a20b1145f4d57783a08c1a8524a6e6a66c6162fb
[linux-drm-fsl-dcu.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
50         enum wb_reason reason;          /* why was writeback initiated? */
51
52         struct list_head list;          /* pending work list */
53         struct completion *done;        /* set if the caller waits */
54 };
55
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65         return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71         struct super_block *sb = inode->i_sb;
72 #ifdef CONFIG_BLOCK
73         if (sb_is_blkdev_sb(sb))
74                 return blk_get_backing_dev_info(I_BDEV(inode));
75 #endif
76         return sb->s_bdi;
77 }
78 EXPORT_SYMBOL_GPL(inode_to_bdi);
79
80 static inline struct inode *wb_inode(struct list_head *head)
81 {
82         return list_entry(head, struct inode, i_wb_list);
83 }
84
85 /*
86  * Include the creation of the trace points after defining the
87  * wb_writeback_work structure and inline functions so that the definition
88  * remains local to this file.
89  */
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/writeback.h>
92
93 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
94
95 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
96 {
97         spin_lock_bh(&bdi->wb_lock);
98         if (test_bit(BDI_registered, &bdi->state))
99                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
100         spin_unlock_bh(&bdi->wb_lock);
101 }
102
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104                            struct wb_writeback_work *work)
105 {
106         trace_writeback_queue(bdi, work);
107
108         spin_lock_bh(&bdi->wb_lock);
109         if (!test_bit(BDI_registered, &bdi->state)) {
110                 if (work->done)
111                         complete(work->done);
112                 goto out_unlock;
113         }
114         list_add_tail(&work->list, &bdi->work_list);
115         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
116 out_unlock:
117         spin_unlock_bh(&bdi->wb_lock);
118 }
119
120 static void
121 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
122                       bool range_cyclic, enum wb_reason reason)
123 {
124         struct wb_writeback_work *work;
125
126         /*
127          * This is WB_SYNC_NONE writeback, so if allocation fails just
128          * wakeup the thread for old dirty data writeback
129          */
130         work = kzalloc(sizeof(*work), GFP_ATOMIC);
131         if (!work) {
132                 trace_writeback_nowork(bdi);
133                 bdi_wakeup_thread(bdi);
134                 return;
135         }
136
137         work->sync_mode = WB_SYNC_NONE;
138         work->nr_pages  = nr_pages;
139         work->range_cyclic = range_cyclic;
140         work->reason    = reason;
141
142         bdi_queue_work(bdi, work);
143 }
144
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158                         enum wb_reason reason)
159 {
160         __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175         /*
176          * We just wake up the flusher thread. It will perform background
177          * writeback as soon as there is no other work to do.
178          */
179         trace_writeback_wake_background(bdi);
180         bdi_wakeup_thread(bdi);
181 }
182
183 /*
184  * Remove the inode from the writeback list it is on.
185  */
186 void inode_wb_list_del(struct inode *inode)
187 {
188         struct backing_dev_info *bdi = inode_to_bdi(inode);
189
190         spin_lock(&bdi->wb.list_lock);
191         list_del_init(&inode->i_wb_list);
192         spin_unlock(&bdi->wb.list_lock);
193 }
194
195 /*
196  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
197  * furthest end of its superblock's dirty-inode list.
198  *
199  * Before stamping the inode's ->dirtied_when, we check to see whether it is
200  * already the most-recently-dirtied inode on the b_dirty list.  If that is
201  * the case then the inode must have been redirtied while it was being written
202  * out and we don't reset its dirtied_when.
203  */
204 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
205 {
206         assert_spin_locked(&wb->list_lock);
207         if (!list_empty(&wb->b_dirty)) {
208                 struct inode *tail;
209
210                 tail = wb_inode(wb->b_dirty.next);
211                 if (time_before(inode->dirtied_when, tail->dirtied_when))
212                         inode->dirtied_when = jiffies;
213         }
214         list_move(&inode->i_wb_list, &wb->b_dirty);
215 }
216
217 /*
218  * requeue inode for re-scanning after bdi->b_io list is exhausted.
219  */
220 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
221 {
222         assert_spin_locked(&wb->list_lock);
223         list_move(&inode->i_wb_list, &wb->b_more_io);
224 }
225
226 static void inode_sync_complete(struct inode *inode)
227 {
228         inode->i_state &= ~I_SYNC;
229         /* If inode is clean an unused, put it into LRU now... */
230         inode_add_lru(inode);
231         /* Waiters must see I_SYNC cleared before being woken up */
232         smp_mb();
233         wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238         bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240         /*
241          * For inodes being constantly redirtied, dirtied_when can get stuck.
242          * It _appears_ to be in the future, but is actually in distant past.
243          * This test is necessary to prevent such wrapped-around relative times
244          * from permanently stopping the whole bdi writeback.
245          */
246         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248         return ret;
249 }
250
251 /*
252  * Move expired (dirtied before work->older_than_this) dirty inodes from
253  * @delaying_queue to @dispatch_queue.
254  */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256                                struct list_head *dispatch_queue,
257                                struct wb_writeback_work *work)
258 {
259         LIST_HEAD(tmp);
260         struct list_head *pos, *node;
261         struct super_block *sb = NULL;
262         struct inode *inode;
263         int do_sb_sort = 0;
264         int moved = 0;
265
266         while (!list_empty(delaying_queue)) {
267                 inode = wb_inode(delaying_queue->prev);
268                 if (work->older_than_this &&
269                     inode_dirtied_after(inode, *work->older_than_this))
270                         break;
271                 list_move(&inode->i_wb_list, &tmp);
272                 moved++;
273                 if (sb_is_blkdev_sb(inode->i_sb))
274                         continue;
275                 if (sb && sb != inode->i_sb)
276                         do_sb_sort = 1;
277                 sb = inode->i_sb;
278         }
279
280         /* just one sb in list, splice to dispatch_queue and we're done */
281         if (!do_sb_sort) {
282                 list_splice(&tmp, dispatch_queue);
283                 goto out;
284         }
285
286         /* Move inodes from one superblock together */
287         while (!list_empty(&tmp)) {
288                 sb = wb_inode(tmp.prev)->i_sb;
289                 list_for_each_prev_safe(pos, node, &tmp) {
290                         inode = wb_inode(pos);
291                         if (inode->i_sb == sb)
292                                 list_move(&inode->i_wb_list, dispatch_queue);
293                 }
294         }
295 out:
296         return moved;
297 }
298
299 /*
300  * Queue all expired dirty inodes for io, eldest first.
301  * Before
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    gf         edc     BA
304  * After
305  *         newly dirtied     b_dirty    b_io    b_more_io
306  *         =============>    g          fBAedc
307  *                                           |
308  *                                           +--> dequeue for IO
309  */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312         int moved;
313         assert_spin_locked(&wb->list_lock);
314         list_splice_init(&wb->b_more_io, &wb->b_io);
315         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316         trace_writeback_queue_io(wb, work, moved);
317 }
318
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321         int ret;
322
323         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
324                 trace_writeback_write_inode_start(inode, wbc);
325                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
326                 trace_writeback_write_inode(inode, wbc);
327                 return ret;
328         }
329         return 0;
330 }
331
332 /*
333  * Wait for writeback on an inode to complete. Called with i_lock held.
334  * Caller must make sure inode cannot go away when we drop i_lock.
335  */
336 static void __inode_wait_for_writeback(struct inode *inode)
337         __releases(inode->i_lock)
338         __acquires(inode->i_lock)
339 {
340         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
341         wait_queue_head_t *wqh;
342
343         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
344         while (inode->i_state & I_SYNC) {
345                 spin_unlock(&inode->i_lock);
346                 __wait_on_bit(wqh, &wq, bit_wait,
347                               TASK_UNINTERRUPTIBLE);
348                 spin_lock(&inode->i_lock);
349         }
350 }
351
352 /*
353  * Wait for writeback on an inode to complete. Caller must have inode pinned.
354  */
355 void inode_wait_for_writeback(struct inode *inode)
356 {
357         spin_lock(&inode->i_lock);
358         __inode_wait_for_writeback(inode);
359         spin_unlock(&inode->i_lock);
360 }
361
362 /*
363  * Sleep until I_SYNC is cleared. This function must be called with i_lock
364  * held and drops it. It is aimed for callers not holding any inode reference
365  * so once i_lock is dropped, inode can go away.
366  */
367 static void inode_sleep_on_writeback(struct inode *inode)
368         __releases(inode->i_lock)
369 {
370         DEFINE_WAIT(wait);
371         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
372         int sleep;
373
374         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
375         sleep = inode->i_state & I_SYNC;
376         spin_unlock(&inode->i_lock);
377         if (sleep)
378                 schedule();
379         finish_wait(wqh, &wait);
380 }
381
382 /*
383  * Find proper writeback list for the inode depending on its current state and
384  * possibly also change of its state while we were doing writeback.  Here we
385  * handle things such as livelock prevention or fairness of writeback among
386  * inodes. This function can be called only by flusher thread - noone else
387  * processes all inodes in writeback lists and requeueing inodes behind flusher
388  * thread's back can have unexpected consequences.
389  */
390 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
391                           struct writeback_control *wbc)
392 {
393         if (inode->i_state & I_FREEING)
394                 return;
395
396         /*
397          * Sync livelock prevention. Each inode is tagged and synced in one
398          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
399          * the dirty time to prevent enqueue and sync it again.
400          */
401         if ((inode->i_state & I_DIRTY) &&
402             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
403                 inode->dirtied_when = jiffies;
404
405         if (wbc->pages_skipped) {
406                 /*
407                  * writeback is not making progress due to locked
408                  * buffers. Skip this inode for now.
409                  */
410                 redirty_tail(inode, wb);
411                 return;
412         }
413
414         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
415                 /*
416                  * We didn't write back all the pages.  nfs_writepages()
417                  * sometimes bales out without doing anything.
418                  */
419                 if (wbc->nr_to_write <= 0) {
420                         /* Slice used up. Queue for next turn. */
421                         requeue_io(inode, wb);
422                 } else {
423                         /*
424                          * Writeback blocked by something other than
425                          * congestion. Delay the inode for some time to
426                          * avoid spinning on the CPU (100% iowait)
427                          * retrying writeback of the dirty page/inode
428                          * that cannot be performed immediately.
429                          */
430                         redirty_tail(inode, wb);
431                 }
432         } else if (inode->i_state & I_DIRTY) {
433                 /*
434                  * Filesystems can dirty the inode during writeback operations,
435                  * such as delayed allocation during submission or metadata
436                  * updates after data IO completion.
437                  */
438                 redirty_tail(inode, wb);
439         } else {
440                 /* The inode is clean. Remove from writeback lists. */
441                 list_del_init(&inode->i_wb_list);
442         }
443 }
444
445 /*
446  * Write out an inode and its dirty pages. Do not update the writeback list
447  * linkage. That is left to the caller. The caller is also responsible for
448  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
449  */
450 static int
451 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
452 {
453         struct address_space *mapping = inode->i_mapping;
454         long nr_to_write = wbc->nr_to_write;
455         unsigned dirty;
456         int ret;
457
458         WARN_ON(!(inode->i_state & I_SYNC));
459
460         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
461
462         ret = do_writepages(mapping, wbc);
463
464         /*
465          * Make sure to wait on the data before writing out the metadata.
466          * This is important for filesystems that modify metadata on data
467          * I/O completion. We don't do it for sync(2) writeback because it has a
468          * separate, external IO completion path and ->sync_fs for guaranteeing
469          * inode metadata is written back correctly.
470          */
471         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
472                 int err = filemap_fdatawait(mapping);
473                 if (ret == 0)
474                         ret = err;
475         }
476
477         /*
478          * Some filesystems may redirty the inode during the writeback
479          * due to delalloc, clear dirty metadata flags right before
480          * write_inode()
481          */
482         spin_lock(&inode->i_lock);
483
484         dirty = inode->i_state & I_DIRTY;
485         inode->i_state &= ~I_DIRTY;
486
487         /*
488          * Paired with smp_mb() in __mark_inode_dirty().  This allows
489          * __mark_inode_dirty() to test i_state without grabbing i_lock -
490          * either they see the I_DIRTY bits cleared or we see the dirtied
491          * inode.
492          *
493          * I_DIRTY_PAGES is always cleared together above even if @mapping
494          * still has dirty pages.  The flag is reinstated after smp_mb() if
495          * necessary.  This guarantees that either __mark_inode_dirty()
496          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
497          */
498         smp_mb();
499
500         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
501                 inode->i_state |= I_DIRTY_PAGES;
502
503         spin_unlock(&inode->i_lock);
504
505         /* Don't write the inode if only I_DIRTY_PAGES was set */
506         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
507                 int err = write_inode(inode, wbc);
508                 if (ret == 0)
509                         ret = err;
510         }
511         trace_writeback_single_inode(inode, wbc, nr_to_write);
512         return ret;
513 }
514
515 /*
516  * Write out an inode's dirty pages. Either the caller has an active reference
517  * on the inode or the inode has I_WILL_FREE set.
518  *
519  * This function is designed to be called for writing back one inode which
520  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
521  * and does more profound writeback list handling in writeback_sb_inodes().
522  */
523 static int
524 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
525                        struct writeback_control *wbc)
526 {
527         int ret = 0;
528
529         spin_lock(&inode->i_lock);
530         if (!atomic_read(&inode->i_count))
531                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
532         else
533                 WARN_ON(inode->i_state & I_WILL_FREE);
534
535         if (inode->i_state & I_SYNC) {
536                 if (wbc->sync_mode != WB_SYNC_ALL)
537                         goto out;
538                 /*
539                  * It's a data-integrity sync. We must wait. Since callers hold
540                  * inode reference or inode has I_WILL_FREE set, it cannot go
541                  * away under us.
542                  */
543                 __inode_wait_for_writeback(inode);
544         }
545         WARN_ON(inode->i_state & I_SYNC);
546         /*
547          * Skip inode if it is clean and we have no outstanding writeback in
548          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
549          * function since flusher thread may be doing for example sync in
550          * parallel and if we move the inode, it could get skipped. So here we
551          * make sure inode is on some writeback list and leave it there unless
552          * we have completely cleaned the inode.
553          */
554         if (!(inode->i_state & I_DIRTY) &&
555             (wbc->sync_mode != WB_SYNC_ALL ||
556              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
557                 goto out;
558         inode->i_state |= I_SYNC;
559         spin_unlock(&inode->i_lock);
560
561         ret = __writeback_single_inode(inode, wbc);
562
563         spin_lock(&wb->list_lock);
564         spin_lock(&inode->i_lock);
565         /*
566          * If inode is clean, remove it from writeback lists. Otherwise don't
567          * touch it. See comment above for explanation.
568          */
569         if (!(inode->i_state & I_DIRTY))
570                 list_del_init(&inode->i_wb_list);
571         spin_unlock(&wb->list_lock);
572         inode_sync_complete(inode);
573 out:
574         spin_unlock(&inode->i_lock);
575         return ret;
576 }
577
578 static long writeback_chunk_size(struct backing_dev_info *bdi,
579                                  struct wb_writeback_work *work)
580 {
581         long pages;
582
583         /*
584          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
585          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
586          * here avoids calling into writeback_inodes_wb() more than once.
587          *
588          * The intended call sequence for WB_SYNC_ALL writeback is:
589          *
590          *      wb_writeback()
591          *          writeback_sb_inodes()       <== called only once
592          *              write_cache_pages()     <== called once for each inode
593          *                   (quickly) tag currently dirty pages
594          *                   (maybe slowly) sync all tagged pages
595          */
596         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
597                 pages = LONG_MAX;
598         else {
599                 pages = min(bdi->avg_write_bandwidth / 2,
600                             global_dirty_limit / DIRTY_SCOPE);
601                 pages = min(pages, work->nr_pages);
602                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
603                                    MIN_WRITEBACK_PAGES);
604         }
605
606         return pages;
607 }
608
609 /*
610  * Write a portion of b_io inodes which belong to @sb.
611  *
612  * Return the number of pages and/or inodes written.
613  */
614 static long writeback_sb_inodes(struct super_block *sb,
615                                 struct bdi_writeback *wb,
616                                 struct wb_writeback_work *work)
617 {
618         struct writeback_control wbc = {
619                 .sync_mode              = work->sync_mode,
620                 .tagged_writepages      = work->tagged_writepages,
621                 .for_kupdate            = work->for_kupdate,
622                 .for_background         = work->for_background,
623                 .for_sync               = work->for_sync,
624                 .range_cyclic           = work->range_cyclic,
625                 .range_start            = 0,
626                 .range_end              = LLONG_MAX,
627         };
628         unsigned long start_time = jiffies;
629         long write_chunk;
630         long wrote = 0;  /* count both pages and inodes */
631
632         while (!list_empty(&wb->b_io)) {
633                 struct inode *inode = wb_inode(wb->b_io.prev);
634
635                 if (inode->i_sb != sb) {
636                         if (work->sb) {
637                                 /*
638                                  * We only want to write back data for this
639                                  * superblock, move all inodes not belonging
640                                  * to it back onto the dirty list.
641                                  */
642                                 redirty_tail(inode, wb);
643                                 continue;
644                         }
645
646                         /*
647                          * The inode belongs to a different superblock.
648                          * Bounce back to the caller to unpin this and
649                          * pin the next superblock.
650                          */
651                         break;
652                 }
653
654                 /*
655                  * Don't bother with new inodes or inodes being freed, first
656                  * kind does not need periodic writeout yet, and for the latter
657                  * kind writeout is handled by the freer.
658                  */
659                 spin_lock(&inode->i_lock);
660                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
661                         spin_unlock(&inode->i_lock);
662                         redirty_tail(inode, wb);
663                         continue;
664                 }
665                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
666                         /*
667                          * If this inode is locked for writeback and we are not
668                          * doing writeback-for-data-integrity, move it to
669                          * b_more_io so that writeback can proceed with the
670                          * other inodes on s_io.
671                          *
672                          * We'll have another go at writing back this inode
673                          * when we completed a full scan of b_io.
674                          */
675                         spin_unlock(&inode->i_lock);
676                         requeue_io(inode, wb);
677                         trace_writeback_sb_inodes_requeue(inode);
678                         continue;
679                 }
680                 spin_unlock(&wb->list_lock);
681
682                 /*
683                  * We already requeued the inode if it had I_SYNC set and we
684                  * are doing WB_SYNC_NONE writeback. So this catches only the
685                  * WB_SYNC_ALL case.
686                  */
687                 if (inode->i_state & I_SYNC) {
688                         /* Wait for I_SYNC. This function drops i_lock... */
689                         inode_sleep_on_writeback(inode);
690                         /* Inode may be gone, start again */
691                         spin_lock(&wb->list_lock);
692                         continue;
693                 }
694                 inode->i_state |= I_SYNC;
695                 spin_unlock(&inode->i_lock);
696
697                 write_chunk = writeback_chunk_size(wb->bdi, work);
698                 wbc.nr_to_write = write_chunk;
699                 wbc.pages_skipped = 0;
700
701                 /*
702                  * We use I_SYNC to pin the inode in memory. While it is set
703                  * evict_inode() will wait so the inode cannot be freed.
704                  */
705                 __writeback_single_inode(inode, &wbc);
706
707                 work->nr_pages -= write_chunk - wbc.nr_to_write;
708                 wrote += write_chunk - wbc.nr_to_write;
709                 spin_lock(&wb->list_lock);
710                 spin_lock(&inode->i_lock);
711                 if (!(inode->i_state & I_DIRTY))
712                         wrote++;
713                 requeue_inode(inode, wb, &wbc);
714                 inode_sync_complete(inode);
715                 spin_unlock(&inode->i_lock);
716                 cond_resched_lock(&wb->list_lock);
717                 /*
718                  * bail out to wb_writeback() often enough to check
719                  * background threshold and other termination conditions.
720                  */
721                 if (wrote) {
722                         if (time_is_before_jiffies(start_time + HZ / 10UL))
723                                 break;
724                         if (work->nr_pages <= 0)
725                                 break;
726                 }
727         }
728         return wrote;
729 }
730
731 static long __writeback_inodes_wb(struct bdi_writeback *wb,
732                                   struct wb_writeback_work *work)
733 {
734         unsigned long start_time = jiffies;
735         long wrote = 0;
736
737         while (!list_empty(&wb->b_io)) {
738                 struct inode *inode = wb_inode(wb->b_io.prev);
739                 struct super_block *sb = inode->i_sb;
740
741                 if (!grab_super_passive(sb)) {
742                         /*
743                          * grab_super_passive() may fail consistently due to
744                          * s_umount being grabbed by someone else. Don't use
745                          * requeue_io() to avoid busy retrying the inode/sb.
746                          */
747                         redirty_tail(inode, wb);
748                         continue;
749                 }
750                 wrote += writeback_sb_inodes(sb, wb, work);
751                 drop_super(sb);
752
753                 /* refer to the same tests at the end of writeback_sb_inodes */
754                 if (wrote) {
755                         if (time_is_before_jiffies(start_time + HZ / 10UL))
756                                 break;
757                         if (work->nr_pages <= 0)
758                                 break;
759                 }
760         }
761         /* Leave any unwritten inodes on b_io */
762         return wrote;
763 }
764
765 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
766                                 enum wb_reason reason)
767 {
768         struct wb_writeback_work work = {
769                 .nr_pages       = nr_pages,
770                 .sync_mode      = WB_SYNC_NONE,
771                 .range_cyclic   = 1,
772                 .reason         = reason,
773         };
774
775         spin_lock(&wb->list_lock);
776         if (list_empty(&wb->b_io))
777                 queue_io(wb, &work);
778         __writeback_inodes_wb(wb, &work);
779         spin_unlock(&wb->list_lock);
780
781         return nr_pages - work.nr_pages;
782 }
783
784 static bool over_bground_thresh(struct backing_dev_info *bdi)
785 {
786         unsigned long background_thresh, dirty_thresh;
787
788         global_dirty_limits(&background_thresh, &dirty_thresh);
789
790         if (global_page_state(NR_FILE_DIRTY) +
791             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
792                 return true;
793
794         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
795                                 bdi_dirty_limit(bdi, background_thresh))
796                 return true;
797
798         return false;
799 }
800
801 /*
802  * Called under wb->list_lock. If there are multiple wb per bdi,
803  * only the flusher working on the first wb should do it.
804  */
805 static void wb_update_bandwidth(struct bdi_writeback *wb,
806                                 unsigned long start_time)
807 {
808         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
809 }
810
811 /*
812  * Explicit flushing or periodic writeback of "old" data.
813  *
814  * Define "old": the first time one of an inode's pages is dirtied, we mark the
815  * dirtying-time in the inode's address_space.  So this periodic writeback code
816  * just walks the superblock inode list, writing back any inodes which are
817  * older than a specific point in time.
818  *
819  * Try to run once per dirty_writeback_interval.  But if a writeback event
820  * takes longer than a dirty_writeback_interval interval, then leave a
821  * one-second gap.
822  *
823  * older_than_this takes precedence over nr_to_write.  So we'll only write back
824  * all dirty pages if they are all attached to "old" mappings.
825  */
826 static long wb_writeback(struct bdi_writeback *wb,
827                          struct wb_writeback_work *work)
828 {
829         unsigned long wb_start = jiffies;
830         long nr_pages = work->nr_pages;
831         unsigned long oldest_jif;
832         struct inode *inode;
833         long progress;
834
835         oldest_jif = jiffies;
836         work->older_than_this = &oldest_jif;
837
838         spin_lock(&wb->list_lock);
839         for (;;) {
840                 /*
841                  * Stop writeback when nr_pages has been consumed
842                  */
843                 if (work->nr_pages <= 0)
844                         break;
845
846                 /*
847                  * Background writeout and kupdate-style writeback may
848                  * run forever. Stop them if there is other work to do
849                  * so that e.g. sync can proceed. They'll be restarted
850                  * after the other works are all done.
851                  */
852                 if ((work->for_background || work->for_kupdate) &&
853                     !list_empty(&wb->bdi->work_list))
854                         break;
855
856                 /*
857                  * For background writeout, stop when we are below the
858                  * background dirty threshold
859                  */
860                 if (work->for_background && !over_bground_thresh(wb->bdi))
861                         break;
862
863                 /*
864                  * Kupdate and background works are special and we want to
865                  * include all inodes that need writing. Livelock avoidance is
866                  * handled by these works yielding to any other work so we are
867                  * safe.
868                  */
869                 if (work->for_kupdate) {
870                         oldest_jif = jiffies -
871                                 msecs_to_jiffies(dirty_expire_interval * 10);
872                 } else if (work->for_background)
873                         oldest_jif = jiffies;
874
875                 trace_writeback_start(wb->bdi, work);
876                 if (list_empty(&wb->b_io))
877                         queue_io(wb, work);
878                 if (work->sb)
879                         progress = writeback_sb_inodes(work->sb, wb, work);
880                 else
881                         progress = __writeback_inodes_wb(wb, work);
882                 trace_writeback_written(wb->bdi, work);
883
884                 wb_update_bandwidth(wb, wb_start);
885
886                 /*
887                  * Did we write something? Try for more
888                  *
889                  * Dirty inodes are moved to b_io for writeback in batches.
890                  * The completion of the current batch does not necessarily
891                  * mean the overall work is done. So we keep looping as long
892                  * as made some progress on cleaning pages or inodes.
893                  */
894                 if (progress)
895                         continue;
896                 /*
897                  * No more inodes for IO, bail
898                  */
899                 if (list_empty(&wb->b_more_io))
900                         break;
901                 /*
902                  * Nothing written. Wait for some inode to
903                  * become available for writeback. Otherwise
904                  * we'll just busyloop.
905                  */
906                 if (!list_empty(&wb->b_more_io))  {
907                         trace_writeback_wait(wb->bdi, work);
908                         inode = wb_inode(wb->b_more_io.prev);
909                         spin_lock(&inode->i_lock);
910                         spin_unlock(&wb->list_lock);
911                         /* This function drops i_lock... */
912                         inode_sleep_on_writeback(inode);
913                         spin_lock(&wb->list_lock);
914                 }
915         }
916         spin_unlock(&wb->list_lock);
917
918         return nr_pages - work->nr_pages;
919 }
920
921 /*
922  * Return the next wb_writeback_work struct that hasn't been processed yet.
923  */
924 static struct wb_writeback_work *
925 get_next_work_item(struct backing_dev_info *bdi)
926 {
927         struct wb_writeback_work *work = NULL;
928
929         spin_lock_bh(&bdi->wb_lock);
930         if (!list_empty(&bdi->work_list)) {
931                 work = list_entry(bdi->work_list.next,
932                                   struct wb_writeback_work, list);
933                 list_del_init(&work->list);
934         }
935         spin_unlock_bh(&bdi->wb_lock);
936         return work;
937 }
938
939 /*
940  * Add in the number of potentially dirty inodes, because each inode
941  * write can dirty pagecache in the underlying blockdev.
942  */
943 static unsigned long get_nr_dirty_pages(void)
944 {
945         return global_page_state(NR_FILE_DIRTY) +
946                 global_page_state(NR_UNSTABLE_NFS) +
947                 get_nr_dirty_inodes();
948 }
949
950 static long wb_check_background_flush(struct bdi_writeback *wb)
951 {
952         if (over_bground_thresh(wb->bdi)) {
953
954                 struct wb_writeback_work work = {
955                         .nr_pages       = LONG_MAX,
956                         .sync_mode      = WB_SYNC_NONE,
957                         .for_background = 1,
958                         .range_cyclic   = 1,
959                         .reason         = WB_REASON_BACKGROUND,
960                 };
961
962                 return wb_writeback(wb, &work);
963         }
964
965         return 0;
966 }
967
968 static long wb_check_old_data_flush(struct bdi_writeback *wb)
969 {
970         unsigned long expired;
971         long nr_pages;
972
973         /*
974          * When set to zero, disable periodic writeback
975          */
976         if (!dirty_writeback_interval)
977                 return 0;
978
979         expired = wb->last_old_flush +
980                         msecs_to_jiffies(dirty_writeback_interval * 10);
981         if (time_before(jiffies, expired))
982                 return 0;
983
984         wb->last_old_flush = jiffies;
985         nr_pages = get_nr_dirty_pages();
986
987         if (nr_pages) {
988                 struct wb_writeback_work work = {
989                         .nr_pages       = nr_pages,
990                         .sync_mode      = WB_SYNC_NONE,
991                         .for_kupdate    = 1,
992                         .range_cyclic   = 1,
993                         .reason         = WB_REASON_PERIODIC,
994                 };
995
996                 return wb_writeback(wb, &work);
997         }
998
999         return 0;
1000 }
1001
1002 /*
1003  * Retrieve work items and do the writeback they describe
1004  */
1005 static long wb_do_writeback(struct bdi_writeback *wb)
1006 {
1007         struct backing_dev_info *bdi = wb->bdi;
1008         struct wb_writeback_work *work;
1009         long wrote = 0;
1010
1011         set_bit(BDI_writeback_running, &wb->bdi->state);
1012         while ((work = get_next_work_item(bdi)) != NULL) {
1013
1014                 trace_writeback_exec(bdi, work);
1015
1016                 wrote += wb_writeback(wb, work);
1017
1018                 /*
1019                  * Notify the caller of completion if this is a synchronous
1020                  * work item, otherwise just free it.
1021                  */
1022                 if (work->done)
1023                         complete(work->done);
1024                 else
1025                         kfree(work);
1026         }
1027
1028         /*
1029          * Check for periodic writeback, kupdated() style
1030          */
1031         wrote += wb_check_old_data_flush(wb);
1032         wrote += wb_check_background_flush(wb);
1033         clear_bit(BDI_writeback_running, &wb->bdi->state);
1034
1035         return wrote;
1036 }
1037
1038 /*
1039  * Handle writeback of dirty data for the device backed by this bdi. Also
1040  * reschedules periodically and does kupdated style flushing.
1041  */
1042 void bdi_writeback_workfn(struct work_struct *work)
1043 {
1044         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1045                                                 struct bdi_writeback, dwork);
1046         struct backing_dev_info *bdi = wb->bdi;
1047         long pages_written;
1048
1049         set_worker_desc("flush-%s", dev_name(bdi->dev));
1050         current->flags |= PF_SWAPWRITE;
1051
1052         if (likely(!current_is_workqueue_rescuer() ||
1053                    !test_bit(BDI_registered, &bdi->state))) {
1054                 /*
1055                  * The normal path.  Keep writing back @bdi until its
1056                  * work_list is empty.  Note that this path is also taken
1057                  * if @bdi is shutting down even when we're running off the
1058                  * rescuer as work_list needs to be drained.
1059                  */
1060                 do {
1061                         pages_written = wb_do_writeback(wb);
1062                         trace_writeback_pages_written(pages_written);
1063                 } while (!list_empty(&bdi->work_list));
1064         } else {
1065                 /*
1066                  * bdi_wq can't get enough workers and we're running off
1067                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1068                  * enough for efficient IO.
1069                  */
1070                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1071                                                     WB_REASON_FORKER_THREAD);
1072                 trace_writeback_pages_written(pages_written);
1073         }
1074
1075         if (!list_empty(&bdi->work_list))
1076                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1077         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1078                 bdi_wakeup_thread_delayed(bdi);
1079
1080         current->flags &= ~PF_SWAPWRITE;
1081 }
1082
1083 /*
1084  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1085  * the whole world.
1086  */
1087 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1088 {
1089         struct backing_dev_info *bdi;
1090
1091         if (!nr_pages)
1092                 nr_pages = get_nr_dirty_pages();
1093
1094         rcu_read_lock();
1095         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1096                 if (!bdi_has_dirty_io(bdi))
1097                         continue;
1098                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1099         }
1100         rcu_read_unlock();
1101 }
1102
1103 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1104 {
1105         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1106                 struct dentry *dentry;
1107                 const char *name = "?";
1108
1109                 dentry = d_find_alias(inode);
1110                 if (dentry) {
1111                         spin_lock(&dentry->d_lock);
1112                         name = (const char *) dentry->d_name.name;
1113                 }
1114                 printk(KERN_DEBUG
1115                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1116                        current->comm, task_pid_nr(current), inode->i_ino,
1117                        name, inode->i_sb->s_id);
1118                 if (dentry) {
1119                         spin_unlock(&dentry->d_lock);
1120                         dput(dentry);
1121                 }
1122         }
1123 }
1124
1125 /**
1126  *      __mark_inode_dirty -    internal function
1127  *      @inode: inode to mark
1128  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1129  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1130  *      mark_inode_dirty_sync.
1131  *
1132  * Put the inode on the super block's dirty list.
1133  *
1134  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1135  * dirty list only if it is hashed or if it refers to a blockdev.
1136  * If it was not hashed, it will never be added to the dirty list
1137  * even if it is later hashed, as it will have been marked dirty already.
1138  *
1139  * In short, make sure you hash any inodes _before_ you start marking
1140  * them dirty.
1141  *
1142  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1143  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1144  * the kernel-internal blockdev inode represents the dirtying time of the
1145  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1146  * page->mapping->host, so the page-dirtying time is recorded in the internal
1147  * blockdev inode.
1148  */
1149 void __mark_inode_dirty(struct inode *inode, int flags)
1150 {
1151         struct super_block *sb = inode->i_sb;
1152         struct backing_dev_info *bdi = NULL;
1153
1154         /*
1155          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1156          * dirty the inode itself
1157          */
1158         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1159                 trace_writeback_dirty_inode_start(inode, flags);
1160
1161                 if (sb->s_op->dirty_inode)
1162                         sb->s_op->dirty_inode(inode, flags);
1163
1164                 trace_writeback_dirty_inode(inode, flags);
1165         }
1166
1167         /*
1168          * Paired with smp_mb() in __writeback_single_inode() for the
1169          * following lockless i_state test.  See there for details.
1170          */
1171         smp_mb();
1172
1173         if ((inode->i_state & flags) == flags)
1174                 return;
1175
1176         if (unlikely(block_dump))
1177                 block_dump___mark_inode_dirty(inode);
1178
1179         spin_lock(&inode->i_lock);
1180         if ((inode->i_state & flags) != flags) {
1181                 const int was_dirty = inode->i_state & I_DIRTY;
1182
1183                 inode->i_state |= flags;
1184
1185                 /*
1186                  * If the inode is being synced, just update its dirty state.
1187                  * The unlocker will place the inode on the appropriate
1188                  * superblock list, based upon its state.
1189                  */
1190                 if (inode->i_state & I_SYNC)
1191                         goto out_unlock_inode;
1192
1193                 /*
1194                  * Only add valid (hashed) inodes to the superblock's
1195                  * dirty list.  Add blockdev inodes as well.
1196                  */
1197                 if (!S_ISBLK(inode->i_mode)) {
1198                         if (inode_unhashed(inode))
1199                                 goto out_unlock_inode;
1200                 }
1201                 if (inode->i_state & I_FREEING)
1202                         goto out_unlock_inode;
1203
1204                 /*
1205                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1206                  * reposition it (that would break b_dirty time-ordering).
1207                  */
1208                 if (!was_dirty) {
1209                         bool wakeup_bdi = false;
1210                         bdi = inode_to_bdi(inode);
1211
1212                         spin_unlock(&inode->i_lock);
1213                         spin_lock(&bdi->wb.list_lock);
1214                         if (bdi_cap_writeback_dirty(bdi)) {
1215                                 WARN(!test_bit(BDI_registered, &bdi->state),
1216                                      "bdi-%s not registered\n", bdi->name);
1217
1218                                 /*
1219                                  * If this is the first dirty inode for this
1220                                  * bdi, we have to wake-up the corresponding
1221                                  * bdi thread to make sure background
1222                                  * write-back happens later.
1223                                  */
1224                                 if (!wb_has_dirty_io(&bdi->wb))
1225                                         wakeup_bdi = true;
1226                         }
1227
1228                         inode->dirtied_when = jiffies;
1229                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1230                         spin_unlock(&bdi->wb.list_lock);
1231
1232                         if (wakeup_bdi)
1233                                 bdi_wakeup_thread_delayed(bdi);
1234                         return;
1235                 }
1236         }
1237 out_unlock_inode:
1238         spin_unlock(&inode->i_lock);
1239
1240 }
1241 EXPORT_SYMBOL(__mark_inode_dirty);
1242
1243 static void wait_sb_inodes(struct super_block *sb)
1244 {
1245         struct inode *inode, *old_inode = NULL;
1246
1247         /*
1248          * We need to be protected against the filesystem going from
1249          * r/o to r/w or vice versa.
1250          */
1251         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1252
1253         spin_lock(&inode_sb_list_lock);
1254
1255         /*
1256          * Data integrity sync. Must wait for all pages under writeback,
1257          * because there may have been pages dirtied before our sync
1258          * call, but which had writeout started before we write it out.
1259          * In which case, the inode may not be on the dirty list, but
1260          * we still have to wait for that writeout.
1261          */
1262         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1263                 struct address_space *mapping = inode->i_mapping;
1264
1265                 spin_lock(&inode->i_lock);
1266                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1267                     (mapping->nrpages == 0)) {
1268                         spin_unlock(&inode->i_lock);
1269                         continue;
1270                 }
1271                 __iget(inode);
1272                 spin_unlock(&inode->i_lock);
1273                 spin_unlock(&inode_sb_list_lock);
1274
1275                 /*
1276                  * We hold a reference to 'inode' so it couldn't have been
1277                  * removed from s_inodes list while we dropped the
1278                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1279                  * be holding the last reference and we cannot iput it under
1280                  * inode_sb_list_lock. So we keep the reference and iput it
1281                  * later.
1282                  */
1283                 iput(old_inode);
1284                 old_inode = inode;
1285
1286                 filemap_fdatawait(mapping);
1287
1288                 cond_resched();
1289
1290                 spin_lock(&inode_sb_list_lock);
1291         }
1292         spin_unlock(&inode_sb_list_lock);
1293         iput(old_inode);
1294 }
1295
1296 /**
1297  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1298  * @sb: the superblock
1299  * @nr: the number of pages to write
1300  * @reason: reason why some writeback work initiated
1301  *
1302  * Start writeback on some inodes on this super_block. No guarantees are made
1303  * on how many (if any) will be written, and this function does not wait
1304  * for IO completion of submitted IO.
1305  */
1306 void writeback_inodes_sb_nr(struct super_block *sb,
1307                             unsigned long nr,
1308                             enum wb_reason reason)
1309 {
1310         DECLARE_COMPLETION_ONSTACK(done);
1311         struct wb_writeback_work work = {
1312                 .sb                     = sb,
1313                 .sync_mode              = WB_SYNC_NONE,
1314                 .tagged_writepages      = 1,
1315                 .done                   = &done,
1316                 .nr_pages               = nr,
1317                 .reason                 = reason,
1318         };
1319
1320         if (sb->s_bdi == &noop_backing_dev_info)
1321                 return;
1322         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1323         bdi_queue_work(sb->s_bdi, &work);
1324         wait_for_completion(&done);
1325 }
1326 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1327
1328 /**
1329  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1330  * @sb: the superblock
1331  * @reason: reason why some writeback work was initiated
1332  *
1333  * Start writeback on some inodes on this super_block. No guarantees are made
1334  * on how many (if any) will be written, and this function does not wait
1335  * for IO completion of submitted IO.
1336  */
1337 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1338 {
1339         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1340 }
1341 EXPORT_SYMBOL(writeback_inodes_sb);
1342
1343 /**
1344  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1345  * @sb: the superblock
1346  * @nr: the number of pages to write
1347  * @reason: the reason of writeback
1348  *
1349  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1350  * Returns 1 if writeback was started, 0 if not.
1351  */
1352 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1353                                   unsigned long nr,
1354                                   enum wb_reason reason)
1355 {
1356         if (writeback_in_progress(sb->s_bdi))
1357                 return 1;
1358
1359         if (!down_read_trylock(&sb->s_umount))
1360                 return 0;
1361
1362         writeback_inodes_sb_nr(sb, nr, reason);
1363         up_read(&sb->s_umount);
1364         return 1;
1365 }
1366 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1367
1368 /**
1369  * try_to_writeback_inodes_sb - try to start writeback if none underway
1370  * @sb: the superblock
1371  * @reason: reason why some writeback work was initiated
1372  *
1373  * Implement by try_to_writeback_inodes_sb_nr()
1374  * Returns 1 if writeback was started, 0 if not.
1375  */
1376 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1377 {
1378         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1379 }
1380 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1381
1382 /**
1383  * sync_inodes_sb       -       sync sb inode pages
1384  * @sb: the superblock
1385  *
1386  * This function writes and waits on any dirty inode belonging to this
1387  * super_block.
1388  */
1389 void sync_inodes_sb(struct super_block *sb)
1390 {
1391         DECLARE_COMPLETION_ONSTACK(done);
1392         struct wb_writeback_work work = {
1393                 .sb             = sb,
1394                 .sync_mode      = WB_SYNC_ALL,
1395                 .nr_pages       = LONG_MAX,
1396                 .range_cyclic   = 0,
1397                 .done           = &done,
1398                 .reason         = WB_REASON_SYNC,
1399                 .for_sync       = 1,
1400         };
1401
1402         /* Nothing to do? */
1403         if (sb->s_bdi == &noop_backing_dev_info)
1404                 return;
1405         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1406
1407         bdi_queue_work(sb->s_bdi, &work);
1408         wait_for_completion(&done);
1409
1410         wait_sb_inodes(sb);
1411 }
1412 EXPORT_SYMBOL(sync_inodes_sb);
1413
1414 /**
1415  * write_inode_now      -       write an inode to disk
1416  * @inode: inode to write to disk
1417  * @sync: whether the write should be synchronous or not
1418  *
1419  * This function commits an inode to disk immediately if it is dirty. This is
1420  * primarily needed by knfsd.
1421  *
1422  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1423  */
1424 int write_inode_now(struct inode *inode, int sync)
1425 {
1426         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1427         struct writeback_control wbc = {
1428                 .nr_to_write = LONG_MAX,
1429                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1430                 .range_start = 0,
1431                 .range_end = LLONG_MAX,
1432         };
1433
1434         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1435                 wbc.nr_to_write = 0;
1436
1437         might_sleep();
1438         return writeback_single_inode(inode, wb, &wbc);
1439 }
1440 EXPORT_SYMBOL(write_inode_now);
1441
1442 /**
1443  * sync_inode - write an inode and its pages to disk.
1444  * @inode: the inode to sync
1445  * @wbc: controls the writeback mode
1446  *
1447  * sync_inode() will write an inode and its pages to disk.  It will also
1448  * correctly update the inode on its superblock's dirty inode lists and will
1449  * update inode->i_state.
1450  *
1451  * The caller must have a ref on the inode.
1452  */
1453 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1454 {
1455         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1456 }
1457 EXPORT_SYMBOL(sync_inode);
1458
1459 /**
1460  * sync_inode_metadata - write an inode to disk
1461  * @inode: the inode to sync
1462  * @wait: wait for I/O to complete.
1463  *
1464  * Write an inode to disk and adjust its dirty state after completion.
1465  *
1466  * Note: only writes the actual inode, no associated data or other metadata.
1467  */
1468 int sync_inode_metadata(struct inode *inode, int wait)
1469 {
1470         struct writeback_control wbc = {
1471                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1472                 .nr_to_write = 0, /* metadata-only */
1473         };
1474
1475         return sync_inode(inode, &wbc);
1476 }
1477 EXPORT_SYMBOL(sync_inode_metadata);