Merge remote-tracking branch 'asoc/fix/fsl' into asoc-linus
[linux-drm-fsl-dcu.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40                 enum dirty_type dirty_type)
41 {
42         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43
44         /* need not be added */
45         if (IS_CURSEG(sbi, segno))
46                 return;
47
48         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49                 dirty_i->nr_dirty[dirty_type]++;
50
51         if (dirty_type == DIRTY) {
52                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
53                 enum dirty_type t = DIRTY_HOT_DATA;
54
55                 dirty_type = sentry->type;
56
57                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58                         dirty_i->nr_dirty[dirty_type]++;
59
60                 /* Only one bitmap should be set */
61                 for (; t <= DIRTY_COLD_NODE; t++) {
62                         if (t == dirty_type)
63                                 continue;
64                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65                                 dirty_i->nr_dirty[t]--;
66                 }
67         }
68 }
69
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71                 enum dirty_type dirty_type)
72 {
73         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74
75         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76                 dirty_i->nr_dirty[dirty_type]--;
77
78         if (dirty_type == DIRTY) {
79                 enum dirty_type t = DIRTY_HOT_DATA;
80
81                 /* clear all the bitmaps */
82                 for (; t <= DIRTY_COLD_NODE; t++)
83                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84                                 dirty_i->nr_dirty[t]--;
85
86                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87                         clear_bit(GET_SECNO(sbi, segno),
88                                                 dirty_i->victim_secmap);
89         }
90 }
91
92 /*
93  * Should not occur error such as -ENOMEM.
94  * Adding dirty entry into seglist is not critical operation.
95  * If a given segment is one of current working segments, it won't be added.
96  */
97 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98 {
99         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100         unsigned short valid_blocks;
101
102         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103                 return;
104
105         mutex_lock(&dirty_i->seglist_lock);
106
107         valid_blocks = get_valid_blocks(sbi, segno, 0);
108
109         if (valid_blocks == 0) {
110                 __locate_dirty_segment(sbi, segno, PRE);
111                 __remove_dirty_segment(sbi, segno, DIRTY);
112         } else if (valid_blocks < sbi->blocks_per_seg) {
113                 __locate_dirty_segment(sbi, segno, DIRTY);
114         } else {
115                 /* Recovery routine with SSR needs this */
116                 __remove_dirty_segment(sbi, segno, DIRTY);
117         }
118
119         mutex_unlock(&dirty_i->seglist_lock);
120 }
121
122 /*
123  * Should call clear_prefree_segments after checkpoint is done.
124  */
125 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
126 {
127         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
128         unsigned int segno = -1;
129         unsigned int total_segs = TOTAL_SEGS(sbi);
130
131         mutex_lock(&dirty_i->seglist_lock);
132         while (1) {
133                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
134                                 segno + 1);
135                 if (segno >= total_segs)
136                         break;
137                 __set_test_and_free(sbi, segno);
138         }
139         mutex_unlock(&dirty_i->seglist_lock);
140 }
141
142 void clear_prefree_segments(struct f2fs_sb_info *sbi)
143 {
144         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
145         unsigned int segno = -1;
146         unsigned int total_segs = TOTAL_SEGS(sbi);
147
148         mutex_lock(&dirty_i->seglist_lock);
149         while (1) {
150                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
151                                 segno + 1);
152                 if (segno >= total_segs)
153                         break;
154
155                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
156                         dirty_i->nr_dirty[PRE]--;
157
158                 /* Let's use trim */
159                 if (test_opt(sbi, DISCARD))
160                         blkdev_issue_discard(sbi->sb->s_bdev,
161                                         START_BLOCK(sbi, segno) <<
162                                         sbi->log_sectors_per_block,
163                                         1 << (sbi->log_sectors_per_block +
164                                                 sbi->log_blocks_per_seg),
165                                         GFP_NOFS, 0);
166         }
167         mutex_unlock(&dirty_i->seglist_lock);
168 }
169
170 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
171 {
172         struct sit_info *sit_i = SIT_I(sbi);
173         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
174                 sit_i->dirty_sentries++;
175 }
176
177 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
178                                         unsigned int segno, int modified)
179 {
180         struct seg_entry *se = get_seg_entry(sbi, segno);
181         se->type = type;
182         if (modified)
183                 __mark_sit_entry_dirty(sbi, segno);
184 }
185
186 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
187 {
188         struct seg_entry *se;
189         unsigned int segno, offset;
190         long int new_vblocks;
191
192         segno = GET_SEGNO(sbi, blkaddr);
193
194         se = get_seg_entry(sbi, segno);
195         new_vblocks = se->valid_blocks + del;
196         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
197
198         BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
199                                 (new_vblocks > sbi->blocks_per_seg)));
200
201         se->valid_blocks = new_vblocks;
202         se->mtime = get_mtime(sbi);
203         SIT_I(sbi)->max_mtime = se->mtime;
204
205         /* Update valid block bitmap */
206         if (del > 0) {
207                 if (f2fs_set_bit(offset, se->cur_valid_map))
208                         BUG();
209         } else {
210                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
211                         BUG();
212         }
213         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
214                 se->ckpt_valid_blocks += del;
215
216         __mark_sit_entry_dirty(sbi, segno);
217
218         /* update total number of valid blocks to be written in ckpt area */
219         SIT_I(sbi)->written_valid_blocks += del;
220
221         if (sbi->segs_per_sec > 1)
222                 get_sec_entry(sbi, segno)->valid_blocks += del;
223 }
224
225 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
226                         block_t old_blkaddr, block_t new_blkaddr)
227 {
228         update_sit_entry(sbi, new_blkaddr, 1);
229         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
230                 update_sit_entry(sbi, old_blkaddr, -1);
231 }
232
233 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
234 {
235         unsigned int segno = GET_SEGNO(sbi, addr);
236         struct sit_info *sit_i = SIT_I(sbi);
237
238         BUG_ON(addr == NULL_ADDR);
239         if (addr == NEW_ADDR)
240                 return;
241
242         /* add it into sit main buffer */
243         mutex_lock(&sit_i->sentry_lock);
244
245         update_sit_entry(sbi, addr, -1);
246
247         /* add it into dirty seglist */
248         locate_dirty_segment(sbi, segno);
249
250         mutex_unlock(&sit_i->sentry_lock);
251 }
252
253 /*
254  * This function should be resided under the curseg_mutex lock
255  */
256 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
257                                         struct f2fs_summary *sum)
258 {
259         struct curseg_info *curseg = CURSEG_I(sbi, type);
260         void *addr = curseg->sum_blk;
261         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
262         memcpy(addr, sum, sizeof(struct f2fs_summary));
263 }
264
265 /*
266  * Calculate the number of current summary pages for writing
267  */
268 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
269 {
270         int total_size_bytes = 0;
271         int valid_sum_count = 0;
272         int i, sum_space;
273
274         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
275                 if (sbi->ckpt->alloc_type[i] == SSR)
276                         valid_sum_count += sbi->blocks_per_seg;
277                 else
278                         valid_sum_count += curseg_blkoff(sbi, i);
279         }
280
281         total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
282                         + sizeof(struct nat_journal) + 2
283                         + sizeof(struct sit_journal) + 2;
284         sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
285         if (total_size_bytes < sum_space)
286                 return 1;
287         else if (total_size_bytes < 2 * sum_space)
288                 return 2;
289         return 3;
290 }
291
292 /*
293  * Caller should put this summary page
294  */
295 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
296 {
297         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
298 }
299
300 static void write_sum_page(struct f2fs_sb_info *sbi,
301                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
302 {
303         struct page *page = grab_meta_page(sbi, blk_addr);
304         void *kaddr = page_address(page);
305         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
306         set_page_dirty(page);
307         f2fs_put_page(page, 1);
308 }
309
310 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
311 {
312         struct curseg_info *curseg = CURSEG_I(sbi, type);
313         unsigned int segno = curseg->segno + 1;
314         struct free_segmap_info *free_i = FREE_I(sbi);
315
316         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
317                 return !test_bit(segno, free_i->free_segmap);
318         return 0;
319 }
320
321 /*
322  * Find a new segment from the free segments bitmap to right order
323  * This function should be returned with success, otherwise BUG
324  */
325 static void get_new_segment(struct f2fs_sb_info *sbi,
326                         unsigned int *newseg, bool new_sec, int dir)
327 {
328         struct free_segmap_info *free_i = FREE_I(sbi);
329         unsigned int segno, secno, zoneno;
330         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
331         unsigned int hint = *newseg / sbi->segs_per_sec;
332         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
333         unsigned int left_start = hint;
334         bool init = true;
335         int go_left = 0;
336         int i;
337
338         write_lock(&free_i->segmap_lock);
339
340         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
341                 segno = find_next_zero_bit(free_i->free_segmap,
342                                         TOTAL_SEGS(sbi), *newseg + 1);
343                 if (segno - *newseg < sbi->segs_per_sec -
344                                         (*newseg % sbi->segs_per_sec))
345                         goto got_it;
346         }
347 find_other_zone:
348         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
349         if (secno >= TOTAL_SECS(sbi)) {
350                 if (dir == ALLOC_RIGHT) {
351                         secno = find_next_zero_bit(free_i->free_secmap,
352                                                         TOTAL_SECS(sbi), 0);
353                         BUG_ON(secno >= TOTAL_SECS(sbi));
354                 } else {
355                         go_left = 1;
356                         left_start = hint - 1;
357                 }
358         }
359         if (go_left == 0)
360                 goto skip_left;
361
362         while (test_bit(left_start, free_i->free_secmap)) {
363                 if (left_start > 0) {
364                         left_start--;
365                         continue;
366                 }
367                 left_start = find_next_zero_bit(free_i->free_secmap,
368                                                         TOTAL_SECS(sbi), 0);
369                 BUG_ON(left_start >= TOTAL_SECS(sbi));
370                 break;
371         }
372         secno = left_start;
373 skip_left:
374         hint = secno;
375         segno = secno * sbi->segs_per_sec;
376         zoneno = secno / sbi->secs_per_zone;
377
378         /* give up on finding another zone */
379         if (!init)
380                 goto got_it;
381         if (sbi->secs_per_zone == 1)
382                 goto got_it;
383         if (zoneno == old_zoneno)
384                 goto got_it;
385         if (dir == ALLOC_LEFT) {
386                 if (!go_left && zoneno + 1 >= total_zones)
387                         goto got_it;
388                 if (go_left && zoneno == 0)
389                         goto got_it;
390         }
391         for (i = 0; i < NR_CURSEG_TYPE; i++)
392                 if (CURSEG_I(sbi, i)->zone == zoneno)
393                         break;
394
395         if (i < NR_CURSEG_TYPE) {
396                 /* zone is in user, try another */
397                 if (go_left)
398                         hint = zoneno * sbi->secs_per_zone - 1;
399                 else if (zoneno + 1 >= total_zones)
400                         hint = 0;
401                 else
402                         hint = (zoneno + 1) * sbi->secs_per_zone;
403                 init = false;
404                 goto find_other_zone;
405         }
406 got_it:
407         /* set it as dirty segment in free segmap */
408         BUG_ON(test_bit(segno, free_i->free_segmap));
409         __set_inuse(sbi, segno);
410         *newseg = segno;
411         write_unlock(&free_i->segmap_lock);
412 }
413
414 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
415 {
416         struct curseg_info *curseg = CURSEG_I(sbi, type);
417         struct summary_footer *sum_footer;
418
419         curseg->segno = curseg->next_segno;
420         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
421         curseg->next_blkoff = 0;
422         curseg->next_segno = NULL_SEGNO;
423
424         sum_footer = &(curseg->sum_blk->footer);
425         memset(sum_footer, 0, sizeof(struct summary_footer));
426         if (IS_DATASEG(type))
427                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
428         if (IS_NODESEG(type))
429                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
430         __set_sit_entry_type(sbi, type, curseg->segno, modified);
431 }
432
433 /*
434  * Allocate a current working segment.
435  * This function always allocates a free segment in LFS manner.
436  */
437 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
438 {
439         struct curseg_info *curseg = CURSEG_I(sbi, type);
440         unsigned int segno = curseg->segno;
441         int dir = ALLOC_LEFT;
442
443         write_sum_page(sbi, curseg->sum_blk,
444                                 GET_SUM_BLOCK(sbi, segno));
445         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
446                 dir = ALLOC_RIGHT;
447
448         if (test_opt(sbi, NOHEAP))
449                 dir = ALLOC_RIGHT;
450
451         get_new_segment(sbi, &segno, new_sec, dir);
452         curseg->next_segno = segno;
453         reset_curseg(sbi, type, 1);
454         curseg->alloc_type = LFS;
455 }
456
457 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
458                         struct curseg_info *seg, block_t start)
459 {
460         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
461         block_t ofs;
462         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
463                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
464                         && !f2fs_test_bit(ofs, se->cur_valid_map))
465                         break;
466         }
467         seg->next_blkoff = ofs;
468 }
469
470 /*
471  * If a segment is written by LFS manner, next block offset is just obtained
472  * by increasing the current block offset. However, if a segment is written by
473  * SSR manner, next block offset obtained by calling __next_free_blkoff
474  */
475 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
476                                 struct curseg_info *seg)
477 {
478         if (seg->alloc_type == SSR)
479                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
480         else
481                 seg->next_blkoff++;
482 }
483
484 /*
485  * This function always allocates a used segment (from dirty seglist) by SSR
486  * manner, so it should recover the existing segment information of valid blocks
487  */
488 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
489 {
490         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
491         struct curseg_info *curseg = CURSEG_I(sbi, type);
492         unsigned int new_segno = curseg->next_segno;
493         struct f2fs_summary_block *sum_node;
494         struct page *sum_page;
495
496         write_sum_page(sbi, curseg->sum_blk,
497                                 GET_SUM_BLOCK(sbi, curseg->segno));
498         __set_test_and_inuse(sbi, new_segno);
499
500         mutex_lock(&dirty_i->seglist_lock);
501         __remove_dirty_segment(sbi, new_segno, PRE);
502         __remove_dirty_segment(sbi, new_segno, DIRTY);
503         mutex_unlock(&dirty_i->seglist_lock);
504
505         reset_curseg(sbi, type, 1);
506         curseg->alloc_type = SSR;
507         __next_free_blkoff(sbi, curseg, 0);
508
509         if (reuse) {
510                 sum_page = get_sum_page(sbi, new_segno);
511                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
512                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
513                 f2fs_put_page(sum_page, 1);
514         }
515 }
516
517 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
518 {
519         struct curseg_info *curseg = CURSEG_I(sbi, type);
520         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
521
522         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
523                 return v_ops->get_victim(sbi,
524                                 &(curseg)->next_segno, BG_GC, type, SSR);
525
526         /* For data segments, let's do SSR more intensively */
527         for (; type >= CURSEG_HOT_DATA; type--)
528                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
529                                                 BG_GC, type, SSR))
530                         return 1;
531         return 0;
532 }
533
534 /*
535  * flush out current segment and replace it with new segment
536  * This function should be returned with success, otherwise BUG
537  */
538 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
539                                                 int type, bool force)
540 {
541         struct curseg_info *curseg = CURSEG_I(sbi, type);
542
543         if (force)
544                 new_curseg(sbi, type, true);
545         else if (type == CURSEG_WARM_NODE)
546                 new_curseg(sbi, type, false);
547         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
548                 new_curseg(sbi, type, false);
549         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
550                 change_curseg(sbi, type, true);
551         else
552                 new_curseg(sbi, type, false);
553 #ifdef CONFIG_F2FS_STAT_FS
554         sbi->segment_count[curseg->alloc_type]++;
555 #endif
556 }
557
558 void allocate_new_segments(struct f2fs_sb_info *sbi)
559 {
560         struct curseg_info *curseg;
561         unsigned int old_curseg;
562         int i;
563
564         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565                 curseg = CURSEG_I(sbi, i);
566                 old_curseg = curseg->segno;
567                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568                 locate_dirty_segment(sbi, old_curseg);
569         }
570 }
571
572 static const struct segment_allocation default_salloc_ops = {
573         .allocate_segment = allocate_segment_by_default,
574 };
575
576 static void f2fs_end_io_write(struct bio *bio, int err)
577 {
578         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580         struct bio_private *p = bio->bi_private;
581
582         do {
583                 struct page *page = bvec->bv_page;
584
585                 if (--bvec >= bio->bi_io_vec)
586                         prefetchw(&bvec->bv_page->flags);
587                 if (!uptodate) {
588                         SetPageError(page);
589                         if (page->mapping)
590                                 set_bit(AS_EIO, &page->mapping->flags);
591                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592                         p->sbi->sb->s_flags |= MS_RDONLY;
593                 }
594                 end_page_writeback(page);
595                 dec_page_count(p->sbi, F2FS_WRITEBACK);
596         } while (bvec >= bio->bi_io_vec);
597
598         if (p->is_sync)
599                 complete(p->wait);
600         kfree(p);
601         bio_put(bio);
602 }
603
604 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
605 {
606         struct bio *bio;
607
608         /* No failure on bio allocation */
609         bio = bio_alloc(GFP_NOIO, npages);
610         bio->bi_bdev = bdev;
611         bio->bi_private = NULL;
612
613         return bio;
614 }
615
616 static void do_submit_bio(struct f2fs_sb_info *sbi,
617                                 enum page_type type, bool sync)
618 {
619         int rw = sync ? WRITE_SYNC : WRITE;
620         enum page_type btype = type > META ? META : type;
621
622         if (type >= META_FLUSH)
623                 rw = WRITE_FLUSH_FUA;
624
625         if (btype == META)
626                 rw |= REQ_META;
627
628         if (sbi->bio[btype]) {
629                 struct bio_private *p = sbi->bio[btype]->bi_private;
630                 p->sbi = sbi;
631                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
632
633                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
634
635                 if (type == META_FLUSH) {
636                         DECLARE_COMPLETION_ONSTACK(wait);
637                         p->is_sync = true;
638                         p->wait = &wait;
639                         submit_bio(rw, sbi->bio[btype]);
640                         wait_for_completion(&wait);
641                 } else {
642                         p->is_sync = false;
643                         submit_bio(rw, sbi->bio[btype]);
644                 }
645                 sbi->bio[btype] = NULL;
646         }
647 }
648
649 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
650 {
651         down_write(&sbi->bio_sem);
652         do_submit_bio(sbi, type, sync);
653         up_write(&sbi->bio_sem);
654 }
655
656 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
657                                 block_t blk_addr, enum page_type type)
658 {
659         struct block_device *bdev = sbi->sb->s_bdev;
660
661         verify_block_addr(sbi, blk_addr);
662
663         down_write(&sbi->bio_sem);
664
665         inc_page_count(sbi, F2FS_WRITEBACK);
666
667         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
668                 do_submit_bio(sbi, type, false);
669 alloc_new:
670         if (sbi->bio[type] == NULL) {
671                 struct bio_private *priv;
672 retry:
673                 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
674                 if (!priv) {
675                         cond_resched();
676                         goto retry;
677                 }
678
679                 sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
680                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
681                 sbi->bio[type]->bi_private = priv;
682                 /*
683                  * The end_io will be assigned at the sumbission phase.
684                  * Until then, let bio_add_page() merge consecutive IOs as much
685                  * as possible.
686                  */
687         }
688
689         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
690                                                         PAGE_CACHE_SIZE) {
691                 do_submit_bio(sbi, type, false);
692                 goto alloc_new;
693         }
694
695         sbi->last_block_in_bio[type] = blk_addr;
696
697         up_write(&sbi->bio_sem);
698         trace_f2fs_submit_write_page(page, blk_addr, type);
699 }
700
701 void f2fs_wait_on_page_writeback(struct page *page,
702                                 enum page_type type, bool sync)
703 {
704         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
705         if (PageWriteback(page)) {
706                 f2fs_submit_bio(sbi, type, sync);
707                 wait_on_page_writeback(page);
708         }
709 }
710
711 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
712 {
713         struct curseg_info *curseg = CURSEG_I(sbi, type);
714         if (curseg->next_blkoff < sbi->blocks_per_seg)
715                 return true;
716         return false;
717 }
718
719 static int __get_segment_type_2(struct page *page, enum page_type p_type)
720 {
721         if (p_type == DATA)
722                 return CURSEG_HOT_DATA;
723         else
724                 return CURSEG_HOT_NODE;
725 }
726
727 static int __get_segment_type_4(struct page *page, enum page_type p_type)
728 {
729         if (p_type == DATA) {
730                 struct inode *inode = page->mapping->host;
731
732                 if (S_ISDIR(inode->i_mode))
733                         return CURSEG_HOT_DATA;
734                 else
735                         return CURSEG_COLD_DATA;
736         } else {
737                 if (IS_DNODE(page) && !is_cold_node(page))
738                         return CURSEG_HOT_NODE;
739                 else
740                         return CURSEG_COLD_NODE;
741         }
742 }
743
744 static int __get_segment_type_6(struct page *page, enum page_type p_type)
745 {
746         if (p_type == DATA) {
747                 struct inode *inode = page->mapping->host;
748
749                 if (S_ISDIR(inode->i_mode))
750                         return CURSEG_HOT_DATA;
751                 else if (is_cold_data(page) || file_is_cold(inode))
752                         return CURSEG_COLD_DATA;
753                 else
754                         return CURSEG_WARM_DATA;
755         } else {
756                 if (IS_DNODE(page))
757                         return is_cold_node(page) ? CURSEG_WARM_NODE :
758                                                 CURSEG_HOT_NODE;
759                 else
760                         return CURSEG_COLD_NODE;
761         }
762 }
763
764 static int __get_segment_type(struct page *page, enum page_type p_type)
765 {
766         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
767         switch (sbi->active_logs) {
768         case 2:
769                 return __get_segment_type_2(page, p_type);
770         case 4:
771                 return __get_segment_type_4(page, p_type);
772         }
773         /* NR_CURSEG_TYPE(6) logs by default */
774         BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
775         return __get_segment_type_6(page, p_type);
776 }
777
778 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
779                         block_t old_blkaddr, block_t *new_blkaddr,
780                         struct f2fs_summary *sum, enum page_type p_type)
781 {
782         struct sit_info *sit_i = SIT_I(sbi);
783         struct curseg_info *curseg;
784         unsigned int old_cursegno;
785         int type;
786
787         type = __get_segment_type(page, p_type);
788         curseg = CURSEG_I(sbi, type);
789
790         mutex_lock(&curseg->curseg_mutex);
791
792         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
793         old_cursegno = curseg->segno;
794
795         /*
796          * __add_sum_entry should be resided under the curseg_mutex
797          * because, this function updates a summary entry in the
798          * current summary block.
799          */
800         __add_sum_entry(sbi, type, sum);
801
802         mutex_lock(&sit_i->sentry_lock);
803         __refresh_next_blkoff(sbi, curseg);
804 #ifdef CONFIG_F2FS_STAT_FS
805         sbi->block_count[curseg->alloc_type]++;
806 #endif
807
808         /*
809          * SIT information should be updated before segment allocation,
810          * since SSR needs latest valid block information.
811          */
812         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
813
814         if (!__has_curseg_space(sbi, type))
815                 sit_i->s_ops->allocate_segment(sbi, type, false);
816
817         locate_dirty_segment(sbi, old_cursegno);
818         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
819         mutex_unlock(&sit_i->sentry_lock);
820
821         if (p_type == NODE)
822                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
823
824         /* writeout dirty page into bdev */
825         submit_write_page(sbi, page, *new_blkaddr, p_type);
826
827         mutex_unlock(&curseg->curseg_mutex);
828 }
829
830 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
831 {
832         set_page_writeback(page);
833         submit_write_page(sbi, page, page->index, META);
834 }
835
836 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
837                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
838 {
839         struct f2fs_summary sum;
840         set_summary(&sum, nid, 0, 0);
841         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
842 }
843
844 void write_data_page(struct inode *inode, struct page *page,
845                 struct dnode_of_data *dn, block_t old_blkaddr,
846                 block_t *new_blkaddr)
847 {
848         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
849         struct f2fs_summary sum;
850         struct node_info ni;
851
852         BUG_ON(old_blkaddr == NULL_ADDR);
853         get_node_info(sbi, dn->nid, &ni);
854         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
855
856         do_write_page(sbi, page, old_blkaddr,
857                         new_blkaddr, &sum, DATA);
858 }
859
860 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
861                                         block_t old_blk_addr)
862 {
863         submit_write_page(sbi, page, old_blk_addr, DATA);
864 }
865
866 void recover_data_page(struct f2fs_sb_info *sbi,
867                         struct page *page, struct f2fs_summary *sum,
868                         block_t old_blkaddr, block_t new_blkaddr)
869 {
870         struct sit_info *sit_i = SIT_I(sbi);
871         struct curseg_info *curseg;
872         unsigned int segno, old_cursegno;
873         struct seg_entry *se;
874         int type;
875
876         segno = GET_SEGNO(sbi, new_blkaddr);
877         se = get_seg_entry(sbi, segno);
878         type = se->type;
879
880         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
881                 if (old_blkaddr == NULL_ADDR)
882                         type = CURSEG_COLD_DATA;
883                 else
884                         type = CURSEG_WARM_DATA;
885         }
886         curseg = CURSEG_I(sbi, type);
887
888         mutex_lock(&curseg->curseg_mutex);
889         mutex_lock(&sit_i->sentry_lock);
890
891         old_cursegno = curseg->segno;
892
893         /* change the current segment */
894         if (segno != curseg->segno) {
895                 curseg->next_segno = segno;
896                 change_curseg(sbi, type, true);
897         }
898
899         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
900                                         (sbi->blocks_per_seg - 1);
901         __add_sum_entry(sbi, type, sum);
902
903         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
904
905         locate_dirty_segment(sbi, old_cursegno);
906         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
907
908         mutex_unlock(&sit_i->sentry_lock);
909         mutex_unlock(&curseg->curseg_mutex);
910 }
911
912 void rewrite_node_page(struct f2fs_sb_info *sbi,
913                         struct page *page, struct f2fs_summary *sum,
914                         block_t old_blkaddr, block_t new_blkaddr)
915 {
916         struct sit_info *sit_i = SIT_I(sbi);
917         int type = CURSEG_WARM_NODE;
918         struct curseg_info *curseg;
919         unsigned int segno, old_cursegno;
920         block_t next_blkaddr = next_blkaddr_of_node(page);
921         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
922
923         curseg = CURSEG_I(sbi, type);
924
925         mutex_lock(&curseg->curseg_mutex);
926         mutex_lock(&sit_i->sentry_lock);
927
928         segno = GET_SEGNO(sbi, new_blkaddr);
929         old_cursegno = curseg->segno;
930
931         /* change the current segment */
932         if (segno != curseg->segno) {
933                 curseg->next_segno = segno;
934                 change_curseg(sbi, type, true);
935         }
936         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
937                                         (sbi->blocks_per_seg - 1);
938         __add_sum_entry(sbi, type, sum);
939
940         /* change the current log to the next block addr in advance */
941         if (next_segno != segno) {
942                 curseg->next_segno = next_segno;
943                 change_curseg(sbi, type, true);
944         }
945         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
946                                         (sbi->blocks_per_seg - 1);
947
948         /* rewrite node page */
949         set_page_writeback(page);
950         submit_write_page(sbi, page, new_blkaddr, NODE);
951         f2fs_submit_bio(sbi, NODE, true);
952         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
953
954         locate_dirty_segment(sbi, old_cursegno);
955         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
956
957         mutex_unlock(&sit_i->sentry_lock);
958         mutex_unlock(&curseg->curseg_mutex);
959 }
960
961 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
962 {
963         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
964         struct curseg_info *seg_i;
965         unsigned char *kaddr;
966         struct page *page;
967         block_t start;
968         int i, j, offset;
969
970         start = start_sum_block(sbi);
971
972         page = get_meta_page(sbi, start++);
973         kaddr = (unsigned char *)page_address(page);
974
975         /* Step 1: restore nat cache */
976         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
977         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
978
979         /* Step 2: restore sit cache */
980         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
981         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
982                                                 SUM_JOURNAL_SIZE);
983         offset = 2 * SUM_JOURNAL_SIZE;
984
985         /* Step 3: restore summary entries */
986         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
987                 unsigned short blk_off;
988                 unsigned int segno;
989
990                 seg_i = CURSEG_I(sbi, i);
991                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
992                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
993                 seg_i->next_segno = segno;
994                 reset_curseg(sbi, i, 0);
995                 seg_i->alloc_type = ckpt->alloc_type[i];
996                 seg_i->next_blkoff = blk_off;
997
998                 if (seg_i->alloc_type == SSR)
999                         blk_off = sbi->blocks_per_seg;
1000
1001                 for (j = 0; j < blk_off; j++) {
1002                         struct f2fs_summary *s;
1003                         s = (struct f2fs_summary *)(kaddr + offset);
1004                         seg_i->sum_blk->entries[j] = *s;
1005                         offset += SUMMARY_SIZE;
1006                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1007                                                 SUM_FOOTER_SIZE)
1008                                 continue;
1009
1010                         f2fs_put_page(page, 1);
1011                         page = NULL;
1012
1013                         page = get_meta_page(sbi, start++);
1014                         kaddr = (unsigned char *)page_address(page);
1015                         offset = 0;
1016                 }
1017         }
1018         f2fs_put_page(page, 1);
1019         return 0;
1020 }
1021
1022 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1023 {
1024         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025         struct f2fs_summary_block *sum;
1026         struct curseg_info *curseg;
1027         struct page *new;
1028         unsigned short blk_off;
1029         unsigned int segno = 0;
1030         block_t blk_addr = 0;
1031
1032         /* get segment number and block addr */
1033         if (IS_DATASEG(type)) {
1034                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1035                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1036                                                         CURSEG_HOT_DATA]);
1037                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1038                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1039                 else
1040                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1041         } else {
1042                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1043                                                         CURSEG_HOT_NODE]);
1044                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1045                                                         CURSEG_HOT_NODE]);
1046                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1047                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1048                                                         type - CURSEG_HOT_NODE);
1049                 else
1050                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1051         }
1052
1053         new = get_meta_page(sbi, blk_addr);
1054         sum = (struct f2fs_summary_block *)page_address(new);
1055
1056         if (IS_NODESEG(type)) {
1057                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1058                         struct f2fs_summary *ns = &sum->entries[0];
1059                         int i;
1060                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1061                                 ns->version = 0;
1062                                 ns->ofs_in_node = 0;
1063                         }
1064                 } else {
1065                         if (restore_node_summary(sbi, segno, sum)) {
1066                                 f2fs_put_page(new, 1);
1067                                 return -EINVAL;
1068                         }
1069                 }
1070         }
1071
1072         /* set uncompleted segment to curseg */
1073         curseg = CURSEG_I(sbi, type);
1074         mutex_lock(&curseg->curseg_mutex);
1075         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1076         curseg->next_segno = segno;
1077         reset_curseg(sbi, type, 0);
1078         curseg->alloc_type = ckpt->alloc_type[type];
1079         curseg->next_blkoff = blk_off;
1080         mutex_unlock(&curseg->curseg_mutex);
1081         f2fs_put_page(new, 1);
1082         return 0;
1083 }
1084
1085 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1086 {
1087         int type = CURSEG_HOT_DATA;
1088
1089         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1090                 /* restore for compacted data summary */
1091                 if (read_compacted_summaries(sbi))
1092                         return -EINVAL;
1093                 type = CURSEG_HOT_NODE;
1094         }
1095
1096         for (; type <= CURSEG_COLD_NODE; type++)
1097                 if (read_normal_summaries(sbi, type))
1098                         return -EINVAL;
1099         return 0;
1100 }
1101
1102 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1103 {
1104         struct page *page;
1105         unsigned char *kaddr;
1106         struct f2fs_summary *summary;
1107         struct curseg_info *seg_i;
1108         int written_size = 0;
1109         int i, j;
1110
1111         page = grab_meta_page(sbi, blkaddr++);
1112         kaddr = (unsigned char *)page_address(page);
1113
1114         /* Step 1: write nat cache */
1115         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1116         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1117         written_size += SUM_JOURNAL_SIZE;
1118
1119         /* Step 2: write sit cache */
1120         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1121         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1122                                                 SUM_JOURNAL_SIZE);
1123         written_size += SUM_JOURNAL_SIZE;
1124
1125         set_page_dirty(page);
1126
1127         /* Step 3: write summary entries */
1128         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1129                 unsigned short blkoff;
1130                 seg_i = CURSEG_I(sbi, i);
1131                 if (sbi->ckpt->alloc_type[i] == SSR)
1132                         blkoff = sbi->blocks_per_seg;
1133                 else
1134                         blkoff = curseg_blkoff(sbi, i);
1135
1136                 for (j = 0; j < blkoff; j++) {
1137                         if (!page) {
1138                                 page = grab_meta_page(sbi, blkaddr++);
1139                                 kaddr = (unsigned char *)page_address(page);
1140                                 written_size = 0;
1141                         }
1142                         summary = (struct f2fs_summary *)(kaddr + written_size);
1143                         *summary = seg_i->sum_blk->entries[j];
1144                         written_size += SUMMARY_SIZE;
1145                         set_page_dirty(page);
1146
1147                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1148                                                         SUM_FOOTER_SIZE)
1149                                 continue;
1150
1151                         f2fs_put_page(page, 1);
1152                         page = NULL;
1153                 }
1154         }
1155         if (page)
1156                 f2fs_put_page(page, 1);
1157 }
1158
1159 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1160                                         block_t blkaddr, int type)
1161 {
1162         int i, end;
1163         if (IS_DATASEG(type))
1164                 end = type + NR_CURSEG_DATA_TYPE;
1165         else
1166                 end = type + NR_CURSEG_NODE_TYPE;
1167
1168         for (i = type; i < end; i++) {
1169                 struct curseg_info *sum = CURSEG_I(sbi, i);
1170                 mutex_lock(&sum->curseg_mutex);
1171                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1172                 mutex_unlock(&sum->curseg_mutex);
1173         }
1174 }
1175
1176 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1177 {
1178         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1179                 write_compacted_summaries(sbi, start_blk);
1180         else
1181                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1182 }
1183
1184 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1185 {
1186         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1187                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1188 }
1189
1190 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1191                                         unsigned int val, int alloc)
1192 {
1193         int i;
1194
1195         if (type == NAT_JOURNAL) {
1196                 for (i = 0; i < nats_in_cursum(sum); i++) {
1197                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1198                                 return i;
1199                 }
1200                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1201                         return update_nats_in_cursum(sum, 1);
1202         } else if (type == SIT_JOURNAL) {
1203                 for (i = 0; i < sits_in_cursum(sum); i++)
1204                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1205                                 return i;
1206                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1207                         return update_sits_in_cursum(sum, 1);
1208         }
1209         return -1;
1210 }
1211
1212 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1213                                         unsigned int segno)
1214 {
1215         struct sit_info *sit_i = SIT_I(sbi);
1216         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1217         block_t blk_addr = sit_i->sit_base_addr + offset;
1218
1219         check_seg_range(sbi, segno);
1220
1221         /* calculate sit block address */
1222         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1223                 blk_addr += sit_i->sit_blocks;
1224
1225         return get_meta_page(sbi, blk_addr);
1226 }
1227
1228 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1229                                         unsigned int start)
1230 {
1231         struct sit_info *sit_i = SIT_I(sbi);
1232         struct page *src_page, *dst_page;
1233         pgoff_t src_off, dst_off;
1234         void *src_addr, *dst_addr;
1235
1236         src_off = current_sit_addr(sbi, start);
1237         dst_off = next_sit_addr(sbi, src_off);
1238
1239         /* get current sit block page without lock */
1240         src_page = get_meta_page(sbi, src_off);
1241         dst_page = grab_meta_page(sbi, dst_off);
1242         BUG_ON(PageDirty(src_page));
1243
1244         src_addr = page_address(src_page);
1245         dst_addr = page_address(dst_page);
1246         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1247
1248         set_page_dirty(dst_page);
1249         f2fs_put_page(src_page, 1);
1250
1251         set_to_next_sit(sit_i, start);
1252
1253         return dst_page;
1254 }
1255
1256 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1257 {
1258         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1259         struct f2fs_summary_block *sum = curseg->sum_blk;
1260         int i;
1261
1262         /*
1263          * If the journal area in the current summary is full of sit entries,
1264          * all the sit entries will be flushed. Otherwise the sit entries
1265          * are not able to replace with newly hot sit entries.
1266          */
1267         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1268                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1269                         unsigned int segno;
1270                         segno = le32_to_cpu(segno_in_journal(sum, i));
1271                         __mark_sit_entry_dirty(sbi, segno);
1272                 }
1273                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1274                 return 1;
1275         }
1276         return 0;
1277 }
1278
1279 /*
1280  * CP calls this function, which flushes SIT entries including sit_journal,
1281  * and moves prefree segs to free segs.
1282  */
1283 void flush_sit_entries(struct f2fs_sb_info *sbi)
1284 {
1285         struct sit_info *sit_i = SIT_I(sbi);
1286         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1287         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1288         struct f2fs_summary_block *sum = curseg->sum_blk;
1289         unsigned long nsegs = TOTAL_SEGS(sbi);
1290         struct page *page = NULL;
1291         struct f2fs_sit_block *raw_sit = NULL;
1292         unsigned int start = 0, end = 0;
1293         unsigned int segno = -1;
1294         bool flushed;
1295
1296         mutex_lock(&curseg->curseg_mutex);
1297         mutex_lock(&sit_i->sentry_lock);
1298
1299         /*
1300          * "flushed" indicates whether sit entries in journal are flushed
1301          * to the SIT area or not.
1302          */
1303         flushed = flush_sits_in_journal(sbi);
1304
1305         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1306                 struct seg_entry *se = get_seg_entry(sbi, segno);
1307                 int sit_offset, offset;
1308
1309                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1310
1311                 if (flushed)
1312                         goto to_sit_page;
1313
1314                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1315                 if (offset >= 0) {
1316                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1317                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1318                         goto flush_done;
1319                 }
1320 to_sit_page:
1321                 if (!page || (start > segno) || (segno > end)) {
1322                         if (page) {
1323                                 f2fs_put_page(page, 1);
1324                                 page = NULL;
1325                         }
1326
1327                         start = START_SEGNO(sit_i, segno);
1328                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1329
1330                         /* read sit block that will be updated */
1331                         page = get_next_sit_page(sbi, start);
1332                         raw_sit = page_address(page);
1333                 }
1334
1335                 /* udpate entry in SIT block */
1336                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1337 flush_done:
1338                 __clear_bit(segno, bitmap);
1339                 sit_i->dirty_sentries--;
1340         }
1341         mutex_unlock(&sit_i->sentry_lock);
1342         mutex_unlock(&curseg->curseg_mutex);
1343
1344         /* writeout last modified SIT block */
1345         f2fs_put_page(page, 1);
1346
1347         set_prefree_as_free_segments(sbi);
1348 }
1349
1350 static int build_sit_info(struct f2fs_sb_info *sbi)
1351 {
1352         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1353         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1354         struct sit_info *sit_i;
1355         unsigned int sit_segs, start;
1356         char *src_bitmap, *dst_bitmap;
1357         unsigned int bitmap_size;
1358
1359         /* allocate memory for SIT information */
1360         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1361         if (!sit_i)
1362                 return -ENOMEM;
1363
1364         SM_I(sbi)->sit_info = sit_i;
1365
1366         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1367         if (!sit_i->sentries)
1368                 return -ENOMEM;
1369
1370         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1371         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1372         if (!sit_i->dirty_sentries_bitmap)
1373                 return -ENOMEM;
1374
1375         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1376                 sit_i->sentries[start].cur_valid_map
1377                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1378                 sit_i->sentries[start].ckpt_valid_map
1379                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1380                 if (!sit_i->sentries[start].cur_valid_map
1381                                 || !sit_i->sentries[start].ckpt_valid_map)
1382                         return -ENOMEM;
1383         }
1384
1385         if (sbi->segs_per_sec > 1) {
1386                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1387                                         sizeof(struct sec_entry));
1388                 if (!sit_i->sec_entries)
1389                         return -ENOMEM;
1390         }
1391
1392         /* get information related with SIT */
1393         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1394
1395         /* setup SIT bitmap from ckeckpoint pack */
1396         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1397         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1398
1399         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1400         if (!dst_bitmap)
1401                 return -ENOMEM;
1402
1403         /* init SIT information */
1404         sit_i->s_ops = &default_salloc_ops;
1405
1406         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1407         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1408         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1409         sit_i->sit_bitmap = dst_bitmap;
1410         sit_i->bitmap_size = bitmap_size;
1411         sit_i->dirty_sentries = 0;
1412         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1413         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1414         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1415         mutex_init(&sit_i->sentry_lock);
1416         return 0;
1417 }
1418
1419 static int build_free_segmap(struct f2fs_sb_info *sbi)
1420 {
1421         struct f2fs_sm_info *sm_info = SM_I(sbi);
1422         struct free_segmap_info *free_i;
1423         unsigned int bitmap_size, sec_bitmap_size;
1424
1425         /* allocate memory for free segmap information */
1426         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1427         if (!free_i)
1428                 return -ENOMEM;
1429
1430         SM_I(sbi)->free_info = free_i;
1431
1432         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1433         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1434         if (!free_i->free_segmap)
1435                 return -ENOMEM;
1436
1437         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1438         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1439         if (!free_i->free_secmap)
1440                 return -ENOMEM;
1441
1442         /* set all segments as dirty temporarily */
1443         memset(free_i->free_segmap, 0xff, bitmap_size);
1444         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1445
1446         /* init free segmap information */
1447         free_i->start_segno =
1448                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1449         free_i->free_segments = 0;
1450         free_i->free_sections = 0;
1451         rwlock_init(&free_i->segmap_lock);
1452         return 0;
1453 }
1454
1455 static int build_curseg(struct f2fs_sb_info *sbi)
1456 {
1457         struct curseg_info *array;
1458         int i;
1459
1460         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1461         if (!array)
1462                 return -ENOMEM;
1463
1464         SM_I(sbi)->curseg_array = array;
1465
1466         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1467                 mutex_init(&array[i].curseg_mutex);
1468                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1469                 if (!array[i].sum_blk)
1470                         return -ENOMEM;
1471                 array[i].segno = NULL_SEGNO;
1472                 array[i].next_blkoff = 0;
1473         }
1474         return restore_curseg_summaries(sbi);
1475 }
1476
1477 static void build_sit_entries(struct f2fs_sb_info *sbi)
1478 {
1479         struct sit_info *sit_i = SIT_I(sbi);
1480         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1481         struct f2fs_summary_block *sum = curseg->sum_blk;
1482         unsigned int start;
1483
1484         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1485                 struct seg_entry *se = &sit_i->sentries[start];
1486                 struct f2fs_sit_block *sit_blk;
1487                 struct f2fs_sit_entry sit;
1488                 struct page *page;
1489                 int i;
1490
1491                 mutex_lock(&curseg->curseg_mutex);
1492                 for (i = 0; i < sits_in_cursum(sum); i++) {
1493                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1494                                 sit = sit_in_journal(sum, i);
1495                                 mutex_unlock(&curseg->curseg_mutex);
1496                                 goto got_it;
1497                         }
1498                 }
1499                 mutex_unlock(&curseg->curseg_mutex);
1500                 page = get_current_sit_page(sbi, start);
1501                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1502                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1503                 f2fs_put_page(page, 1);
1504 got_it:
1505                 check_block_count(sbi, start, &sit);
1506                 seg_info_from_raw_sit(se, &sit);
1507                 if (sbi->segs_per_sec > 1) {
1508                         struct sec_entry *e = get_sec_entry(sbi, start);
1509                         e->valid_blocks += se->valid_blocks;
1510                 }
1511         }
1512 }
1513
1514 static void init_free_segmap(struct f2fs_sb_info *sbi)
1515 {
1516         unsigned int start;
1517         int type;
1518
1519         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1520                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1521                 if (!sentry->valid_blocks)
1522                         __set_free(sbi, start);
1523         }
1524
1525         /* set use the current segments */
1526         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1527                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1528                 __set_test_and_inuse(sbi, curseg_t->segno);
1529         }
1530 }
1531
1532 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1533 {
1534         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1535         struct free_segmap_info *free_i = FREE_I(sbi);
1536         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1537         unsigned short valid_blocks;
1538
1539         while (1) {
1540                 /* find dirty segment based on free segmap */
1541                 segno = find_next_inuse(free_i, total_segs, offset);
1542                 if (segno >= total_segs)
1543                         break;
1544                 offset = segno + 1;
1545                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1546                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1547                         continue;
1548                 mutex_lock(&dirty_i->seglist_lock);
1549                 __locate_dirty_segment(sbi, segno, DIRTY);
1550                 mutex_unlock(&dirty_i->seglist_lock);
1551         }
1552 }
1553
1554 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1555 {
1556         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1557         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1558
1559         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1560         if (!dirty_i->victim_secmap)
1561                 return -ENOMEM;
1562         return 0;
1563 }
1564
1565 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1566 {
1567         struct dirty_seglist_info *dirty_i;
1568         unsigned int bitmap_size, i;
1569
1570         /* allocate memory for dirty segments list information */
1571         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1572         if (!dirty_i)
1573                 return -ENOMEM;
1574
1575         SM_I(sbi)->dirty_info = dirty_i;
1576         mutex_init(&dirty_i->seglist_lock);
1577
1578         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1579
1580         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1581                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1582                 if (!dirty_i->dirty_segmap[i])
1583                         return -ENOMEM;
1584         }
1585
1586         init_dirty_segmap(sbi);
1587         return init_victim_secmap(sbi);
1588 }
1589
1590 /*
1591  * Update min, max modified time for cost-benefit GC algorithm
1592  */
1593 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1594 {
1595         struct sit_info *sit_i = SIT_I(sbi);
1596         unsigned int segno;
1597
1598         mutex_lock(&sit_i->sentry_lock);
1599
1600         sit_i->min_mtime = LLONG_MAX;
1601
1602         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1603                 unsigned int i;
1604                 unsigned long long mtime = 0;
1605
1606                 for (i = 0; i < sbi->segs_per_sec; i++)
1607                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1608
1609                 mtime = div_u64(mtime, sbi->segs_per_sec);
1610
1611                 if (sit_i->min_mtime > mtime)
1612                         sit_i->min_mtime = mtime;
1613         }
1614         sit_i->max_mtime = get_mtime(sbi);
1615         mutex_unlock(&sit_i->sentry_lock);
1616 }
1617
1618 int build_segment_manager(struct f2fs_sb_info *sbi)
1619 {
1620         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1621         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1622         struct f2fs_sm_info *sm_info;
1623         int err;
1624
1625         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1626         if (!sm_info)
1627                 return -ENOMEM;
1628
1629         /* init sm info */
1630         sbi->sm_info = sm_info;
1631         INIT_LIST_HEAD(&sm_info->wblist_head);
1632         spin_lock_init(&sm_info->wblist_lock);
1633         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1634         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1635         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1636         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1637         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1638         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1639         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1640
1641         err = build_sit_info(sbi);
1642         if (err)
1643                 return err;
1644         err = build_free_segmap(sbi);
1645         if (err)
1646                 return err;
1647         err = build_curseg(sbi);
1648         if (err)
1649                 return err;
1650
1651         /* reinit free segmap based on SIT */
1652         build_sit_entries(sbi);
1653
1654         init_free_segmap(sbi);
1655         err = build_dirty_segmap(sbi);
1656         if (err)
1657                 return err;
1658
1659         init_min_max_mtime(sbi);
1660         return 0;
1661 }
1662
1663 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1664                 enum dirty_type dirty_type)
1665 {
1666         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1667
1668         mutex_lock(&dirty_i->seglist_lock);
1669         kfree(dirty_i->dirty_segmap[dirty_type]);
1670         dirty_i->nr_dirty[dirty_type] = 0;
1671         mutex_unlock(&dirty_i->seglist_lock);
1672 }
1673
1674 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1675 {
1676         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1677         kfree(dirty_i->victim_secmap);
1678 }
1679
1680 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1681 {
1682         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1683         int i;
1684
1685         if (!dirty_i)
1686                 return;
1687
1688         /* discard pre-free/dirty segments list */
1689         for (i = 0; i < NR_DIRTY_TYPE; i++)
1690                 discard_dirty_segmap(sbi, i);
1691
1692         destroy_victim_secmap(sbi);
1693         SM_I(sbi)->dirty_info = NULL;
1694         kfree(dirty_i);
1695 }
1696
1697 static void destroy_curseg(struct f2fs_sb_info *sbi)
1698 {
1699         struct curseg_info *array = SM_I(sbi)->curseg_array;
1700         int i;
1701
1702         if (!array)
1703                 return;
1704         SM_I(sbi)->curseg_array = NULL;
1705         for (i = 0; i < NR_CURSEG_TYPE; i++)
1706                 kfree(array[i].sum_blk);
1707         kfree(array);
1708 }
1709
1710 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1711 {
1712         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1713         if (!free_i)
1714                 return;
1715         SM_I(sbi)->free_info = NULL;
1716         kfree(free_i->free_segmap);
1717         kfree(free_i->free_secmap);
1718         kfree(free_i);
1719 }
1720
1721 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1722 {
1723         struct sit_info *sit_i = SIT_I(sbi);
1724         unsigned int start;
1725
1726         if (!sit_i)
1727                 return;
1728
1729         if (sit_i->sentries) {
1730                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1731                         kfree(sit_i->sentries[start].cur_valid_map);
1732                         kfree(sit_i->sentries[start].ckpt_valid_map);
1733                 }
1734         }
1735         vfree(sit_i->sentries);
1736         vfree(sit_i->sec_entries);
1737         kfree(sit_i->dirty_sentries_bitmap);
1738
1739         SM_I(sbi)->sit_info = NULL;
1740         kfree(sit_i->sit_bitmap);
1741         kfree(sit_i);
1742 }
1743
1744 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1745 {
1746         struct f2fs_sm_info *sm_info = SM_I(sbi);
1747         destroy_dirty_segmap(sbi);
1748         destroy_curseg(sbi);
1749         destroy_free_segmap(sbi);
1750         destroy_sit_info(sbi);
1751         sbi->sm_info = NULL;
1752         kfree(sm_info);
1753 }