADDR(bp));
126         return error;
127 }
128
129 /*
130  * Write out the buffer at the given block for the given number of blocks.
131  * The buffer is kept locked across the write and is returned locked.
132  * This can only be used for synchronous log writes.
133  */
134 STATIC int
135 xlog_bwrite(
136         xlog_t          *log,
137         xfs_daddr_t     blk_no,
138         int             nbblks,
139         xfs_buf_t       *bp)
140 {
141         int             error;
142
143         if (log->l_sectbb_log) {
144                 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145                 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146         }
147
148         ASSERT(nbblks > 0);
149         ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151         XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152         XFS_BUF_ZEROFLAGS(bp);
153         XFS_BUF_BUSY(bp);
154         XFS_BUF_HOLD(bp);
155         XFS_BUF_PSEMA(bp, PRIBIO);
156         XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157         XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159         if ((error = xfs_bwrite(log->l_mp, bp)))
160                 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161                                   bp, XFS_BUF_ADDR(bp));
162         return error;
163 }
164
165 STATIC xfs_caddr_t
166 xlog_align(
167         xlog_t          *log,
168         xfs_daddr_t     blk_no,
169         int             nbblks,
170         xfs_buf_t       *bp)
171 {
172         xfs_caddr_t     ptr;
173
174         if (!log->l_sectbb_log)
175                 return XFS_BUF_PTR(bp);
176
177         ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178         ASSERT(XFS_BUF_SIZE(bp) >=
179                 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180         return ptr;
181 }
182
183 #ifdef DEBUG
184 /*
185  * dump debug superblock and log record information
186  */
187 STATIC void
188 xlog_header_check_dump(
189         xfs_mount_t             *mp,
190         xlog_rec_header_t       *head)
191 {
192         int                     b;
193
194         cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
195         for (b = 0; b < 16; b++)
196                 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197         cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198         cmn_err(CE_DEBUG, "    log : uuid = ");
199         for (b = 0; b < 16; b++)
200                 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201         cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206
207 /*
208  * check log record header for recovery
209  */
210 STATIC int
211 xlog_header_check_recover(
212         xfs_mount_t             *mp,
213         xlog_rec_header_t       *head)
214 {
215         ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216
217         /*
218          * IRIX doesn't write the h_fmt field and leaves it zeroed
219          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220          * a dirty log created in IRIX.
221          */
222         if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223                 xlog_warn(
224         "XFS: dirty log written in incompatible format - can't recover");
225                 xlog_header_check_dump(mp, head);
226                 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227                                  XFS_ERRLEVEL_HIGH, mp);
228                 return XFS_ERROR(EFSCORRUPTED);
229         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230                 xlog_warn(
231         "XFS: dirty log entry has mismatched uuid - can't recover");
232                 xlog_header_check_dump(mp, head);
233                 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234                                  XFS_ERRLEVEL_HIGH, mp);
235                 return XFS_ERROR(EFSCORRUPTED);
236         }
237         return 0;
238 }
239
240 /*
241  * read the head block of the log and check the header
242  */
243 STATIC int
244 xlog_header_check_mount(
245         xfs_mount_t             *mp,
246         xlog_rec_header_t       *head)
247 {
248         ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249
250         if (uuid_is_nil(&head->h_fs_uuid)) {
251                 /*
252                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253                  * h_fs_uuid is nil, we assume this log was last mounted
254                  * by IRIX and continue.
255                  */
256                 xlog_warn("XFS: nil uuid in log - IRIX style log");
257         } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258                 xlog_warn("XFS: log has mismatched uuid - can't recover");
259                 xlog_header_check_dump(mp, head);
260                 XFS_ERROR_REPORT("xlog_header_check_mount",
261                                  XFS_ERRLEVEL_HIGH, mp);
262                 return XFS_ERROR(EFSCORRUPTED);
263         }
264         return 0;
265 }
266
267 STATIC void
268 xlog_recover_iodone(
269         struct xfs_buf  *bp)
270 {
271         xfs_mount_t     *mp;
272
273         ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275         if (XFS_BUF_GETERROR(bp)) {
276                 /*
277                  * We're not going to bother about retrying
278                  * this during recovery. One strike!
279                  */
280                 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281                 xfs_ioerror_alert("xlog_recover_iodone",
282                                   mp, bp, XFS_BUF_ADDR(bp));
283                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284         }
285         XFS_BUF_SET_FSPRIVATE(bp, NULL);
286         XFS_BUF_CLR_IODONE_FUNC(bp);
287         xfs_biodone(bp);
288 }
289
290 /*
291  * This routine finds (to an approximation) the first block in the physical
292  * log which contains the given cycle.  It uses a binary search algorithm.
293  * Note that the algorithm can not be perfect because the disk will not
294  * necessarily be perfect.
295  */
296 int
297 xlog_find_cycle_start(
298         xlog_t          *log,
299         xfs_buf_t       *bp,
300         xfs_daddr_t     first_blk,
301         xfs_daddr_t     *last_blk,
302         uint            cycle)
303 {
304         xfs_caddr_t     offset;
305         xfs_daddr_t     mid_blk;
306         uint            mid_cycle;
307         int             error;
308
309         mid_blk = BLK_AVG(first_blk, *last_blk);
310         while (mid_blk != first_blk && mid_blk != *last_blk) {
311                 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312                         return error;
313                 offset = xlog_align(log, mid_blk, 1, bp);
314                 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315                 if (mid_cycle == cycle) {
316                         *last_blk = mid_blk;
317                         /* last_half_cycle == mid_cycle */
318                 } else {
319                         first_blk = mid_blk;
320                         /* first_half_cycle == mid_cycle */
321                 }
322                 mid_blk = BLK_AVG(first_blk, *last_blk);
323         }
324         ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325                (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327         return 0;
328 }
329
330 /*
331  * Check that the range of blocks does not contain the cycle number
332  * given.  The scan needs to occur from front to back and the ptr into the
333  * region must be updated since a later routine will need to perform another
334  * test.  If the region is completely good, we end up returning the same
335  * last block number.
336  *
337  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
338  * since we don't ever expect logs to get this large.
339  */
340 STATIC int
341 xlog_find_verify_cycle(
342         xlog_t          *log,
343         xfs_daddr_t     start_blk,
344         int             nbblks,
345         uint            stop_on_cycle_no,
346         xfs_daddr_t     *new_blk)
347 {
348         xfs_daddr_t     i, j;
349         uint            cycle;
350         xfs_buf_t       *bp;
351         xfs_daddr_t     bufblks;
352         xfs_caddr_t     buf = NULL;
353         int             error = 0;
354
355         bufblks = 1 << ffs(nbblks);
356
357         while (!(bp = xlog_get_bp(log, bufblks))) {
358                 /* can't get enough memory to do everything in one big buffer */
359                 bufblks >>= 1;
360                 if (bufblks <= log->l_sectbb_log)
361                         return ENOMEM;
362         }
363
364         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365                 int     bcount;
366
367                 bcount = min(bufblks, (start_blk + nbblks - i));
368
369                 if ((error = xlog_bread(log, i, bcount, bp)))
370                         goto out;
371
372                 buf = xlog_align(log, i, bcount, bp);
373                 for (j = 0; j < bcount; j++) {
374                         cycle = GET_CYCLE(buf, ARCH_CONVERT);
375                         if (cycle == stop_on_cycle_no) {
376                                 *new_blk = i+j;
377                                 goto out;
378                         }
379
380                         buf += BBSIZE;
381                 }
382         }
383
384         *new_blk = -1;
385
386 out:
387         xlog_put_bp(bp);
388         return error;
389 }
390
391 /*
392  * Potentially backup over partial log record write.
393  *
394  * In the typical case, last_blk is the number of the block directly after
395  * a good log record.  Therefore, we subtract one to get the block number
396  * of the last block in the given buffer.  extra_bblks contains the number
397  * of blocks we would have read on a previous read.  This happens when the
398  * last log record is split over the end of the physical log.
399  *
400  * extra_bblks is the number of blocks potentially verified on a previous
401  * call to this routine.
402  */
403 STATIC int
404 xlog_find_verify_log_record(
405         xlog_t                  *log,
406         xfs_daddr_t             start_blk,
407         xfs_daddr_t             *last_blk,
408         int                     extra_bblks)
409 {
410         xfs_daddr_t             i;
411         xfs_buf_t               *bp;
412         xfs_caddr_t             offset = NULL;
413         xlog_rec_header_t       *head = NULL;
414         int                     error = 0;
415         int                     smallmem = 0;
416         int                     num_blks = *last_blk - start_blk;
417         int                     xhdrs;
418
419         ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421         if (!(bp = xlog_get_bp(log, num_blks))) {
422                 if (!(bp = xlog_get_bp(log, 1)))
423                         return ENOMEM;
424                 smallmem = 1;
425         } else {
426                 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427                         goto out;
428                 offset = xlog_align(log, start_blk, num_blks, bp);
429                 offset += ((num_blks - 1) << BBSHIFT);
430         }
431
432         for (i = (*last_blk) - 1; i >= 0; i--) {
433                 if (i < start_blk) {
434                         /* valid log record not found */
435                         xlog_warn(
436                 "XFS: Log inconsistent (didn't find previous header)");
437                         ASSERT(0);
438                         error = XFS_ERROR(EIO);
439                         goto out;
440                 }
441
442                 if (smallmem) {
443                         if ((error = xlog_bread(log, i, 1, bp)))
444                                 goto out;
445                         offset = xlog_align(log, i, 1, bp);
446                 }
447
448                 head = (xlog_rec_header_t *)offset;
449
450                 if (XLOG_HEADER_MAGIC_NUM ==
451                     INT_GET(head->h_magicno, ARCH_CONVERT))
452                         break;
453
454                 if (!smallmem)
455                         offset -= BBSIZE;
456         }
457
458         /*
459          * We hit the beginning of the physical log & still no header.  Return
460          * to caller.  If caller can handle a return of -1, then this routine
461          * will be called again for the end of the physical log.
462          */
463         if (i == -1) {
464                 error = -1;
465                 goto out;
466         }
467
468         /*
469          * We have the final block of the good log (the first block
470          * of the log record _before_ the head. So we check the uuid.
471          */
472         if ((error = xlog_header_check_mount(log->l_mp, head)))
473                 goto out;
474
475         /*
476          * We may have found a log record header before we expected one.
477          * last_blk will be the 1st block # with a given cycle #.  We may end
478          * up reading an entire log record.  In this case, we don't want to
479          * reset last_blk.  Only when last_blk points in the middle of a log
480          * record do we update last_blk.
481          */
482         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483                 uint    h_size = INT_GET(head->h_size, ARCH_CONVERT);
484
485                 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486                 if (h_size % XLOG_HEADER_CYCLE_SIZE)
487                         xhdrs++;
488         } else {
489                 xhdrs = 1;
490         }
491
492         if (*last_blk - i + extra_bblks
493                         != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494                 *last_blk = i;
495
496 out:
497         xlog_put_bp(bp);
498         return error;
499 }
500
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516         xlog_t          *log,
517         xfs_daddr_t     *return_head_blk)
518 {
519         xfs_buf_t       *bp;
520         xfs_caddr_t     offset;
521         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
522         int             num_scan_bblks;
523         uint            first_half_cycle, last_half_cycle;
524         uint            stop_on_cycle;
525         int             error, log_bbnum = log->l_logBBsize;
526
527         /* Is the end of the log device zeroed? */
528         if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529                 *return_head_blk = first_blk;
530
531                 /* Is the whole lot zeroed? */
532                 if (!first_blk) {
533                         /* Linux XFS shouldn't generate totally zeroed logs -
534                          * mkfs etc write a dummy unmount record to a fresh
535                          * log so we can store the uuid in there
536                          */
537                         xlog_warn("XFS: totally zeroed log");
538                 }
539
540                 return 0;
541         } else if (error) {
542                 xlog_warn("XFS: empty log check failed");
543                 return error;
544         }
545
546         first_blk = 0;                  /* get cycle # of 1st block */
547         bp = xlog_get_bp(log, 1);
548         if (!bp)
549                 return ENOMEM;
550         if ((error = xlog_bread(log, 0, 1, bp)))
551                 goto bp_err;
552         offset = xlog_align(log, 0, 1, bp);
553         first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554
555         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
556         if ((error = xlog_bread(log, last_blk, 1, bp)))
557                 goto bp_err;
558         offset = xlog_align(log, last_blk, 1, bp);
559         last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560         ASSERT(last_half_cycle != 0);
561
562         /*
563          * If the 1st half cycle number is equal to the last half cycle number,
564          * then the entire log is stamped with the same cycle number.  In this
565          * case, head_blk can't be set to zero (which makes sense).  The below
566          * math doesn't work out properly with head_blk equal to zero.  Instead,
567          * we set it to log_bbnum which is an invalid block number, but this
568          * value makes the math correct.  If head_blk doesn't changed through
569          * all the tests below, *head_blk is set to zero at the very end rather
570          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571          * in a circular file.
572          */
573         if (first_half_cycle == last_half_cycle) {
574                 /*
575                  * In this case we believe that the entire log should have
576                  * cycle number last_half_cycle.  We need to scan backwards
577                  * from the end verifying that there are no holes still
578                  * containing last_half_cycle - 1.  If we find such a hole,
579                  * then the start of that hole will be the new head.  The
580                  * simple case looks like
581                  *        x | x ... | x - 1 | x
582                  * Another case that fits this picture would be
583                  *        x | x + 1 | x ... | x
584                  * In this case the head really is somewhere at the end of the
585                  * log, as one of the latest writes at the beginning was
586                  * incomplete.
587                  * One more case is
588                  *        x | x + 1 | x ... | x - 1 | x
589                  * This is really the combination of the above two cases, and
590                  * the head has to end up at the start of the x-1 hole at the
591                  * end of the log.
592                  *
593                  * In the 256k log case, we will read from the beginning to the
594                  * end of the log and search for cycle numbers equal to x-1.
595                  * We don't worry about the x+1 blocks that we encounter,
596                  * because we know that they cannot be the head since the log
597                  * started with x.
598                  */
599                 head_blk = log_bbnum;
600                 stop_on_cycle = last_half_cycle - 1;
601         } else {
602                 /*
603                  * In this case we want to find the first block with cycle
604                  * number matching last_half_cycle.  We expect the log to be
605                  * some variation on
606                  *        x + 1 ... | x ...
607                  * The first block with cycle number x (last_half_cycle) will
608                  * be where the new head belongs.  First we do a binary search
609                  * for the first occurrence of last_half_cycle.  The binary
610                  * search may not be totally accurate, so then we scan back
611                  * from there looking for occurrences of last_half_cycle before
612                  * us.  If that backwards scan wraps around the beginning of
613                  * the log, then we look for occurrences of last_half_cycle - 1
614                  * at the end of the log.  The cases we're looking for look
615                  * like
616                  *        x + 1 ... | x | x + 1 | x ...
617                  *                               ^ binary search stopped here
618                  * or
619                  *        x + 1 ... | x ... | x - 1 | x
620                  *        <---------> less than scan distance
621                  */
622                 stop_on_cycle = last_half_cycle;
623                 if ((error = xlog_find_cycle_start(log, bp, first_blk,
624                                                 &head_blk, last_half_cycle)))
625                         goto bp_err;
626         }
627
628         /*
629          * Now validate the answer.  Scan back some number of maximum possible
630          * blocks and make sure each one has the expected cycle number.  The
631          * maximum is determined by the total possible amount of buffering
632          * in the in-core log.  The following number can be made tighter if
633          * we actually look at the block size of the filesystem.
634          */
635         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636         if (head_blk >= num_scan_bblks) {
637                 /*
638                  * We are guaranteed that the entire check can be performed
639                  * in one buffer.
640                  */
641                 start_blk = head_blk - num_scan_bblks;
642                 if ((error = xlog_find_verify_cycle(log,
643                                                 start_blk, num_scan_bblks,
644                                                 stop_on_cycle, &new_blk)))
645                         goto bp_err;
646                 if (new_blk != -1)
647                         head_blk = new_blk;
648         } else {                /* need to read 2 parts of log */
649                 /*
650                  * We are going to scan backwards in the log in two parts.
651                  * First we scan the physical end of the log.  In this part
652                  * of the log, we are looking for blocks with cycle number
653                  * last_half_cycle - 1.
654                  * If we find one, then we know that the log starts there, as
655                  * we've found a hole that didn't get written in going around
656                  * the end of the physical log.  The simple case for this is
657                  *        x + 1 ... | x ... | x - 1 | x
658                  *        <---------> less than scan distance
659                  * If all of the blocks at the end of the log have cycle number
660                  * last_half_cycle, then we check the blocks at the start of
661                  * the log looking for occurrences of last_half_cycle.  If we
662                  * find one, then our current estimate for the location of the
663                  * first occurrence of last_half_cycle is wrong and we move
664                  * back to the hole we've found.  This case looks like
665                  *        x + 1 ... | x | x + 1 | x ...
666                  *                               ^ binary search stopped here
667                  * Another case we need to handle that only occurs in 256k
668                  * logs is
669                  *        x + 1 ... | x ... | x+1 | x ...
670                  *                   ^ binary search stops here
671                  * In a 256k log, the scan at the end of the log will see the
672                  * x + 1 blocks.  We need to skip past those since that is
673                  * certainly not the head of the log.  By searching for
674                  * last_half_cycle-1 we accomplish that.
675                  */
676                 start_blk = log_bbnum - num_scan_bblks + head_blk;
677                 ASSERT(head_blk <= INT_MAX &&
678                         (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679                 if ((error = xlog_find_verify_cycle(log, start_blk,
680                                         num_scan_bblks - (int)head_blk,
681                                         (stop_on_cycle - 1), &new_blk)))
682                         goto bp_err;
683                 if (new_blk != -1) {
684                         head_blk = new_blk;
685                         goto bad_blk;
686                 }
687
688                 /*
689                  * Scan beginning of log now.  The last part of the physical
690                  * log is good.  This scan needs to verify that it doesn't find
691                  * the last_half_cycle.
692                  */
693                 start_blk = 0;
694                 ASSERT(head_blk <= INT_MAX);
695                 if ((error = xlog_find_verify_cycle(log,
696                                         start_blk, (int)head_blk,
697                                         stop_on_cycle, &new_blk)))
698                         goto bp_err;
699                 if (new_blk != -1)
700                         head_blk = new_blk;
701         }
702
703  bad_blk:
704         /*
705          * Now we need to make sure head_blk is not pointing to a block in
706          * the middle of a log record.
707          */
708         num_scan_bblks = XLOG_REC_SHIFT(log);
709         if (head_blk >= num_scan_bblks) {
710                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711
712                 /* start ptr at last block ptr before head_blk */
713                 if ((error = xlog_find_verify_log_record(log, start_blk,
714                                                         &head_blk, 0)) == -1) {
715                         error = XFS_ERROR(EIO);
716                         goto bp_err;
717                 } else if (error)
718                         goto bp_err;
719         } else {
720                 start_blk = 0;
721                 ASSERT(head_blk <= INT_MAX);
722                 if ((error = xlog_find_verify_log_record(log, start_blk,
723                                                         &head_blk, 0)) == -1) {
724                         /* We hit the beginning of the log during our search */
725                         start_blk = log_bbnum - num_scan_bblks + head_blk;
726                         new_blk = log_bbnum;
727                         ASSERT(start_blk <= INT_MAX &&
728                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
729                         ASSERT(head_blk <= INT_MAX);
730                         if ((error = xlog_find_verify_log_record(log,
731                                                         start_blk, &new_blk,
732                                                         (int)head_blk)) == -1) {
733                                 error = XFS_ERROR(EIO);
734                                 goto bp_err;
735                         } else if (error)
736                                 goto bp_err;
737                         if (new_blk != log_bbnum)
738                                 head_blk = new_blk;
739                 } else if (error)
740                         goto bp_err;
741         }
742
743         xlog_put_bp(bp);
744         if (head_blk == log_bbnum)
745                 *return_head_blk = 0;
746         else
747                 *return_head_blk = head_blk;
748         /*
749          * When returning here, we have a good block number.  Bad block
750          * means that during a previous crash, we didn't have a clean break
751          * from cycle number N to cycle number N-1.  In this case, we need
752          * to find the first block with cycle number N-1.
753          */
754         return 0;
755
756  bp_err:
757         xlog_put_bp(bp);
758
759         if (error)
760             xlog_warn("XFS: failed to find log head");
761         return error;
762 }
763
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782         xlog_t                  *log,
783         xfs_daddr_t             *head_blk,
784         xfs_daddr_t             *tail_blk)
785 {
786         xlog_rec_header_t       *rhead;
787         xlog_op_header_t        *op_head;
788         xfs_caddr_t             offset = NULL;
789         xfs_buf_t               *bp;
790         int                     error, i, found;
791         xfs_daddr_t             umount_data_blk;
792         xfs_daddr_t             after_umount_blk;
793         xfs_lsn_t               tail_lsn;
794         int                     hblks;
795
796         found = 0;
797
798         /*
799          * Find previous log record
800          */
801         if ((error = xlog_find_head(log, head_blk)))
802                 return error;
803
804         bp = xlog_get_bp(log, 1);
805         if (!bp)
806                 return ENOMEM;
807         if (*head_blk == 0) {                           /* special case */
808                 if ((error = xlog_bread(log, 0, 1, bp)))
809                         goto bread_err;
810                 offset = xlog_align(log, 0, 1, bp);
811                 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812                         *tail_blk = 0;
813                         /* leave all other log inited values alone */
814                         goto exit;
815                 }
816         }
817
818         /*
819          * Search backwards looking for log record header block
820          */
821         ASSERT(*head_blk < INT_MAX);
822         for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823                 if ((error = xlog_bread(log, i, 1, bp)))
824                         goto bread_err;
825                 offset = xlog_align(log, i, 1, bp);
826                 if (XLOG_HEADER_MAGIC_NUM ==
827                     INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828                         found = 1;
829                         break;
830                 }
831         }
832         /*
833          * If we haven't found the log record header block, start looking
834          * again from the end of the physical log.  XXXmiken: There should be
835          * a check here to make sure we didn't search more than N blocks in
836          * the previous code.
837          */
838         if (!found) {
839                 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840                         if ((error = xlog_bread(log, i, 1, bp)))
841                                 goto bread_err;
842                         offset = xlog_align(log, i, 1, bp);
843                         if (XLOG_HEADER_MAGIC_NUM ==
844                             INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845                                 found = 2;
846                                 break;
847                         }
848                 }
849         }
850         if (!found) {
851                 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852                 ASSERT(0);
853                 return XFS_ERROR(EIO);
854         }
855
856         /* find blk_no of tail of log */
857         rhead = (xlog_rec_header_t *)offset;
858         *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859
860         /*
861          * Reset log values according to the state of the log when we
862          * crashed.  In the case where head_blk == 0, we bump curr_cycle
863          * one because the next write starts a new cycle rather than
864          * continuing the cycle of the last good log record.  At this
865          * point we have guaranteed that all partial log records have been
866          * accounted for.  Therefore, we know that the last good log record
867          * written was complete and ended exactly on the end boundary
868          * of the physical log.
869          */
870         log->l_prev_block = i;
871         log->l_curr_block = (int)*head_blk;
872         log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873         if (found == 2)
874                 log->l_curr_cycle++;
875         log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876         log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877         log->l_grant_reserve_cycle = log->l_curr_cycle;
878         log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879         log->l_grant_write_cycle = log->l_curr_cycle;
880         log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882         /*
883          * Look for unmount record.  If we find it, then we know there
884          * was a clean unmount.  Since 'i' could be the last block in
885          * the physical log, we convert to a log block before comparing
886          * to the head_blk.
887          *
888          * Save the current tail lsn to use to pass to
889          * xlog_clear_stale_blocks() below.  We won't want to clear the
890          * unmount record if there is one, so we pass the lsn of the
891          * unmount record rather than the block after it.
892          */
893         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894                 int     h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895                 int     h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896
897                 if ((h_version & XLOG_VERSION_2) &&
898                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
901                                 hblks++;
902                 } else {
903                         hblks = 1;
904                 }
905         } else {
906                 hblks = 1;
907         }
908         after_umount_blk = (i + hblks + (int)
909                 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910         tail_lsn = log->l_tail_lsn;
911         if (*head_blk == after_umount_blk &&
912             INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913                 umount_data_blk = (i + hblks) % log->l_logBBsize;
914                 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915                         goto bread_err;
916                 }
917                 offset = xlog_align(log, umount_data_blk, 1, bp);
918                 op_head = (xlog_op_header_t *)offset;
919                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920                         /*
921                          * Set tail and last sync so that newly written
922                          * log records will point recovery to after the
923                          * current unmount record.
924                          */
925                         ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926                                         after_umount_blk);
927                         ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928                                         after_umount_blk);
929                         *tail_blk = after_umount_blk;
930                 }
931         }
932
933         /*
934          * Make sure that there are no blocks in front of the head
935          * with the same cycle number as the head.  This can happen
936          * because we allow multiple outstanding log writes concurrently,
937          * and the later writes might make it out before earlier ones.
938          *
939          * We use the lsn from before modifying it so that we'll never
940          * overwrite the unmount record after a clean unmount.
941          *
942          * Do this only if we are going to recover the filesystem
943          *
944          * NOTE: This used to say "if (!readonly)"
945          * However on Linux, we can & do recover a read-only filesystem.
946          * We only skip recovery if NORECOVERY is specified on mount,
947          * in which case we would not be here.
948          *
949          * But... if the -device- itself is readonly, just skip this.
950          * We can't recover this device anyway, so it won't matter.
951          */
952         if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
953                 error = xlog_clear_stale_blocks(log, tail_lsn);
954         }
955
956 bread_err:
957 exit:
958         xlog_put_bp(bp);
959
960         if (error)
961                 xlog_warn("XFS: failed to locate log tail");
962         return error;
963 }
964
965 /*
966  * Is the log zeroed at all?
967  *
968  * The last binary search should be changed to perform an X block read
969  * once X becomes small enough.  You can then search linearly through
970  * the X blocks.  This will cut down on the number of reads we need to do.
971  *
972  * If the log is partially zeroed, this routine will pass back the blkno
973  * of the first block with cycle number 0.  It won't have a complete LR
974  * preceding it.
975  *
976  * Return:
977  *      0  => the log is completely written to
978  *      -1 => use *blk_no as the first block of the log
979  *      >0 => error has occurred
980  */
981 int
982 xlog_find_zeroed(
983         xlog_t          *log,
984         xfs_daddr_t     *blk_no)
985 {
986         xfs_buf_t       *bp;
987         xfs_caddr_t     offset;
988         uint            first_cycle, last_cycle;
989         xfs_daddr_t     new_blk, last_blk, start_blk;
990         xfs_daddr_t     num_scan_bblks;
991         int             error, log_bbnum = log->l_logBBsize;
992
993         *blk_no = 0;
994
995         /* check totally zeroed log */
996         bp = xlog_get_bp(log, 1);
997         if (!bp)
998                 return ENOMEM;
999         if ((error = xlog_bread(log, 0, 1, bp)))
1000                 goto bp_err;
1001         offset = xlog_align(log, 0, 1, bp);
1002         first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1003         if (first_cycle == 0) {         /* completely zeroed log */
1004                 *blk_no = 0;
1005                 xlog_put_bp(bp);
1006                 return -1;
1007         }
1008
1009         /* check partially zeroed log */
1010         if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1011                 goto bp_err;
1012         offset = xlog_align(log, log_bbnum-1, 1, bp);
1013         last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1014         if (last_cycle != 0) {          /* log completely written to */
1015                 xlog_put_bp(bp);
1016                 return 0;
1017         } else if (first_cycle != 1) {
1018                 /*
1019                  * If the cycle of the last block is zero, the cycle of
1020                  * the first block must be 1. If it's not, maybe we're
1021                  * not looking at a log... Bail out.
1022                  */
1023                 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1024                 return XFS_ERROR(EINVAL);
1025         }
1026
1027         /* we have a partially zeroed log */
1028         last_blk = log_bbnum-1;
1029         if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1030                 goto bp_err;
1031
1032         /*
1033          * Validate the answer.  Because there is no way to guarantee that
1034          * the entire log is made up of log records which are the same size,
1035          * we scan over the defined maximum blocks.  At this point, the maximum
1036          * is not chosen to mean anything special.   XXXmiken
1037          */
1038         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1039         ASSERT(num_scan_bblks <= INT_MAX);
1040
1041         if (last_blk < num_scan_bblks)
1042                 num_scan_bblks = last_blk;
1043         start_blk = last_blk - num_scan_bblks;
1044
1045         /*
1046          * We search for any instances of cycle number 0 that occur before
1047          * our current estimate of the head.  What we're trying to detect is
1048          *        1 ... | 0 | 1 | 0...
1049          *                       ^ binary search ends here
1050          */
1051         if ((error = xlog_find_verify_cycle(log, start_blk,
1052                                          (int)num_scan_bblks, 0, &new_blk)))
1053                 goto bp_err;
1054         if (new_blk != -1)
1055                 last_blk = new_blk;
1056
1057         /*
1058          * Potentially backup over partial log record write.  We don't need
1059          * to search the end of the log because we know it is zero.
1060          */
1061         if ((error = xlog_find_verify_log_record(log, start_blk,
1062                                 &last_blk, 0)) == -1) {
1063             error = XFS_ERROR(EIO);
1064             goto bp_err;
1065         } else if (error)
1066             goto bp_err;
1067
1068         *blk_no = last_blk;
1069 bp_err:
1070         xlog_put_bp(bp);
1071         if (error)
1072                 return error;
1073         return -1;
1074 }
1075
1076 /*
1077  * These are simple subroutines used by xlog_clear_stale_blocks() below
1078  * to initialize a buffer full of empty log record headers and write
1079  * them into the log.
1080  */
1081 STATIC void
1082 xlog_add_record(
1083         xlog_t                  *log,
1084         xfs_caddr_t             buf,
1085         int                     cycle,
1086         int                     block,
1087         int                     tail_cycle,
1088         int                     tail_block)
1089 {
1090         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1091
1092         memset(buf, 0, BBSIZE);
1093         INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1094         INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1095         INT_SET(recp->h_version, ARCH_CONVERT,
1096                         XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1097         ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1098         ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1099         INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1100         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1101 }
1102
1103 STATIC int
1104 xlog_write_log_records(
1105         xlog_t          *log,
1106         int             cycle,
1107         int             start_block,
1108         int             blocks,
1109         int             tail_cycle,
1110         int             tail_block)
1111 {
1112         xfs_caddr_t     offset;
1113         xfs_buf_t       *bp;
1114         int             balign, ealign;
1115         int             sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1116         int             end_block = start_block + blocks;
1117         int             bufblks;
1118         int             error = 0;
1119         int             i, j = 0;
1120
1121         bufblks = 1 << ffs(blocks);
1122         while (!(bp = xlog_get_bp(log, bufblks))) {
1123                 bufblks >>= 1;
1124                 if (bufblks <= log->l_sectbb_log)
1125                         return ENOMEM;
1126         }
1127
1128         /* We may need to do a read at the start to fill in part of
1129          * the buffer in the starting sector not covered by the first
1130          * write below.
1131          */
1132         balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1133         if (balign != start_block) {
1134                 if ((error = xlog_bread(log, start_block, 1, bp))) {
1135                         xlog_put_bp(bp);
1136                         return error;
1137                 }
1138                 j = start_block - balign;
1139         }
1140
1141         for (i = start_block; i < end_block; i += bufblks) {
1142                 int             bcount, endcount;
1143
1144                 bcount = min(bufblks, end_block - start_block);
1145                 endcount = bcount - j;
1146
1147                 /* We may need to do a read at the end to fill in part of
1148                  * the buffer in the final sector not covered by the write.
1149                  * If this is the same sector as the above read, skip it.
1150                  */
1151                 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1152                 if (j == 0 && (start_block + endcount > ealign)) {
1153                         offset = XFS_BUF_PTR(bp);
1154                         balign = BBTOB(ealign - start_block);
1155                         XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1156                         if ((error = xlog_bread(log, ealign, sectbb, bp)))
1157                                 break;
1158                         XFS_BUF_SET_PTR(bp, offset, bufblks);
1159                 }
1160
1161                 offset = xlog_align(log, start_block, endcount, bp);
1162                 for (; j < endcount; j++) {
1163                         xlog_add_record(log, offset, cycle, i+j,
1164                                         tail_cycle, tail_block);
1165                         offset += BBSIZE;
1166                 }
1167                 error = xlog_bwrite(log, start_block, endcount, bp);
1168                 if (error)
1169                         break;
1170                 start_block += endcount;
1171                 j = 0;
1172         }
1173         xlog_put_bp(bp);
1174         return error;
1175 }
1176
1177 /*
1178  * This routine is called to blow away any incomplete log writes out
1179  * in front of the log head.  We do this so that we won't become confused
1180  * if we come up, write only a little bit more, and then crash again.
1181  * If we leave the partial log records out there, this situation could
1182  * cause us to think those partial writes are valid blocks since they
1183  * have the current cycle number.  We get rid of them by overwriting them
1184  * with empty log records with the old cycle number rather than the
1185  * current one.
1186  *
1187  * The tail lsn is passed in rather than taken from
1188  * the log so that we will not write over the unmount record after a
1189  * clean unmount in a 512 block log.  Doing so would leave the log without
1190  * any valid log records in it until a new one was written.  If we crashed
1191  * during that time we would not be able to recover.
1192  */
1193 STATIC int
1194 xlog_clear_stale_blocks(
1195         xlog_t          *log,
1196         xfs_lsn_t       tail_lsn)
1197 {
1198         int             tail_cycle, head_cycle;
1199         int             tail_block, head_block;
1200         int             tail_distance, max_distance;
1201         int             distance;
1202         int             error;
1203
1204         tail_cycle = CYCLE_LSN(tail_lsn);
1205         tail_block = BLOCK_LSN(tail_lsn);
1206         head_cycle = log->l_curr_cycle;
1207         head_block = log->l_curr_block;
1208
1209         /*
1210          * Figure out the distance between the new head of the log
1211          * and the tail.  We want to write over any blocks beyond the
1212          * head that we may have written just before the crash, but
1213          * we don't want to overwrite the tail of the log.
1214          */
1215         if (head_cycle == tail_cycle) {
1216                 /*
1217                  * The tail is behind the head in the physical log,
1218                  * so the distance from the head to the tail is the
1219                  * distance from the head to the end of the log plus
1220                  * the distance from the beginning of the log to the
1221                  * tail.
1222                  */
1223                 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1224                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1225                                          XFS_ERRLEVEL_LOW, log->l_mp);
1226                         return XFS_ERROR(EFSCORRUPTED);
1227                 }
1228                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1229         } else {
1230                 /*
1231                  * The head is behind the tail in the physical log,
1232                  * so the distance from the head to the tail is just
1233                  * the tail block minus the head block.
1234                  */
1235                 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1236                         XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1237                                          XFS_ERRLEVEL_LOW, log->l_mp);
1238                         return XFS_ERROR(EFSCORRUPTED);
1239                 }
1240                 tail_distance = tail_block - head_block;
1241         }
1242
1243         /*
1244          * If the head is right up against the tail, we can't clear
1245          * anything.
1246          */
1247         if (tail_distance <= 0) {
1248                 ASSERT(tail_distance == 0);
1249                 return 0;
1250         }
1251
1252         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1253         /*
1254          * Take the smaller of the maximum amount of outstanding I/O
1255          * we could have and the distance to the tail to clear out.
1256          * We take the smaller so that we don't overwrite the tail and
1257          * we don't waste all day writing from the head to the tail
1258          * for no reason.
1259          */
1260         max_distance = MIN(max_distance, tail_distance);
1261
1262         if ((head_block + max_distance) <= log->l_logBBsize) {
1263                 /*
1264                  * We can stomp all the blocks we need to without
1265                  * wrapping around the end of the log.  Just do it
1266                  * in a single write.  Use the cycle number of the
1267                  * current cycle minus one so that the log will look like:
1268                  *     n ... | n - 1 ...
1269                  */
1270                 error = xlog_write_log_records(log, (head_cycle - 1),
1271                                 head_block, max_distance, tail_cycle,
1272                                 tail_block);
1273                 if (error)
1274                         return error;
1275         } else {
1276                 /*
1277                  * We need to wrap around the end of the physical log in
1278                  * order to clear all the blocks.  Do it in two separate
1279                  * I/Os.  The first write should be from the head to the
1280                  * end of the physical log, and it should use the current
1281                  * cycle number minus one just like above.
1282                  */
1283                 distance = log->l_logBBsize - head_block;
1284                 error = xlog_write_log_records(log, (head_cycle - 1),
1285                                 head_block, distance, tail_cycle,
1286                                 tail_block);
1287
1288                 if (error)
1289                         return error;
1290
1291                 /*
1292                  * Now write the blocks at the start of the physical log.
1293                  * This writes the remainder of the blocks we want to clear.
1294                  * It uses the current cycle number since we're now on the
1295                  * same cycle as the head so that we get:
1296                  *    n ... n ... | n - 1 ...
1297                  *    ^^^^^ blocks we're writing
1298                  */
1299                 distance = max_distance - (log->l_logBBsize - head_block);
1300                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1301                                 tail_cycle, tail_block);
1302                 if (error)
1303                         return error;
1304         }
1305
1306         return 0;
1307 }
1308
1309 /******************************************************************************
1310  *
1311  *              Log recover routines
1312  *
1313  ******************************************************************************
1314  */
1315
1316 STATIC xlog_recover_t *
1317 xlog_recover_find_tid(
1318         xlog_recover_t          *q,
1319         xlog_tid_t              tid)
1320 {
1321         xlog_recover_t          *p = q;
1322
1323         while (p != NULL) {
1324                 if (p->r_log_tid == tid)
1325                     break;
1326                 p = p->r_next;
1327         }
1328         return p;
1329 }
1330
1331 STATIC void
1332 xlog_recover_put_hashq(
1333         xlog_recover_t          **q,
1334         xlog_recover_t          *trans)
1335 {
1336         trans->r_next = *q;
1337         *q = trans;
1338 }
1339
1340 STATIC void
1341 xlog_recover_add_item(
1342         xlog_recover_item_t     **itemq)
1343 {
1344         xlog_recover_item_t     *item;
1345
1346         item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1347         xlog_recover_insert_item_backq(itemq, item);
1348 }
1349
1350 STATIC int
1351 xlog_recover_add_to_cont_trans(
1352         xlog_recover_t          *trans,
1353         xfs_caddr_t             dp,
1354         int                     len)
1355 {
1356         xlog_recover_item_t     *item;
1357         xfs_caddr_t             ptr, old_ptr;
1358         int                     old_len;
1359
1360         item = trans->r_itemq;
1361         if (item == 0) {
1362                 /* finish copying rest of trans header */
1363                 xlog_recover_add_item(&trans->r_itemq);
1364                 ptr = (xfs_caddr_t) &trans->r_theader +
1365                                 sizeof(xfs_trans_header_t) - len;
1366                 memcpy(ptr, dp, len); /* d, s, l */
1367                 return 0;
1368         }
1369         item = item->ri_prev;
1370
1371         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1372         old_len = item->ri_buf[item->ri_cnt-1].i_len;
1373
1374         ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1375         memcpy(&ptr[old_len], dp, len); /* d, s, l */
1376         item->ri_buf[item->ri_cnt-1].i_len += len;
1377         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1378         return 0;
1379 }
1380
1381 /*
1382  * The next region to add is the start of a new region.  It could be
1383  * a whole region or it could be the first part of a new region.  Because
1384  * of this, the assumption here is that the type and size fields of all
1385  * format structures fit into the first 32 bits of the structure.
1386  *
1387  * This works because all regions must be 32 bit aligned.  Therefore, we
1388  * either have both fields or we have neither field.  In the case we have
1389  * neither field, the data part of the region is zero length.  We only have
1390  * a log_op_header and can throw away the header since a new one will appear
1391  * later.  If we have at least 4 bytes, then we can determine how many regions
1392  * will appear in the current log item.
1393  */
1394 STATIC int
1395 xlog_recover_add_to_trans(
1396         xlog_recover_t          *trans,
1397         xfs_caddr_t             dp,
1398         int                     len)
1399 {
1400         xfs_inode_log_format_t  *in_f;                  /* any will do */
1401         xlog_recover_item_t     *item;
1402         xfs_caddr_t             ptr;
1403
1404         if (!len)
1405                 return 0;
1406         item = trans->r_itemq;
1407         if (item == 0) {
1408                 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1409                 if (len == sizeof(xfs_trans_header_t))
1410                         xlog_recover_add_item(&trans->r_itemq);
1411                 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1412                 return 0;
1413         }
1414
1415         ptr = kmem_alloc(len, KM_SLEEP);
1416         memcpy(ptr, dp, len);
1417         in_f = (xfs_inode_log_format_t *)ptr;
1418
1419         if (item->ri_prev->ri_total != 0 &&
1420              item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1421                 xlog_recover_add_item(&trans->r_itemq);
1422         }
1423         item = trans->r_itemq;
1424         item = item->ri_prev;
1425
1426         if (item->ri_total == 0) {              /* first region to be added */
1427                 item->ri_total  = in_f->ilf_size;
1428                 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1429                 item->ri_buf = kmem_zalloc((item->ri_total *
1430                                             sizeof(xfs_log_iovec_t)), KM_SLEEP);
1431         }
1432         ASSERT(item->ri_total > item->ri_cnt);
1433         /* Description region is ri_buf[0] */
1434         item->ri_buf[item->ri_cnt].i_addr = ptr;
1435         item->ri_buf[item->ri_cnt].i_len  = len;
1436         item->ri_cnt++;
1437         return 0;
1438 }
1439
1440 STATIC void
1441 xlog_recover_new_tid(
1442         xlog_recover_t          **q,
1443         xlog_tid_t              tid,
1444         xfs_lsn_t               lsn)
1445 {
1446         xlog_recover_t          *trans;
1447
1448         trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1449         trans->r_log_tid   = tid;
1450         trans->r_lsn       = lsn;
1451         xlog_recover_put_hashq(q, trans);
1452 }
1453
1454 STATIC int
1455 xlog_recover_unlink_tid(
1456         xlog_recover_t          **q,
1457         xlog_recover_t          *trans)
1458 {
1459         xlog_recover_t          *tp;
1460         int                     found = 0;
1461
1462         ASSERT(trans != 0);
1463         if (trans == *q) {
1464                 *q = (*q)->r_next;
1465         } else {
1466                 tp = *q;
1467                 while (tp != 0) {
1468                         if (tp->r_next == trans) {
1469                                 found = 1;
1470                                 break;
1471                         }
1472                         tp = tp->r_next;
1473                 }
1474                 if (!found) {
1475                         xlog_warn(
1476                              "XFS: xlog_recover_unlink_tid: trans not found");
1477                         ASSERT(0);
1478                         return XFS_ERROR(EIO);
1479                 }
1480                 tp->r_next = tp->r_next->r_next;
1481         }
1482         return 0;
1483 }
1484
1485 STATIC void
1486 xlog_recover_insert_item_backq(
1487         xlog_recover_item_t     **q,
1488         xlog_recover_item_t     *item)
1489 {
1490         if (*q == 0) {
1491                 item->ri_prev = item->ri_next = item;
1492                 *q = item;
1493         } else {
1494                 item->ri_next           = *q;
1495                 item->ri_prev           = (*q)->ri_prev;
1496                 (*q)->ri_prev           = item;
1497                 item->ri_prev->ri_next  = item;
1498         }
1499 }
1500
1501 STATIC void
1502 xlog_recover_insert_item_frontq(
1503         xlog_recover_item_t     **q,
1504         xlog_recover_item_t     *item)
1505 {
1506         xlog_recover_insert_item_backq(q, item);
1507         *q = item;
1508 }
1509
1510 STATIC int
1511 xlog_recover_reorder_trans(
1512         xlog_t                  *log,
1513         xlog_recover_t          *trans)
1514 {
1515         xlog_recover_item_t     *first_item, *itemq, *itemq_next;
1516         xfs_buf_log_format_t    *buf_f;
1517         xfs_buf_log_format_v1_t *obuf_f;
1518         ushort                  flags = 0;
1519
1520         first_item = itemq = trans->r_itemq;
1521         trans->r_itemq = NULL;
1522         do {
1523                 itemq_next = itemq->ri_next;
1524                 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1525                 switch (ITEM_TYPE(itemq)) {
1526                 case XFS_LI_BUF:
1527                         flags = buf_f->blf_flags;
1528                         break;
1529                 case XFS_LI_6_1_BUF:
1530                 case XFS_LI_5_3_BUF:
1531                         obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1532                         flags = obuf_f->blf_flags;
1533                         break;
1534                 }
1535
1536                 switch (ITEM_TYPE(itemq)) {
1537                 case XFS_LI_BUF:
1538                 case XFS_LI_6_1_BUF:
1539                 case XFS_LI_5_3_BUF:
1540                         if (!(flags & XFS_BLI_CANCEL)) {
1541                                 xlog_recover_insert_item_frontq(&trans->r_itemq,
1542                                                                 itemq);
1543                                 break;
1544                         }
1545                 case XFS_LI_INODE:
1546                 case XFS_LI_6_1_INODE:
1547                 case XFS_LI_5_3_INODE:
1548                 case XFS_LI_DQUOT:
1549                 case XFS_LI_QUOTAOFF:
1550                 case XFS_LI_EFD:
1551                 case XFS_LI_EFI:
1552                         xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1553                         break;
1554                 default:
1555                         xlog_warn(
1556         "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1557                         ASSERT(0);
1558                         return XFS_ERROR(EIO);
1559                 }
1560                 itemq = itemq_next;
1561         } while (first_item != itemq);
1562         return 0;
1563 }
1564
1565 /*
1566  * Build up the table of buf cancel records so that we don't replay
1567  * cancelled data in the second pass.  For buffer records that are
1568  * not cancel records, there is nothing to do here so we just return.
1569  *
1570  * If we get a cancel record which is already in the table, this indicates
1571  * that the buffer was cancelled multiple times.  In order to ensure
1572  * that during pass 2 we keep the record in the table until we reach its
1573  * last occurrence in the log, we keep a reference count in the cancel
1574  * record in the table to tell us how many times we expect to see this
1575  * record during the second pass.
1576  */
1577 STATIC void
1578 xlog_recover_do_buffer_pass1(
1579         xlog_t                  *log,
1580         xfs_buf_log_format_t    *buf_f)
1581 {
1582         xfs_buf_cancel_t        *bcp;
1583         xfs_buf_cancel_t        *nextp;
1584         xfs_buf_cancel_t        *prevp;
1585         xfs_buf_cancel_t        **bucket;
1586         xfs_buf_log_format_v1_t *obuf_f;
1587         xfs_daddr_t             blkno = 0;
1588         uint                    len = 0;
1589         ushort                  flags = 0;
1590
1591         switch (buf_f->blf_type) {
1592         case XFS_LI_BUF:
1593                 blkno = buf_f->blf_blkno;
1594                 len = buf_f->blf_len;
1595                 flags = buf_f->blf_flags;
1596                 break;
1597         case XFS_LI_6_1_BUF:
1598         case XFS_LI_5_3_BUF:
1599                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1600                 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1601                 len = obuf_f->blf_len;
1602                 flags = obuf_f->blf_flags;
1603                 break;
1604         }
1605
1606         /*
1607          * If this isn't a cancel buffer item, then just return.
1608          */
1609         if (!(flags & XFS_BLI_CANCEL))
1610                 return;
1611
1612         /*
1613          * Insert an xfs_buf_cancel record into the hash table of
1614          * them.  If there is already an identical record, bump
1615          * its reference count.
1616          */
1617         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1618                                           XLOG_BC_TABLE_SIZE];
1619         /*
1620          * If the hash bucket is empty then just insert a new record into
1621          * the bucket.
1622          */
1623         if (*bucket == NULL) {
1624                 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1625                                                      KM_SLEEP);
1626                 bcp->bc_blkno = blkno;
1627                 bcp->bc_len = len;
1628                 bcp->bc_refcount = 1;
1629                 bcp->bc_next = NULL;
1630                 *bucket = bcp;
1631                 return;
1632         }
1633
1634         /*
1635          * The hash bucket is not empty, so search for duplicates of our
1636          * record.  If we find one them just bump its refcount.  If not
1637          * then add us at the end of the list.
1638          */
1639         prevp = NULL;
1640         nextp = *bucket;
1641         while (nextp != NULL) {
1642                 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1643                         nextp->bc_refcount++;
1644                         return;
1645                 }
1646                 prevp = nextp;
1647                 nextp = nextp->bc_next;
1648         }
1649         ASSERT(prevp != NULL);
1650         bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1651                                              KM_SLEEP);
1652         bcp->bc_blkno = blkno;
1653         bcp->bc_len = len;
1654         bcp->bc_refcount = 1;
1655         bcp->bc_next = NULL;
1656         prevp->bc_next = bcp;
1657 }
1658
1659 /*
1660  * Check to see whether the buffer being recovered has a corresponding
1661  * entry in the buffer cancel record table.  If it does then return 1
1662  * so that it will be cancelled, otherwise return 0.  If the buffer is
1663  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1664  * the refcount on the entry in the table and remove it from the table
1665  * if this is the last reference.
1666  *
1667  * We remove the cancel record from the table when we encounter its
1668  * last occurrence in the log so that if the same buffer is re-used
1669  * again after its last cancellation we actually replay the changes
1670  * made at that point.
1671  */
1672 STATIC int
1673 xlog_check_buffer_cancelled(
1674         xlog_t                  *log,
1675         xfs_daddr_t             blkno,
1676         uint                    len,
1677         ushort                  flags)
1678 {
1679         xfs_buf_cancel_t        *bcp;
1680         xfs_buf_cancel_t        *prevp;
1681         xfs_buf_cancel_t        **bucket;
1682
1683         if (log->l_buf_cancel_table == NULL) {
1684                 /*
1685                  * There is nothing in the table built in pass one,
1686                  * so this buffer must not be cancelled.
1687                  */
1688                 ASSERT(!(flags & XFS_BLI_CANCEL));
1689                 return 0;
1690         }
1691
1692         bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1693                                           XLOG_BC_TABLE_SIZE];
1694         bcp = *bucket;
1695         if (bcp == NULL) {
1696                 /*
1697                  * There is no corresponding entry in the table built
1698                  * in pass one, so this buffer has not been cancelled.
1699                  */
1700                 ASSERT(!(flags & XFS_BLI_CANCEL));
1701                 return 0;
1702         }
1703
1704         /*
1705          * Search for an entry in the buffer cancel table that
1706          * matches our buffer.
1707          */
1708         prevp = NULL;
1709         while (bcp != NULL) {
1710                 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1711                         /*
1712                          * We've go a match, so return 1 so that the
1713                          * recovery of this buffer is cancelled.
1714                          * If this buffer is actually a buffer cancel
1715                          * log item, then decrement the refcount on the
1716                          * one in the table and remove it if this is the
1717                          * last reference.
1718                          */
1719                         if (flags & XFS_BLI_CANCEL) {
1720                                 bcp->bc_refcount--;
1721                                 if (bcp->bc_refcount == 0) {
1722                                         if (prevp == NULL) {
1723                                                 *bucket = bcp->bc_next;
1724                                         } else {
1725                                                 prevp->bc_next = bcp->bc_next;
1726                                         }
1727                                         kmem_free(bcp,
1728                                                   sizeof(xfs_buf_cancel_t));
1729                                 }
1730                         }
1731                         return 1;
1732                 }
1733                 prevp = bcp;
1734                 bcp = bcp->bc_next;
1735         }
1736         /*
1737          * We didn't find a corresponding entry in the table, so
1738          * return 0 so that the buffer is NOT cancelled.
1739          */
1740         ASSERT(!(flags & XFS_BLI_CANCEL));
1741         return 0;
1742 }
1743
1744 STATIC int
1745 xlog_recover_do_buffer_pass2(
1746         xlog_t                  *log,
1747         xfs_buf_log_format_t    *buf_f)
1748 {
1749         xfs_buf_log_format_v1_t *obuf_f;
1750         xfs_daddr_t             blkno = 0;
1751         ushort                  flags = 0;
1752         uint                    len = 0;
1753
1754         switch (buf_f->blf_type) {
1755         case XFS_LI_BUF:
1756                 blkno = buf_f->blf_blkno;
1757                 flags = buf_f->blf_flags;
1758                 len = buf_f->blf_len;
1759                 break;
1760         case XFS_LI_6_1_BUF:
1761         case XFS_LI_5_3_BUF:
1762                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1763                 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1764                 flags = obuf_f->blf_flags;
1765                 len = (xfs_daddr_t) obuf_f->blf_len;
1766                 break;
1767         }
1768
1769         return xlog_check_buffer_cancelled(log, blkno, len, flags);
1770 }
1771
1772 /*
1773  * Perform recovery for a buffer full of inodes.  In these buffers,
1774  * the only data which should be recovered is that which corresponds
1775  * to the di_next_unlinked pointers in the on disk inode structures.
1776  * The rest of the data for the inodes is always logged through the
1777  * inodes themselves rather than the inode buffer and is recovered
1778  * in xlog_recover_do_inode_trans().
1779  *
1780  * The only time when buffers full of inodes are fully recovered is
1781  * when the buffer is full of newly allocated inodes.  In this case
1782  * the buffer will not be marked as an inode buffer and so will be
1783  * sent to xlog_recover_do_reg_buffer() below during recovery.
1784  */
1785 STATIC int
1786 xlog_recover_do_inode_buffer(
1787         xfs_mount_t             *mp,
1788         xlog_recover_item_t     *item,
1789         xfs_buf_t               *bp,
1790         xfs_buf_log_format_t    *buf_f)
1791 {
1792         int                     i;
1793         int                     item_index;
1794         int                     bit;
1795         int                     nbits;
1796         int                     reg_buf_offset;
1797         int                     reg_buf_bytes;
1798         int                     next_unlinked_offset;
1799         int                     inodes_per_buf;
1800         xfs_agino_t             *logged_nextp;
1801         xfs_agino_t             *buffer_nextp;
1802         xfs_buf_log_format_v1_t *obuf_f;
1803         unsigned int            *data_map = NULL;
1804         unsigned int            map_size = 0;
1805
1806         switch (buf_f->blf_type) {
1807         case XFS_LI_BUF:
1808                 data_map = buf_f->blf_data_map;
1809                 map_size = buf_f->blf_map_size;
1810                 break;
1811         case XFS_LI_6_1_BUF:
1812         case XFS_LI_5_3_BUF:
1813                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1814                 data_map = obuf_f->blf_data_map;
1815                 map_size = obuf_f->blf_map_size;
1816                 break;
1817         }
1818         /*
1819          * Set the variables corresponding to the current region to
1820          * 0 so that we'll initialize them on the first pass through
1821          * the loop.
1822          */
1823         reg_buf_offset = 0;
1824         reg_buf_bytes = 0;
1825         bit = 0;
1826         nbits = 0;
1827         item_index = 0;
1828         inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1829         for (i = 0; i < inodes_per_buf; i++) {
1830                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1831                         offsetof(xfs_dinode_t, di_next_unlinked);
1832
1833                 while (next_unlinked_offset >=
1834                        (reg_buf_offset + reg_buf_bytes)) {
1835                         /*
1836                          * The next di_next_unlinked field is beyond
1837                          * the current logged region.  Find the next
1838                          * logged region that contains or is beyond
1839                          * the current di_next_unlinked field.
1840                          */
1841                         bit += nbits;
1842                         bit = xfs_next_bit(data_map, map_size, bit);
1843
1844                         /*
1845                          * If there are no more logged regions in the
1846                          * buffer, then we're done.
1847                          */
1848                         if (bit == -1) {
1849                                 return 0;
1850                         }
1851
1852                         nbits = xfs_contig_bits(data_map, map_size,
1853                                                          bit);
1854                         ASSERT(nbits > 0);
1855                         reg_buf_offset = bit << XFS_BLI_SHIFT;
1856                         reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1857                         item_index++;
1858                 }
1859
1860                 /*
1861                  * If the current logged region starts after the current
1862                  * di_next_unlinked field, then move on to the next
1863                  * di_next_unlinked field.
1864                  */
1865                 if (next_unlinked_offset < reg_buf_offset) {
1866                         continue;
1867                 }
1868
1869                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1870                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1871                 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1872
1873                 /*
1874                  * The current logged region contains a copy of the
1875                  * current di_next_unlinked field.  Extract its value
1876                  * and copy it to the buffer copy.
1877                  */
1878                 logged_nextp = (xfs_agino_t *)
1879                                ((char *)(item->ri_buf[item_index].i_addr) +
1880                                 (next_unlinked_offset - reg_buf_offset));
1881                 if (unlikely(*logged_nextp == 0)) {
1882                         xfs_fs_cmn_err(CE_ALERT, mp,
1883                                 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1884                                 item, bp);
1885                         XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1886                                          XFS_ERRLEVEL_LOW, mp);
1887                         return XFS_ERROR(EFSCORRUPTED);
1888                 }
1889
1890                 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1891                                               next_unlinked_offset);
1892                 *buffer_nextp = *logged_nextp;
1893         }
1894
1895         return 0;
1896 }
1897
1898 /*
1899  * Perform a 'normal' buffer recovery.  Each logged region of the
1900  * buffer should be copied over the corresponding region in the
1901  * given buffer.  The bitmap in the buf log format structure indicates
1902  * where to place the logged data.
1903  */
1904 /*ARGSUSED*/
1905 STATIC void
1906 xlog_recover_do_reg_buffer(
1907         xfs_mount_t             *mp,
1908         xlog_recover_item_t     *item,
1909         xfs_buf_t               *bp,
1910         xfs_buf_log_format_t    *buf_f)
1911 {
1912         int                     i;
1913         int                     bit;
1914         int                     nbits;
1915         xfs_buf_log_format_v1_t *obuf_f;
1916         unsigned int            *data_map = NULL;
1917         unsigned int            map_size = 0;
1918         int                     error;
1919
1920         switch (buf_f->blf_type) {
1921         case XFS_LI_BUF:
1922                 data_map = buf_f->blf_data_map;
1923                 map_size = buf_f->blf_map_size;
1924                 break;
1925         case XFS_LI_6_1_BUF:
1926         case XFS_LI_5_3_BUF:
1927                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1928                 data_map = obuf_f->blf_data_map;
1929                 map_size = obuf_f->blf_map_size;
1930                 break;
1931         }
1932         bit = 0;
1933         i = 1;  /* 0 is the buf format structure */
1934         while (1) {
1935                 bit = xfs_next_bit(data_map, map_size, bit);
1936                 if (bit == -1)
1937                         break;
1938                 nbits = xfs_contig_bits(data_map, map_size, bit);
1939                 ASSERT(nbits > 0);
1940                 ASSERT(item->ri_buf[i].i_addr != 0);
1941                 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1942                 ASSERT(XFS_BUF_COUNT(bp) >=
1943                        ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1944
1945                 /*
1946                  * Do a sanity check if this is a dquot buffer. Just checking
1947                  * the first dquot in the buffer should do. XXXThis is
1948                  * probably a good thing to do for other buf types also.
1949                  */
1950                 error = 0;
1951                 if (buf_f->blf_flags &
1952                    (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1953                         error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1954                                                item->ri_buf[i].i_addr,
1955                                                -1, 0, XFS_QMOPT_DOWARN,
1956                                                "dquot_buf_recover");
1957                 }
1958                 if (!error)
1959                         memcpy(xfs_buf_offset(bp,
1960                                 (uint)bit << XFS_BLI_SHIFT),    /* dest */
1961                                 item->ri_buf[i].i_addr,         /* source */
1962                                 nbits<<XFS_BLI_SHIFT);          /* length */
1963                 i++;
1964                 bit += nbits;
1965         }
1966
1967         /* Shouldn't be any more regions */
1968         ASSERT(i == item->ri_total);
1969 }
1970
1971 /*
1972  * Do some primitive error checking on ondisk dquot data structures.
1973  */
1974 int
1975 xfs_qm_dqcheck(
1976         xfs_disk_dquot_t *ddq,
1977         xfs_dqid_t       id,
1978         uint             type,    /* used only when IO_dorepair is true */
1979         uint             flags,
1980         char             *str)
1981 {
1982         xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1983         int             errs = 0;
1984
1985         /*
1986          * We can encounter an uninitialized dquot buffer for 2 reasons:
1987          * 1. If we crash while deleting the quotainode(s), and those blks got
1988          *    used for user data. This is because we take the path of regular
1989          *    file deletion; however, the size field of quotainodes is never
1990          *    updated, so all the tricks that we play in itruncate_finish
1991          *    don't quite matter.
1992          *
1993          * 2. We don't play the quota buffers when there's a quotaoff logitem.
1994          *    But the allocation will be replayed so we'll end up with an
1995          *    uninitialized quota block.
1996          *
1997          * This is all fine; things are still consistent, and we haven't lost
1998          * any quota information. Just don't complain about bad dquot blks.
1999          */
2000         if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2001                 if (flags & XFS_QMOPT_DOWARN)
2002                         cmn_err(CE_ALERT,
2003                         "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2004                         str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2005                 errs++;
2006         }
2007         if (ddq->d_version != XFS_DQUOT_VERSION) {
2008                 if (flags & XFS_QMOPT_DOWARN)
2009                         cmn_err(CE_ALERT,
2010                         "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2011                         str, id, ddq->d_version, XFS_DQUOT_VERSION);
2012                 errs++;
2013         }
2014
2015         if (ddq->d_flags != XFS_DQ_USER &&
2016             ddq->d_flags != XFS_DQ_PROJ &&
2017             ddq->d_flags != XFS_DQ_GROUP) {
2018                 if (flags & XFS_QMOPT_DOWARN)
2019                         cmn_err(CE_ALERT,
2020                         "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2021                         str, id, ddq->d_flags);
2022                 errs++;
2023         }
2024
2025         if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2026                 if (flags & XFS_QMOPT_DOWARN)
2027                         cmn_err(CE_ALERT,
2028                         "%s : ondisk-dquot 0x%p, ID mismatch: "
2029                         "0x%x expected, found id 0x%x",
2030                         str, ddq, id, be32_to_cpu(ddq->d_id));
2031                 errs++;
2032         }
2033
2034         if (!errs && ddq->d_id) {
2035                 if (ddq->d_blk_softlimit &&
2036                     be64_to_cpu(ddq->d_bcount) >=
2037                                 be64_to_cpu(ddq->d_blk_softlimit)) {
2038                         if (!ddq->d_btimer) {
2039                                 if (flags & XFS_QMOPT_DOWARN)
2040                                         cmn_err(CE_ALERT,
2041                                         "%s : Dquot ID 0x%x (0x%p) "
2042                                         "BLK TIMER NOT STARTED",
2043                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2044                                 errs++;
2045                         }
2046                 }
2047                 if (ddq->d_ino_softlimit &&
2048                     be64_to_cpu(ddq->d_icount) >=
2049                                 be64_to_cpu(ddq->d_ino_softlimit)) {
2050                         if (!ddq->d_itimer) {
2051                                 if (flags & XFS_QMOPT_DOWARN)
2052                                         cmn_err(CE_ALERT,
2053                                         "%s : Dquot ID 0x%x (0x%p) "
2054                                         "INODE TIMER NOT STARTED",
2055                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2056                                 errs++;
2057                         }
2058                 }
2059                 if (ddq->d_rtb_softlimit &&
2060                     be64_to_cpu(ddq->d_rtbcount) >=
2061                                 be64_to_cpu(ddq->d_rtb_softlimit)) {
2062                         if (!ddq->d_rtbtimer) {
2063                                 if (flags & XFS_QMOPT_DOWARN)
2064                                         cmn_err(CE_ALERT,
2065                                         "%s : Dquot ID 0x%x (0x%p) "
2066                                         "RTBLK TIMER NOT STARTED",
2067                                         str, (int)be32_to_cpu(ddq->d_id), ddq);
2068                                 errs++;
2069                         }
2070                 }
2071         }
2072
2073         if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2074                 return errs;
2075
2076         if (flags & XFS_QMOPT_DOWARN)
2077                 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2078
2079         /*
2080          * Typically, a repair is only requested by quotacheck.
2081          */
2082         ASSERT(id != -1);
2083         ASSERT(flags & XFS_QMOPT_DQREPAIR);
2084         memset(d, 0, sizeof(xfs_dqblk_t));
2085
2086         d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2087         d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2088         d->dd_diskdq.d_flags = type;
2089         d->dd_diskdq.d_id = cpu_to_be32(id);
2090
2091         return errs;
2092 }
2093
2094 /*
2095  * Perform a dquot buffer recovery.
2096  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2097  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2098  * Else, treat it as a regular buffer and do recovery.
2099  */
2100 STATIC void
2101 xlog_recover_do_dquot_buffer(
2102         xfs_mount_t             *mp,
2103         xlog_t                  *log,
2104         xlog_recover_item_t     *item,
2105         xfs_buf_t               *bp,
2106         xfs_buf_log_format_t    *buf_f)
2107 {
2108         uint                    type;
2109
2110         /*
2111          * Filesystems are required to send in quota flags at mount time.
2112          */
2113         if (mp->m_qflags == 0) {
2114                 return;
2115         }
2116
2117         type = 0;
2118         if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2119                 type |= XFS_DQ_USER;
2120         if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2121                 type |= XFS_DQ_PROJ;
2122         if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2123                 type |= XFS_DQ_GROUP;
2124         /*
2125          * This type of quotas was turned off, so ignore this buffer
2126          */
2127         if (log->l_quotaoffs_flag & type)
2128                 return;
2129
2130         xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2131 }
2132
2133 /*
2134  * This routine replays a modification made to a buffer at runtime.
2135  * There are actually two types of buffer, regular and inode, which
2136  * are handled differently.  Inode buffers are handled differently
2137  * in that we only recover a specific set of data from them, namely
2138  * the inode di_next_unlinked fields.  This is because all other inode
2139  * data is actually logged via inode records and any data we replay
2140  * here which overlaps that may be stale.
2141  *
2142  * When meta-data buffers are freed at run time we log a buffer item
2143  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2144  * of the buffer in the log should not be replayed at recovery time.
2145  * This is so that if the blocks covered by the buffer are reused for
2146  * file data before we crash we don't end up replaying old, freed
2147  * meta-data into a user's file.
2148  *
2149  * To handle the cancellation of buffer log items, we make two passes
2150  * over the log during recovery.  During the first we build a table of
2151  * those buffers which have been cancelled, and during the second we
2152  * only replay those buffers which do not have corresponding cancel
2153  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2154  * for more details on the implementation of the table of cancel records.
2155  */
2156 STATIC int
2157 xlog_recover_do_buffer_trans(
2158         xlog_t                  *log,
2159         xlog_recover_item_t     *item,
2160         int                     pass)
2161 {
2162         xfs_buf_log_format_t    *buf_f;
2163         xfs_buf_log_format_v1_t *obuf_f;
2164         xfs_mount_t             *mp;
2165         xfs_buf_t               *bp;
2166         int                     error;
2167         int                     cancel;
2168         xfs_daddr_t             blkno;
2169         int                     len;
2170         ushort                  flags;
2171
2172         buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2173
2174         if (pass == XLOG_RECOVER_PASS1) {
2175                 /*
2176                  * In this pass we're only looking for buf items
2177                  * with the XFS_BLI_CANCEL bit set.
2178                  */
2179                 xlog_recover_do_buffer_pass1(log, buf_f);
2180                 return 0;
2181         } else {
2182                 /*
2183                  * In this pass we want to recover all the buffers
2184                  * which have not been cancelled and are not
2185                  * cancellation buffers themselves.  The routine
2186                  * we call here will tell us whether or not to
2187                  * continue with the replay of this buffer.
2188                  */
2189                 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2190                 if (cancel) {
2191                         return 0;
2192                 }
2193         }
2194         switch (buf_f->blf_type) {
2195         case XFS_LI_BUF:
2196                 blkno = buf_f->blf_blkno;
2197                 len = buf_f->blf_len;
2198                 flags = buf_f->blf_flags;
2199                 break;
2200         case XFS_LI_6_1_BUF:
2201         case XFS_LI_5_3_BUF:
2202                 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2203                 blkno = obuf_f->blf_blkno;
2204                 len = obuf_f->blf_len;
2205                 flags = obuf_f->blf_flags;
2206                 break;
2207         default:
2208                 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2209                         "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2210                         buf_f->blf_type, log->l_mp->m_logname ?
2211                         log->l_mp->m_logname : "internal");
2212                 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2213                                  XFS_ERRLEVEL_LOW, log->l_mp);
2214                 return XFS_ERROR(EFSCORRUPTED);
2215         }
2216
2217         mp = log->l_mp;
2218         if (flags & XFS_BLI_INODE_BUF) {
2219                 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2220                                                                 XFS_BUF_LOCK);
2221         } else {
2222                 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2223         }
2224         if (XFS_BUF_ISERROR(bp)) {
2225                 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2226                                   bp, blkno);
2227                 error = XFS_BUF_GETERROR(bp);
2228                 xfs_buf_relse(bp);
2229                 return error;
2230         }
2231
2232         error = 0;
2233         if (flags & XFS_BLI_INODE_BUF) {
2234                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2235         } else if (flags &
2236                   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2237                 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2238         } else {
2239                 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2240         }
2241         if (error)
2242                 return XFS_ERROR(error);
2243
2244         /*
2245          * Perform delayed write on the buffer.  Asynchronous writes will be
2246          * slower when taking into account all the buffers to be flushed.
2247          *
2248          * Also make sure that only inode buffers with good sizes stay in
2249          * the buffer cache.  The kernel moves inodes in buffers of 1 block
2250          * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2251          * buffers in the log can be a different size if the log was generated
2252          * by an older kernel using unclustered inode buffers or a newer kernel
2253          * running with a different inode cluster size.  Regardless, if the
2254          * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2255          * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2256          * the buffer out of the buffer cache so that the buffer won't
2257          * overlap with future reads of those inodes.
2258          */
2259         if (XFS_DINODE_MAGIC ==
2260             INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2261             (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2262                         (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2263                 XFS_BUF_STALE(bp);
2264                 error = xfs_bwrite(mp, bp);
2265         } else {
2266                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2267                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2268                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2269                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2270                 xfs_bdwrite(mp, bp);
2271         }
2272
2273         return (error);
2274 }
2275
2276 STATIC int
2277 xlog_recover_do_inode_trans(
2278         xlog_t                  *log,
2279         xlog_recover_item_t     *item,
2280         int                     pass)
2281 {
2282         xfs_inode_log_format_t  *in_f;
2283         xfs_mount_t             *mp;
2284         xfs_buf_t               *bp;
2285         xfs_imap_t              imap;
2286         xfs_dinode_t            *dip;
2287         xfs_ino_t               ino;
2288         int                     len;
2289         xfs_caddr_t             src;
2290         xfs_caddr_t             dest;
2291         int                     error;
2292         int                     attr_index;
2293         uint                    fields;
2294         xfs_dinode_core_t       *dicp;
2295         int                     need_free = 0;
2296
2297         if (pass == XLOG_RECOVER_PASS1) {
2298                 return 0;
2299         }
2300
2301         if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2302                 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2303         } else {
2304                 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2305                         sizeof(xfs_inode_log_format_t), KM_SLEEP);
2306                 need_free = 1;
2307                 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2308                 if (error)
2309                         goto error;
2310         }
2311         ino = in_f->ilf_ino;
2312         mp = log->l_mp;
2313         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2314                 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2315                 imap.im_len = in_f->ilf_len;
2316                 imap.im_boffset = in_f->ilf_boffset;
2317         } else {
2318                 /*
2319                  * It's an old inode format record.  We don't know where
2320                  * its cluster is located on disk, and we can't allow
2321                  * xfs_imap() to figure it out because the inode btrees
2322                  * are not ready to be used.  Therefore do not pass the
2323                  * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2324                  * us only the single block in which the inode lives
2325                  * rather than its cluster, so we must make sure to
2326                  * invalidate the buffer when we write it out below.
2327                  */
2328                 imap.im_blkno = 0;
2329                 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2330         }
2331
2332         /*
2333          * Inode buffers can be freed, look out for it,
2334          * and do not replay the inode.
2335          */
2336         if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2337                 error = 0;
2338                 goto error;
2339         }
2340
2341         bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2342                                                                 XFS_BUF_LOCK);
2343         if (XFS_BUF_ISERROR(bp)) {
2344                 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2345                                   bp, imap.im_blkno);
2346                 error = XFS_BUF_GETERROR(bp);
2347                 xfs_buf_relse(bp);
2348                 goto error;
2349         }
2350         error = 0;
2351         ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2352         dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2353
2354         /*
2355          * Make sure the place we're flushing out to really looks
2356          * like an inode!
2357          */
2358         if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2359                 xfs_buf_relse(bp);
2360                 xfs_fs_cmn_err(CE_ALERT, mp,
2361                         "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2362                         dip, bp, ino);
2363                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2364                                  XFS_ERRLEVEL_LOW, mp);
2365                 error = EFSCORRUPTED;
2366                 goto error;
2367         }
2368         dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2369         if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2370                 xfs_buf_relse(bp);
2371                 xfs_fs_cmn_err(CE_ALERT, mp,
2372                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2373                         item, ino);
2374                 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2375                                  XFS_ERRLEVEL_LOW, mp);
2376                 error = EFSCORRUPTED;
2377                 goto error;
2378         }
2379
2380         /* Skip replay when the on disk inode is newer than the log one */
2381         if (dicp->di_flushiter <
2382             INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2383                 /*
2384                  * Deal with the wrap case, DI_MAX_FLUSH is less
2385                  * than smaller numbers
2386                  */
2387                 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2388                                                         == DI_MAX_FLUSH) &&
2389                     (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2390                         /* do nothing */
2391                 } else {
2392                         xfs_buf_relse(bp);
2393                         error = 0;
2394                         goto error;
2395                 }
2396         }
2397         /* Take the opportunity to reset the flush iteration count */
2398         dicp->di_flushiter = 0;
2399
2400         if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2401                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2402                     (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2403                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2404                                          XFS_ERRLEVEL_LOW, mp, dicp);
2405                         xfs_buf_relse(bp);
2406                         xfs_fs_cmn_err(CE_ALERT, mp,
2407                                 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2408                                 item, dip, bp, ino);
2409                         error = EFSCORRUPTED;
2410                         goto error;
2411                 }
2412         } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2413                 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2414                     (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2415                     (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2416                         XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2417                                              XFS_ERRLEVEL_LOW, mp, dicp);
2418                         xfs_buf_relse(bp);
2419                         xfs_fs_cmn_err(CE_ALERT, mp,
2420                                 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2421                                 item, dip, bp, ino);
2422                         error = EFSCORRUPTED;
2423                         goto error;
2424                 }
2425         }
2426         if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2427                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2428                                      XFS_ERRLEVEL_LOW, mp, dicp);
2429                 xfs_buf_relse(bp);
2430                 xfs_fs_cmn_err(CE_ALERT, mp,
2431                         "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2432                         item, dip, bp, ino,
2433                         dicp->di_nextents + dicp->di_anextents,
2434                         dicp->di_nblocks);
2435                 error = EFSCORRUPTED;
2436                 goto error;
2437         }
2438         if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2439                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2440                                      XFS_ERRLEVEL_LOW, mp, dicp);
2441                 xfs_buf_relse(bp);
2442                 xfs_fs_cmn_err(CE_ALERT, mp,
2443                         "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2444                         item, dip, bp, ino, dicp->di_forkoff);
2445                 error = EFSCORRUPTED;
2446                 goto error;
2447         }
2448         if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2449                 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2450                                      XFS_ERRLEVEL_LOW, mp, dicp);
2451                 xfs_buf_relse(bp);
2452                 xfs_fs_cmn_err(CE_ALERT, mp,
2453                         "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2454                         item->ri_buf[1].i_len, item);
2455                 error = EFSCORRUPTED;
2456                 goto error;
2457         }
2458
2459         /* The core is in in-core format */
2460         xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2461                               (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2462
2463         /* the rest is in on-disk format */
2464         if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2465                 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2466                         item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2467                         item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2468         }
2469
2470         fields = in_f->ilf_fields;
2471         switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2472         case XFS_ILOG_DEV:
2473                 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2474
2475                 break;
2476         case XFS_ILOG_UUID:
2477                 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2478                 break;
2479         }
2480
2481         if (in_f->ilf_size == 2)
2482                 goto write_inode_buffer;
2483         len = item->ri_buf[2].i_len;
2484         src = item->ri_buf[2].i_addr;
2485         ASSERT(in_f->ilf_size <= 4);
2486         ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2487         ASSERT(!(fields & XFS_ILOG_DFORK) ||
2488                (len == in_f->ilf_dsize));
2489
2490         switch (fields & XFS_ILOG_DFORK) {
2491         case XFS_ILOG_DDATA:
2492         case XFS_ILOG_DEXT:
2493                 memcpy(&dip->di_u, src, len);
2494                 break;
2495
2496         case XFS_ILOG_DBROOT:
2497                 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2498                                  &(dip->di_u.di_bmbt),
2499                                  XFS_DFORK_DSIZE(dip, mp));
2500                 break;
2501
2502         default:
2503                 /*
2504                  * There are no data fork flags set.
2505                  */
2506                 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2507                 break;
2508         }
2509
2510         /*
2511          * If we logged any attribute data, recover it.  There may or
2512          * may not have been any other non-core data logged in this
2513          * transaction.
2514          */
2515         if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2516                 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2517                         attr_index = 3;
2518                 } else {
2519                         attr_index = 2;
2520                 }
2521                 len = item->ri_buf[attr_index].i_len;
2522                 src = item->ri_buf[attr_index].i_addr;
2523                 ASSERT(len == in_f->ilf_asize);
2524
2525                 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2526                 case XFS_ILOG_ADATA:
2527                 case XFS_ILOG_AEXT:
2528                         dest = XFS_DFORK_APTR(dip);
2529                         ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2530                         memcpy(dest, src, len);
2531                         break;
2532
2533                 case XFS_ILOG_ABROOT:
2534                         dest = XFS_DFORK_APTR(dip);
2535                         xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2536                                          (xfs_bmdr_block_t*)dest,
2537                                          XFS_DFORK_ASIZE(dip, mp));
2538                         break;
2539
2540                 default:
2541                         xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2542                         ASSERT(0);
2543                         xfs_buf_relse(bp);
2544                         error = EIO;
2545                         goto error;
2546                 }
2547         }
2548
2549 write_inode_buffer:
2550         if (ITEM_TYPE(item) == XFS_LI_INODE) {
2551                 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2552                        XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2553                 XFS_BUF_SET_FSPRIVATE(bp, mp);
2554                 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2555                 xfs_bdwrite(mp, bp);
2556         } else {
2557                 XFS_BUF_STALE(bp);
2558                 error = xfs_bwrite(mp, bp);
2559         }
2560
2561 error:
2562         if (need_free)
2563                 kmem_free(in_f, sizeof(*in_f));
2564         return XFS_ERROR(error);
2565 }
2566
2567 /*
2568  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2569  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2570  * of that type.
2571  */
2572 STATIC int
2573 xlog_recover_do_quotaoff_trans(
2574         xlog_t                  *log,
2575         xlog_recover_item_t     *item,
2576         int                     pass)
2577 {
2578         xfs_qoff_logformat_t    *qoff_f;
2579
2580         if (pass == XLOG_RECOVER_PASS2) {
2581                 return (0);
2582         }
2583
2584         qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2585         ASSERT(qoff_f);
2586
2587         /*
2588          * The logitem format's flag tells us if this was user quotaoff,
2589          * group/project quotaoff or both.
2590          */
2591         if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2592                 log->l_quotaoffs_flag |= XFS_DQ_USER;
2593         if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2594                 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2595         if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2596                 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2597
2598         return (0);
2599 }
2600
2601 /*
2602  * Recover a dquot record
2603  */
2604 STATIC int
2605 xlog_recover_do_dquot_trans(
2606         xlog_t                  *log,
2607         xlog_recover_item_t     *item,
2608         int                     pass)
2609 {
2610         xfs_mount_t             *mp;
2611         xfs_buf_t               *bp;
2612         struct xfs_disk_dquot   *ddq, *recddq;
2613         int                     error;
2614         xfs_dq_logformat_t      *dq_f;
2615         uint                    type;
2616
2617         if (pass == XLOG_RECOVER_PASS1) {
2618                 return 0;
2619         }
2620         mp = log->l_mp;
2621
2622         /*
2623          * Filesystems are required to send in quota flags at mount time.
2624          */
2625         if (mp->m_qflags == 0)
2626                 return (0);
2627
2628         recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2629         ASSERT(recddq);
2630         /*
2631          * This type of quotas was turned off, so ignore this record.
2632          */
2633         type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2634                         (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2635         ASSERT(type);
2636         if (log->l_quotaoffs_flag & type)
2637                 return (0);
2638
2639         /*
2640          * At this point we know that quota was _not_ turned off.
2641          * Since the mount flags are not indicating to us otherwise, this
2642          * must mean that quota is on, and the dquot needs to be replayed.
2643          * Remember that we may not have fully recovered the superblock yet,
2644          * so we can't do the usual trick of looking at the SB quota bits.
2645          *
2646          * The other possibility, of course, is that the quota subsystem was
2647          * removed since the last mount - ENOSYS.
2648          */
2649         dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2650         ASSERT(dq_f);
2651         if ((error = xfs_qm_dqcheck(recddq,
2652                            dq_f->qlf_id,
2653                            0, XFS_QMOPT_DOWARN,
2654                            "xlog_recover_do_dquot_trans (log copy)"))) {
2655                 return XFS_ERROR(EIO);
2656         }
2657         ASSERT(dq_f->qlf_len == 1);
2658
2659         error = xfs_read_buf(mp, mp->m_ddev_targp,
2660                              dq_f->qlf_blkno,
2661                              XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2662                              0, &bp);
2663         if (error) {
2664                 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2665                                   bp, dq_f->qlf_blkno);
2666                 return error;
2667         }
2668         ASSERT(bp);
2669         ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2670
2671         /*
2672          * At least the magic num portion should be on disk because this
2673          * was among a chunk of dquots created earlier, and we did some
2674          * minimal initialization then.
2675          */
2676         if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2677                            "xlog_recover_do_dquot_trans")) {
2678                 xfs_buf_relse(bp);
2679                 return XFS_ERROR(EIO);
2680         }
2681
2682         memcpy(ddq, recddq, item->ri_buf[1].i_len);
2683
2684         ASSERT(dq_f->qlf_size == 2);
2685         ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2686                XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2687         XFS_BUF_SET_FSPRIVATE(bp, mp);
2688         XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2689         xfs_bdwrite(mp, bp);
2690
2691         return (0);
2692 }
2693
2694 /*
2695  * This routine is called to create an in-core extent free intent
2696  * item from the efi format structure which was logged on disk.
2697  * It allocates an in-core efi, copies the extents from the format
2698  * structure into it, and adds the efi to the AIL with the given
2699  * LSN.
2700  */
2701 STATIC int
2702 xlog_recover_do_efi_trans(
2703         xlog_t                  *log,
2704         xlog_recover_item_t     *item,
2705         xfs_lsn_t               lsn,
2706         int                     pass)
2707 {
2708         int                     error;
2709         xfs_mount_t             *mp;
2710         xfs_efi_log_item_t      *efip;
2711         xfs_efi_log_format_t    *efi_formatp;
2712         SPLDECL(s);
2713
2714         if (pass == XLOG_RECOVER_PASS1) {
2715                 return 0;
2716         }
2717
2718         efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2719
2720         mp = log->l_mp;
2721         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2722         if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2723                                          &(efip->efi_format)))) {
2724                 xfs_efi_item_free(efip);
2725                 return error;
2726         }
2727         efip->efi_next_extent = efi_formatp->efi_nextents;
2728         efip->efi_flags |= XFS_EFI_COMMITTED;
2729
2730         AIL_LOCK(mp,s);
2731         /*
2732          * xfs_trans_update_ail() drops the AIL lock.
2733          */
2734         xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2735         return 0;
2736 }
2737
2738
2739 /*
2740  * This routine is called when an efd format structure is found in
2741  * a committed transaction in the log.  It's purpose is to cancel
2742  * the corresponding efi if it was still in the log.  To do this
2743  * it searches the AIL for the efi with an id equal to that in the
2744  * efd format structure.  If we find it, we remove the efi from the
2745  * AIL and free it.
2746  */
2747 STATIC void
2748 xlog_recover_do_efd_trans(
2749         xlog_t                  *log,
2750         xlog_recover_item_t     *item,
2751         int                     pass)
2752 {
2753         xfs_mount_t             *mp;
2754         xfs_efd_log_format_t    *efd_formatp;
2755         xfs_efi_log_item_t      *efip = NULL;
2756         xfs_log_item_t          *lip;
2757         int                     gen;
2758         __uint64_t              efi_id;
2759         SPLDECL(s);
2760
2761         if (pass == XLOG_RECOVER_PASS1) {
2762                 return;
2763         }
2764
2765         efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2766         ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2767                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2768                (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2769                 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2770         efi_id = efd_formatp->efd_efi_id;
2771
2772         /*
2773          * Search for the efi with the id in the efd format structure
2774          * in the AIL.
2775          */
2776         mp = log->l_mp;
2777         AIL_LOCK(mp,s);
2778         lip = xfs_trans_first_ail(mp, &gen);
2779         while (lip != NULL) {
2780                 if (lip->li_type == XFS_LI_EFI) {
2781                         efip = (xfs_efi_log_item_t *)lip;
2782                         if (efip->efi_format.efi_id == efi_id) {
2783                                 /*
2784                                  * xfs_trans_delete_ail() drops the
2785                                  * AIL lock.
2786                                  */
2787                                 xfs_trans_delete_ail(mp, lip, s);
2788                                 break;
2789                         }
2790                 }
2791                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2792         }
2793
2794         /*
2795          * If we found it, then free it up.  If it wasn't there, it
2796          * must have been overwritten in the log.  Oh well.
2797          */
2798         if (lip != NULL) {
2799                 xfs_efi_item_free(efip);
2800         } else {
2801                 AIL_UNLOCK(mp, s);
2802         }
2803 }
2804
2805 /*
2806  * Perform the transaction
2807  *
2808  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2809  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2810  */
2811 STATIC int
2812 xlog_recover_do_trans(
2813         xlog_t                  *log,
2814         xlog_recover_t          *trans,
2815         int                     pass)
2816 {
2817         int                     error = 0;
2818         xlog_recover_item_t     *item, *first_item;
2819
2820         if ((error = xlog_recover_reorder_trans(log, trans)))
2821                 return error;
2822         first_item = item = trans->r_itemq;
2823         do {
2824                 /*
2825                  * we don't need to worry about the block number being
2826                  * truncated in > 1 TB buffers because in user-land,
2827                  * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2828                  * the blknos will get through the user-mode buffer
2829                  * cache properly.  The only bad case is o32 kernels
2830                  * where xfs_daddr_t is 32-bits but mount will warn us
2831                  * off a > 1 TB filesystem before we get here.
2832                  */
2833                 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2834                     (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2835                     (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2836                         if  ((error = xlog_recover_do_buffer_trans(log, item,
2837                                                                  pass)))
2838                                 break;
2839                 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2840                         if ((error = xlog_recover_do_inode_trans(log, item,
2841                                                                 pass)))
2842                                 break;
2843                 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2844                         if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2845                                                   pass)))
2846                                 break;
2847                 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2848                         xlog_recover_do_efd_trans(log, item, pass);
2849                 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2850                         if ((error = xlog_recover_do_dquot_trans(log, item,
2851                                                                    pass)))
2852                                         break;
2853                 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2854                         if ((error = xlog_recover_do_quotaoff_trans(log, item,
2855                                                                    pass)))
2856                                         break;
2857                 } else {
2858                         xlog_warn("XFS: xlog_recover_do_trans");
2859                         ASSERT(0);
2860                         error = XFS_ERROR(EIO);
2861                         break;
2862                 }
2863                 item = item->ri_next;
2864         } while (first_item != item);
2865
2866         return error;
2867 }
2868
2869 /*
2870  * Free up any resources allocated by the transaction
2871  *
2872  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2873  */
2874 STATIC void
2875 xlog_recover_free_trans(
2876         xlog_recover_t          *trans)
2877 {
2878         xlog_recover_item_t     *first_item, *item, *free_item;
2879         int                     i;
2880
2881         item = first_item = trans->r_itemq;
2882         do {
2883                 free_item = item;
2884                 item = item->ri_next;
2885                  /* Free the regions in the item. */
2886                 for (i = 0; i < free_item->ri_cnt; i++) {
2887                         kmem_free(free_item->ri_buf[i].i_addr,
2888                                   free_item->ri_buf[i].i_len);
2889                 }
2890                 /* Free the item itself */
2891                 kmem_free(free_item->ri_buf,
2892                           (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2893                 kmem_free(free_item, sizeof(xlog_recover_item_t));
2894         } while (first_item != item);
2895         /* Free the transaction recover structure */
2896         kmem_free(trans, sizeof(xlog_recover_t));
2897 }
2898
2899 STATIC int
2900 xlog_recover_commit_trans(
2901         xlog_t                  *log,
2902         xlog_recover_t          **q,
2903         xlog_recover_t          *trans,
2904         int                     pass)
2905 {
2906         int                     error;
2907
2908         if ((error = xlog_recover_unlink_tid(q, trans)))
2909                 return error;
2910         if ((error = xlog_recover_do_trans(log, trans, pass)))
2911                 return error;
2912         xlog_recover_free_trans(trans);                 /* no error */
2913         return 0;
2914 }
2915
2916 STATIC int
2917 xlog_recover_unmount_trans(
2918         xlog_recover_t          *trans)
2919 {
2920         /* Do nothing now */
2921         xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2922         return 0;
2923 }
2924
2925 /*
2926  * There are two valid states of the r_state field.  0 indicates that the
2927  * transaction structure is in a normal state.  We have either seen the
2928  * start of the transaction or the last operation we added was not a partial
2929  * operation.  If the last operation we added to the transaction was a
2930  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2931  *
2932  * NOTE: skip LRs with 0 data length.
2933  */
2934 STATIC int
2935 xlog_recover_process_data(
2936         xlog_t                  *log,
2937         xlog_recover_t          *rhash[],
2938         xlog_rec_header_t       *rhead,
2939         xfs_caddr_t             dp,
2940         int                     pass)
2941 {
2942         xfs_caddr_t             lp;
2943         int                     num_logops;
2944         xlog_op_header_t        *ohead;
2945         xlog_recover_t          *trans;
2946         xlog_tid_t              tid;
2947         int                     error;
2948         unsigned long           hash;
2949         uint                    flags;
2950
2951         lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2952         num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2953
2954         /* check the log format matches our own - else we can't recover */
2955         if (xlog_header_check_recover(log->l_mp, rhead))
2956                 return (XFS_ERROR(EIO));
2957
2958         while ((dp < lp) && num_logops) {
2959                 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2960                 ohead = (xlog_op_header_t *)dp;
2961                 dp += sizeof(xlog_op_header_t);
2962                 if (ohead->oh_clientid != XFS_TRANSACTION &&
2963                     ohead->oh_clientid != XFS_LOG) {
2964                         xlog_warn(
2965                 "XFS: xlog_recover_process_data: bad clientid");
2966                         ASSERT(0);
2967                         return (XFS_ERROR(EIO));
2968                 }
2969                 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2970                 hash = XLOG_RHASH(tid);
2971                 trans = xlog_recover_find_tid(rhash[hash], tid);
2972                 if (trans == NULL) {               /* not found; add new tid */
2973                         if (ohead->oh_flags & XLOG_START_TRANS)
2974                                 xlog_recover_new_tid(&rhash[hash], tid,
2975                                         INT_GET(rhead->h_lsn, ARCH_CONVERT));
2976                 } else {
2977                         ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2978                         flags = ohead->oh_flags & ~XLOG_END_TRANS;
2979                         if (flags & XLOG_WAS_CONT_TRANS)
2980                                 flags &= ~XLOG_CONTINUE_TRANS;
2981                         switch (flags) {
2982                         case XLOG_COMMIT_TRANS:
2983                                 error = xlog_recover_commit_trans(log,
2984                                                 &rhash[hash], trans, pass);
2985                                 break;
2986                         case XLOG_UNMOUNT_TRANS:
2987                                 error = xlog_recover_unmount_trans(trans);
2988                                 break;
2989                         case XLOG_WAS_CONT_TRANS:
2990                                 error = xlog_recover_add_to_cont_trans(trans,
2991                                                 dp, INT_GET(ohead->oh_len,
2992                                                         ARCH_CONVERT));
2993                                 break;
2994                         case XLOG_START_TRANS:
2995                                 xlog_warn(
2996                         "XFS: xlog_recover_process_data: bad transaction");
2997                                 ASSERT(0);
2998                                 error = XFS_ERROR(EIO);
2999                                 break;
3000                         case 0:
3001                         case XLOG_CONTINUE_TRANS:
3002                                 error = xlog_recover_add_to_trans(trans,
3003                                                 dp, INT_GET(ohead->oh_len,
3004                                                         ARCH_CONVERT));
3005                                 break;
3006                         default:
3007                                 xlog_warn(
3008                         "XFS: xlog_recover_process_data: bad flag");
3009                                 ASSERT(0);
3010                                 error = XFS_ERROR(EIO);
3011                                 break;
3012                         }
3013                         if (error)
3014                                 return error;
3015                 }
3016                 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3017                 num_logops--;
3018         }
3019         return 0;
3020 }
3021
3022 /*
3023  * Process an extent free intent item that was recovered from
3024  * the log.  We need to free the extents that it describes.
3025  */
3026 STATIC void
3027 xlog_recover_process_efi(
3028         xfs_mount_t             *mp,
3029         xfs_efi_log_item_t      *efip)
3030 {
3031         xfs_efd_log_item_t      *efdp;
3032         xfs_trans_t             *tp;
3033         int                     i;
3034         xfs_extent_t            *extp;
3035         xfs_fsblock_t           startblock_fsb;
3036
3037         ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3038
3039         /*
3040          * First check the validity of the extents described by the
3041          * EFI.  If any are bad, then assume that all are bad and
3042          * just toss the EFI.
3043          */
3044         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3045                 extp = &(efip->efi_format.efi_extents[i]);
3046                 startblock_fsb = XFS_BB_TO_FSB(mp,
3047                                    XFS_FSB_TO_DADDR(mp, extp->ext_start));
3048                 if ((startblock_fsb == 0) ||
3049                     (extp->ext_len == 0) ||
3050                     (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3051                     (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3052                         /*
3053                          * This will pull the EFI from the AIL and
3054                          * free the memory associated with it.
3055                          */
3056                         xfs_efi_release(efip, efip->efi_format.efi_nextents);
3057                         return;
3058                 }
3059         }
3060
3061         tp = xfs_trans_alloc(mp, 0);
3062         xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3063         efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3064
3065         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3066                 extp = &(efip->efi_format.efi_extents[i]);
3067                 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3068                 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3069                                          extp->ext_len);
3070         }
3071
3072         efip->efi_flags |= XFS_EFI_RECOVERED;
3073         xfs_trans_commit(tp, 0, NULL);
3074 }
3075
3076 /*
3077  * Verify that once we've encountered something other than an EFI
3078  * in the AIL that there are no more EFIs in the AIL.
3079  */
3080 #if defined(DEBUG)
3081 STATIC void
3082 xlog_recover_check_ail(
3083         xfs_mount_t             *mp,
3084         xfs_log_item_t          *lip,
3085         int                     gen)
3086 {
3087         int                     orig_gen = gen;
3088
3089         do {
3090                 ASSERT(lip->li_type != XFS_LI_EFI);
3091                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3092                 /*
3093                  * The check will be bogus if we restart from the
3094                  * beginning of the AIL, so ASSERT that we don't.
3095                  * We never should since we're holding the AIL lock
3096                  * the entire time.
3097                  */
3098                 ASSERT(gen == orig_gen);
3099         } while (lip != NULL);
3100 }
3101 #endif  /* DEBUG */
3102
3103 /*
3104  * When this is called, all of the EFIs which did not have
3105  * corresponding EFDs should be in the AIL.  What we do now
3106  * is free the extents associated with each one.
3107  *
3108  * Since we process the EFIs in normal transactions, they
3109  * will be removed at some point after the commit.  This prevents
3110  * us from just walking down the list processing each one.
3111  * We'll use a flag in the EFI to skip those that we've already
3112  * processed and use the AIL iteration mechanism's generation
3113  * count to try to speed this up at least a bit.
3114  *
3115  * When we start, we know that the EFIs are the only things in
3116  * the AIL.  As we process them, however, other items are added
3117  * to the AIL.  Since everything added to the AIL must come after
3118  * everything already in the AIL, we stop processing as soon as
3119  * we see something other than an EFI in the AIL.
3120  */
3121 STATIC void
3122 xlog_recover_process_efis(
3123         xlog_t                  *log)
3124 {
3125         xfs_log_item_t          *lip;
3126         xfs_efi_log_item_t      *efip;
3127         int                     gen;
3128         xfs_mount_t             *mp;
3129         SPLDECL(s);
3130
3131         mp = log->l_mp;
3132         AIL_LOCK(mp,s);
3133
3134         lip = xfs_trans_first_ail(mp, &gen);
3135         while (lip != NULL) {
3136                 /*
3137                  * We're done when we see something other than an EFI.
3138                  */
3139                 if (lip->li_type != XFS_LI_EFI) {
3140                         xlog_recover_check_ail(mp, lip, gen);
3141                         break;
3142                 }
3143
3144                 /*
3145                  * Skip EFIs that we've already processed.
3146                  */
3147                 efip = (xfs_efi_log_item_t *)lip;
3148                 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3149                         lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3150                         continue;
3151                 }
3152
3153                 AIL_UNLOCK(mp, s);
3154                 xlog_recover_process_efi(mp, efip);
3155                 AIL_LOCK(mp,s);
3156                 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3157         }
3158         AIL_UNLOCK(mp, s);
3159 }
3160
3161 /*
3162  * This routine performs a transaction to null out a bad inode pointer
3163  * in an agi unlinked inode hash bucket.
3164  */
3165 STATIC void
3166 xlog_recover_clear_agi_bucket(
3167         xfs_mount_t     *mp,
3168         xfs_agnumber_t  agno,
3169         int             bucket)
3170 {
3171         xfs_trans_t     *tp;
3172         xfs_agi_t       *agi;
3173         xfs_buf_t       *agibp;
3174         int             offset;
3175         int             error;
3176
3177         tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3178         xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3179
3180         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3181                                    XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3182                                    XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3183         if (error) {
3184                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3185                 return;
3186         }
3187
3188         agi = XFS_BUF_TO_AGI(agibp);
3189         if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3190                 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3191                 return;
3192         }
3193
3194         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3195         offset = offsetof(xfs_agi_t, agi_unlinked) +
3196                  (sizeof(xfs_agino_t) * bucket);
3197         xfs_trans_log_buf(tp, agibp, offset,
3198                           (offset + sizeof(xfs_agino_t) - 1));
3199
3200         (void) xfs_trans_commit(tp, 0, NULL);
3201 }
3202
3203 /*
3204  * xlog_iunlink_recover
3205  *
3206  * This is called during recovery to process any inodes which
3207  * we unlinked but not freed when the system crashed.  These
3208  * inodes will be on the lists in the AGI blocks.  What we do
3209  * here is scan all the AGIs and fully truncate and free any
3210  * inodes found on the lists.  Each inode is removed from the
3211  * lists when it has been fully truncated and is freed.  The
3212  * freeing of the inode and its removal from the list must be
3213  * atomic.
3214  */
3215 void
3216 xlog_recover_process_iunlinks(
3217         xlog_t          *log)
3218 {
3219         xfs_mount_t     *mp;
3220         xfs_agnumber_t  agno;
3221         xfs_agi_t       *agi;
3222         xfs_buf_t       *agibp;
3223         xfs_buf_t       *ibp;
3224         xfs_dinode_t    *dip;
3225         xfs_inode_t     *ip;
3226         xfs_agino_t     agino;
3227         xfs_ino_t       ino;
3228         int             bucket;
3229         int             error;
3230         uint            mp_dmevmask;
3231
3232         mp = log->l_mp;
3233
3234         /*
3235          * Prevent any DMAPI event from being sent while in this function.
3236          */
3237         mp_dmevmask = mp->m_dmevmask;
3238         mp->m_dmevmask = 0;
3239
3240         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3241                 /*
3242                  * Find the agi for this ag.
3243                  */
3244                 agibp = xfs_buf_read(mp->m_ddev_targp,
3245                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3246                                 XFS_FSS_TO_BB(mp, 1), 0);
3247                 if (XFS_BUF_ISERROR(agibp)) {
3248                         xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3249                                 log->l_mp, agibp,
3250                                 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3251                 }
3252                 agi = XFS_BUF_TO_AGI(agibp);
3253                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3254
3255                 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3256
3257                         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3258                         while (agino != NULLAGINO) {
3259
3260                                 /*
3261                                  * Release the agi buffer so that it can
3262                                  * be acquired in the normal course of the
3263                                  * transaction to truncate and free the inode.
3264                                  */
3265                                 xfs_buf_relse(agibp);
3266
3267                                 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3268                                 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3269                                 ASSERT(error || (ip != NULL));
3270
3271                                 if (!error) {
3272                                         /*
3273                                          * Get the on disk inode to find the
3274                                          * next inode in the bucket.
3275                                          */
3276                                         error = xfs_itobp(mp, NULL, ip, &dip,
3277                                                         &ibp, 0, 0);
3278                                         ASSERT(error || (dip != NULL));
3279                                 }
3280
3281                                 if (!error) {
3282                                         ASSERT(ip->i_d.di_nlink == 0);
3283
3284                                         /* setup for the next pass */
3285                                         agino = INT_GET(dip->di_next_unlinked,
3286                                                         ARCH_CONVERT);
3287                                         xfs_buf_relse(ibp);
3288                                         /*
3289                                          * Prevent any DMAPI event from
3290                                          * being sent when the
3291                                          * reference on the inode is
3292                                          * dropped.
3293                                          */
3294                                         ip->i_d.di_dmevmask = 0;
3295
3296                                         /*
3297                                          * If this is a new inode, handle
3298                                          * it specially.  Otherwise,
3299                                          * just drop our reference to the
3300                                          * inode.  If there are no
3301                                          * other references, this will
3302                                          * send the inode to
3303                                          * xfs_inactive() which will
3304                                          * truncate the file and free
3305                                          * the inode.
3306                                          */
3307                                         if (ip->i_d.di_mode == 0)
3308                                                 xfs_iput_new(ip, 0);
3309                                         else
3310                                                 VN_RELE(XFS_ITOV(ip));
3311                                 } else {
3312                                         /*
3313                                          * We can't read in the inode
3314                                          * this bucket points to, or
3315                                          * this inode is messed up.  Just
3316                                          * ditch this bucket of inodes.  We
3317                                          * will lose some inodes and space,
3318                                          * but at least we won't hang.  Call
3319                                          * xlog_recover_clear_agi_bucket()
3320                                          * to perform a transaction to clear
3321                                          * the inode pointer in the bucket.
3322                                          */
3323                                         xlog_recover_clear_agi_bucket(mp, agno,
3324                                                         bucket);
3325
3326                                         agino = NULLAGINO;
3327                                 }
3328
3329                                 /*
3330                                  * Reacquire the agibuffer and continue around
3331                                  * the loop.
3332                                  */
3333                                 agibp = xfs_buf_read(mp->m_ddev_targp,
3334                                                 XFS_AG_DADDR(mp, agno,
3335                                                         XFS_AGI_DADDR(mp)),
3336                                                 XFS_FSS_TO_BB(mp, 1), 0);
3337                                 if (XFS_BUF_ISERROR(agibp)) {
3338                                         xfs_ioerror_alert(
3339                                 "xlog_recover_process_iunlinks(#2)",
3340                                                 log->l_mp, agibp,
3341                                                 XFS_AG_DADDR(mp, agno,
3342                                                         XFS_AGI_DADDR(mp)));
3343                                 }
3344                                 agi = XFS_BUF_TO_AGI(agibp);
3345                                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3346                                         agi->agi_magicnum));
3347                         }
3348                 }
3349
3350                 /*
3351                  * Release the buffer for the current agi so we can
3352                  * go on to the next one.
3353                  */
3354                 xfs_buf_relse(agibp);
3355         }
3356
3357         mp->m_dmevmask = mp_dmevmask;
3358 }
3359
3360
3361 #ifdef DEBUG
3362 STATIC void
3363 xlog_pack_data_checksum(
3364         xlog_t          *log,
3365         xlog_in_core_t  *iclog,
3366         int             size)
3367 {
3368         int             i;
3369         uint            *up;
3370         uint            chksum = 0;
3371
3372         up = (uint *)iclog->ic_datap;
3373         /* divide length by 4 to get # words */
3374         for (i = 0; i < (size >> 2); i++) {
3375                 chksum ^= INT_GET(*up, ARCH_CONVERT);
3376                 up++;
3377         }
3378         INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3379 }
3380 #else
3381 #define xlog_pack_data_checksum(log, iclog, size)
3382 #endif
3383
3384 /*
3385  * Stamp cycle number in every block
3386  */
3387 void
3388 xlog_pack_data(
3389         xlog_t                  *log,
3390         xlog_in_core_t          *iclog,
3391         int                     roundoff)
3392 {
3393         int                     i, j, k;
3394         int                     size = iclog->ic_offset + roundoff;
3395         uint                    cycle_lsn;
3396         xfs_caddr_t             dp;
3397         xlog_in_core_2_t        *xhdr;
3398
3399         xlog_pack_data_checksum(log, iclog, size);
3400
3401         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3402
3403         dp = iclog->ic_datap;
3404         for (i = 0; i < BTOBB(size) &&
3405                 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3406                 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3407                 *(uint *)dp = cycle_lsn;
3408                 dp += BBSIZE;
3409         }
3410
3411         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3412                 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3413                 for ( ; i < BTOBB(size); i++) {
3414                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3415                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3416                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3417                         *(uint *)dp = cycle_lsn;
3418                         dp += BBSIZE;
3419                 }
3420
3421                 for (i = 1; i < log->l_iclog_heads; i++) {
3422                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3423                 }
3424         }
3425 }
3426
3427 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3428 STATIC void
3429 xlog_unpack_data_checksum(
3430         xlog_rec_header_t       *rhead,
3431         xfs_caddr_t             dp,
3432         xlog_t                  *log)
3433 {
3434         uint                    *up = (uint *)dp;
3435         uint                    chksum = 0;
3436         int                     i;
3437
3438         /* divide length by 4 to get # words */
3439         for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3440                 chksum ^= INT_GET(*up, ARCH_CONVERT);
3441                 up++;
3442         }
3443         if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3444             if (rhead->h_chksum ||
3445                 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3446                     cmn_err(CE_DEBUG,
3447                         "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3448                             INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3449                     cmn_err(CE_DEBUG,
3450 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3451                     if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3452                             cmn_err(CE_DEBUG,
3453                                 "XFS: LogR this is a LogV2 filesystem\n");
3454                     }
3455                     log->l_flags |= XLOG_CHKSUM_MISMATCH;
3456             }
3457         }
3458 }
3459 #else
3460 #define xlog_unpack_data_checksum(rhead, dp, log)
3461 #endif
3462
3463 STATIC void
3464 xlog_unpack_data(
3465         xlog_rec_header_t       *rhead,
3466         xfs_caddr_t             dp,
3467         xlog_t                  *log)
3468 {
3469         int                     i, j, k;
3470         xlog_in_core_2_t        *xhdr;
3471
3472         for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3473                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3474                 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3475                 dp += BBSIZE;
3476         }
3477
3478         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3479                 xhdr = (xlog_in_core_2_t *)rhead;
3480                 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3481                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3482                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3483                         *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3484                         dp += BBSIZE;
3485                 }
3486         }
3487
3488         xlog_unpack_data_checksum(rhead, dp, log);
3489 }
3490
3491 STATIC int
3492 xlog_valid_rec_header(
3493         xlog_t                  *log,
3494         xlog_rec_header_t       *rhead,
3495         xfs_daddr_t             blkno)
3496 {
3497         int                     hlen;
3498
3499         if (unlikely(
3500             (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3501                         XLOG_HEADER_MAGIC_NUM))) {
3502                 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3503                                 XFS_ERRLEVEL_LOW, log->l_mp);
3504                 return XFS_ERROR(EFSCORRUPTED);
3505         }
3506         if (unlikely(
3507             (!rhead->h_version ||
3508             (INT_GET(rhead->h_version, ARCH_CONVERT) &
3509                         (~XLOG_VERSION_OKBITS)) != 0))) {
3510                 xlog_warn("XFS: %s: unrecognised log version (%d).",
3511                         __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3512                 return XFS_ERROR(EIO);
3513         }
3514
3515         /* LR body must have data or it wouldn't have been written */
3516         hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3517         if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3518                 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3519                                 XFS_ERRLEVEL_LOW, log->l_mp);
3520                 return XFS_ERROR(EFSCORRUPTED);
3521         }
3522         if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3523                 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3524                                 XFS_ERRLEVEL_LOW, log->l_mp);
3525                 return XFS_ERROR(EFSCORRUPTED);
3526         }
3527         return 0;
3528 }
3529
3530 /*
3531  * Read the log from tail to head and process the log records found.
3532  * Handle the two cases where the tail and head are in the same cycle
3533  * and where the active portion of the log wraps around the end of
3534  * the physical log separately.  The pass parameter is passed through
3535  * to the routines called to process the data and is not looked at
3536  * here.
3537  */
3538 STATIC int
3539 xlog_do_recovery_pass(
3540         xlog_t                  *log,
3541         xfs_daddr_t             head_blk,
3542         xfs_daddr_t             tail_blk,
3543         int                     pass)
3544 {
3545         xlog_rec_header_t       *rhead;
3546         xfs_daddr_t             blk_no;
3547         xfs_caddr_t             bufaddr, offset;
3548         xfs_buf_t               *hbp, *dbp;
3549         int                     error = 0, h_size;
3550         int                     bblks, split_bblks;
3551         int                     hblks, split_hblks, wrapped_hblks;
3552         xlog_recover_t          *rhash[XLOG_RHASH_SIZE];
3553
3554         ASSERT(head_blk != tail_blk);
3555
3556         /*
3557          * Read the header of the tail block and get the iclog buffer size from
3558          * h_size.  Use this to tell how many sectors make up the log header.
3559          */
3560         if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3561                 /*
3562                  * When using variable length iclogs, read first sector of
3563                  * iclog header and extract the header size from it.  Get a
3564                  * new hbp that is the correct size.
3565                  */
3566                 hbp = xlog_get_bp(log, 1);
3567                 if (!hbp)
3568                         return ENOMEM;
3569                 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3570                         goto bread_err1;
3571                 offset = xlog_align(log, tail_blk, 1, hbp);
3572                 rhead = (xlog_rec_header_t *)offset;
3573                 error = xlog_valid_rec_header(log, rhead, tail_blk);
3574                 if (error)
3575                         goto bread_err1;
3576                 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3577                 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3578                                 & XLOG_VERSION_2) &&
3579                     (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3580                         hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3581                         if (h_size % XLOG_HEADER_CYCLE_SIZE)
3582                                 hblks++;
3583                         xlog_put_bp(hbp);
3584                         hbp = xlog_get_bp(log, hblks);
3585                 } else {
3586                         hblks = 1;
3587                 }
3588         } else {
3589                 ASSERT(log->l_sectbb_log == 0);
3590                 hblks = 1;
3591                 hbp = xlog_get_bp(log, 1);
3592                 h_size = XLOG_BIG_RECORD_BSIZE;
3593         }
3594
3595         if (!hbp)
3596                 return ENOMEM;
3597         dbp = xlog_get_bp(log, BTOBB(h_size));
3598         if (!dbp) {
3599                 xlog_put_bp(hbp);
3600                 return ENOMEM;
3601         }
3602
3603         memset(rhash, 0, sizeof(rhash));
3604         if (tail_blk <= head_blk) {
3605                 for (blk_no = tail_blk; blk_no < head_blk; ) {
3606                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3607                                 goto bread_err2;
3608                         offset = xlog_align(log, blk_no, hblks, hbp);
3609                         rhead = (xlog_rec_header_t *)offset;
3610                         error = xlog_valid_rec_header(log, rhead, blk_no);
3611                         if (error)
3612                                 goto bread_err2;
3613
3614                         /* blocks in data section */
3615                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3616                         error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3617                         if (error)
3618                                 goto bread_err2;
3619                         offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3620                         xlog_unpack_data(rhead, offset, log);
3621                         if ((error = xlog_recover_process_data(log,
3622                                                 rhash, rhead, offset, pass)))
3623                                 goto bread_err2;
3624                         blk_no += bblks + hblks;
3625                 }
3626         } else {
3627                 /*
3628                  * Perform recovery around the end of the physical log.
3629                  * When the head is not on the same cycle number as the tail,
3630                  * we can't do a sequential recovery as above.
3631                  */
3632                 blk_no = tail_blk;
3633                 while (blk_no < log->l_logBBsize) {
3634                         /*
3635                          * Check for header wrapping around physical end-of-log
3636                          */
3637                         offset = NULL;
3638                         split_hblks = 0;
3639                         wrapped_hblks = 0;
3640                         if (blk_no + hblks <= log->l_logBBsize) {
3641                                 /* Read header in one read */
3642                                 error = xlog_bread(log, blk_no, hblks, hbp);
3643                                 if (error)
3644                                         goto bread_err2;
3645                                 offset = xlog_align(log, blk_no, hblks, hbp);
3646                         } else {
3647                                 /* This LR is split across physical log end */
3648                                 if (blk_no != log->l_logBBsize) {
3649                                         /* some data before physical log end */
3650                                         ASSERT(blk_no <= INT_MAX);
3651                                         split_hblks = log->l_logBBsize - (int)blk_no;
3652                                         ASSERT(split_hblks > 0);
3653                                         if ((error = xlog_bread(log, blk_no,
3654                                                         split_hblks, hbp)))
3655                                                 goto bread_err2;
3656                                         offset = xlog_align(log, blk_no,
3657                                                         split_hblks, hbp);
3658                                 }
3659                                 /*
3660                                  * Note: this black magic still works with
3661                                  * large sector sizes (non-512) only because:
3662                                  * - we increased the buffer size originally
3663                                  *   by 1 sector giving us enough extra space
3664                                  *   for the second read;
3665                                  * - the log start is guaranteed to be sector
3666                                  *   aligned;
3667                                  * - we read the log end (LR header start)
3668                                  *   _first_, then the log start (LR header end)
3669                                  *   - order is important.
3670                                  */
3671                                 bufaddr = XFS_BUF_PTR(hbp);
3672                                 XFS_BUF_SET_PTR(hbp,
3673                                                 bufaddr + BBTOB(split_hblks),
3674                                                 BBTOB(hblks - split_hblks));
3675                                 wrapped_hblks = hblks - split_hblks;
3676                                 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3677                                 if (error)
3678                                         goto bread_err2;
3679                                 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3680                                 if (!offset)
3681                                         offset = xlog_align(log, 0,
3682                                                         wrapped_hblks, hbp);
3683                         }
3684                         rhead = (xlog_rec_header_t *)offset;
3685                         error = xlog_valid_rec_header(log, rhead,
3686                                                 split_hblks ? blk_no : 0);
3687                         if (error)
3688                                 goto bread_err2;
3689
3690                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3691                         blk_no += hblks;
3692
3693                         /* Read in data for log record */
3694                         if (blk_no + bblks <= log->l_logBBsize) {
3695                                 error = xlog_bread(log, blk_no, bblks, dbp);
3696                                 if (error)
3697                                         goto bread_err2;
3698                                 offset = xlog_align(log, blk_no, bblks, dbp);
3699                         } else {
3700                                 /* This log record is split across the
3701                                  * physical end of log */
3702                                 offset = NULL;
3703                                 split_bblks = 0;
3704                                 if (blk_no != log->l_logBBsize) {
3705                                         /* some data is before the physical
3706                                          * end of log */
3707                                         ASSERT(!wrapped_hblks);
3708                                         ASSERT(blk_no <= INT_MAX);
3709                                         split_bblks =
3710                                                 log->l_logBBsize - (int)blk_no;
3711                                         ASSERT(split_bblks > 0);
3712                                         if ((error = xlog_bread(log, blk_no,
3713                                                         split_bblks, dbp)))
3714                                                 goto bread_err2;
3715                                         offset = xlog_align(log, blk_no,
3716                                                         split_bblks, dbp);
3717                                 }
3718                                 /*
3719                                  * Note: this black magic still works with
3720                                  * large sector sizes (non-512) only because:
3721                                  * - we increased the buffer size originally
3722                                  *   by 1 sector giving us enough extra space
3723                                  *   for the second read;
3724                                  * - the log start is guaranteed to be sector
3725                                  *   aligned;
3726                                  * - we read the log end (LR header start)
3727                                  *   _first_, then the log start (LR header end)
3728                                  *   - order is important.
3729                                  */
3730                                 bufaddr = XFS_BUF_PTR(dbp);
3731                                 XFS_BUF_SET_PTR(dbp,
3732                                                 bufaddr + BBTOB(split_bblks),
3733                                                 BBTOB(bblks - split_bblks));
3734                                 if ((error = xlog_bread(log, wrapped_hblks,
3735                                                 bblks - split_bblks, dbp)))
3736                                         goto bread_err2;
3737                                 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3738                                 if (!offset)
3739                                         offset = xlog_align(log, wrapped_hblks,
3740                                                 bblks - split_bblks, dbp);
3741                         }
3742                         xlog_unpack_data(rhead, offset, log);
3743                         if ((error = xlog_recover_process_data(log, rhash,
3744                                                         rhead, offset, pass)))
3745                                 goto bread_err2;
3746                         blk_no += bblks;
3747                 }
3748
3749                 ASSERT(blk_no >= log->l_logBBsize);
3750                 blk_no -= log->l_logBBsize;
3751
3752                 /* read first part of physical log */
3753                 while (blk_no < head_blk) {
3754                         if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3755                                 goto bread_err2;
3756                         offset = xlog_align(log, blk_no, hblks, hbp);
3757                         rhead = (xlog_rec_header_t *)offset;
3758                         error = xlog_valid_rec_header(log, rhead, blk_no);
3759                         if (error)
3760                                 goto bread_err2;
3761                         bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3762                         if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3763                                 goto bread_err2;
3764                         offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3765                         xlog_unpack_data(rhead, offset, log);
3766                         if ((error = xlog_recover_process_data(log, rhash,
3767                                                         rhead, offset, pass)))
3768                                 goto bread_err2;
3769                         blk_no += bblks + hblks;
3770                 }
3771         }
3772
3773  bread_err2:
3774         xlog_put_bp(dbp);
3775  bread_err1:
3776         xlog_put_bp(hbp);
3777         return error;
3778 }
3779
3780 /*
3781  * Do the recovery of the log.  We actually do this in two phases.
3782  * The two passes are necessary in order to implement the function
3783  * of cancelling a record written into the log.  The first pass
3784  * determines those things which have been cancelled, and the
3785  * second pass replays log items normally except for those which
3786  * have been cancelled.  The handling of the replay and cancellations
3787  * takes place in the log item type specific routines.
3788  *
3789  * The table of items which have cancel records in the log is allocated
3790  * and freed at this level, since only here do we know when all of
3791  * the log recovery has been completed.
3792  */
3793 STATIC int
3794 xlog_do_log_recovery(
3795         xlog_t          *log,
3796         xfs_daddr_t     head_blk,
3797         xfs_daddr_t     tail_blk)
3798 {
3799         int             error;
3800
3801         ASSERT(head_blk != tail_blk);
3802
3803         /*
3804          * First do a pass to find all of the cancelled buf log items.
3805          * Store them in the buf_cancel_table for use in the second pass.
3806          */
3807         log->l_buf_cancel_table =
3808                 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3809                                                  sizeof(xfs_buf_cancel_t*),
3810                                                  KM_SLEEP);
3811         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3812                                       XLOG_RECOVER_PASS1);
3813         if (error != 0) {
3814                 kmem_free(log->l_buf_cancel_table,
3815                           XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3816                 log->l_buf_cancel_table = NULL;
3817                 return error;
3818         }
3819         /*
3820          * Then do a second pass to actually recover the items in the log.
3821          * When it is complete free the table of buf cancel items.
3822          */
3823         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3824                                       XLOG_RECOVER_PASS2);
3825 #ifdef DEBUG
3826         if (!error) {
3827                 int     i;
3828
3829                 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3830                         ASSERT(log->l_buf_cancel_table[i] == NULL);
3831         }
3832 #endif  /* DEBUG */
3833
3834         kmem_free(log->l_buf_cancel_table,
3835                   XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3836         log->l_buf_cancel_table = NULL;
3837
3838         return error;
3839 }
3840
3841 /*
3842  * Do the actual recovery
3843  */
3844 STATIC int
3845 xlog_do_recover(
3846         xlog_t          *log,
3847         xfs_daddr_t     head_blk,
3848         xfs_daddr_t     tail_blk)
3849 {
3850         int             error;
3851         xfs_buf_t       *bp;
3852         xfs_sb_t        *sbp;
3853
3854         /*
3855          * First replay the images in the log.
3856          */
3857         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3858         if (error) {
3859                 return error;
3860         }
3861
3862         XFS_bflush(log->l_mp->m_ddev_targp);
3863
3864         /*
3865          * If IO errors happened during recovery, bail out.
3866          */
3867         if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3868                 return (EIO);
3869         }
3870
3871         /*
3872          * We now update the tail_lsn since much of the recovery has completed
3873          * and there may be space available to use.  If there were no extent
3874          * or iunlinks, we can free up the entire log and set the tail_lsn to
3875          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3876          * lsn of the last known good LR on disk.  If there are extent frees
3877          * or iunlinks they will have some entries in the AIL; so we look at
3878          * the AIL to determine how to set the tail_lsn.
3879          */
3880         xlog_assign_tail_lsn(log->l_mp);
3881
3882         /*
3883          * Now that we've finished replaying all buffer and inode
3884          * updates, re-read in the superblock.
3885          */
3886         bp = xfs_getsb(log->l_mp, 0);
3887         XFS_BUF_UNDONE(bp);
3888         XFS_BUF_READ(bp);
3889         xfsbdstrat(log->l_mp, bp);
3890         if ((error = xfs_iowait(bp))) {
3891                 xfs_ioerror_alert("xlog_do_recover",
3892                                   log->l_mp, bp, XFS_BUF_ADDR(bp));
3893                 ASSERT(0);
3894                 xfs_buf_relse(bp);
3895                 return error;
3896         }
3897
3898         /* Convert superblock from on-disk format */
3899         sbp = &log->l_mp->m_sb;
3900         xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3901         ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3902         ASSERT(XFS_SB_GOOD_VERSION(sbp));
3903         xfs_buf_relse(bp);
3904
3905         xlog_recover_check_summary(log);
3906
3907         /* Normal transactions can now occur */
3908         log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3909         return 0;
3910 }
3911
3912 /*
3913  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3914  *
3915  * Return error or zero.
3916  */
3917 int
3918 xlog_recover(
3919         xlog_t          *log)
3920 {
3921         xfs_daddr_t     head_blk, tail_blk;
3922         int             error;
3923
3924         /* find the tail of the log */
3925         if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3926                 return error;
3927
3928         if (tail_blk != head_blk) {
3929                 /* There used to be a comment here:
3930                  *
3931                  * disallow recovery on read-only mounts.  note -- mount
3932                  * checks for ENOSPC and turns it into an intelligent
3933                  * error message.
3934                  * ...but this is no longer true.  Now, unless you specify
3935                  * NORECOVERY (in which case this function would never be
3936                  * called), we just go ahead and recover.  We do this all
3937                  * under the vfs layer, so we can get away with it unless
3938                  * the device itself is read-only, in which case we fail.
3939                  */
3940                 if ((error = xfs_dev_is_read_only(log->l_mp,
3941                                                 "recovery required"))) {
3942                         return error;
3943                 }
3944
3945                 cmn_err(CE_NOTE,
3946                         "Starting XFS recovery on filesystem: %s (logdev: %s)",
3947                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3948                         log->l_mp->m_logname : "internal");
3949
3950                 error = xlog_do_recover(log, head_blk, tail_blk);
3951                 log->l_flags |= XLOG_RECOVERY_NEEDED;
3952         }
3953         return error;
3954 }
3955
3956 /*
3957  * In the first part of recovery we replay inodes and buffers and build
3958  * up the list of extent free items which need to be processed.  Here
3959  * we process the extent free items and clean up the on disk unlinked
3960  * inode lists.  This is separated from the first part of recovery so
3961  * that the root and real-time bitmap inodes can be read in from disk in
3962  * between the two stages.  This is necessary so that we can free space
3963  * in the real-time portion of the file system.
3964  */
3965 int
3966 xlog_recover_finish(
3967         xlog_t          *log,
3968         int             mfsi_flags)
3969 {
3970         /*
3971          * Now we're ready to do the transactions needed for the
3972          * rest of recovery.  Start with completing all the extent
3973          * free intent records and then process the unlinked inode
3974          * lists.  At this point, we essentially run in normal mode
3975          * except that we're still performing recovery actions
3976          * rather than accepting new requests.
3977          */
3978         if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3979                 xlog_recover_process_efis(log);
3980                 /*
3981                  * Sync the log to get all the EFIs out of the AIL.
3982                  * This isn't absolutely necessary, but it helps in
3983                  * case the unlink transactions would have problems
3984                  * pushing the EFIs out of the way.
3985                  */
3986                 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3987                               (XFS_LOG_FORCE | XFS_LOG_SYNC));
3988
3989                 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3990                         xlog_recover_process_iunlinks(log);
3991                 }
3992
3993                 xlog_recover_check_summary(log);
3994
3995                 cmn_err(CE_NOTE,
3996                         "Ending XFS recovery on filesystem: %s (logdev: %s)",
3997                         log->l_mp->m_fsname, log->l_mp->m_logname ?
3998                         log->l_mp->m_logname : "internal");
3999                 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4000         } else {
4001                 cmn_err(CE_DEBUG,
4002                         "!Ending clean XFS mount for filesystem: %s\n",
4003                         log->l_mp->m_fsname);
4004         }
4005         return 0;
4006 }
4007
4008
4009 #if defined(DEBUG)
4010 /*
4011  * Read all of the agf and agi counters and check that they
4012  * are consistent with the superblock counters.
4013  */
4014 void
4015 xlog_recover_check_summary(
4016         xlog_t          *log)
4017 {
4018         xfs_mount_t     *mp;
4019         xfs_agf_t       *agfp;
4020         xfs_agi_t       *agip;
4021         xfs_buf_t       *agfbp;
4022         xfs_buf_t       *agibp;
4023         xfs_daddr_t     agfdaddr;
4024         xfs_daddr_t     agidaddr;
4025         xfs_buf_t       *sbbp;
4026 #ifdef XFS_LOUD_RECOVERY
4027         xfs_sb_t        *sbp;
4028 #endif
4029         xfs_agnumber_t  agno;
4030         __uint64_t      freeblks;
4031         __uint64_t      itotal;
4032         __uint64_t      ifree;
4033
4034         mp = log->l_mp;
4035
4036         freeblks = 0LL;
4037         itotal = 0LL;
4038         ifree = 0LL;
4039         for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4040                 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4041                 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4042                                 XFS_FSS_TO_BB(mp, 1), 0);
4043                 if (XFS_BUF_ISERROR(agfbp)) {
4044                         xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4045                                                 mp, agfbp, agfdaddr);
4046                 }
4047                 agfp = XFS_BUF_TO_AGF(agfbp);
4048                 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4049                 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4050                 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4051
4052                 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4053                             be32_to_cpu(agfp->agf_flcount);
4054                 xfs_buf_relse(agfbp);
4055
4056                 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4057                 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4058                                 XFS_FSS_TO_BB(mp, 1), 0);
4059                 if (XFS_BUF_ISERROR(agibp)) {
4060                         xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4061                                           mp, agibp, agidaddr);
4062                 }
4063                 agip = XFS_BUF_TO_AGI(agibp);
4064                 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4065                 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4066                 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4067
4068                 itotal += be32_to_cpu(agip->agi_count);
4069                 ifree += be32_to_cpu(agip->agi_freecount);
4070                 xfs_buf_relse(agibp);
4071         }
4072
4073         sbbp = xfs_getsb(mp, 0);
4074 #ifdef XFS_LOUD_RECOVERY
4075         sbp = &mp->m_sb;
4076         xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4077         cmn_err(CE_NOTE,
4078                 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4079                 sbp->sb_icount, itotal);
4080         cmn_err(CE_NOTE,
4081                 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4082                 sbp->sb_ifree, ifree);
4083         cmn_err(CE_NOTE,
4084                 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4085                 sbp->sb_fdblocks, freeblks);
4086 #if 0
4087         /*
4088          * This is turned off until I account for the allocation
4089          * btree blocks which live in free space.
4090          */
4091         ASSERT(sbp->sb_icount == itotal);
4092         ASSERT(sbp->sb_ifree == ifree);
4093         ASSERT(sbp->sb_fdblocks == freeblks);
4094 #endif
4095 #endif
4096         xfs_buf_relse(sbbp);
4097 }
4098 #endif /* DEBUG */