Merge git://www.linux-watchdog.org/linux-watchdog
[linux-drm-fsl-dcu.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50                               struct ext4_inode_info *ei)
51 {
52         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53         __u16 csum_lo;
54         __u16 csum_hi = 0;
55         __u32 csum;
56
57         csum_lo = le16_to_cpu(raw->i_checksum_lo);
58         raw->i_checksum_lo = 0;
59         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62                 raw->i_checksum_hi = 0;
63         }
64
65         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66                            EXT4_INODE_SIZE(inode->i_sb));
67
68         raw->i_checksum_lo = cpu_to_le16(csum_lo);
69         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73         return csum;
74 }
75
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77                                   struct ext4_inode_info *ei)
78 {
79         __u32 provided, calculated;
80
81         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82             cpu_to_le32(EXT4_OS_LINUX) ||
83             !ext4_has_metadata_csum(inode->i_sb))
84                 return 1;
85
86         provided = le16_to_cpu(raw->i_checksum_lo);
87         calculated = ext4_inode_csum(inode, raw, ei);
88         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91         else
92                 calculated &= 0xFFFF;
93
94         return provided == calculated;
95 }
96
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98                                 struct ext4_inode_info *ei)
99 {
100         __u32 csum;
101
102         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103             cpu_to_le32(EXT4_OS_LINUX) ||
104             !ext4_has_metadata_csum(inode->i_sb))
105                 return;
106
107         csum = ext4_inode_csum(inode, raw, ei);
108         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115                                               loff_t new_size)
116 {
117         trace_ext4_begin_ordered_truncate(inode, new_size);
118         /*
119          * If jinode is zero, then we never opened the file for
120          * writing, so there's no need to call
121          * jbd2_journal_begin_ordered_truncate() since there's no
122          * outstanding writes we need to flush.
123          */
124         if (!EXT4_I(inode)->jinode)
125                 return 0;
126         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127                                                    EXT4_I(inode)->jinode,
128                                                    new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132                                 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136                                   int pextents);
137
138 /*
139  * Test whether an inode is a fast symlink.
140  */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143         int ea_blocks = EXT4_I(inode)->i_file_acl ?
144                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146         if (ext4_has_inline_data(inode))
147                 return 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages_final(&inode->i_data);
217
218                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Called with i_data_sem down, which is important since we can call
323  * ext4_discard_preallocations() from here.
324  */
325 void ext4_da_update_reserve_space(struct inode *inode,
326                                         int used, int quota_claim)
327 {
328         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329         struct ext4_inode_info *ei = EXT4_I(inode);
330
331         spin_lock(&ei->i_block_reservation_lock);
332         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333         if (unlikely(used > ei->i_reserved_data_blocks)) {
334                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335                          "with only %d reserved data blocks",
336                          __func__, inode->i_ino, used,
337                          ei->i_reserved_data_blocks);
338                 WARN_ON(1);
339                 used = ei->i_reserved_data_blocks;
340         }
341
342         /* Update per-inode reservations */
343         ei->i_reserved_data_blocks -= used;
344         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348         /* Update quota subsystem for data blocks */
349         if (quota_claim)
350                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351         else {
352                 /*
353                  * We did fallocate with an offset that is already delayed
354                  * allocated. So on delayed allocated writeback we should
355                  * not re-claim the quota for fallocated blocks.
356                  */
357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358         }
359
360         /*
361          * If we have done all the pending block allocations and if
362          * there aren't any writers on the inode, we can discard the
363          * inode's preallocations.
364          */
365         if ((ei->i_reserved_data_blocks == 0) &&
366             (atomic_read(&inode->i_writecount) == 0))
367                 ext4_discard_preallocations(inode);
368 }
369
370 static int __check_block_validity(struct inode *inode, const char *func,
371                                 unsigned int line,
372                                 struct ext4_map_blocks *map)
373 {
374         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375                                    map->m_len)) {
376                 ext4_error_inode(inode, func, line, map->m_pblk,
377                                  "lblock %lu mapped to illegal pblock "
378                                  "(length %d)", (unsigned long) map->m_lblk,
379                                  map->m_len);
380                 return -EIO;
381         }
382         return 0;
383 }
384
385 #define check_block_validity(inode, map)        \
386         __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390                                        struct inode *inode,
391                                        struct ext4_map_blocks *es_map,
392                                        struct ext4_map_blocks *map,
393                                        int flags)
394 {
395         int retval;
396
397         map->m_flags = 0;
398         /*
399          * There is a race window that the result is not the same.
400          * e.g. xfstests #223 when dioread_nolock enables.  The reason
401          * is that we lookup a block mapping in extent status tree with
402          * out taking i_data_sem.  So at the time the unwritten extent
403          * could be converted.
404          */
405         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406                 down_read(&EXT4_I(inode)->i_data_sem);
407         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409                                              EXT4_GET_BLOCKS_KEEP_SIZE);
410         } else {
411                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         }
414         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415                 up_read((&EXT4_I(inode)->i_data_sem));
416
417         /*
418          * We don't check m_len because extent will be collpased in status
419          * tree.  So the m_len might not equal.
420          */
421         if (es_map->m_lblk != map->m_lblk ||
422             es_map->m_flags != map->m_flags ||
423             es_map->m_pblk != map->m_pblk) {
424                 printk("ES cache assertion failed for inode: %lu "
425                        "es_cached ex [%d/%d/%llu/%x] != "
426                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427                        inode->i_ino, es_map->m_lblk, es_map->m_len,
428                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
429                        map->m_len, map->m_pblk, map->m_flags,
430                        retval, flags);
431         }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436  * The ext4_map_blocks() function tries to look up the requested blocks,
437  * and returns if the blocks are already mapped.
438  *
439  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440  * and store the allocated blocks in the result buffer head and mark it
441  * mapped.
442  *
443  * If file type is extents based, it will call ext4_ext_map_blocks(),
444  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445  * based files
446  *
447  * On success, it returns the number of blocks being mapped or allocated.
448  * if create==0 and the blocks are pre-allocated and unwritten block,
449  * the result buffer head is unmapped. If the create ==1, it will make sure
450  * the buffer head is mapped.
451  *
452  * It returns 0 if plain look up failed (blocks have not been allocated), in
453  * that case, buffer head is unmapped
454  *
455  * It returns the error in case of allocation failure.
456  */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458                     struct ext4_map_blocks *map, int flags)
459 {
460         struct extent_status es;
461         int retval;
462         int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464         struct ext4_map_blocks orig_map;
465
466         memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469         map->m_flags = 0;
470         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
472                   (unsigned long) map->m_lblk);
473
474         /*
475          * ext4_map_blocks returns an int, and m_len is an unsigned int
476          */
477         if (unlikely(map->m_len > INT_MAX))
478                 map->m_len = INT_MAX;
479
480         /* We can handle the block number less than EXT_MAX_BLOCKS */
481         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482                 return -EIO;
483
484         /* Lookup extent status tree firstly */
485         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487                         map->m_pblk = ext4_es_pblock(&es) +
488                                         map->m_lblk - es.es_lblk;
489                         map->m_flags |= ext4_es_is_written(&es) ?
490                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491                         retval = es.es_len - (map->m_lblk - es.es_lblk);
492                         if (retval > map->m_len)
493                                 retval = map->m_len;
494                         map->m_len = retval;
495                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496                         retval = 0;
497                 } else {
498                         BUG_ON(1);
499                 }
500 #ifdef ES_AGGRESSIVE_TEST
501                 ext4_map_blocks_es_recheck(handle, inode, map,
502                                            &orig_map, flags);
503 #endif
504                 goto found;
505         }
506
507         /*
508          * Try to see if we can get the block without requesting a new
509          * file system block.
510          */
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 down_read(&EXT4_I(inode)->i_data_sem);
513         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515                                              EXT4_GET_BLOCKS_KEEP_SIZE);
516         } else {
517                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518                                              EXT4_GET_BLOCKS_KEEP_SIZE);
519         }
520         if (retval > 0) {
521                 unsigned int status;
522
523                 if (unlikely(retval != map->m_len)) {
524                         ext4_warning(inode->i_sb,
525                                      "ES len assertion failed for inode "
526                                      "%lu: retval %d != map->m_len %d",
527                                      inode->i_ino, retval, map->m_len);
528                         WARN_ON(1);
529                 }
530
531                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534                     !(status & EXTENT_STATUS_WRITTEN) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     !(status & EXTENT_STATUS_WRITTEN) &&
640                     ext4_find_delalloc_range(inode, map->m_lblk,
641                                              map->m_lblk + map->m_len - 1))
642                         status |= EXTENT_STATUS_DELAYED;
643                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644                                             map->m_pblk, status);
645                 if (ret < 0)
646                         retval = ret;
647         }
648
649 has_zeroout:
650         up_write((&EXT4_I(inode)->i_data_sem));
651         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652                 ret = check_block_validity(inode, map);
653                 if (ret != 0)
654                         return ret;
655         }
656         return retval;
657 }
658
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
661
662 static int _ext4_get_block(struct inode *inode, sector_t iblock,
663                            struct buffer_head *bh, int flags)
664 {
665         handle_t *handle = ext4_journal_current_handle();
666         struct ext4_map_blocks map;
667         int ret = 0, started = 0;
668         int dio_credits;
669
670         if (ext4_has_inline_data(inode))
671                 return -ERANGE;
672
673         map.m_lblk = iblock;
674         map.m_len = bh->b_size >> inode->i_blkbits;
675
676         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
677                 /* Direct IO write... */
678                 if (map.m_len > DIO_MAX_BLOCKS)
679                         map.m_len = DIO_MAX_BLOCKS;
680                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
681                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
682                                             dio_credits);
683                 if (IS_ERR(handle)) {
684                         ret = PTR_ERR(handle);
685                         return ret;
686                 }
687                 started = 1;
688         }
689
690         ret = ext4_map_blocks(handle, inode, &map, flags);
691         if (ret > 0) {
692                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
693
694                 map_bh(bh, inode->i_sb, map.m_pblk);
695                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
696                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
697                         /*
698                          * dgc: I suspect unwritten conversion on ext4+DAX is
699                          * fundamentally broken here when there are concurrent
700                          * read/write in progress on this inode.
701                          */
702                         WARN_ON_ONCE(io_end);
703                         bh->b_assoc_map = inode->i_mapping;
704                         bh->b_private = (void *)(unsigned long)iblock;
705                 }
706                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707                         set_buffer_defer_completion(bh);
708                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
709                 ret = 0;
710         }
711         if (started)
712                 ext4_journal_stop(handle);
713         return ret;
714 }
715
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717                    struct buffer_head *bh, int create)
718 {
719         return _ext4_get_block(inode, iblock, bh,
720                                create ? EXT4_GET_BLOCKS_CREATE : 0);
721 }
722
723 /*
724  * `handle' can be NULL if create is zero
725  */
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727                                 ext4_lblk_t block, int map_flags)
728 {
729         struct ext4_map_blocks map;
730         struct buffer_head *bh;
731         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
732         int err;
733
734         J_ASSERT(handle != NULL || create == 0);
735
736         map.m_lblk = block;
737         map.m_len = 1;
738         err = ext4_map_blocks(handle, inode, &map, map_flags);
739
740         if (err == 0)
741                 return create ? ERR_PTR(-ENOSPC) : NULL;
742         if (err < 0)
743                 return ERR_PTR(err);
744
745         bh = sb_getblk(inode->i_sb, map.m_pblk);
746         if (unlikely(!bh))
747                 return ERR_PTR(-ENOMEM);
748         if (map.m_flags & EXT4_MAP_NEW) {
749                 J_ASSERT(create != 0);
750                 J_ASSERT(handle != NULL);
751
752                 /*
753                  * Now that we do not always journal data, we should
754                  * keep in mind whether this should always journal the
755                  * new buffer as metadata.  For now, regular file
756                  * writes use ext4_get_block instead, so it's not a
757                  * problem.
758                  */
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (unlikely(err)) {
763                         unlock_buffer(bh);
764                         goto errout;
765                 }
766                 if (!buffer_uptodate(bh)) {
767                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768                         set_buffer_uptodate(bh);
769                 }
770                 unlock_buffer(bh);
771                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772                 err = ext4_handle_dirty_metadata(handle, inode, bh);
773                 if (unlikely(err))
774                         goto errout;
775         } else
776                 BUFFER_TRACE(bh, "not a new buffer");
777         return bh;
778 errout:
779         brelse(bh);
780         return ERR_PTR(err);
781 }
782
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784                                ext4_lblk_t block, int map_flags)
785 {
786         struct buffer_head *bh;
787
788         bh = ext4_getblk(handle, inode, block, map_flags);
789         if (IS_ERR(bh))
790                 return bh;
791         if (!bh || buffer_uptodate(bh))
792                 return bh;
793         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794         wait_on_buffer(bh);
795         if (buffer_uptodate(bh))
796                 return bh;
797         put_bh(bh);
798         return ERR_PTR(-EIO);
799 }
800
801 int ext4_walk_page_buffers(handle_t *handle,
802                            struct buffer_head *head,
803                            unsigned from,
804                            unsigned to,
805                            int *partial,
806                            int (*fn)(handle_t *handle,
807                                      struct buffer_head *bh))
808 {
809         struct buffer_head *bh;
810         unsigned block_start, block_end;
811         unsigned blocksize = head->b_size;
812         int err, ret = 0;
813         struct buffer_head *next;
814
815         for (bh = head, block_start = 0;
816              ret == 0 && (bh != head || !block_start);
817              block_start = block_end, bh = next) {
818                 next = bh->b_this_page;
819                 block_end = block_start + blocksize;
820                 if (block_end <= from || block_start >= to) {
821                         if (partial && !buffer_uptodate(bh))
822                                 *partial = 1;
823                         continue;
824                 }
825                 err = (*fn)(handle, bh);
826                 if (!ret)
827                         ret = err;
828         }
829         return ret;
830 }
831
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage().  In that case, we
840  * *know* that ext4_writepage() has generated enough buffer credits to do the
841  * whole page.  So we won't block on the journal in that case, which is good,
842  * because the caller may be PF_MEMALLOC.
843  *
844  * By accident, ext4 can be reentered when a transaction is open via
845  * quota file writes.  If we were to commit the transaction while thus
846  * reentered, there can be a deadlock - we would be holding a quota
847  * lock, and the commit would never complete if another thread had a
848  * transaction open and was blocking on the quota lock - a ranking
849  * violation.
850  *
851  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852  * will _not_ run commit under these circumstances because handle->h_ref
853  * is elevated.  We'll still have enough credits for the tiny quotafile
854  * write.
855  */
856 int do_journal_get_write_access(handle_t *handle,
857                                 struct buffer_head *bh)
858 {
859         int dirty = buffer_dirty(bh);
860         int ret;
861
862         if (!buffer_mapped(bh) || buffer_freed(bh))
863                 return 0;
864         /*
865          * __block_write_begin() could have dirtied some buffers. Clean
866          * the dirty bit as jbd2_journal_get_write_access() could complain
867          * otherwise about fs integrity issues. Setting of the dirty bit
868          * by __block_write_begin() isn't a real problem here as we clear
869          * the bit before releasing a page lock and thus writeback cannot
870          * ever write the buffer.
871          */
872         if (dirty)
873                 clear_buffer_dirty(bh);
874         BUFFER_TRACE(bh, "get write access");
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
886                                   get_block_t *get_block)
887 {
888         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
889         unsigned to = from + len;
890         struct inode *inode = page->mapping->host;
891         unsigned block_start, block_end;
892         sector_t block;
893         int err = 0;
894         unsigned blocksize = inode->i_sb->s_blocksize;
895         unsigned bbits;
896         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
897         bool decrypt = false;
898
899         BUG_ON(!PageLocked(page));
900         BUG_ON(from > PAGE_CACHE_SIZE);
901         BUG_ON(to > PAGE_CACHE_SIZE);
902         BUG_ON(from > to);
903
904         if (!page_has_buffers(page))
905                 create_empty_buffers(page, blocksize, 0);
906         head = page_buffers(page);
907         bbits = ilog2(blocksize);
908         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
909
910         for (bh = head, block_start = 0; bh != head || !block_start;
911             block++, block_start = block_end, bh = bh->b_this_page) {
912                 block_end = block_start + blocksize;
913                 if (block_end <= from || block_start >= to) {
914                         if (PageUptodate(page)) {
915                                 if (!buffer_uptodate(bh))
916                                         set_buffer_uptodate(bh);
917                         }
918                         continue;
919                 }
920                 if (buffer_new(bh))
921                         clear_buffer_new(bh);
922                 if (!buffer_mapped(bh)) {
923                         WARN_ON(bh->b_size != blocksize);
924                         err = get_block(inode, block, bh, 1);
925                         if (err)
926                                 break;
927                         if (buffer_new(bh)) {
928                                 unmap_underlying_metadata(bh->b_bdev,
929                                                           bh->b_blocknr);
930                                 if (PageUptodate(page)) {
931                                         clear_buffer_new(bh);
932                                         set_buffer_uptodate(bh);
933                                         mark_buffer_dirty(bh);
934                                         continue;
935                                 }
936                                 if (block_end > to || block_start < from)
937                                         zero_user_segments(page, to, block_end,
938                                                            block_start, from);
939                                 continue;
940                         }
941                 }
942                 if (PageUptodate(page)) {
943                         if (!buffer_uptodate(bh))
944                                 set_buffer_uptodate(bh);
945                         continue;
946                 }
947                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
948                     !buffer_unwritten(bh) &&
949                     (block_start < from || block_end > to)) {
950                         ll_rw_block(READ, 1, &bh);
951                         *wait_bh++ = bh;
952                         decrypt = ext4_encrypted_inode(inode) &&
953                                 S_ISREG(inode->i_mode);
954                 }
955         }
956         /*
957          * If we issued read requests, let them complete.
958          */
959         while (wait_bh > wait) {
960                 wait_on_buffer(*--wait_bh);
961                 if (!buffer_uptodate(*wait_bh))
962                         err = -EIO;
963         }
964         if (unlikely(err))
965                 page_zero_new_buffers(page, from, to);
966         else if (decrypt)
967                 err = ext4_decrypt_one(inode, page);
968         return err;
969 }
970 #endif
971
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         /* In case writeback began while the page was unlocked */
1032         wait_for_stable_page(page);
1033
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035         if (ext4_should_dioread_nolock(inode))
1036                 ret = ext4_block_write_begin(page, pos, len,
1037                                              ext4_get_block_write);
1038         else
1039                 ret = ext4_block_write_begin(page, pos, len,
1040                                              ext4_get_block);
1041 #else
1042         if (ext4_should_dioread_nolock(inode))
1043                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1044         else
1045                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1046 #endif
1047         if (!ret && ext4_should_journal_data(inode)) {
1048                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1049                                              from, to, NULL,
1050                                              do_journal_get_write_access);
1051         }
1052
1053         if (ret) {
1054                 unlock_page(page);
1055                 /*
1056                  * __block_write_begin may have instantiated a few blocks
1057                  * outside i_size.  Trim these off again. Don't need
1058                  * i_size_read because we hold i_mutex.
1059                  *
1060                  * Add inode to orphan list in case we crash before
1061                  * truncate finishes
1062                  */
1063                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1064                         ext4_orphan_add(handle, inode);
1065
1066                 ext4_journal_stop(handle);
1067                 if (pos + len > inode->i_size) {
1068                         ext4_truncate_failed_write(inode);
1069                         /*
1070                          * If truncate failed early the inode might
1071                          * still be on the orphan list; we need to
1072                          * make sure the inode is removed from the
1073                          * orphan list in that case.
1074                          */
1075                         if (inode->i_nlink)
1076                                 ext4_orphan_del(NULL, inode);
1077                 }
1078
1079                 if (ret == -ENOSPC &&
1080                     ext4_should_retry_alloc(inode->i_sb, &retries))
1081                         goto retry_journal;
1082                 page_cache_release(page);
1083                 return ret;
1084         }
1085         *pagep = page;
1086         return ret;
1087 }
1088
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1091 {
1092         int ret;
1093         if (!buffer_mapped(bh) || buffer_freed(bh))
1094                 return 0;
1095         set_buffer_uptodate(bh);
1096         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1097         clear_buffer_meta(bh);
1098         clear_buffer_prio(bh);
1099         return ret;
1100 }
1101
1102 /*
1103  * We need to pick up the new inode size which generic_commit_write gave us
1104  * `file' can be NULL - eg, when called from page_symlink().
1105  *
1106  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1107  * buffers are managed internally.
1108  */
1109 static int ext4_write_end(struct file *file,
1110                           struct address_space *mapping,
1111                           loff_t pos, unsigned len, unsigned copied,
1112                           struct page *page, void *fsdata)
1113 {
1114         handle_t *handle = ext4_journal_current_handle();
1115         struct inode *inode = mapping->host;
1116         loff_t old_size = inode->i_size;
1117         int ret = 0, ret2;
1118         int i_size_changed = 0;
1119
1120         trace_ext4_write_end(inode, pos, len, copied);
1121         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1122                 ret = ext4_jbd2_file_inode(handle, inode);
1123                 if (ret) {
1124                         unlock_page(page);
1125                         page_cache_release(page);
1126                         goto errout;
1127                 }
1128         }
1129
1130         if (ext4_has_inline_data(inode)) {
1131                 ret = ext4_write_inline_data_end(inode, pos, len,
1132                                                  copied, page);
1133                 if (ret < 0)
1134                         goto errout;
1135                 copied = ret;
1136         } else
1137                 copied = block_write_end(file, mapping, pos,
1138                                          len, copied, page, fsdata);
1139         /*
1140          * it's important to update i_size while still holding page lock:
1141          * page writeout could otherwise come in and zero beyond i_size.
1142          */
1143         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1144         unlock_page(page);
1145         page_cache_release(page);
1146
1147         if (old_size < pos)
1148                 pagecache_isize_extended(inode, old_size, pos);
1149         /*
1150          * Don't mark the inode dirty under page lock. First, it unnecessarily
1151          * makes the holding time of page lock longer. Second, it forces lock
1152          * ordering of page lock and transaction start for journaling
1153          * filesystems.
1154          */
1155         if (i_size_changed)
1156                 ext4_mark_inode_dirty(handle, inode);
1157
1158         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1159                 /* if we have allocated more blocks and copied
1160                  * less. We will have blocks allocated outside
1161                  * inode->i_size. So truncate them
1162                  */
1163                 ext4_orphan_add(handle, inode);
1164 errout:
1165         ret2 = ext4_journal_stop(handle);
1166         if (!ret)
1167                 ret = ret2;
1168
1169         if (pos + len > inode->i_size) {
1170                 ext4_truncate_failed_write(inode);
1171                 /*
1172                  * If truncate failed early the inode might still be
1173                  * on the orphan list; we need to make sure the inode
1174                  * is removed from the orphan list in that case.
1175                  */
1176                 if (inode->i_nlink)
1177                         ext4_orphan_del(NULL, inode);
1178         }
1179
1180         return ret ? ret : copied;
1181 }
1182
1183 static int ext4_journalled_write_end(struct file *file,
1184                                      struct address_space *mapping,
1185                                      loff_t pos, unsigned len, unsigned copied,
1186                                      struct page *page, void *fsdata)
1187 {
1188         handle_t *handle = ext4_journal_current_handle();
1189         struct inode *inode = mapping->host;
1190         loff_t old_size = inode->i_size;
1191         int ret = 0, ret2;
1192         int partial = 0;
1193         unsigned from, to;
1194         int size_changed = 0;
1195
1196         trace_ext4_journalled_write_end(inode, pos, len, copied);
1197         from = pos & (PAGE_CACHE_SIZE - 1);
1198         to = from + len;
1199
1200         BUG_ON(!ext4_handle_valid(handle));
1201
1202         if (ext4_has_inline_data(inode))
1203                 copied = ext4_write_inline_data_end(inode, pos, len,
1204                                                     copied, page);
1205         else {
1206                 if (copied < len) {
1207                         if (!PageUptodate(page))
1208                                 copied = 0;
1209                         page_zero_new_buffers(page, from+copied, to);
1210                 }
1211
1212                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1213                                              to, &partial, write_end_fn);
1214                 if (!partial)
1215                         SetPageUptodate(page);
1216         }
1217         size_changed = ext4_update_inode_size(inode, pos + copied);
1218         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1219         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1220         unlock_page(page);
1221         page_cache_release(page);
1222
1223         if (old_size < pos)
1224                 pagecache_isize_extended(inode, old_size, pos);
1225
1226         if (size_changed) {
1227                 ret2 = ext4_mark_inode_dirty(handle, inode);
1228                 if (!ret)
1229                         ret = ret2;
1230         }
1231
1232         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1233                 /* if we have allocated more blocks and copied
1234                  * less. We will have blocks allocated outside
1235                  * inode->i_size. So truncate them
1236                  */
1237                 ext4_orphan_add(handle, inode);
1238
1239         ret2 = ext4_journal_stop(handle);
1240         if (!ret)
1241                 ret = ret2;
1242         if (pos + len > inode->i_size) {
1243                 ext4_truncate_failed_write(inode);
1244                 /*
1245                  * If truncate failed early the inode might still be
1246                  * on the orphan list; we need to make sure the inode
1247                  * is removed from the orphan list in that case.
1248                  */
1249                 if (inode->i_nlink)
1250                         ext4_orphan_del(NULL, inode);
1251         }
1252
1253         return ret ? ret : copied;
1254 }
1255
1256 /*
1257  * Reserve space for a single cluster
1258  */
1259 static int ext4_da_reserve_space(struct inode *inode)
1260 {
1261         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1262         struct ext4_inode_info *ei = EXT4_I(inode);
1263         int ret;
1264
1265         /*
1266          * We will charge metadata quota at writeout time; this saves
1267          * us from metadata over-estimation, though we may go over by
1268          * a small amount in the end.  Here we just reserve for data.
1269          */
1270         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271         if (ret)
1272                 return ret;
1273
1274         spin_lock(&ei->i_block_reservation_lock);
1275         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1276                 spin_unlock(&ei->i_block_reservation_lock);
1277                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1278                 return -ENOSPC;
1279         }
1280         ei->i_reserved_data_blocks++;
1281         trace_ext4_da_reserve_space(inode);
1282         spin_unlock(&ei->i_block_reservation_lock);
1283
1284         return 0;       /* success */
1285 }
1286
1287 static void ext4_da_release_space(struct inode *inode, int to_free)
1288 {
1289         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290         struct ext4_inode_info *ei = EXT4_I(inode);
1291
1292         if (!to_free)
1293                 return;         /* Nothing to release, exit */
1294
1295         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1296
1297         trace_ext4_da_release_space(inode, to_free);
1298         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1299                 /*
1300                  * if there aren't enough reserved blocks, then the
1301                  * counter is messed up somewhere.  Since this
1302                  * function is called from invalidate page, it's
1303                  * harmless to return without any action.
1304                  */
1305                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1306                          "ino %lu, to_free %d with only %d reserved "
1307                          "data blocks", inode->i_ino, to_free,
1308                          ei->i_reserved_data_blocks);
1309                 WARN_ON(1);
1310                 to_free = ei->i_reserved_data_blocks;
1311         }
1312         ei->i_reserved_data_blocks -= to_free;
1313
1314         /* update fs dirty data blocks counter */
1315         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1316
1317         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1318
1319         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1320 }
1321
1322 static void ext4_da_page_release_reservation(struct page *page,
1323                                              unsigned int offset,
1324                                              unsigned int length)
1325 {
1326         int to_release = 0;
1327         struct buffer_head *head, *bh;
1328         unsigned int curr_off = 0;
1329         struct inode *inode = page->mapping->host;
1330         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1331         unsigned int stop = offset + length;
1332         int num_clusters;
1333         ext4_fsblk_t lblk;
1334
1335         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1336
1337         head = page_buffers(page);
1338         bh = head;
1339         do {
1340                 unsigned int next_off = curr_off + bh->b_size;
1341
1342                 if (next_off > stop)
1343                         break;
1344
1345                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1346                         to_release++;
1347                         clear_buffer_delay(bh);
1348                 }
1349                 curr_off = next_off;
1350         } while ((bh = bh->b_this_page) != head);
1351
1352         if (to_release) {
1353                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1354                 ext4_es_remove_extent(inode, lblk, to_release);
1355         }
1356
1357         /* If we have released all the blocks belonging to a cluster, then we
1358          * need to release the reserved space for that cluster. */
1359         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1360         while (num_clusters > 0) {
1361                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1362                         ((num_clusters - 1) << sbi->s_cluster_bits);
1363                 if (sbi->s_cluster_ratio == 1 ||
1364                     !ext4_find_delalloc_cluster(inode, lblk))
1365                         ext4_da_release_space(inode, 1);
1366
1367                 num_clusters--;
1368         }
1369 }
1370
1371 /*
1372  * Delayed allocation stuff
1373  */
1374
1375 struct mpage_da_data {
1376         struct inode *inode;
1377         struct writeback_control *wbc;
1378
1379         pgoff_t first_page;     /* The first page to write */
1380         pgoff_t next_page;      /* Current page to examine */
1381         pgoff_t last_page;      /* Last page to examine */
1382         /*
1383          * Extent to map - this can be after first_page because that can be
1384          * fully mapped. We somewhat abuse m_flags to store whether the extent
1385          * is delalloc or unwritten.
1386          */
1387         struct ext4_map_blocks map;
1388         struct ext4_io_submit io_submit;        /* IO submission data */
1389 };
1390
1391 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1392                                        bool invalidate)
1393 {
1394         int nr_pages, i;
1395         pgoff_t index, end;
1396         struct pagevec pvec;
1397         struct inode *inode = mpd->inode;
1398         struct address_space *mapping = inode->i_mapping;
1399
1400         /* This is necessary when next_page == 0. */
1401         if (mpd->first_page >= mpd->next_page)
1402                 return;
1403
1404         index = mpd->first_page;
1405         end   = mpd->next_page - 1;
1406         if (invalidate) {
1407                 ext4_lblk_t start, last;
1408                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1409                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1410                 ext4_es_remove_extent(inode, start, last - start + 1);
1411         }
1412
1413         pagevec_init(&pvec, 0);
1414         while (index <= end) {
1415                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1416                 if (nr_pages == 0)
1417                         break;
1418                 for (i = 0; i < nr_pages; i++) {
1419                         struct page *page = pvec.pages[i];
1420                         if (page->index > end)
1421                                 break;
1422                         BUG_ON(!PageLocked(page));
1423                         BUG_ON(PageWriteback(page));
1424                         if (invalidate) {
1425                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1426                                 ClearPageUptodate(page);
1427                         }
1428                         unlock_page(page);
1429                 }
1430                 index = pvec.pages[nr_pages - 1]->index + 1;
1431                 pagevec_release(&pvec);
1432         }
1433 }
1434
1435 static void ext4_print_free_blocks(struct inode *inode)
1436 {
1437         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1438         struct super_block *sb = inode->i_sb;
1439         struct ext4_inode_info *ei = EXT4_I(inode);
1440
1441         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1442                EXT4_C2B(EXT4_SB(inode->i_sb),
1443                         ext4_count_free_clusters(sb)));
1444         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1445         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1446                (long long) EXT4_C2B(EXT4_SB(sb),
1447                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1448         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1449                (long long) EXT4_C2B(EXT4_SB(sb),
1450                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1451         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1452         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1453                  ei->i_reserved_data_blocks);
1454         return;
1455 }
1456
1457 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1458 {
1459         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1460 }
1461
1462 /*
1463  * This function is grabs code from the very beginning of
1464  * ext4_map_blocks, but assumes that the caller is from delayed write
1465  * time. This function looks up the requested blocks and sets the
1466  * buffer delay bit under the protection of i_data_sem.
1467  */
1468 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1469                               struct ext4_map_blocks *map,
1470                               struct buffer_head *bh)
1471 {
1472         struct extent_status es;
1473         int retval;
1474         sector_t invalid_block = ~((sector_t) 0xffff);
1475 #ifdef ES_AGGRESSIVE_TEST
1476         struct ext4_map_blocks orig_map;
1477
1478         memcpy(&orig_map, map, sizeof(*map));
1479 #endif
1480
1481         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1482                 invalid_block = ~0;
1483
1484         map->m_flags = 0;
1485         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1486                   "logical block %lu\n", inode->i_ino, map->m_len,
1487                   (unsigned long) map->m_lblk);
1488
1489         /* Lookup extent status tree firstly */
1490         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1491                 if (ext4_es_is_hole(&es)) {
1492                         retval = 0;
1493                         down_read(&EXT4_I(inode)->i_data_sem);
1494                         goto add_delayed;
1495                 }
1496
1497                 /*
1498                  * Delayed extent could be allocated by fallocate.
1499                  * So we need to check it.
1500                  */
1501                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1502                         map_bh(bh, inode->i_sb, invalid_block);
1503                         set_buffer_new(bh);
1504                         set_buffer_delay(bh);
1505                         return 0;
1506                 }
1507
1508                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1509                 retval = es.es_len - (iblock - es.es_lblk);
1510                 if (retval > map->m_len)
1511                         retval = map->m_len;
1512                 map->m_len = retval;
1513                 if (ext4_es_is_written(&es))
1514                         map->m_flags |= EXT4_MAP_MAPPED;
1515                 else if (ext4_es_is_unwritten(&es))
1516                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1517                 else
1518                         BUG_ON(1);
1519
1520 #ifdef ES_AGGRESSIVE_TEST
1521                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1522 #endif
1523                 return retval;
1524         }
1525
1526         /*
1527          * Try to see if we can get the block without requesting a new
1528          * file system block.
1529          */
1530         down_read(&EXT4_I(inode)->i_data_sem);
1531         if (ext4_has_inline_data(inode))
1532                 retval = 0;
1533         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1534                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1535         else
1536                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1537
1538 add_delayed:
1539         if (retval == 0) {
1540                 int ret;
1541                 /*
1542                  * XXX: __block_prepare_write() unmaps passed block,
1543                  * is it OK?
1544                  */
1545                 /*
1546                  * If the block was allocated from previously allocated cluster,
1547                  * then we don't need to reserve it again. However we still need
1548                  * to reserve metadata for every block we're going to write.
1549                  */
1550                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1551                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1552                         ret = ext4_da_reserve_space(inode);
1553                         if (ret) {
1554                                 /* not enough space to reserve */
1555                                 retval = ret;
1556                                 goto out_unlock;
1557                         }
1558                 }
1559
1560                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1561                                             ~0, EXTENT_STATUS_DELAYED);
1562                 if (ret) {
1563                         retval = ret;
1564                         goto out_unlock;
1565                 }
1566
1567                 map_bh(bh, inode->i_sb, invalid_block);
1568                 set_buffer_new(bh);
1569                 set_buffer_delay(bh);
1570         } else if (retval > 0) {
1571                 int ret;
1572                 unsigned int status;
1573
1574                 if (unlikely(retval != map->m_len)) {
1575                         ext4_warning(inode->i_sb,
1576                                      "ES len assertion failed for inode "
1577                                      "%lu: retval %d != map->m_len %d",
1578                                      inode->i_ino, retval, map->m_len);
1579                         WARN_ON(1);
1580                 }
1581
1582                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1583                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1584                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1585                                             map->m_pblk, status);
1586                 if (ret != 0)
1587                         retval = ret;
1588         }
1589
1590 out_unlock:
1591         up_read((&EXT4_I(inode)->i_data_sem));
1592
1593         return retval;
1594 }
1595
1596 /*
1597  * This is a special get_block_t callback which is used by
1598  * ext4_da_write_begin().  It will either return mapped block or
1599  * reserve space for a single block.
1600  *
1601  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1602  * We also have b_blocknr = -1 and b_bdev initialized properly
1603  *
1604  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1605  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1606  * initialized properly.
1607  */
1608 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1609                            struct buffer_head *bh, int create)
1610 {
1611         struct ext4_map_blocks map;
1612         int ret = 0;
1613
1614         BUG_ON(create == 0);
1615         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1616
1617         map.m_lblk = iblock;
1618         map.m_len = 1;
1619
1620         /*
1621          * first, we need to know whether the block is allocated already
1622          * preallocated blocks are unmapped but should treated
1623          * the same as allocated blocks.
1624          */
1625         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1626         if (ret <= 0)
1627                 return ret;
1628
1629         map_bh(bh, inode->i_sb, map.m_pblk);
1630         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1631
1632         if (buffer_unwritten(bh)) {
1633                 /* A delayed write to unwritten bh should be marked
1634                  * new and mapped.  Mapped ensures that we don't do
1635                  * get_block multiple times when we write to the same
1636                  * offset and new ensures that we do proper zero out
1637                  * for partial write.
1638                  */
1639                 set_buffer_new(bh);
1640                 set_buffer_mapped(bh);
1641         }
1642         return 0;
1643 }
1644
1645 static int bget_one(handle_t *handle, struct buffer_head *bh)
1646 {
1647         get_bh(bh);
1648         return 0;
1649 }
1650
1651 static int bput_one(handle_t *handle, struct buffer_head *bh)
1652 {
1653         put_bh(bh);
1654         return 0;
1655 }
1656
1657 static int __ext4_journalled_writepage(struct page *page,
1658                                        unsigned int len)
1659 {
1660         struct address_space *mapping = page->mapping;
1661         struct inode *inode = mapping->host;
1662         struct buffer_head *page_bufs = NULL;
1663         handle_t *handle = NULL;
1664         int ret = 0, err = 0;
1665         int inline_data = ext4_has_inline_data(inode);
1666         struct buffer_head *inode_bh = NULL;
1667
1668         ClearPageChecked(page);
1669
1670         if (inline_data) {
1671                 BUG_ON(page->index != 0);
1672                 BUG_ON(len > ext4_get_max_inline_size(inode));
1673                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1674                 if (inode_bh == NULL)
1675                         goto out;
1676         } else {
1677                 page_bufs = page_buffers(page);
1678                 if (!page_bufs) {
1679                         BUG();
1680                         goto out;
1681                 }
1682                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1683                                        NULL, bget_one);
1684         }
1685         /*
1686          * We need to release the page lock before we start the
1687          * journal, so grab a reference so the page won't disappear
1688          * out from under us.
1689          */
1690         get_page(page);
1691         unlock_page(page);
1692
1693         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1694                                     ext4_writepage_trans_blocks(inode));
1695         if (IS_ERR(handle)) {
1696                 ret = PTR_ERR(handle);
1697                 put_page(page);
1698                 goto out_no_pagelock;
1699         }
1700         BUG_ON(!ext4_handle_valid(handle));
1701
1702         lock_page(page);
1703         put_page(page);
1704         if (page->mapping != mapping) {
1705                 /* The page got truncated from under us */
1706                 ext4_journal_stop(handle);
1707                 ret = 0;
1708                 goto out;
1709         }
1710
1711         if (inline_data) {
1712                 BUFFER_TRACE(inode_bh, "get write access");
1713                 ret = ext4_journal_get_write_access(handle, inode_bh);
1714
1715                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1716
1717         } else {
1718                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1719                                              do_journal_get_write_access);
1720
1721                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1722                                              write_end_fn);
1723         }
1724         if (ret == 0)
1725                 ret = err;
1726         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1727         err = ext4_journal_stop(handle);
1728         if (!ret)
1729                 ret = err;
1730
1731         if (!ext4_has_inline_data(inode))
1732                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1733                                        NULL, bput_one);
1734         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1735 out:
1736         unlock_page(page);
1737 out_no_pagelock:
1738         brelse(inode_bh);
1739         return ret;
1740 }
1741
1742 /*
1743  * Note that we don't need to start a transaction unless we're journaling data
1744  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1745  * need to file the inode to the transaction's list in ordered mode because if
1746  * we are writing back data added by write(), the inode is already there and if
1747  * we are writing back data modified via mmap(), no one guarantees in which
1748  * transaction the data will hit the disk. In case we are journaling data, we
1749  * cannot start transaction directly because transaction start ranks above page
1750  * lock so we have to do some magic.
1751  *
1752  * This function can get called via...
1753  *   - ext4_writepages after taking page lock (have journal handle)
1754  *   - journal_submit_inode_data_buffers (no journal handle)
1755  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1756  *   - grab_page_cache when doing write_begin (have journal handle)
1757  *
1758  * We don't do any block allocation in this function. If we have page with
1759  * multiple blocks we need to write those buffer_heads that are mapped. This
1760  * is important for mmaped based write. So if we do with blocksize 1K
1761  * truncate(f, 1024);
1762  * a = mmap(f, 0, 4096);
1763  * a[0] = 'a';
1764  * truncate(f, 4096);
1765  * we have in the page first buffer_head mapped via page_mkwrite call back
1766  * but other buffer_heads would be unmapped but dirty (dirty done via the
1767  * do_wp_page). So writepage should write the first block. If we modify
1768  * the mmap area beyond 1024 we will again get a page_fault and the
1769  * page_mkwrite callback will do the block allocation and mark the
1770  * buffer_heads mapped.
1771  *
1772  * We redirty the page if we have any buffer_heads that is either delay or
1773  * unwritten in the page.
1774  *
1775  * We can get recursively called as show below.
1776  *
1777  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1778  *              ext4_writepage()
1779  *
1780  * But since we don't do any block allocation we should not deadlock.
1781  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1782  */
1783 static int ext4_writepage(struct page *page,
1784                           struct writeback_control *wbc)
1785 {
1786         int ret = 0;
1787         loff_t size;
1788         unsigned int len;
1789         struct buffer_head *page_bufs = NULL;
1790         struct inode *inode = page->mapping->host;
1791         struct ext4_io_submit io_submit;
1792         bool keep_towrite = false;
1793
1794         trace_ext4_writepage(page);
1795         size = i_size_read(inode);
1796         if (page->index == size >> PAGE_CACHE_SHIFT)
1797                 len = size & ~PAGE_CACHE_MASK;
1798         else
1799                 len = PAGE_CACHE_SIZE;
1800
1801         page_bufs = page_buffers(page);
1802         /*
1803          * We cannot do block allocation or other extent handling in this
1804          * function. If there are buffers needing that, we have to redirty
1805          * the page. But we may reach here when we do a journal commit via
1806          * journal_submit_inode_data_buffers() and in that case we must write
1807          * allocated buffers to achieve data=ordered mode guarantees.
1808          */
1809         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1810                                    ext4_bh_delay_or_unwritten)) {
1811                 redirty_page_for_writepage(wbc, page);
1812                 if (current->flags & PF_MEMALLOC) {
1813                         /*
1814                          * For memory cleaning there's no point in writing only
1815                          * some buffers. So just bail out. Warn if we came here
1816                          * from direct reclaim.
1817                          */
1818                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1819                                                         == PF_MEMALLOC);
1820                         unlock_page(page);
1821                         return 0;
1822                 }
1823                 keep_towrite = true;
1824         }
1825
1826         if (PageChecked(page) && ext4_should_journal_data(inode))
1827                 /*
1828                  * It's mmapped pagecache.  Add buffers and journal it.  There
1829                  * doesn't seem much point in redirtying the page here.
1830                  */
1831                 return __ext4_journalled_writepage(page, len);
1832
1833         ext4_io_submit_init(&io_submit, wbc);
1834         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1835         if (!io_submit.io_end) {
1836                 redirty_page_for_writepage(wbc, page);
1837                 unlock_page(page);
1838                 return -ENOMEM;
1839         }
1840         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1841         ext4_io_submit(&io_submit);
1842         /* Drop io_end reference we got from init */
1843         ext4_put_io_end_defer(io_submit.io_end);
1844         return ret;
1845 }
1846
1847 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1848 {
1849         int len;
1850         loff_t size = i_size_read(mpd->inode);
1851         int err;
1852
1853         BUG_ON(page->index != mpd->first_page);
1854         if (page->index == size >> PAGE_CACHE_SHIFT)
1855                 len = size & ~PAGE_CACHE_MASK;
1856         else
1857                 len = PAGE_CACHE_SIZE;
1858         clear_page_dirty_for_io(page);
1859         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1860         if (!err)
1861                 mpd->wbc->nr_to_write--;
1862         mpd->first_page++;
1863
1864         return err;
1865 }
1866
1867 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1868
1869 /*
1870  * mballoc gives us at most this number of blocks...
1871  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1872  * The rest of mballoc seems to handle chunks up to full group size.
1873  */
1874 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1875
1876 /*
1877  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1878  *
1879  * @mpd - extent of blocks
1880  * @lblk - logical number of the block in the file
1881  * @bh - buffer head we want to add to the extent
1882  *
1883  * The function is used to collect contig. blocks in the same state. If the
1884  * buffer doesn't require mapping for writeback and we haven't started the
1885  * extent of buffers to map yet, the function returns 'true' immediately - the
1886  * caller can write the buffer right away. Otherwise the function returns true
1887  * if the block has been added to the extent, false if the block couldn't be
1888  * added.
1889  */
1890 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1891                                    struct buffer_head *bh)
1892 {
1893         struct ext4_map_blocks *map = &mpd->map;
1894
1895         /* Buffer that doesn't need mapping for writeback? */
1896         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1897             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1898                 /* So far no extent to map => we write the buffer right away */
1899                 if (map->m_len == 0)
1900                         return true;
1901                 return false;
1902         }
1903
1904         /* First block in the extent? */
1905         if (map->m_len == 0) {
1906                 map->m_lblk = lblk;
1907                 map->m_len = 1;
1908                 map->m_flags = bh->b_state & BH_FLAGS;
1909                 return true;
1910         }
1911
1912         /* Don't go larger than mballoc is willing to allocate */
1913         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1914                 return false;
1915
1916         /* Can we merge the block to our big extent? */
1917         if (lblk == map->m_lblk + map->m_len &&
1918             (bh->b_state & BH_FLAGS) == map->m_flags) {
1919                 map->m_len++;
1920                 return true;
1921         }
1922         return false;
1923 }
1924
1925 /*
1926  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1927  *
1928  * @mpd - extent of blocks for mapping
1929  * @head - the first buffer in the page
1930  * @bh - buffer we should start processing from
1931  * @lblk - logical number of the block in the file corresponding to @bh
1932  *
1933  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1934  * the page for IO if all buffers in this page were mapped and there's no
1935  * accumulated extent of buffers to map or add buffers in the page to the
1936  * extent of buffers to map. The function returns 1 if the caller can continue
1937  * by processing the next page, 0 if it should stop adding buffers to the
1938  * extent to map because we cannot extend it anymore. It can also return value
1939  * < 0 in case of error during IO submission.
1940  */
1941 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1942                                    struct buffer_head *head,
1943                                    struct buffer_head *bh,
1944                                    ext4_lblk_t lblk)
1945 {
1946         struct inode *inode = mpd->inode;
1947         int err;
1948         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1949                                                         >> inode->i_blkbits;
1950
1951         do {
1952                 BUG_ON(buffer_locked(bh));
1953
1954                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1955                         /* Found extent to map? */
1956                         if (mpd->map.m_len)
1957                                 return 0;
1958                         /* Everything mapped so far and we hit EOF */
1959                         break;
1960                 }
1961         } while (lblk++, (bh = bh->b_this_page) != head);
1962         /* So far everything mapped? Submit the page for IO. */
1963         if (mpd->map.m_len == 0) {
1964                 err = mpage_submit_page(mpd, head->b_page);
1965                 if (err < 0)
1966                         return err;
1967         }
1968         return lblk < blocks;
1969 }
1970
1971 /*
1972  * mpage_map_buffers - update buffers corresponding to changed extent and
1973  *                     submit fully mapped pages for IO
1974  *
1975  * @mpd - description of extent to map, on return next extent to map
1976  *
1977  * Scan buffers corresponding to changed extent (we expect corresponding pages
1978  * to be already locked) and update buffer state according to new extent state.
1979  * We map delalloc buffers to their physical location, clear unwritten bits,
1980  * and mark buffers as uninit when we perform writes to unwritten extents
1981  * and do extent conversion after IO is finished. If the last page is not fully
1982  * mapped, we update @map to the next extent in the last page that needs
1983  * mapping. Otherwise we submit the page for IO.
1984  */
1985 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1986 {
1987         struct pagevec pvec;
1988         int nr_pages, i;
1989         struct inode *inode = mpd->inode;
1990         struct buffer_head *head, *bh;
1991         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1992         pgoff_t start, end;
1993         ext4_lblk_t lblk;
1994         sector_t pblock;
1995         int err;
1996
1997         start = mpd->map.m_lblk >> bpp_bits;
1998         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1999         lblk = start << bpp_bits;
2000         pblock = mpd->map.m_pblk;
2001
2002         pagevec_init(&pvec, 0);
2003         while (start <= end) {
2004                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2005                                           PAGEVEC_SIZE);
2006                 if (nr_pages == 0)
2007                         break;
2008                 for (i = 0; i < nr_pages; i++) {
2009                         struct page *page = pvec.pages[i];
2010
2011                         if (page->index > end)
2012                                 break;
2013                         /* Up to 'end' pages must be contiguous */
2014                         BUG_ON(page->index != start);
2015                         bh = head = page_buffers(page);
2016                         do {
2017                                 if (lblk < mpd->map.m_lblk)
2018                                         continue;
2019                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2020                                         /*
2021                                          * Buffer after end of mapped extent.
2022                                          * Find next buffer in the page to map.
2023                                          */
2024                                         mpd->map.m_len = 0;
2025                                         mpd->map.m_flags = 0;
2026                                         /*
2027                                          * FIXME: If dioread_nolock supports
2028                                          * blocksize < pagesize, we need to make
2029                                          * sure we add size mapped so far to
2030                                          * io_end->size as the following call
2031                                          * can submit the page for IO.
2032                                          */
2033                                         err = mpage_process_page_bufs(mpd, head,
2034                                                                       bh, lblk);
2035                                         pagevec_release(&pvec);
2036                                         if (err > 0)
2037                                                 err = 0;
2038                                         return err;
2039                                 }
2040                                 if (buffer_delay(bh)) {
2041                                         clear_buffer_delay(bh);
2042                                         bh->b_blocknr = pblock++;
2043                                 }
2044                                 clear_buffer_unwritten(bh);
2045                         } while (lblk++, (bh = bh->b_this_page) != head);
2046
2047                         /*
2048                          * FIXME: This is going to break if dioread_nolock
2049                          * supports blocksize < pagesize as we will try to
2050                          * convert potentially unmapped parts of inode.
2051                          */
2052                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2053                         /* Page fully mapped - let IO run! */
2054                         err = mpage_submit_page(mpd, page);
2055                         if (err < 0) {
2056                                 pagevec_release(&pvec);
2057                                 return err;
2058                         }
2059                         start++;
2060                 }
2061                 pagevec_release(&pvec);
2062         }
2063         /* Extent fully mapped and matches with page boundary. We are done. */
2064         mpd->map.m_len = 0;
2065         mpd->map.m_flags = 0;
2066         return 0;
2067 }
2068
2069 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2070 {
2071         struct inode *inode = mpd->inode;
2072         struct ext4_map_blocks *map = &mpd->map;
2073         int get_blocks_flags;
2074         int err, dioread_nolock;
2075
2076         trace_ext4_da_write_pages_extent(inode, map);
2077         /*
2078          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2079          * to convert an unwritten extent to be initialized (in the case
2080          * where we have written into one or more preallocated blocks).  It is
2081          * possible that we're going to need more metadata blocks than
2082          * previously reserved. However we must not fail because we're in
2083          * writeback and there is nothing we can do about it so it might result
2084          * in data loss.  So use reserved blocks to allocate metadata if
2085          * possible.
2086          *
2087          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2088          * the blocks in question are delalloc blocks.  This indicates
2089          * that the blocks and quotas has already been checked when
2090          * the data was copied into the page cache.
2091          */
2092         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2093                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2094         dioread_nolock = ext4_should_dioread_nolock(inode);
2095         if (dioread_nolock)
2096                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2097         if (map->m_flags & (1 << BH_Delay))
2098                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2099
2100         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2101         if (err < 0)
2102                 return err;
2103         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2104                 if (!mpd->io_submit.io_end->handle &&
2105                     ext4_handle_valid(handle)) {
2106                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2107                         handle->h_rsv_handle = NULL;
2108                 }
2109                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2110         }
2111
2112         BUG_ON(map->m_len == 0);
2113         if (map->m_flags & EXT4_MAP_NEW) {
2114                 struct block_device *bdev = inode->i_sb->s_bdev;
2115                 int i;
2116
2117                 for (i = 0; i < map->m_len; i++)
2118                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2119         }
2120         return 0;
2121 }
2122
2123 /*
2124  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2125  *                               mpd->len and submit pages underlying it for IO
2126  *
2127  * @handle - handle for journal operations
2128  * @mpd - extent to map
2129  * @give_up_on_write - we set this to true iff there is a fatal error and there
2130  *                     is no hope of writing the data. The caller should discard
2131  *                     dirty pages to avoid infinite loops.
2132  *
2133  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2134  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2135  * them to initialized or split the described range from larger unwritten
2136  * extent. Note that we need not map all the described range since allocation
2137  * can return less blocks or the range is covered by more unwritten extents. We
2138  * cannot map more because we are limited by reserved transaction credits. On
2139  * the other hand we always make sure that the last touched page is fully
2140  * mapped so that it can be written out (and thus forward progress is
2141  * guaranteed). After mapping we submit all mapped pages for IO.
2142  */
2143 static int mpage_map_and_submit_extent(handle_t *handle,
2144                                        struct mpage_da_data *mpd,
2145                                        bool *give_up_on_write)
2146 {
2147         struct inode *inode = mpd->inode;
2148         struct ext4_map_blocks *map = &mpd->map;
2149         int err;
2150         loff_t disksize;
2151         int progress = 0;
2152
2153         mpd->io_submit.io_end->offset =
2154                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2155         do {
2156                 err = mpage_map_one_extent(handle, mpd);
2157                 if (err < 0) {
2158                         struct super_block *sb = inode->i_sb;
2159
2160                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2161                                 goto invalidate_dirty_pages;
2162                         /*
2163                          * Let the uper layers retry transient errors.
2164                          * In the case of ENOSPC, if ext4_count_free_blocks()
2165                          * is non-zero, a commit should free up blocks.
2166                          */
2167                         if ((err == -ENOMEM) ||
2168                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2169                                 if (progress)
2170                                         goto update_disksize;
2171                                 return err;
2172                         }
2173                         ext4_msg(sb, KERN_CRIT,
2174                                  "Delayed block allocation failed for "
2175                                  "inode %lu at logical offset %llu with"
2176                                  " max blocks %u with error %d",
2177                                  inode->i_ino,
2178                                  (unsigned long long)map->m_lblk,
2179                                  (unsigned)map->m_len, -err);
2180                         ext4_msg(sb, KERN_CRIT,
2181                                  "This should not happen!! Data will "
2182                                  "be lost\n");
2183                         if (err == -ENOSPC)
2184                                 ext4_print_free_blocks(inode);
2185                 invalidate_dirty_pages:
2186                         *give_up_on_write = true;
2187                         return err;
2188                 }
2189                 progress = 1;
2190                 /*
2191                  * Update buffer state, submit mapped pages, and get us new
2192                  * extent to map
2193                  */
2194                 err = mpage_map_and_submit_buffers(mpd);
2195                 if (err < 0)
2196                         goto update_disksize;
2197         } while (map->m_len);
2198
2199 update_disksize:
2200         /*
2201          * Update on-disk size after IO is submitted.  Races with
2202          * truncate are avoided by checking i_size under i_data_sem.
2203          */
2204         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205         if (disksize > EXT4_I(inode)->i_disksize) {
2206                 int err2;
2207                 loff_t i_size;
2208
2209                 down_write(&EXT4_I(inode)->i_data_sem);
2210                 i_size = i_size_read(inode);
2211                 if (disksize > i_size)
2212                         disksize = i_size;
2213                 if (disksize > EXT4_I(inode)->i_disksize)
2214                         EXT4_I(inode)->i_disksize = disksize;
2215                 err2 = ext4_mark_inode_dirty(handle, inode);
2216                 up_write(&EXT4_I(inode)->i_data_sem);
2217                 if (err2)
2218                         ext4_error(inode->i_sb,
2219                                    "Failed to mark inode %lu dirty",
2220                                    inode->i_ino);
2221                 if (!err)
2222                         err = err2;
2223         }
2224         return err;
2225 }
2226
2227 /*
2228  * Calculate the total number of credits to reserve for one writepages
2229  * iteration. This is called from ext4_writepages(). We map an extent of
2230  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2231  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2232  * bpp - 1 blocks in bpp different extents.
2233  */
2234 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2235 {
2236         int bpp = ext4_journal_blocks_per_page(inode);
2237
2238         return ext4_meta_trans_blocks(inode,
2239                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2240 }
2241
2242 /*
2243  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2244  *                               and underlying extent to map
2245  *
2246  * @mpd - where to look for pages
2247  *
2248  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2249  * IO immediately. When we find a page which isn't mapped we start accumulating
2250  * extent of buffers underlying these pages that needs mapping (formed by
2251  * either delayed or unwritten buffers). We also lock the pages containing
2252  * these buffers. The extent found is returned in @mpd structure (starting at
2253  * mpd->lblk with length mpd->len blocks).
2254  *
2255  * Note that this function can attach bios to one io_end structure which are
2256  * neither logically nor physically contiguous. Although it may seem as an
2257  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2258  * case as we need to track IO to all buffers underlying a page in one io_end.
2259  */
2260 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2261 {
2262         struct address_space *mapping = mpd->inode->i_mapping;
2263         struct pagevec pvec;
2264         unsigned int nr_pages;
2265         long left = mpd->wbc->nr_to_write;
2266         pgoff_t index = mpd->first_page;
2267         pgoff_t end = mpd->last_page;
2268         int tag;
2269         int i, err = 0;
2270         int blkbits = mpd->inode->i_blkbits;
2271         ext4_lblk_t lblk;
2272         struct buffer_head *head;
2273
2274         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2275                 tag = PAGECACHE_TAG_TOWRITE;
2276         else
2277                 tag = PAGECACHE_TAG_DIRTY;
2278
2279         pagevec_init(&pvec, 0);
2280         mpd->map.m_len = 0;
2281         mpd->next_page = index;
2282         while (index <= end) {
2283                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2284                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2285                 if (nr_pages == 0)
2286                         goto out;
2287
2288                 for (i = 0; i < nr_pages; i++) {
2289                         struct page *page = pvec.pages[i];
2290
2291                         /*
2292                          * At this point, the page may be truncated or
2293                          * invalidated (changing page->mapping to NULL), or
2294                          * even swizzled back from swapper_space to tmpfs file
2295                          * mapping. However, page->index will not change
2296                          * because we have a reference on the page.
2297                          */
2298                         if (page->index > end)
2299                                 goto out;
2300
2301                         /*
2302                          * Accumulated enough dirty pages? This doesn't apply
2303                          * to WB_SYNC_ALL mode. For integrity sync we have to
2304                          * keep going because someone may be concurrently
2305                          * dirtying pages, and we might have synced a lot of
2306                          * newly appeared dirty pages, but have not synced all
2307                          * of the old dirty pages.
2308                          */
2309                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2310                                 goto out;
2311
2312                         /* If we can't merge this page, we are done. */
2313                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2314                                 goto out;
2315
2316                         lock_page(page);
2317                         /*
2318                          * If the page is no longer dirty, or its mapping no
2319                          * longer corresponds to inode we are writing (which
2320                          * means it has been truncated or invalidated), or the
2321                          * page is already under writeback and we are not doing
2322                          * a data integrity writeback, skip the page
2323                          */
2324                         if (!PageDirty(page) ||
2325                             (PageWriteback(page) &&
2326                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2327                             unlikely(page->mapping != mapping)) {
2328                                 unlock_page(page);
2329                                 continue;
2330                         }
2331
2332                         wait_on_page_writeback(page);
2333                         BUG_ON(PageWriteback(page));
2334
2335                         if (mpd->map.m_len == 0)
2336                                 mpd->first_page = page->index;
2337                         mpd->next_page = page->index + 1;
2338                         /* Add all dirty buffers to mpd */
2339                         lblk = ((ext4_lblk_t)page->index) <<
2340                                 (PAGE_CACHE_SHIFT - blkbits);
2341                         head = page_buffers(page);
2342                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2343                         if (err <= 0)
2344                                 goto out;
2345                         err = 0;
2346                         left--;
2347                 }
2348                 pagevec_release(&pvec);
2349                 cond_resched();
2350         }
2351         return 0;
2352 out:
2353         pagevec_release(&pvec);
2354         return err;
2355 }
2356
2357 static int __writepage(struct page *page, struct writeback_control *wbc,
2358                        void *data)
2359 {
2360         struct address_space *mapping = data;
2361         int ret = ext4_writepage(page, wbc);
2362         mapping_set_error(mapping, ret);
2363         return ret;
2364 }
2365
2366 static int ext4_writepages(struct address_space *mapping,
2367                            struct writeback_control *wbc)
2368 {
2369         pgoff_t writeback_index = 0;
2370         long nr_to_write = wbc->nr_to_write;
2371         int range_whole = 0;
2372         int cycled = 1;
2373         handle_t *handle = NULL;
2374         struct mpage_da_data mpd;
2375         struct inode *inode = mapping->host;
2376         int needed_blocks, rsv_blocks = 0, ret = 0;
2377         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2378         bool done;
2379         struct blk_plug plug;
2380         bool give_up_on_write = false;
2381
2382         trace_ext4_writepages(inode, wbc);
2383
2384         /*
2385          * No pages to write? This is mainly a kludge to avoid starting
2386          * a transaction for special inodes like journal inode on last iput()
2387          * because that could violate lock ordering on umount
2388          */
2389         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2390                 goto out_writepages;
2391
2392         if (ext4_should_journal_data(inode)) {
2393                 struct blk_plug plug;
2394
2395                 blk_start_plug(&plug);
2396                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397                 blk_finish_plug(&plug);
2398                 goto out_writepages;
2399         }
2400
2401         /*
2402          * If the filesystem has aborted, it is read-only, so return
2403          * right away instead of dumping stack traces later on that
2404          * will obscure the real source of the problem.  We test
2405          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2406          * the latter could be true if the filesystem is mounted
2407          * read-only, and in that case, ext4_writepages should
2408          * *never* be called, so if that ever happens, we would want
2409          * the stack trace.
2410          */
2411         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2412                 ret = -EROFS;
2413                 goto out_writepages;
2414         }
2415
2416         if (ext4_should_dioread_nolock(inode)) {
2417                 /*
2418                  * We may need to convert up to one extent per block in
2419                  * the page and we may dirty the inode.
2420                  */
2421                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2422         }
2423
2424         /*
2425          * If we have inline data and arrive here, it means that
2426          * we will soon create the block for the 1st page, so
2427          * we'd better clear the inline data here.
2428          */
2429         if (ext4_has_inline_data(inode)) {
2430                 /* Just inode will be modified... */
2431                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2432                 if (IS_ERR(handle)) {
2433                         ret = PTR_ERR(handle);
2434                         goto out_writepages;
2435                 }
2436                 BUG_ON(ext4_test_inode_state(inode,
2437                                 EXT4_STATE_MAY_INLINE_DATA));
2438                 ext4_destroy_inline_data(handle, inode);
2439                 ext4_journal_stop(handle);
2440         }
2441
2442         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2443                 range_whole = 1;
2444
2445         if (wbc->range_cyclic) {
2446                 writeback_index = mapping->writeback_index;
2447                 if (writeback_index)
2448                         cycled = 0;
2449                 mpd.first_page = writeback_index;
2450                 mpd.last_page = -1;
2451         } else {
2452                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2453                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2454         }
2455
2456         mpd.inode = inode;
2457         mpd.wbc = wbc;
2458         ext4_io_submit_init(&mpd.io_submit, wbc);
2459 retry:
2460         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2461                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2462         done = false;
2463         blk_start_plug(&plug);
2464         while (!done && mpd.first_page <= mpd.last_page) {
2465                 /* For each extent of pages we use new io_end */
2466                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2467                 if (!mpd.io_submit.io_end) {
2468                         ret = -ENOMEM;
2469                         break;
2470                 }
2471
2472                 /*
2473                  * We have two constraints: We find one extent to map and we
2474                  * must always write out whole page (makes a difference when
2475                  * blocksize < pagesize) so that we don't block on IO when we
2476                  * try to write out the rest of the page. Journalled mode is
2477                  * not supported by delalloc.
2478                  */
2479                 BUG_ON(ext4_should_journal_data(inode));
2480                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2481
2482                 /* start a new transaction */
2483                 handle = ext4_journal_start_with_reserve(inode,
2484                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2485                 if (IS_ERR(handle)) {
2486                         ret = PTR_ERR(handle);
2487                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2488                                "%ld pages, ino %lu; err %d", __func__,
2489                                 wbc->nr_to_write, inode->i_ino, ret);
2490                         /* Release allocated io_end */
2491                         ext4_put_io_end(mpd.io_submit.io_end);
2492                         break;
2493                 }
2494
2495                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2496                 ret = mpage_prepare_extent_to_map(&mpd);
2497                 if (!ret) {
2498                         if (mpd.map.m_len)
2499                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2500                                         &give_up_on_write);
2501                         else {
2502                                 /*
2503                                  * We scanned the whole range (or exhausted
2504                                  * nr_to_write), submitted what was mapped and
2505                                  * didn't find anything needing mapping. We are
2506                                  * done.
2507                                  */
2508                                 done = true;
2509                         }
2510                 }
2511                 ext4_journal_stop(handle);
2512                 /* Submit prepared bio */
2513                 ext4_io_submit(&mpd.io_submit);
2514                 /* Unlock pages we didn't use */
2515                 mpage_release_unused_pages(&mpd, give_up_on_write);
2516                 /* Drop our io_end reference we got from init */
2517                 ext4_put_io_end(mpd.io_submit.io_end);
2518
2519                 if (ret == -ENOSPC && sbi->s_journal) {
2520                         /*
2521                          * Commit the transaction which would
2522                          * free blocks released in the transaction
2523                          * and try again
2524                          */
2525                         jbd2_journal_force_commit_nested(sbi->s_journal);
2526                         ret = 0;
2527                         continue;
2528                 }
2529                 /* Fatal error - ENOMEM, EIO... */
2530                 if (ret)
2531                         break;
2532         }
2533         blk_finish_plug(&plug);
2534         if (!ret && !cycled && wbc->nr_to_write > 0) {
2535                 cycled = 1;
2536                 mpd.last_page = writeback_index - 1;
2537                 mpd.first_page = 0;
2538                 goto retry;
2539         }
2540
2541         /* Update index */
2542         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2543                 /*
2544                  * Set the writeback_index so that range_cyclic
2545                  * mode will write it back later
2546                  */
2547                 mapping->writeback_index = mpd.first_page;
2548
2549 out_writepages:
2550         trace_ext4_writepages_result(inode, wbc, ret,
2551                                      nr_to_write - wbc->nr_to_write);
2552         return ret;
2553 }
2554
2555 static int ext4_nonda_switch(struct super_block *sb)
2556 {
2557         s64 free_clusters, dirty_clusters;
2558         struct ext4_sb_info *sbi = EXT4_SB(sb);
2559
2560         /*
2561          * switch to non delalloc mode if we are running low
2562          * on free block. The free block accounting via percpu
2563          * counters can get slightly wrong with percpu_counter_batch getting
2564          * accumulated on each CPU without updating global counters
2565          * Delalloc need an accurate free block accounting. So switch
2566          * to non delalloc when we are near to error range.
2567          */
2568         free_clusters =
2569                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2570         dirty_clusters =
2571                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2572         /*
2573          * Start pushing delalloc when 1/2 of free blocks are dirty.
2574          */
2575         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2576                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2577
2578         if (2 * free_clusters < 3 * dirty_clusters ||
2579             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2580                 /*
2581                  * free block count is less than 150% of dirty blocks
2582                  * or free blocks is less than watermark
2583                  */
2584                 return 1;
2585         }
2586         return 0;
2587 }
2588
2589 /* We always reserve for an inode update; the superblock could be there too */
2590 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2591 {
2592         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2593                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2594                 return 1;
2595
2596         if (pos + len <= 0x7fffffffULL)
2597                 return 1;
2598
2599         /* We might need to update the superblock to set LARGE_FILE */
2600         return 2;
2601 }
2602
2603 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2604                                loff_t pos, unsigned len, unsigned flags,
2605                                struct page **pagep, void **fsdata)
2606 {
2607         int ret, retries = 0;
2608         struct page *page;
2609         pgoff_t index;
2610         struct inode *inode = mapping->host;
2611         handle_t *handle;
2612
2613         index = pos >> PAGE_CACHE_SHIFT;
2614
2615         if (ext4_nonda_switch(inode->i_sb)) {
2616                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2617                 return ext4_write_begin(file, mapping, pos,
2618                                         len, flags, pagep, fsdata);
2619         }
2620         *fsdata = (void *)0;
2621         trace_ext4_da_write_begin(inode, pos, len, flags);
2622
2623         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2624                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2625                                                       pos, len, flags,
2626                                                       pagep, fsdata);
2627                 if (ret < 0)
2628                         return ret;
2629                 if (ret == 1)
2630                         return 0;
2631         }
2632
2633         /*
2634          * grab_cache_page_write_begin() can take a long time if the
2635          * system is thrashing due to memory pressure, or if the page
2636          * is being written back.  So grab it first before we start
2637          * the transaction handle.  This also allows us to allocate
2638          * the page (if needed) without using GFP_NOFS.
2639          */
2640 retry_grab:
2641         page = grab_cache_page_write_begin(mapping, index, flags);
2642         if (!page)
2643                 return -ENOMEM;
2644         unlock_page(page);
2645
2646         /*
2647          * With delayed allocation, we don't log the i_disksize update
2648          * if there is delayed block allocation. But we still need
2649          * to journalling the i_disksize update if writes to the end
2650          * of file which has an already mapped buffer.
2651          */
2652 retry_journal:
2653         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2654                                 ext4_da_write_credits(inode, pos, len));
2655         if (IS_ERR(handle)) {
2656                 page_cache_release(page);
2657                 return PTR_ERR(handle);
2658         }
2659
2660         lock_page(page);
2661         if (page->mapping != mapping) {
2662                 /* The page got truncated from under us */
2663                 unlock_page(page);
2664                 page_cache_release(page);
2665                 ext4_journal_stop(handle);
2666                 goto retry_grab;
2667         }
2668         /* In case writeback began while the page was unlocked */
2669         wait_for_stable_page(page);
2670
2671 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2672         ret = ext4_block_write_begin(page, pos, len,
2673                                      ext4_da_get_block_prep);
2674 #else
2675         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2676 #endif
2677         if (ret < 0) {
2678                 unlock_page(page);
2679                 ext4_journal_stop(handle);
2680                 /*
2681                  * block_write_begin may have instantiated a few blocks
2682                  * outside i_size.  Trim these off again. Don't need
2683                  * i_size_read because we hold i_mutex.
2684                  */
2685                 if (pos + len > inode->i_size)
2686                         ext4_truncate_failed_write(inode);
2687
2688                 if (ret == -ENOSPC &&
2689                     ext4_should_retry_alloc(inode->i_sb, &retries))
2690                         goto retry_journal;
2691
2692                 page_cache_release(page);
2693                 return ret;
2694         }
2695
2696         *pagep = page;
2697         return ret;
2698 }
2699
2700 /*
2701  * Check if we should update i_disksize
2702  * when write to the end of file but not require block allocation
2703  */
2704 static int ext4_da_should_update_i_disksize(struct page *page,
2705                                             unsigned long offset)
2706 {
2707         struct buffer_head *bh;
2708         struct inode *inode = page->mapping->host;
2709         unsigned int idx;
2710         int i;
2711
2712         bh = page_buffers(page);
2713         idx = offset >> inode->i_blkbits;
2714
2715         for (i = 0; i < idx; i++)
2716                 bh = bh->b_this_page;
2717
2718         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2719                 return 0;
2720         return 1;
2721 }
2722
2723 static int ext4_da_write_end(struct file *file,
2724                              struct address_space *mapping,
2725                              loff_t pos, unsigned len, unsigned copied,
2726                              struct page *page, void *fsdata)
2727 {
2728         struct inode *inode = mapping->host;
2729         int ret = 0, ret2;
2730         handle_t *handle = ext4_journal_current_handle();
2731         loff_t new_i_size;
2732         unsigned long start, end;
2733         int write_mode = (int)(unsigned long)fsdata;
2734
2735         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2736                 return ext4_write_end(file, mapping, pos,
2737                                       len, copied, page, fsdata);
2738
2739         trace_ext4_da_write_end(inode, pos, len, copied);
2740         start = pos & (PAGE_CACHE_SIZE - 1);
2741         end = start + copied - 1;
2742
2743         /*
2744          * generic_write_end() will run mark_inode_dirty() if i_size
2745          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2746          * into that.
2747          */
2748         new_i_size = pos + copied;
2749         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2750                 if (ext4_has_inline_data(inode) ||
2751                     ext4_da_should_update_i_disksize(page, end)) {
2752                         ext4_update_i_disksize(inode, new_i_size);
2753                         /* We need to mark inode dirty even if
2754                          * new_i_size is less that inode->i_size
2755                          * bu greater than i_disksize.(hint delalloc)
2756                          */
2757                         ext4_mark_inode_dirty(handle, inode);
2758                 }
2759         }
2760
2761         if (write_mode != CONVERT_INLINE_DATA &&
2762             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2763             ext4_has_inline_data(inode))
2764                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2765                                                      page);
2766         else
2767                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2768                                                         page, fsdata);
2769
2770         copied = ret2;
2771         if (ret2 < 0)
2772                 ret = ret2;
2773         ret2 = ext4_journal_stop(handle);
2774         if (!ret)
2775                 ret = ret2;
2776
2777         return ret ? ret : copied;
2778 }
2779
2780 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2781                                    unsigned int length)
2782 {
2783         /*
2784          * Drop reserved blocks
2785          */
2786         BUG_ON(!PageLocked(page));
2787         if (!page_has_buffers(page))
2788                 goto out;
2789
2790         ext4_da_page_release_reservation(page, offset, length);
2791
2792 out:
2793         ext4_invalidatepage(page, offset, length);
2794
2795         return;
2796 }
2797
2798 /*
2799  * Force all delayed allocation blocks to be allocated for a given inode.
2800  */
2801 int ext4_alloc_da_blocks(struct inode *inode)
2802 {
2803         trace_ext4_alloc_da_blocks(inode);
2804
2805         if (!EXT4_I(inode)->i_reserved_data_blocks)
2806                 return 0;
2807
2808         /*
2809          * We do something simple for now.  The filemap_flush() will
2810          * also start triggering a write of the data blocks, which is
2811          * not strictly speaking necessary (and for users of
2812          * laptop_mode, not even desirable).  However, to do otherwise
2813          * would require replicating code paths in:
2814          *
2815          * ext4_writepages() ->
2816          *    write_cache_pages() ---> (via passed in callback function)
2817          *        __mpage_da_writepage() -->
2818          *           mpage_add_bh_to_extent()
2819          *           mpage_da_map_blocks()
2820          *
2821          * The problem is that write_cache_pages(), located in
2822          * mm/page-writeback.c, marks pages clean in preparation for
2823          * doing I/O, which is not desirable if we're not planning on
2824          * doing I/O at all.
2825          *
2826          * We could call write_cache_pages(), and then redirty all of
2827          * the pages by calling redirty_page_for_writepage() but that
2828          * would be ugly in the extreme.  So instead we would need to
2829          * replicate parts of the code in the above functions,
2830          * simplifying them because we wouldn't actually intend to
2831          * write out the pages, but rather only collect contiguous
2832          * logical block extents, call the multi-block allocator, and
2833          * then update the buffer heads with the block allocations.
2834          *
2835          * For now, though, we'll cheat by calling filemap_flush(),
2836          * which will map the blocks, and start the I/O, but not
2837          * actually wait for the I/O to complete.
2838          */
2839         return filemap_flush(inode->i_mapping);
2840 }
2841
2842 /*
2843  * bmap() is special.  It gets used by applications such as lilo and by
2844  * the swapper to find the on-disk block of a specific piece of data.
2845  *
2846  * Naturally, this is dangerous if the block concerned is still in the
2847  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2848  * filesystem and enables swap, then they may get a nasty shock when the
2849  * data getting swapped to that swapfile suddenly gets overwritten by
2850  * the original zero's written out previously to the journal and
2851  * awaiting writeback in the kernel's buffer cache.
2852  *
2853  * So, if we see any bmap calls here on a modified, data-journaled file,
2854  * take extra steps to flush any blocks which might be in the cache.
2855  */
2856 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2857 {
2858         struct inode *inode = mapping->host;
2859         journal_t *journal;
2860         int err;
2861
2862         /*
2863          * We can get here for an inline file via the FIBMAP ioctl
2864          */
2865         if (ext4_has_inline_data(inode))
2866                 return 0;
2867
2868         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2869                         test_opt(inode->i_sb, DELALLOC)) {
2870                 /*
2871                  * With delalloc we want to sync the file
2872                  * so that we can make sure we allocate
2873                  * blocks for file
2874                  */
2875                 filemap_write_and_wait(mapping);
2876         }
2877
2878         if (EXT4_JOURNAL(inode) &&
2879             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2880                 /*
2881                  * This is a REALLY heavyweight approach, but the use of
2882                  * bmap on dirty files is expected to be extremely rare:
2883                  * only if we run lilo or swapon on a freshly made file
2884                  * do we expect this to happen.
2885                  *
2886                  * (bmap requires CAP_SYS_RAWIO so this does not
2887                  * represent an unprivileged user DOS attack --- we'd be
2888                  * in trouble if mortal users could trigger this path at
2889                  * will.)
2890                  *
2891                  * NB. EXT4_STATE_JDATA is not set on files other than
2892                  * regular files.  If somebody wants to bmap a directory
2893                  * or symlink and gets confused because the buffer
2894                  * hasn't yet been flushed to disk, they deserve
2895                  * everything they get.
2896                  */
2897
2898                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2899                 journal = EXT4_JOURNAL(inode);
2900                 jbd2_journal_lock_updates(journal);
2901                 err = jbd2_journal_flush(journal);
2902                 jbd2_journal_unlock_updates(journal);
2903
2904                 if (err)
2905                         return 0;
2906         }
2907
2908         return generic_block_bmap(mapping, block, ext4_get_block);
2909 }
2910
2911 static int ext4_readpage(struct file *file, struct page *page)
2912 {
2913         int ret = -EAGAIN;
2914         struct inode *inode = page->mapping->host;
2915
2916         trace_ext4_readpage(page);
2917
2918         if (ext4_has_inline_data(inode))
2919                 ret = ext4_readpage_inline(inode, page);
2920
2921         if (ret == -EAGAIN)
2922                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2923
2924         return ret;
2925 }
2926
2927 static int
2928 ext4_readpages(struct file *file, struct address_space *mapping,
2929                 struct list_head *pages, unsigned nr_pages)
2930 {
2931         struct inode *inode = mapping->host;
2932
2933         /* If the file has inline data, no need to do readpages. */
2934         if (ext4_has_inline_data(inode))
2935                 return 0;
2936
2937         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2938 }
2939
2940 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2941                                 unsigned int length)
2942 {
2943         trace_ext4_invalidatepage(page, offset, length);
2944
2945         /* No journalling happens on data buffers when this function is used */
2946         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2947
2948         block_invalidatepage(page, offset, length);
2949 }
2950
2951 static int __ext4_journalled_invalidatepage(struct page *page,
2952                                             unsigned int offset,
2953                                             unsigned int length)
2954 {
2955         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2956
2957         trace_ext4_journalled_invalidatepage(page, offset, length);
2958
2959         /*
2960          * If it's a full truncate we just forget about the pending dirtying
2961          */
2962         if (offset == 0 && length == PAGE_CACHE_SIZE)
2963                 ClearPageChecked(page);
2964
2965         return jbd2_journal_invalidatepage(journal, page, offset, length);
2966 }
2967
2968 /* Wrapper for aops... */
2969 static void ext4_journalled_invalidatepage(struct page *page,
2970                                            unsigned int offset,
2971                                            unsigned int length)
2972 {
2973         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2974 }
2975
2976 static int ext4_releasepage(struct page *page, gfp_t wait)
2977 {
2978         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2979
2980         trace_ext4_releasepage(page);
2981
2982         /* Page has dirty journalled data -> cannot release */
2983         if (PageChecked(page))
2984                 return 0;
2985         if (journal)
2986                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2987         else
2988                 return try_to_free_buffers(page);
2989 }
2990
2991 /*
2992  * ext4_get_block used when preparing for a DIO write or buffer write.
2993  * We allocate an uinitialized extent if blocks haven't been allocated.
2994  * The extent will be converted to initialized after the IO is complete.
2995  */
2996 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2997                    struct buffer_head *bh_result, int create)
2998 {
2999         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3000                    inode->i_ino, create);
3001         return _ext4_get_block(inode, iblock, bh_result,
3002                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3003 }
3004
3005 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3006                    struct buffer_head *bh_result, int create)
3007 {
3008         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3009                    inode->i_ino, create);
3010         return _ext4_get_block(inode, iblock, bh_result,
3011                                EXT4_GET_BLOCKS_NO_LOCK);
3012 }
3013
3014 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3015                             ssize_t size, void *private)
3016 {
3017         ext4_io_end_t *io_end = iocb->private;
3018
3019         /* if not async direct IO just return */
3020         if (!io_end)
3021                 return;
3022
3023         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3024                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3025                   iocb->private, io_end->inode->i_ino, iocb, offset,
3026                   size);
3027
3028         iocb->private = NULL;
3029         io_end->offset = offset;
3030         io_end->size = size;
3031         ext4_put_io_end(io_end);
3032 }
3033
3034 /*
3035  * For ext4 extent files, ext4 will do direct-io write to holes,
3036  * preallocated extents, and those write extend the file, no need to
3037  * fall back to buffered IO.
3038  *
3039  * For holes, we fallocate those blocks, mark them as unwritten
3040  * If those blocks were preallocated, we mark sure they are split, but
3041  * still keep the range to write as unwritten.
3042  *
3043  * The unwritten extents will be converted to written when DIO is completed.
3044  * For async direct IO, since the IO may still pending when return, we
3045  * set up an end_io call back function, which will do the conversion
3046  * when async direct IO completed.
3047  *
3048  * If the O_DIRECT write will extend the file then add this inode to the
3049  * orphan list.  So recovery will truncate it back to the original size
3050  * if the machine crashes during the write.
3051  *
3052  */
3053 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3054                                   loff_t offset)
3055 {
3056         struct file *file = iocb->ki_filp;
3057         struct inode *inode = file->f_mapping->host;
3058         ssize_t ret;
3059         size_t count = iov_iter_count(iter);
3060         int overwrite = 0;
3061         get_block_t *get_block_func = NULL;
3062         int dio_flags = 0;
3063         loff_t final_size = offset + count;
3064         ext4_io_end_t *io_end = NULL;
3065
3066         /* Use the old path for reads and writes beyond i_size. */
3067         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3068                 return ext4_ind_direct_IO(iocb, iter, offset);
3069
3070         BUG_ON(iocb->private == NULL);
3071
3072         /*
3073          * Make all waiters for direct IO properly wait also for extent
3074          * conversion. This also disallows race between truncate() and
3075          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3076          */
3077         if (iov_iter_rw(iter) == WRITE)
3078                 inode_dio_begin(inode);
3079
3080         /* If we do a overwrite dio, i_mutex locking can be released */
3081         overwrite = *((int *)iocb->private);
3082
3083         if (overwrite) {
3084                 down_read(&EXT4_I(inode)->i_data_sem);
3085                 mutex_unlock(&inode->i_mutex);
3086         }
3087
3088         /*
3089          * We could direct write to holes and fallocate.
3090          *
3091          * Allocated blocks to fill the hole are marked as
3092          * unwritten to prevent parallel buffered read to expose
3093          * the stale data before DIO complete the data IO.
3094          *
3095          * As to previously fallocated extents, ext4 get_block will
3096          * just simply mark the buffer mapped but still keep the
3097          * extents unwritten.
3098          *
3099          * For non AIO case, we will convert those unwritten extents
3100          * to written after return back from blockdev_direct_IO.
3101          *
3102          * For async DIO, the conversion needs to be deferred when the
3103          * IO is completed. The ext4 end_io callback function will be
3104          * called to take care of the conversion work.  Here for async
3105          * case, we allocate an io_end structure to hook to the iocb.
3106          */
3107         iocb->private = NULL;
3108         ext4_inode_aio_set(inode, NULL);
3109         if (!is_sync_kiocb(iocb)) {
3110                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3111                 if (!io_end) {
3112                         ret = -ENOMEM;
3113                         goto retake_lock;
3114                 }
3115                 /*
3116                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3117                  */
3118                 iocb->private = ext4_get_io_end(io_end);
3119                 /*
3120                  * we save the io structure for current async direct
3121                  * IO, so that later ext4_map_blocks() could flag the
3122                  * io structure whether there is a unwritten extents
3123                  * needs to be converted when IO is completed.
3124                  */
3125                 ext4_inode_aio_set(inode, io_end);
3126         }
3127
3128         if (overwrite) {
3129                 get_block_func = ext4_get_block_write_nolock;
3130         } else {
3131                 get_block_func = ext4_get_block_write;
3132                 dio_flags = DIO_LOCKING;
3133         }
3134 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3135         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3136 #endif
3137         if (IS_DAX(inode))
3138                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3139                                 ext4_end_io_dio, dio_flags);
3140         else
3141                 ret = __blockdev_direct_IO(iocb, inode,
3142                                            inode->i_sb->s_bdev, iter, offset,
3143                                            get_block_func,
3144                                            ext4_end_io_dio, NULL, dio_flags);
3145
3146         /*
3147          * Put our reference to io_end. This can free the io_end structure e.g.
3148          * in sync IO case or in case of error. It can even perform extent
3149          * conversion if all bios we submitted finished before we got here.
3150          * Note that in that case iocb->private can be already set to NULL
3151          * here.
3152          */
3153         if (io_end) {
3154                 ext4_inode_aio_set(inode, NULL);
3155                 ext4_put_io_end(io_end);
3156                 /*
3157                  * When no IO was submitted ext4_end_io_dio() was not
3158                  * called so we have to put iocb's reference.
3159                  */
3160                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3161                         WARN_ON(iocb->private != io_end);
3162                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3163                         ext4_put_io_end(io_end);
3164                         iocb->private = NULL;
3165                 }
3166         }
3167         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3168                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3169                 int err;
3170                 /*
3171                  * for non AIO case, since the IO is already
3172                  * completed, we could do the conversion right here
3173                  */
3174                 err = ext4_convert_unwritten_extents(NULL, inode,
3175                                                      offset, ret);
3176                 if (err < 0)
3177                         ret = err;
3178                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3179         }
3180
3181 retake_lock:
3182         if (iov_iter_rw(iter) == WRITE)
3183                 inode_dio_end(inode);
3184         /* take i_mutex locking again if we do a ovewrite dio */
3185         if (overwrite) {
3186                 up_read(&EXT4_I(inode)->i_data_sem);
3187                 mutex_lock(&inode->i_mutex);
3188         }
3189
3190         return ret;
3191 }
3192
3193 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3194                               loff_t offset)
3195 {
3196         struct file *file = iocb->ki_filp;
3197         struct inode *inode = file->f_mapping->host;
3198         size_t count = iov_iter_count(iter);
3199         ssize_t ret;
3200
3201 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3202         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3203                 return 0;
3204 #endif
3205
3206         /*
3207          * If we are doing data journalling we don't support O_DIRECT
3208          */
3209         if (ext4_should_journal_data(inode))
3210                 return 0;
3211
3212         /* Let buffer I/O handle the inline data case. */
3213         if (ext4_has_inline_data(inode))
3214                 return 0;
3215
3216         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3217         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3219         else
3220                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3221         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3222         return ret;
3223 }
3224
3225 /*
3226  * Pages can be marked dirty completely asynchronously from ext4's journalling
3227  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3228  * much here because ->set_page_dirty is called under VFS locks.  The page is
3229  * not necessarily locked.
3230  *
3231  * We cannot just dirty the page and leave attached buffers clean, because the
3232  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3233  * or jbddirty because all the journalling code will explode.
3234  *
3235  * So what we do is to mark the page "pending dirty" and next time writepage
3236  * is called, propagate that into the buffers appropriately.
3237  */
3238 static int ext4_journalled_set_page_dirty(struct page *page)
3239 {
3240         SetPageChecked(page);
3241         return __set_page_dirty_nobuffers(page);
3242 }
3243
3244 static const struct address_space_operations ext4_aops = {
3245         .readpage               = ext4_readpage,
3246         .readpages              = ext4_readpages,
3247         .writepage              = ext4_writepage,
3248         .writepages             = ext4_writepages,
3249         .write_begin            = ext4_write_begin,
3250         .write_end              = ext4_write_end,
3251         .bmap                   = ext4_bmap,
3252         .invalidatepage         = ext4_invalidatepage,
3253         .releasepage            = ext4_releasepage,
3254         .direct_IO              = ext4_direct_IO,
3255         .migratepage            = buffer_migrate_page,
3256         .is_partially_uptodate  = block_is_partially_uptodate,
3257         .error_remove_page      = generic_error_remove_page,
3258 };
3259
3260 static const struct address_space_operations ext4_journalled_aops = {
3261         .readpage               = ext4_readpage,
3262         .readpages              = ext4_readpages,
3263         .writepage              = ext4_writepage,
3264         .writepages             = ext4_writepages,
3265         .write_begin            = ext4_write_begin,
3266         .write_end              = ext4_journalled_write_end,
3267         .set_page_dirty         = ext4_journalled_set_page_dirty,
3268         .bmap                   = ext4_bmap,
3269         .invalidatepage         = ext4_journalled_invalidatepage,
3270         .releasepage            = ext4_releasepage,
3271         .direct_IO              = ext4_direct_IO,
3272         .is_partially_uptodate  = block_is_partially_uptodate,
3273         .error_remove_page      = generic_error_remove_page,
3274 };
3275
3276 static const struct address_space_operations ext4_da_aops = {
3277         .readpage               = ext4_readpage,
3278         .readpages              = ext4_readpages,
3279         .writepage              = ext4_writepage,
3280         .writepages             = ext4_writepages,
3281         .write_begin            = ext4_da_write_begin,
3282         .write_end              = ext4_da_write_end,
3283         .bmap                   = ext4_bmap,
3284         .invalidatepage         = ext4_da_invalidatepage,
3285         .releasepage            = ext4_releasepage,
3286         .direct_IO              = ext4_direct_IO,
3287         .migratepage            = buffer_migrate_page,
3288         .is_partially_uptodate  = block_is_partially_uptodate,
3289         .error_remove_page      = generic_error_remove_page,
3290 };
3291
3292 void ext4_set_aops(struct inode *inode)
3293 {
3294         switch (ext4_inode_journal_mode(inode)) {
3295         case EXT4_INODE_ORDERED_DATA_MODE:
3296                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3297                 break;
3298         case EXT4_INODE_WRITEBACK_DATA_MODE:
3299                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3300                 break;
3301         case EXT4_INODE_JOURNAL_DATA_MODE:
3302                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3303                 return;
3304         default:
3305                 BUG();
3306         }
3307         if (test_opt(inode->i_sb, DELALLOC))
3308                 inode->i_mapping->a_ops = &ext4_da_aops;
3309         else
3310                 inode->i_mapping->a_ops = &ext4_aops;
3311 }
3312
3313 static int __ext4_block_zero_page_range(handle_t *handle,
3314                 struct address_space *mapping, loff_t from, loff_t length)
3315 {
3316         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3317         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3318         unsigned blocksize, pos;
3319         ext4_lblk_t iblock;
3320         struct inode *inode = mapping->host;
3321         struct buffer_head *bh;
3322         struct page *page;
3323         int err = 0;
3324
3325         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3326                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3327         if (!page)
3328                 return -ENOMEM;
3329
3330         blocksize = inode->i_sb->s_blocksize;
3331
3332         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3333
3334         if (!page_has_buffers(page))
3335                 create_empty_buffers(page, blocksize, 0);
3336
3337         /* Find the buffer that contains "offset" */
3338         bh = page_buffers(page);
3339         pos = blocksize;
3340         while (offset >= pos) {
3341                 bh = bh->b_this_page;
3342                 iblock++;
3343                 pos += blocksize;
3344         }
3345         if (buffer_freed(bh)) {
3346                 BUFFER_TRACE(bh, "freed: skip");
3347                 goto unlock;
3348         }
3349         if (!buffer_mapped(bh)) {
3350                 BUFFER_TRACE(bh, "unmapped");
3351                 ext4_get_block(inode, iblock, bh, 0);
3352                 /* unmapped? It's a hole - nothing to do */
3353                 if (!buffer_mapped(bh)) {
3354                         BUFFER_TRACE(bh, "still unmapped");
3355                         goto unlock;
3356                 }
3357         }
3358
3359         /* Ok, it's mapped. Make sure it's up-to-date */
3360         if (PageUptodate(page))
3361                 set_buffer_uptodate(bh);
3362
3363         if (!buffer_uptodate(bh)) {
3364                 err = -EIO;
3365                 ll_rw_block(READ, 1, &bh);
3366                 wait_on_buffer(bh);
3367                 /* Uhhuh. Read error. Complain and punt. */
3368                 if (!buffer_uptodate(bh))
3369                         goto unlock;
3370                 if (S_ISREG(inode->i_mode) &&
3371                     ext4_encrypted_inode(inode)) {
3372                         /* We expect the key to be set. */
3373                         BUG_ON(!ext4_has_encryption_key(inode));
3374                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3375                         WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3376                 }
3377         }
3378         if (ext4_should_journal_data(inode)) {
3379                 BUFFER_TRACE(bh, "get write access");
3380                 err = ext4_journal_get_write_access(handle, bh);
3381                 if (err)
3382                         goto unlock;
3383         }
3384         zero_user(page, offset, length);
3385         BUFFER_TRACE(bh, "zeroed end of block");
3386
3387         if (ext4_should_journal_data(inode)) {
3388                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3389         } else {
3390                 err = 0;
3391                 mark_buffer_dirty(bh);
3392                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3393                         err = ext4_jbd2_file_inode(handle, inode);
3394         }
3395
3396 unlock:
3397         unlock_page(page);
3398         page_cache_release(page);
3399         return err;
3400 }
3401
3402 /*
3403  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3404  * starting from file offset 'from'.  The range to be zero'd must
3405  * be contained with in one block.  If the specified range exceeds
3406  * the end of the block it will be shortened to end of the block
3407  * that cooresponds to 'from'
3408  */
3409 static int ext4_block_zero_page_range(handle_t *handle,
3410                 struct address_space *mapping, loff_t from, loff_t length)
3411 {
3412         struct inode *inode = mapping->host;
3413         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3414         unsigned blocksize = inode->i_sb->s_blocksize;
3415         unsigned max = blocksize - (offset & (blocksize - 1));
3416
3417         /*
3418          * correct length if it does not fall between
3419          * 'from' and the end of the block
3420          */
3421         if (length > max || length < 0)
3422                 length = max;
3423
3424         if (IS_DAX(inode))
3425                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3426         return __ext4_block_zero_page_range(handle, mapping, from, length);
3427 }
3428
3429 /*
3430  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3431  * up to the end of the block which corresponds to `from'.
3432  * This required during truncate. We need to physically zero the tail end
3433  * of that block so it doesn't yield old data if the file is later grown.
3434  */
3435 static int ext4_block_truncate_page(handle_t *handle,
3436                 struct address_space *mapping, loff_t from)
3437 {
3438         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3439         unsigned length;
3440         unsigned blocksize;
3441         struct inode *inode = mapping->host;
3442
3443         blocksize = inode->i_sb->s_blocksize;
3444         length = blocksize - (offset & (blocksize - 1));
3445
3446         return ext4_block_zero_page_range(handle, mapping, from, length);
3447 }
3448
3449 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3450                              loff_t lstart, loff_t length)
3451 {
3452         struct super_block *sb = inode->i_sb;
3453         struct address_space *mapping = inode->i_mapping;
3454         unsigned partial_start, partial_end;
3455         ext4_fsblk_t start, end;
3456         loff_t byte_end = (lstart + length - 1);
3457         int err = 0;
3458
3459         partial_start = lstart & (sb->s_blocksize - 1);
3460         partial_end = byte_end & (sb->s_blocksize - 1);
3461
3462         start = lstart >> sb->s_blocksize_bits;
3463         end = byte_end >> sb->s_blocksize_bits;
3464
3465         /* Handle partial zero within the single block */
3466         if (start == end &&
3467             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3468                 err = ext4_block_zero_page_range(handle, mapping,
3469                                                  lstart, length);
3470                 return err;
3471         }
3472         /* Handle partial zero out on the start of the range */
3473         if (partial_start) {
3474                 err = ext4_block_zero_page_range(handle, mapping,
3475                                                  lstart, sb->s_blocksize);
3476                 if (err)
3477                         return err;
3478         }
3479         /* Handle partial zero out on the end of the range */
3480         if (partial_end != sb->s_blocksize - 1)
3481                 err = ext4_block_zero_page_range(handle, mapping,
3482                                                  byte_end - partial_end,
3483                                                  partial_end + 1);
3484         return err;
3485 }
3486
3487 int ext4_can_truncate(struct inode *inode)
3488 {
3489         if (S_ISREG(inode->i_mode))
3490                 return 1;
3491         if (S_ISDIR(inode->i_mode))
3492                 return 1;
3493         if (S_ISLNK(inode->i_mode))
3494                 return !ext4_inode_is_fast_symlink(inode);
3495         return 0;
3496 }
3497
3498 /*
3499  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3500  * associated with the given offset and length
3501  *
3502  * @inode:  File inode
3503  * @offset: The offset where the hole will begin
3504  * @len:    The length of the hole
3505  *
3506  * Returns: 0 on success or negative on failure
3507  */
3508
3509 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3510 {
3511         struct super_block *sb = inode->i_sb;
3512         ext4_lblk_t first_block, stop_block;
3513         struct address_space *mapping = inode->i_mapping;
3514         loff_t first_block_offset, last_block_offset;
3515         handle_t *handle;
3516         unsigned int credits;
3517         int ret = 0;
3518
3519         if (!S_ISREG(inode->i_mode))
3520                 return -EOPNOTSUPP;
3521
3522         trace_ext4_punch_hole(inode, offset, length, 0);
3523
3524         /*
3525          * Write out all dirty pages to avoid race conditions
3526          * Then release them.
3527          */
3528         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3529                 ret = filemap_write_and_wait_range(mapping, offset,
3530                                                    offset + length - 1);
3531                 if (ret)
3532                         return ret;
3533         }
3534
3535         mutex_lock(&inode->i_mutex);
3536
3537         /* No need to punch hole beyond i_size */
3538         if (offset >= inode->i_size)
3539                 goto out_mutex;
3540
3541         /*
3542          * If the hole extends beyond i_size, set the hole
3543          * to end after the page that contains i_size
3544          */
3545         if (offset + length > inode->i_size) {
3546                 length = inode->i_size +
3547                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3548                    offset;
3549         }
3550
3551         if (offset & (sb->s_blocksize - 1) ||
3552             (offset + length) & (sb->s_blocksize - 1)) {
3553                 /*
3554                  * Attach jinode to inode for jbd2 if we do any zeroing of
3555                  * partial block
3556                  */
3557                 ret = ext4_inode_attach_jinode(inode);
3558                 if (ret < 0)
3559                         goto out_mutex;
3560
3561         }
3562
3563         first_block_offset = round_up(offset, sb->s_blocksize);
3564         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3565
3566         /* Now release the pages and zero block aligned part of pages*/
3567         if (last_block_offset > first_block_offset)
3568                 truncate_pagecache_range(inode, first_block_offset,
3569                                          last_block_offset);
3570
3571         /* Wait all existing dio workers, newcomers will block on i_mutex */
3572         ext4_inode_block_unlocked_dio(inode);
3573         inode_dio_wait(inode);
3574
3575         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3576                 credits = ext4_writepage_trans_blocks(inode);
3577         else
3578                 credits = ext4_blocks_for_truncate(inode);
3579         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3580         if (IS_ERR(handle)) {
3581                 ret = PTR_ERR(handle);
3582                 ext4_std_error(sb, ret);
3583                 goto out_dio;
3584         }
3585
3586         ret = ext4_zero_partial_blocks(handle, inode, offset,
3587                                        length);
3588         if (ret)
3589                 goto out_stop;
3590
3591         first_block = (offset + sb->s_blocksize - 1) >>
3592                 EXT4_BLOCK_SIZE_BITS(sb);
3593         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3594
3595         /* If there are no blocks to remove, return now */
3596         if (first_block >= stop_block)
3597                 goto out_stop;
3598
3599         down_write(&EXT4_I(inode)->i_data_sem);
3600         ext4_discard_preallocations(inode);
3601
3602         ret = ext4_es_remove_extent(inode, first_block,
3603                                     stop_block - first_block);
3604         if (ret) {
3605                 up_write(&EXT4_I(inode)->i_data_sem);
3606                 goto out_stop;
3607         }
3608
3609         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3610                 ret = ext4_ext_remove_space(inode, first_block,
3611                                             stop_block - 1);
3612         else
3613                 ret = ext4_ind_remove_space(handle, inode, first_block,
3614                                             stop_block);
3615
3616         up_write(&EXT4_I(inode)->i_data_sem);
3617         if (IS_SYNC(inode))
3618                 ext4_handle_sync(handle);
3619
3620         /* Now release the pages again to reduce race window */
3621         if (last_block_offset > first_block_offset)
3622                 truncate_pagecache_range(inode, first_block_offset,
3623                                          last_block_offset);
3624
3625         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3626         ext4_mark_inode_dirty(handle, inode);
3627 out_stop:
3628         ext4_journal_stop(handle);
3629 out_dio:
3630         ext4_inode_resume_unlocked_dio(inode);
3631 out_mutex:
3632         mutex_unlock(&inode->i_mutex);
3633         return ret;
3634 }
3635
3636 int ext4_inode_attach_jinode(struct inode *inode)
3637 {
3638         struct ext4_inode_info *ei = EXT4_I(inode);
3639         struct jbd2_inode *jinode;
3640
3641         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3642                 return 0;
3643
3644         jinode = jbd2_alloc_inode(GFP_KERNEL);
3645         spin_lock(&inode->i_lock);
3646         if (!ei->jinode) {
3647                 if (!jinode) {
3648                         spin_unlock(&inode->i_lock);
3649                         return -ENOMEM;
3650                 }
3651                 ei->jinode = jinode;
3652                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3653                 jinode = NULL;
3654         }
3655         spin_unlock(&inode->i_lock);
3656         if (unlikely(jinode != NULL))
3657                 jbd2_free_inode(jinode);
3658         return 0;
3659 }
3660
3661 /*
3662  * ext4_truncate()
3663  *
3664  * We block out ext4_get_block() block instantiations across the entire
3665  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3666  * simultaneously on behalf of the same inode.
3667  *
3668  * As we work through the truncate and commit bits of it to the journal there
3669  * is one core, guiding principle: the file's tree must always be consistent on
3670  * disk.  We must be able to restart the truncate after a crash.
3671  *
3672  * The file's tree may be transiently inconsistent in memory (although it
3673  * probably isn't), but whenever we close off and commit a journal transaction,
3674  * the contents of (the filesystem + the journal) must be consistent and
3675  * restartable.  It's pretty simple, really: bottom up, right to left (although
3676  * left-to-right works OK too).
3677  *
3678  * Note that at recovery time, journal replay occurs *before* the restart of
3679  * truncate against the orphan inode list.
3680  *
3681  * The committed inode has the new, desired i_size (which is the same as
3682  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3683  * that this inode's truncate did not complete and it will again call
3684  * ext4_truncate() to have another go.  So there will be instantiated blocks
3685  * to the right of the truncation point in a crashed ext4 filesystem.  But
3686  * that's fine - as long as they are linked from the inode, the post-crash
3687  * ext4_truncate() run will find them and release them.
3688  */
3689 void ext4_truncate(struct inode *inode)
3690 {
3691         struct ext4_inode_info *ei = EXT4_I(inode);
3692         unsigned int credits;
3693         handle_t *handle;
3694         struct address_space *mapping = inode->i_mapping;
3695
3696         /*
3697          * There is a possibility that we're either freeing the inode
3698          * or it's a completely new inode. In those cases we might not
3699          * have i_mutex locked because it's not necessary.
3700          */
3701         if (!(inode->i_state & (I_NEW|I_FREEING)))
3702                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3703         trace_ext4_truncate_enter(inode);
3704
3705         if (!ext4_can_truncate(inode))
3706                 return;
3707
3708         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3709
3710         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3711                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3712
3713         if (ext4_has_inline_data(inode)) {
3714                 int has_inline = 1;
3715
3716                 ext4_inline_data_truncate(inode, &has_inline);
3717                 if (has_inline)
3718                         return;
3719         }
3720
3721         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3722         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3723                 if (ext4_inode_attach_jinode(inode) < 0)
3724                         return;
3725         }
3726
3727         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3728                 credits = ext4_writepage_trans_blocks(inode);
3729         else
3730                 credits = ext4_blocks_for_truncate(inode);
3731
3732         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3733         if (IS_ERR(handle)) {
3734                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3735                 return;
3736         }
3737
3738         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3739                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3740
3741         /*
3742          * We add the inode to the orphan list, so that if this
3743          * truncate spans multiple transactions, and we crash, we will
3744          * resume the truncate when the filesystem recovers.  It also
3745          * marks the inode dirty, to catch the new size.
3746          *
3747          * Implication: the file must always be in a sane, consistent
3748          * truncatable state while each transaction commits.
3749          */
3750         if (ext4_orphan_add(handle, inode))
3751                 goto out_stop;
3752
3753         down_write(&EXT4_I(inode)->i_data_sem);
3754
3755         ext4_discard_preallocations(inode);
3756
3757         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3758                 ext4_ext_truncate(handle, inode);
3759         else
3760                 ext4_ind_truncate(handle, inode);
3761
3762         up_write(&ei->i_data_sem);
3763
3764         if (IS_SYNC(inode))
3765                 ext4_handle_sync(handle);
3766
3767 out_stop:
3768         /*
3769          * If this was a simple ftruncate() and the file will remain alive,
3770          * then we need to clear up the orphan record which we created above.
3771          * However, if this was a real unlink then we were called by
3772          * ext4_evict_inode(), and we allow that function to clean up the
3773          * orphan info for us.
3774          */
3775         if (inode->i_nlink)
3776                 ext4_orphan_del(handle, inode);
3777
3778         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3779         ext4_mark_inode_dirty(handle, inode);
3780         ext4_journal_stop(handle);
3781
3782         trace_ext4_truncate_exit(inode);
3783 }
3784
3785 /*
3786  * ext4_get_inode_loc returns with an extra refcount against the inode's
3787  * underlying buffer_head on success. If 'in_mem' is true, we have all
3788  * data in memory that is needed to recreate the on-disk version of this
3789  * inode.
3790  */
3791 static int __ext4_get_inode_loc(struct inode *inode,
3792                                 struct ext4_iloc *iloc, int in_mem)
3793 {
3794         struct ext4_group_desc  *gdp;
3795         struct buffer_head      *bh;
3796         struct super_block      *sb = inode->i_sb;
3797         ext4_fsblk_t            block;
3798         int                     inodes_per_block, inode_offset;
3799
3800         iloc->bh = NULL;
3801         if (!ext4_valid_inum(sb, inode->i_ino))
3802                 return -EIO;
3803
3804         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3805         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3806         if (!gdp)
3807                 return -EIO;
3808
3809         /*
3810          * Figure out the offset within the block group inode table
3811          */
3812         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3813         inode_offset = ((inode->i_ino - 1) %
3814                         EXT4_INODES_PER_GROUP(sb));
3815         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3816         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3817
3818         bh = sb_getblk(sb, block);
3819         if (unlikely(!bh))
3820                 return -ENOMEM;
3821         if (!buffer_uptodate(bh)) {
3822                 lock_buffer(bh);
3823
3824                 /*
3825                  * If the buffer has the write error flag, we have failed
3826                  * to write out another inode in the same block.  In this
3827                  * case, we don't have to read the block because we may
3828                  * read the old inode data successfully.
3829                  */
3830                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3831                         set_buffer_uptodate(bh);
3832
3833                 if (buffer_uptodate(bh)) {
3834                         /* someone brought it uptodate while we waited */
3835                         unlock_buffer(bh);
3836                         goto has_buffer;
3837                 }
3838
3839                 /*
3840                  * If we have all information of the inode in memory and this
3841                  * is the only valid inode in the block, we need not read the
3842                  * block.
3843                  */
3844                 if (in_mem) {
3845                         struct buffer_head *bitmap_bh;
3846                         int i, start;
3847
3848                         start = inode_offset & ~(inodes_per_block - 1);
3849
3850                         /* Is the inode bitmap in cache? */
3851                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3852                         if (unlikely(!bitmap_bh))
3853                                 goto make_io;
3854
3855                         /*
3856                          * If the inode bitmap isn't in cache then the
3857                          * optimisation may end up performing two reads instead
3858                          * of one, so skip it.
3859                          */
3860                         if (!buffer_uptodate(bitmap_bh)) {
3861                                 brelse(bitmap_bh);
3862                                 goto make_io;
3863                         }
3864                         for (i = start; i < start + inodes_per_block; i++) {
3865                                 if (i == inode_offset)
3866                                         continue;
3867                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3868                                         break;
3869                         }
3870                         brelse(bitmap_bh);
3871                         if (i == start + inodes_per_block) {
3872                                 /* all other inodes are free, so skip I/O */
3873                                 memset(bh->b_data, 0, bh->b_size);
3874                                 set_buffer_uptodate(bh);
3875                                 unlock_buffer(bh);
3876                                 goto has_buffer;
3877                         }
3878                 }
3879
3880 make_io:
3881                 /*
3882                  * If we need to do any I/O, try to pre-readahead extra
3883                  * blocks from the inode table.
3884                  */
3885                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3886                         ext4_fsblk_t b, end, table;
3887                         unsigned num;
3888                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3889
3890                         table = ext4_inode_table(sb, gdp);
3891                         /* s_inode_readahead_blks is always a power of 2 */
3892                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3893                         if (table > b)
3894                                 b = table;
3895                         end = b + ra_blks;
3896                         num = EXT4_INODES_PER_GROUP(sb);
3897                         if (ext4_has_group_desc_csum(sb))
3898                                 num -= ext4_itable_unused_count(sb, gdp);
3899                         table += num / inodes_per_block;
3900                         if (end > table)
3901                                 end = table;
3902                         while (b <= end)
3903                                 sb_breadahead(sb, b++);
3904                 }
3905
3906                 /*
3907                  * There are other valid inodes in the buffer, this inode
3908                  * has in-inode xattrs, or we don't have this inode in memory.
3909                  * Read the block from disk.
3910                  */
3911                 trace_ext4_load_inode(inode);
3912                 get_bh(bh);
3913                 bh->b_end_io = end_buffer_read_sync;
3914                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3915                 wait_on_buffer(bh);
3916                 if (!buffer_uptodate(bh)) {
3917                         EXT4_ERROR_INODE_BLOCK(inode, block,
3918                                                "unable to read itable block");
3919                         brelse(bh);
3920                         return -EIO;
3921                 }
3922         }
3923 has_buffer:
3924         iloc->bh = bh;
3925         return 0;
3926 }
3927
3928 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3929 {
3930         /* We have all inode data except xattrs in memory here. */
3931         return __ext4_get_inode_loc(inode, iloc,
3932                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3933 }
3934
3935 void ext4_set_inode_flags(struct inode *inode)
3936 {
3937         unsigned int flags = EXT4_I(inode)->i_flags;
3938         unsigned int new_fl = 0;
3939
3940         if (flags & EXT4_SYNC_FL)
3941                 new_fl |= S_SYNC;
3942         if (flags & EXT4_APPEND_FL)
3943                 new_fl |= S_APPEND;
3944         if (flags & EXT4_IMMUTABLE_FL)
3945                 new_fl |= S_IMMUTABLE;
3946         if (flags & EXT4_NOATIME_FL)
3947                 new_fl |= S_NOATIME;
3948         if (flags & EXT4_DIRSYNC_FL)
3949                 new_fl |= S_DIRSYNC;
3950         if (test_opt(inode->i_sb, DAX))
3951                 new_fl |= S_DAX;
3952         inode_set_flags(inode, new_fl,
3953                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3954 }
3955
3956 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3957 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3958 {
3959         unsigned int vfs_fl;
3960         unsigned long old_fl, new_fl;
3961
3962         do {
3963                 vfs_fl = ei->vfs_inode.i_flags;
3964                 old_fl = ei->i_flags;
3965                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3966                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3967                                 EXT4_DIRSYNC_FL);
3968                 if (vfs_fl & S_SYNC)
3969                         new_fl |= EXT4_SYNC_FL;
3970                 if (vfs_fl & S_APPEND)
3971                         new_fl |= EXT4_APPEND_FL;
3972                 if (vfs_fl & S_IMMUTABLE)
3973                         new_fl |= EXT4_IMMUTABLE_FL;
3974                 if (vfs_fl & S_NOATIME)
3975                         new_fl |= EXT4_NOATIME_FL;
3976                 if (vfs_fl & S_DIRSYNC)
3977                         new_fl |= EXT4_DIRSYNC_FL;
3978         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3979 }
3980
3981 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3982                                   struct ext4_inode_info *ei)
3983 {
3984         blkcnt_t i_blocks ;
3985         struct inode *inode = &(ei->vfs_inode);
3986         struct super_block *sb = inode->i_sb;
3987
3988         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3989                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3990                 /* we are using combined 48 bit field */
3991                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3992                                         le32_to_cpu(raw_inode->i_blocks_lo);
3993                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3994                         /* i_blocks represent file system block size */
3995                         return i_blocks  << (inode->i_blkbits - 9);
3996                 } else {
3997                         return i_blocks;
3998                 }
3999         } else {
4000                 return le32_to_cpu(raw_inode->i_blocks_lo);
4001         }
4002 }
4003
4004 static inline void ext4_iget_extra_inode(struct inode *inode,
4005                                          struct ext4_inode *raw_inode,
4006                                          struct ext4_inode_info *ei)
4007 {
4008         __le32 *magic = (void *)raw_inode +
4009                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4010         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4011                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4012                 ext4_find_inline_data_nolock(inode);
4013         } else
4014                 EXT4_I(inode)->i_inline_off = 0;
4015 }
4016
4017 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4018 {
4019         struct ext4_iloc iloc;
4020         struct ext4_inode *raw_inode;
4021         struct ext4_inode_info *ei;
4022         struct inode *inode;
4023         journal_t *journal = EXT4_SB(sb)->s_journal;
4024         long ret;
4025         int block;
4026         uid_t i_uid;
4027         gid_t i_gid;
4028
4029         inode = iget_locked(sb, ino);
4030         if (!inode)
4031                 return ERR_PTR(-ENOMEM);
4032         if (!(inode->i_state & I_NEW))
4033                 return inode;
4034
4035         ei = EXT4_I(inode);
4036         iloc.bh = NULL;
4037
4038         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4039         if (ret < 0)
4040                 goto bad_inode;
4041         raw_inode = ext4_raw_inode(&iloc);
4042
4043         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4044                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4045                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4046                     EXT4_INODE_SIZE(inode->i_sb)) {
4047                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4048                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4049                                 EXT4_INODE_SIZE(inode->i_sb));
4050                         ret = -EIO;
4051                         goto bad_inode;
4052                 }
4053         } else
4054                 ei->i_extra_isize = 0;
4055
4056         /* Precompute checksum seed for inode metadata */
4057         if (ext4_has_metadata_csum(sb)) {
4058                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4059                 __u32 csum;
4060                 __le32 inum = cpu_to_le32(inode->i_ino);
4061                 __le32 gen = raw_inode->i_generation;
4062                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4063                                    sizeof(inum));
4064                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4065                                               sizeof(gen));
4066         }
4067
4068         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069                 EXT4_ERROR_INODE(inode, "checksum invalid");
4070                 ret = -EIO;
4071                 goto bad_inode;
4072         }
4073
4074         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077         if (!(test_opt(inode->i_sb, NO_UID32))) {
4078                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4080         }
4081         i_uid_write(inode, i_uid);
4082         i_gid_write(inode, i_gid);
4083         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4084
4085         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4086         ei->i_inline_off = 0;
4087         ei->i_dir_start_lookup = 0;
4088         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089         /* We now have enough fields to check if the inode was active or not.
4090          * This is needed because nfsd might try to access dead inodes
4091          * the test is that same one that e2fsck uses
4092          * NeilBrown 1999oct15
4093          */
4094         if (inode->i_nlink == 0) {
4095                 if ((inode->i_mode == 0 ||
4096                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097                     ino != EXT4_BOOT_LOADER_INO) {
4098                         /* this inode is deleted */
4099                         ret = -ESTALE;
4100                         goto bad_inode;
4101                 }
4102                 /* The only unlinked inodes we let through here have
4103                  * valid i_mode and are being read by the orphan
4104                  * recovery code: that's fine, we're about to complete
4105                  * the process of deleting those.
4106                  * OR it is the EXT4_BOOT_LOADER_INO which is
4107                  * not initialized on a new filesystem. */
4108         }
4109         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4113                 ei->i_file_acl |=
4114                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115         inode->i_size = ext4_isize(raw_inode);
4116         ei->i_disksize = inode->i_size;
4117 #ifdef CONFIG_QUOTA
4118         ei->i_reserved_quota = 0;
4119 #endif
4120         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121         ei->i_block_group = iloc.block_group;
4122         ei->i_last_alloc_group = ~0;
4123         /*
4124          * NOTE! The in-memory inode i_data array is in little-endian order
4125          * even on big-endian machines: we do NOT byteswap the block numbers!
4126          */
4127         for (block = 0; block < EXT4_N_BLOCKS; block++)
4128                 ei->i_data[block] = raw_inode->i_block[block];
4129         INIT_LIST_HEAD(&ei->i_orphan);
4130
4131         /*
4132          * Set transaction id's of transactions that have to be committed
4133          * to finish f[data]sync. We set them to currently running transaction
4134          * as we cannot be sure that the inode or some of its metadata isn't
4135          * part of the transaction - the inode could have been reclaimed and
4136          * now it is reread from disk.
4137          */
4138         if (journal) {
4139                 transaction_t *transaction;
4140                 tid_t tid;
4141
4142                 read_lock(&journal->j_state_lock);
4143                 if (journal->j_running_transaction)
4144                         transaction = journal->j_running_transaction;
4145                 else
4146                         transaction = journal->j_committing_transaction;
4147                 if (transaction)
4148                         tid = transaction->t_tid;
4149                 else
4150                         tid = journal->j_commit_sequence;
4151                 read_unlock(&journal->j_state_lock);
4152                 ei->i_sync_tid = tid;
4153                 ei->i_datasync_tid = tid;
4154         }
4155
4156         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157                 if (ei->i_extra_isize == 0) {
4158                         /* The extra space is currently unused. Use it. */
4159                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4160                                             EXT4_GOOD_OLD_INODE_SIZE;
4161                 } else {
4162                         ext4_iget_extra_inode(inode, raw_inode, ei);
4163                 }
4164         }
4165
4166         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4170
4171         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4172                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4173                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4174                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4175                                 inode->i_version |=
4176                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4177                 }
4178         }
4179
4180         ret = 0;
4181         if (ei->i_file_acl &&
4182             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4183                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4184                                  ei->i_file_acl);
4185                 ret = -EIO;
4186                 goto bad_inode;
4187         } else if (!ext4_has_inline_data(inode)) {
4188                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4189                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4190                             (S_ISLNK(inode->i_mode) &&
4191                              !ext4_inode_is_fast_symlink(inode))))
4192                                 /* Validate extent which is part of inode */
4193                                 ret = ext4_ext_check_inode(inode);
4194                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4195                            (S_ISLNK(inode->i_mode) &&
4196                             !ext4_inode_is_fast_symlink(inode))) {
4197                         /* Validate block references which are part of inode */
4198                         ret = ext4_ind_check_inode(inode);
4199                 }
4200         }
4201         if (ret)
4202                 goto bad_inode;
4203
4204         if (S_ISREG(inode->i_mode)) {
4205                 inode->i_op = &ext4_file_inode_operations;
4206                 inode->i_fop = &ext4_file_operations;
4207                 ext4_set_aops(inode);
4208         } else if (S_ISDIR(inode->i_mode)) {
4209                 inode->i_op = &ext4_dir_inode_operations;
4210                 inode->i_fop = &ext4_dir_operations;
4211         } else if (S_ISLNK(inode->i_mode)) {
4212                 if (ext4_encrypted_inode(inode)) {
4213                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4214                         ext4_set_aops(inode);
4215                 } else if (ext4_inode_is_fast_symlink(inode)) {
4216                         inode->i_link = (char *)ei->i_data;
4217                         inode->i_op = &ext4_fast_symlink_inode_operations;
4218                         nd_terminate_link(ei->i_data, inode->i_size,
4219                                 sizeof(ei->i_data) - 1);
4220                 } else {
4221                         inode->i_op = &ext4_symlink_inode_operations;
4222                         ext4_set_aops(inode);
4223                 }
4224         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4225               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4226                 inode->i_op = &ext4_special_inode_operations;
4227                 if (raw_inode->i_block[0])
4228                         init_special_inode(inode, inode->i_mode,
4229                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4230                 else
4231                         init_special_inode(inode, inode->i_mode,
4232                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4233         } else if (ino == EXT4_BOOT_LOADER_INO) {
4234                 make_bad_inode(inode);
4235         } else {
4236                 ret = -EIO;
4237                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4238                 goto bad_inode;
4239         }
4240         brelse(iloc.bh);
4241         ext4_set_inode_flags(inode);
4242         unlock_new_inode(inode);
4243         return inode;
4244
4245 bad_inode:
4246         brelse(iloc.bh);
4247         iget_failed(inode);
4248         return ERR_PTR(ret);
4249 }
4250
4251 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4252 {
4253         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4254                 return ERR_PTR(-EIO);
4255         return ext4_iget(sb, ino);
4256 }
4257
4258 static int ext4_inode_blocks_set(handle_t *handle,
4259                                 struct ext4_inode *raw_inode,
4260                                 struct ext4_inode_info *ei)
4261 {
4262         struct inode *inode = &(ei->vfs_inode);
4263         u64 i_blocks = inode->i_blocks;
4264         struct super_block *sb = inode->i_sb;
4265
4266         if (i_blocks <= ~0U) {
4267                 /*
4268                  * i_blocks can be represented in a 32 bit variable
4269                  * as multiple of 512 bytes
4270                  */
4271                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4272                 raw_inode->i_blocks_high = 0;
4273                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4274                 return 0;
4275         }
4276         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4277                 return -EFBIG;
4278
4279         if (i_blocks <= 0xffffffffffffULL) {
4280                 /*
4281                  * i_blocks can be represented in a 48 bit variable
4282                  * as multiple of 512 bytes
4283                  */
4284                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4285                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4286                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4287         } else {
4288                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4289                 /* i_block is stored in file system block size */
4290                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4291                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4292                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4293         }
4294         return 0;
4295 }
4296
4297 struct other_inode {
4298         unsigned long           orig_ino;
4299         struct ext4_inode       *raw_inode;
4300 };
4301
4302 static int other_inode_match(struct inode * inode, unsigned long ino,
4303                              void *data)
4304 {
4305         struct other_inode *oi = (struct other_inode *) data;
4306
4307         if ((inode->i_ino != ino) ||
4308             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4309                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4310             ((inode->i_state & I_DIRTY_TIME) == 0))
4311                 return 0;
4312         spin_lock(&inode->i_lock);
4313         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4314                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4315             (inode->i_state & I_DIRTY_TIME)) {
4316                 struct ext4_inode_info  *ei = EXT4_I(inode);
4317
4318                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4319                 spin_unlock(&inode->i_lock);
4320
4321                 spin_lock(&ei->i_raw_lock);
4322                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4323                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4324                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4325                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4326                 spin_unlock(&ei->i_raw_lock);
4327                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4328                 return -1;
4329         }
4330         spin_unlock(&inode->i_lock);
4331         return -1;
4332 }
4333
4334 /*
4335  * Opportunistically update the other time fields for other inodes in
4336  * the same inode table block.
4337  */
4338 static void ext4_update_other_inodes_time(struct super_block *sb,
4339                                           unsigned long orig_ino, char *buf)
4340 {
4341         struct other_inode oi;
4342         unsigned long ino;
4343         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4344         int inode_size = EXT4_INODE_SIZE(sb);
4345
4346         oi.orig_ino = orig_ino;
4347         ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
4348         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4349                 if (ino == orig_ino)
4350                         continue;
4351                 oi.raw_inode = (struct ext4_inode *) buf;
4352                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4353         }
4354 }
4355
4356 /*
4357  * Post the struct inode info into an on-disk inode location in the
4358  * buffer-cache.  This gobbles the caller's reference to the
4359  * buffer_head in the inode location struct.
4360  *
4361  * The caller must have write access to iloc->bh.
4362  */
4363 static int ext4_do_update_inode(handle_t *handle,
4364                                 struct inode *inode,
4365                                 struct ext4_iloc *iloc)
4366 {
4367         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4368         struct ext4_inode_info *ei = EXT4_I(inode);
4369         struct buffer_head *bh = iloc->bh;
4370         struct super_block *sb = inode->i_sb;
4371         int err = 0, rc, block;
4372         int need_datasync = 0, set_large_file = 0;
4373         uid_t i_uid;
4374         gid_t i_gid;
4375
4376         spin_lock(&ei->i_raw_lock);
4377
4378         /* For fields not tracked in the in-memory inode,
4379          * initialise them to zero for new inodes. */
4380         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4381                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4382
4383         ext4_get_inode_flags(ei);
4384         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4385         i_uid = i_uid_read(inode);
4386         i_gid = i_gid_read(inode);
4387         if (!(test_opt(inode->i_sb, NO_UID32))) {
4388                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4389                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4390 /*
4391  * Fix up interoperability with old kernels. Otherwise, old inodes get
4392  * re-used with the upper 16 bits of the uid/gid intact
4393  */
4394                 if (!ei->i_dtime) {
4395                         raw_inode->i_uid_high =
4396                                 cpu_to_le16(high_16_bits(i_uid));
4397                         raw_inode->i_gid_high =
4398                                 cpu_to_le16(high_16_bits(i_gid));
4399                 } else {
4400                         raw_inode->i_uid_high = 0;
4401                         raw_inode->i_gid_high = 0;
4402                 }
4403         } else {
4404                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4405                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4406                 raw_inode->i_uid_high = 0;
4407                 raw_inode->i_gid_high = 0;
4408         }
4409         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4410
4411         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4412         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4413         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4414         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4415
4416         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4417         if (err) {
4418                 spin_unlock(&ei->i_raw_lock);
4419                 goto out_brelse;
4420         }
4421         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4422         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4423         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4424                 raw_inode->i_file_acl_high =
4425                         cpu_to_le16(ei->i_file_acl >> 32);
4426         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4427         if (ei->i_disksize != ext4_isize(raw_inode)) {
4428                 ext4_isize_set(raw_inode, ei->i_disksize);
4429                 need_datasync = 1;
4430         }
4431         if (ei->i_disksize > 0x7fffffffULL) {
4432                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4433                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4434                                 EXT4_SB(sb)->s_es->s_rev_level ==
4435                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4436                         set_large_file = 1;
4437         }
4438         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4439         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4440                 if (old_valid_dev(inode->i_rdev)) {
4441                         raw_inode->i_block[0] =
4442                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4443                         raw_inode->i_block[1] = 0;
4444                 } else {
4445                         raw_inode->i_block[0] = 0;
4446                         raw_inode->i_block[1] =
4447                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4448                         raw_inode->i_block[2] = 0;
4449                 }
4450         } else if (!ext4_has_inline_data(inode)) {
4451                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4452                         raw_inode->i_block[block] = ei->i_data[block];
4453         }
4454
4455         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4456                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4457                 if (ei->i_extra_isize) {
4458                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4459                                 raw_inode->i_version_hi =
4460                                         cpu_to_le32(inode->i_version >> 32);
4461                         raw_inode->i_extra_isize =
4462                                 cpu_to_le16(ei->i_extra_isize);
4463                 }
4464         }
4465         ext4_inode_csum_set(inode, raw_inode, ei);
4466         spin_unlock(&ei->i_raw_lock);
4467         if (inode->i_sb->s_flags & MS_LAZYTIME)
4468                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4469                                               bh->b_data);
4470
4471         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4472         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4473         if (!err)
4474                 err = rc;
4475         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4476         if (set_large_file) {
4477                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4478                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4479                 if (err)
4480                         goto out_brelse;
4481                 ext4_update_dynamic_rev(sb);
4482                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4483                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4484                 ext4_handle_sync(handle);
4485                 err = ext4_handle_dirty_super(handle, sb);
4486         }
4487         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4488 out_brelse:
4489         brelse(bh);
4490         ext4_std_error(inode->i_sb, err);
4491         return err;
4492 }
4493
4494 /*
4495  * ext4_write_inode()
4496  *
4497  * We are called from a few places:
4498  *
4499  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4500  *   Here, there will be no transaction running. We wait for any running
4501  *   transaction to commit.
4502  *
4503  * - Within flush work (sys_sync(), kupdate and such).
4504  *   We wait on commit, if told to.
4505  *
4506  * - Within iput_final() -> write_inode_now()
4507  *   We wait on commit, if told to.
4508  *
4509  * In all cases it is actually safe for us to return without doing anything,
4510  * because the inode has been copied into a raw inode buffer in
4511  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4512  * writeback.
4513  *
4514  * Note that we are absolutely dependent upon all inode dirtiers doing the
4515  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4516  * which we are interested.
4517  *
4518  * It would be a bug for them to not do this.  The code:
4519  *
4520  *      mark_inode_dirty(inode)
4521  *      stuff();
4522  *      inode->i_size = expr;
4523  *
4524  * is in error because write_inode() could occur while `stuff()' is running,
4525  * and the new i_size will be lost.  Plus the inode will no longer be on the
4526  * superblock's dirty inode list.
4527  */
4528 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4529 {
4530         int err;
4531
4532         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4533                 return 0;
4534
4535         if (EXT4_SB(inode->i_sb)->s_journal) {
4536                 if (ext4_journal_current_handle()) {
4537                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4538                         dump_stack();
4539                         return -EIO;
4540                 }
4541
4542                 /*
4543                  * No need to force transaction in WB_SYNC_NONE mode. Also
4544                  * ext4_sync_fs() will force the commit after everything is
4545                  * written.
4546                  */
4547                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4548                         return 0;
4549
4550                 err = ext4_force_commit(inode->i_sb);
4551         } else {
4552                 struct ext4_iloc iloc;
4553
4554                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4555                 if (err)
4556                         return err;
4557                 /*
4558                  * sync(2) will flush the whole buffer cache. No need to do
4559                  * it here separately for each inode.
4560                  */
4561                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4562                         sync_dirty_buffer(iloc.bh);
4563                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4564                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4565                                          "IO error syncing inode");
4566                         err = -EIO;
4567                 }
4568                 brelse(iloc.bh);
4569         }
4570         return err;
4571 }
4572
4573 /*
4574  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4575  * buffers that are attached to a page stradding i_size and are undergoing
4576  * commit. In that case we have to wait for commit to finish and try again.
4577  */
4578 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4579 {
4580         struct page *page;
4581         unsigned offset;
4582         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4583         tid_t commit_tid = 0;
4584         int ret;
4585
4586         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4587         /*
4588          * All buffers in the last page remain valid? Then there's nothing to
4589          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4590          * blocksize case
4591          */
4592         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4593                 return;
4594         while (1) {
4595                 page = find_lock_page(inode->i_mapping,
4596                                       inode->i_size >> PAGE_CACHE_SHIFT);
4597                 if (!page)
4598                         return;
4599                 ret = __ext4_journalled_invalidatepage(page, offset,
4600                                                 PAGE_CACHE_SIZE - offset);
4601                 unlock_page(page);
4602                 page_cache_release(page);
4603                 if (ret != -EBUSY)
4604                         return;
4605                 commit_tid = 0;
4606                 read_lock(&journal->j_state_lock);
4607                 if (journal->j_committing_transaction)
4608                         commit_tid = journal->j_committing_transaction->t_tid;
4609                 read_unlock(&journal->j_state_lock);
4610                 if (commit_tid)
4611                         jbd2_log_wait_commit(journal, commit_tid);
4612         }
4613 }
4614
4615 /*
4616  * ext4_setattr()
4617  *
4618  * Called from notify_change.
4619  *
4620  * We want to trap VFS attempts to truncate the file as soon as
4621  * possible.  In particular, we want to make sure that when the VFS
4622  * shrinks i_size, we put the inode on the orphan list and modify
4623  * i_disksize immediately, so that during the subsequent flushing of
4624  * dirty pages and freeing of disk blocks, we can guarantee that any
4625  * commit will leave the blocks being flushed in an unused state on
4626  * disk.  (On recovery, the inode will get truncated and the blocks will
4627  * be freed, so we have a strong guarantee that no future commit will
4628  * leave these blocks visible to the user.)
4629  *
4630  * Another thing we have to assure is that if we are in ordered mode
4631  * and inode is still attached to the committing transaction, we must
4632  * we start writeout of all the dirty pages which are being truncated.
4633  * This way we are sure that all the data written in the previous
4634  * transaction are already on disk (truncate waits for pages under
4635  * writeback).
4636  *
4637  * Called with inode->i_mutex down.
4638  */
4639 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4640 {
4641         struct inode *inode = d_inode(dentry);
4642         int error, rc = 0;
4643         int orphan = 0;
4644         const unsigned int ia_valid = attr->ia_valid;
4645
4646         error = inode_change_ok(inode, attr);
4647         if (error)
4648                 return error;
4649
4650         if (is_quota_modification(inode, attr))
4651                 dquot_initialize(inode);
4652         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4653             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4654                 handle_t *handle;
4655
4656                 /* (user+group)*(old+new) structure, inode write (sb,
4657                  * inode block, ? - but truncate inode update has it) */
4658                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4659                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4660                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4661                 if (IS_ERR(handle)) {
4662                         error = PTR_ERR(handle);
4663                         goto err_out;
4664                 }
4665                 error = dquot_transfer(inode, attr);
4666                 if (error) {
4667                         ext4_journal_stop(handle);
4668                         return error;
4669                 }
4670                 /* Update corresponding info in inode so that everything is in
4671                  * one transaction */
4672                 if (attr->ia_valid & ATTR_UID)
4673                         inode->i_uid = attr->ia_uid;
4674                 if (attr->ia_valid & ATTR_GID)
4675                         inode->i_gid = attr->ia_gid;
4676                 error = ext4_mark_inode_dirty(handle, inode);
4677                 ext4_journal_stop(handle);
4678         }
4679
4680         if (attr->ia_valid & ATTR_SIZE) {
4681                 handle_t *handle;
4682                 loff_t oldsize = inode->i_size;
4683                 int shrink = (attr->ia_size <= inode->i_size);
4684
4685                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4686                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4687
4688                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4689                                 return -EFBIG;
4690                 }
4691                 if (!S_ISREG(inode->i_mode))
4692                         return -EINVAL;
4693
4694                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4695                         inode_inc_iversion(inode);
4696
4697                 if (ext4_should_order_data(inode) &&
4698                     (attr->ia_size < inode->i_size)) {
4699                         error = ext4_begin_ordered_truncate(inode,
4700                                                             attr->ia_size);
4701                         if (error)
4702                                 goto err_out;
4703                 }
4704                 if (attr->ia_size != inode->i_size) {
4705                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4706                         if (IS_ERR(handle)) {
4707                                 error = PTR_ERR(handle);
4708                                 goto err_out;
4709                         }
4710                         if (ext4_handle_valid(handle) && shrink) {
4711                                 error = ext4_orphan_add(handle, inode);
4712                                 orphan = 1;
4713                         }
4714                         down_write(&EXT4_I(inode)->i_data_sem);
4715                         EXT4_I(inode)->i_disksize = attr->ia_size;
4716                         rc = ext4_mark_inode_dirty(handle, inode);
4717                         if (!error)
4718                                 error = rc;
4719                         /*
4720                          * We have to update i_size under i_data_sem together
4721                          * with i_disksize to avoid races with writeback code
4722                          * running ext4_wb_update_i_disksize().
4723                          */
4724                         if (!error)
4725                                 i_size_write(inode, attr->ia_size);
4726                         up_write(&EXT4_I(inode)->i_data_sem);
4727                         ext4_journal_stop(handle);
4728                         if (error) {
4729                                 if (orphan)
4730                                         ext4_orphan_del(NULL, inode);
4731                                 goto err_out;
4732                         }
4733                 }
4734                 if (!shrink)
4735                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4736
4737                 /*
4738                  * Blocks are going to be removed from the inode. Wait
4739                  * for dio in flight.  Temporarily disable
4740                  * dioread_nolock to prevent livelock.
4741                  */
4742                 if (orphan) {
4743                         if (!ext4_should_journal_data(inode)) {
4744                                 ext4_inode_block_unlocked_dio(inode);
4745                                 inode_dio_wait(inode);
4746                                 ext4_inode_resume_unlocked_dio(inode);
4747                         } else
4748                                 ext4_wait_for_tail_page_commit(inode);
4749                 }
4750                 /*
4751                  * Truncate pagecache after we've waited for commit
4752                  * in data=journal mode to make pages freeable.
4753                  */
4754                 truncate_pagecache(inode, inode->i_size);
4755                 if (shrink)
4756                         ext4_truncate(inode);
4757         }
4758
4759         if (!rc) {
4760                 setattr_copy(inode, attr);
4761                 mark_inode_dirty(inode);
4762         }
4763
4764         /*
4765          * If the call to ext4_truncate failed to get a transaction handle at
4766          * all, we need to clean up the in-core orphan list manually.
4767          */
4768         if (orphan && inode->i_nlink)
4769                 ext4_orphan_del(NULL, inode);
4770
4771         if (!rc && (ia_valid & ATTR_MODE))
4772                 rc = posix_acl_chmod(inode, inode->i_mode);
4773
4774 err_out:
4775         ext4_std_error(inode->i_sb, error);
4776         if (!error)
4777                 error = rc;
4778         return error;
4779 }
4780
4781 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4782                  struct kstat *stat)
4783 {
4784         struct inode *inode;
4785         unsigned long long delalloc_blocks;
4786
4787         inode = d_inode(dentry);
4788         generic_fillattr(inode, stat);
4789
4790         /*
4791          * If there is inline data in the inode, the inode will normally not
4792          * have data blocks allocated (it may have an external xattr block).
4793          * Report at least one sector for such files, so tools like tar, rsync,
4794          * others doen't incorrectly think the file is completely sparse.
4795          */
4796         if (unlikely(ext4_has_inline_data(inode)))
4797                 stat->blocks += (stat->size + 511) >> 9;
4798
4799         /*
4800          * We can't update i_blocks if the block allocation is delayed
4801          * otherwise in the case of system crash before the real block
4802          * allocation is done, we will have i_blocks inconsistent with
4803          * on-disk file blocks.
4804          * We always keep i_blocks updated together with real
4805          * allocation. But to not confuse with user, stat
4806          * will return the blocks that include the delayed allocation
4807          * blocks for this file.
4808          */
4809         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4810                                    EXT4_I(inode)->i_reserved_data_blocks);
4811         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4812         return 0;
4813 }
4814
4815 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4816                                    int pextents)
4817 {
4818         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4819                 return ext4_ind_trans_blocks(inode, lblocks);
4820         return ext4_ext_index_trans_blocks(inode, pextents);
4821 }
4822
4823 /*
4824  * Account for index blocks, block groups bitmaps and block group
4825  * descriptor blocks if modify datablocks and index blocks
4826  * worse case, the indexs blocks spread over different block groups
4827  *
4828  * If datablocks are discontiguous, they are possible to spread over
4829  * different block groups too. If they are contiguous, with flexbg,
4830  * they could still across block group boundary.
4831  *
4832  * Also account for superblock, inode, quota and xattr blocks
4833  */
4834 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4835                                   int pextents)
4836 {
4837         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4838         int gdpblocks;
4839         int idxblocks;
4840         int ret = 0;
4841
4842         /*
4843          * How many index blocks need to touch to map @lblocks logical blocks
4844          * to @pextents physical extents?
4845          */
4846         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4847
4848         ret = idxblocks;
4849
4850         /*
4851          * Now let's see how many group bitmaps and group descriptors need
4852          * to account
4853          */
4854         groups = idxblocks + pextents;
4855         gdpblocks = groups;
4856         if (groups > ngroups)
4857                 groups = ngroups;
4858         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4859                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4860
4861         /* bitmaps and block group descriptor blocks */
4862         ret += groups + gdpblocks;
4863
4864         /* Blocks for super block, inode, quota and xattr blocks */
4865         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4866
4867         return ret;
4868 }
4869
4870 /*
4871  * Calculate the total number of credits to reserve to fit
4872  * the modification of a single pages into a single transaction,
4873  * which may include multiple chunks of block allocations.
4874  *
4875  * This could be called via ext4_write_begin()
4876  *
4877  * We need to consider the worse case, when
4878  * one new block per extent.
4879  */
4880 int ext4_writepage_trans_blocks(struct inode *inode)
4881 {
4882         int bpp = ext4_journal_blocks_per_page(inode);
4883         int ret;
4884
4885         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4886
4887         /* Account for data blocks for journalled mode */
4888         if (ext4_should_journal_data(inode))
4889                 ret += bpp;
4890         return ret;
4891 }
4892
4893 /*
4894  * Calculate the journal credits for a chunk of data modification.
4895  *
4896  * This is called from DIO, fallocate or whoever calling
4897  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4898  *
4899  * journal buffers for data blocks are not included here, as DIO
4900  * and fallocate do no need to journal data buffers.
4901  */
4902 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4903 {
4904         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4905 }
4906
4907 /*
4908  * The caller must have previously called ext4_reserve_inode_write().
4909  * Give this, we know that the caller already has write access to iloc->bh.
4910  */
4911 int ext4_mark_iloc_dirty(handle_t *handle,
4912                          struct inode *inode, struct ext4_iloc *iloc)
4913 {
4914         int err = 0;
4915
4916         if (IS_I_VERSION(inode))
4917                 inode_inc_iversion(inode);
4918
4919         /* the do_update_inode consumes one bh->b_count */
4920         get_bh(iloc->bh);
4921
4922         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4923         err = ext4_do_update_inode(handle, inode, iloc);
4924         put_bh(iloc->bh);
4925         return err;
4926 }
4927
4928 /*
4929  * On success, We end up with an outstanding reference count against
4930  * iloc->bh.  This _must_ be cleaned up later.
4931  */
4932
4933 int
4934 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4935                          struct ext4_iloc *iloc)
4936 {
4937         int err;
4938
4939         err = ext4_get_inode_loc(inode, iloc);
4940         if (!err) {
4941                 BUFFER_TRACE(iloc->bh, "get_write_access");
4942                 err = ext4_journal_get_write_access(handle, iloc->bh);
4943                 if (err) {
4944                         brelse(iloc->bh);
4945                         iloc->bh = NULL;
4946                 }
4947         }
4948         ext4_std_error(inode->i_sb, err);
4949         return err;
4950 }
4951
4952 /*
4953  * Expand an inode by new_extra_isize bytes.
4954  * Returns 0 on success or negative error number on failure.
4955  */
4956 static int ext4_expand_extra_isize(struct inode *inode,
4957                                    unsigned int new_extra_isize,
4958                                    struct ext4_iloc iloc,
4959                                    handle_t *handle)
4960 {
4961         struct ext4_inode *raw_inode;
4962         struct ext4_xattr_ibody_header *header;
4963
4964         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4965                 return 0;
4966
4967         raw_inode = ext4_raw_inode(&iloc);
4968
4969         header = IHDR(inode, raw_inode);
4970
4971         /* No extended attributes present */
4972         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4973             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4974                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4975                         new_extra_isize);
4976                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4977                 return 0;
4978         }
4979
4980         /* try to expand with EAs present */
4981         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4982                                           raw_inode, handle);
4983 }
4984
4985 /*
4986  * What we do here is to mark the in-core inode as clean with respect to inode
4987  * dirtiness (it may still be data-dirty).
4988  * This means that the in-core inode may be reaped by prune_icache
4989  * without having to perform any I/O.  This is a very good thing,
4990  * because *any* task may call prune_icache - even ones which
4991  * have a transaction open against a different journal.
4992  *
4993  * Is this cheating?  Not really.  Sure, we haven't written the
4994  * inode out, but prune_icache isn't a user-visible syncing function.
4995  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4996  * we start and wait on commits.
4997  */
4998 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4999 {
5000         struct ext4_iloc iloc;
5001         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5002         static unsigned int mnt_count;
5003         int err, ret;
5004
5005         might_sleep();
5006         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5007         err = ext4_reserve_inode_write(handle, inode, &iloc);
5008         if (ext4_handle_valid(handle) &&
5009             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5010             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5011                 /*
5012                  * We need extra buffer credits since we may write into EA block
5013                  * with this same handle. If journal_extend fails, then it will
5014                  * only result in a minor loss of functionality for that inode.
5015                  * If this is felt to be critical, then e2fsck should be run to
5016                  * force a large enough s_min_extra_isize.
5017                  */
5018                 if ((jbd2_journal_extend(handle,
5019                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5020                         ret = ext4_expand_extra_isize(inode,
5021                                                       sbi->s_want_extra_isize,
5022                                                       iloc, handle);
5023                         if (ret) {
5024                                 ext4_set_inode_state(inode,
5025                                                      EXT4_STATE_NO_EXPAND);
5026                                 if (mnt_count !=
5027                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5028                                         ext4_warning(inode->i_sb,
5029                                         "Unable to expand inode %lu. Delete"
5030                                         " some EAs or run e2fsck.",
5031                                         inode->i_ino);
5032                                         mnt_count =
5033                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5034                                 }
5035                         }
5036                 }
5037         }
5038         if (!err)
5039                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5040         return err;
5041 }
5042
5043 /*
5044  * ext4_dirty_inode() is called from __mark_inode_dirty()
5045  *
5046  * We're really interested in the case where a file is being extended.
5047  * i_size has been changed by generic_commit_write() and we thus need
5048  * to include the updated inode in the current transaction.
5049  *
5050  * Also, dquot_alloc_block() will always dirty the inode when blocks
5051  * are allocated to the file.
5052  *
5053  * If the inode is marked synchronous, we don't honour that here - doing
5054  * so would cause a commit on atime updates, which we don't bother doing.
5055  * We handle synchronous inodes at the highest possible level.
5056  *
5057  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5058  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5059  * to copy into the on-disk inode structure are the timestamp files.
5060  */
5061 void ext4_dirty_inode(struct inode *inode, int flags)
5062 {
5063         handle_t *handle;
5064
5065         if (flags == I_DIRTY_TIME)
5066                 return;
5067         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5068         if (IS_ERR(handle))
5069                 goto out;
5070
5071         ext4_mark_inode_dirty(handle, inode);
5072
5073         ext4_journal_stop(handle);
5074 out:
5075         return;
5076 }
5077
5078 #if 0
5079 /*
5080  * Bind an inode's backing buffer_head into this transaction, to prevent
5081  * it from being flushed to disk early.  Unlike
5082  * ext4_reserve_inode_write, this leaves behind no bh reference and
5083  * returns no iloc structure, so the caller needs to repeat the iloc
5084  * lookup to mark the inode dirty later.
5085  */
5086 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5087 {
5088         struct ext4_iloc iloc;
5089
5090         int err = 0;
5091         if (handle) {
5092                 err = ext4_get_inode_loc(inode, &iloc);
5093                 if (!err) {
5094                         BUFFER_TRACE(iloc.bh, "get_write_access");
5095                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5096                         if (!err)
5097                                 err = ext4_handle_dirty_metadata(handle,
5098                                                                  NULL,
5099                                                                  iloc.bh);
5100                         brelse(iloc.bh);
5101                 }
5102         }
5103         ext4_std_error(inode->i_sb, err);
5104         return err;
5105 }
5106 #endif
5107
5108 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5109 {
5110         journal_t *journal;
5111         handle_t *handle;
5112         int err;
5113
5114         /*
5115          * We have to be very careful here: changing a data block's
5116          * journaling status dynamically is dangerous.  If we write a
5117          * data block to the journal, change the status and then delete
5118          * that block, we risk forgetting to revoke the old log record
5119          * from the journal and so a subsequent replay can corrupt data.
5120          * So, first we make sure that the journal is empty and that
5121          * nobody is changing anything.
5122          */
5123
5124         journal = EXT4_JOURNAL(inode);
5125         if (!journal)
5126                 return 0;
5127         if (is_journal_aborted(journal))
5128                 return -EROFS;
5129         /* We have to allocate physical blocks for delalloc blocks
5130          * before flushing journal. otherwise delalloc blocks can not
5131          * be allocated any more. even more truncate on delalloc blocks
5132          * could trigger BUG by flushing delalloc blocks in journal.
5133          * There is no delalloc block in non-journal data mode.
5134          */
5135         if (val && test_opt(inode->i_sb, DELALLOC)) {
5136                 err = ext4_alloc_da_blocks(inode);
5137                 if (err < 0)
5138                         return err;
5139         }
5140
5141         /* Wait for all existing dio workers */
5142         ext4_inode_block_unlocked_dio(inode);
5143         inode_dio_wait(inode);
5144
5145         jbd2_journal_lock_updates(journal);
5146
5147         /*
5148          * OK, there are no updates running now, and all cached data is
5149          * synced to disk.  We are now in a completely consistent state
5150          * which doesn't have anything in the journal, and we know that
5151          * no filesystem updates are running, so it is safe to modify
5152          * the inode's in-core data-journaling state flag now.
5153          */
5154
5155         if (val)
5156                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5157         else {
5158                 err = jbd2_journal_flush(journal);
5159                 if (err < 0) {
5160                         jbd2_journal_unlock_updates(journal);
5161                         ext4_inode_resume_unlocked_dio(inode);
5162                         return err;
5163                 }
5164                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5165         }
5166         ext4_set_aops(inode);
5167
5168         jbd2_journal_unlock_updates(journal);
5169         ext4_inode_resume_unlocked_dio(inode);
5170
5171         /* Finally we can mark the inode as dirty. */
5172
5173         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5174         if (IS_ERR(handle))
5175                 return PTR_ERR(handle);
5176
5177         err = ext4_mark_inode_dirty(handle, inode);
5178         ext4_handle_sync(handle);
5179         ext4_journal_stop(handle);
5180         ext4_std_error(inode->i_sb, err);
5181
5182         return err;
5183 }
5184
5185 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5186 {
5187         return !buffer_mapped(bh);
5188 }
5189
5190 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5191 {
5192         struct page *page = vmf->page;
5193         loff_t size;
5194         unsigned long len;
5195         int ret;
5196         struct file *file = vma->vm_file;
5197         struct inode *inode = file_inode(file);
5198         struct address_space *mapping = inode->i_mapping;
5199         handle_t *handle;
5200         get_block_t *get_block;
5201         int retries = 0;
5202
5203         sb_start_pagefault(inode->i_sb);
5204         file_update_time(vma->vm_file);
5205         /* Delalloc case is easy... */
5206         if (test_opt(inode->i_sb, DELALLOC) &&
5207             !ext4_should_journal_data(inode) &&
5208             !ext4_nonda_switch(inode->i_sb)) {
5209                 do {
5210                         ret = __block_page_mkwrite(vma, vmf,
5211                                                    ext4_da_get_block_prep);
5212                 } while (ret == -ENOSPC &&
5213                        ext4_should_retry_alloc(inode->i_sb, &retries));
5214                 goto out_ret;
5215         }
5216
5217         lock_page(page);
5218         size = i_size_read(inode);
5219         /* Page got truncated from under us? */
5220         if (page->mapping != mapping || page_offset(page) > size) {
5221                 unlock_page(page);
5222                 ret = VM_FAULT_NOPAGE;
5223                 goto out;
5224         }
5225
5226         if (page->index == size >> PAGE_CACHE_SHIFT)
5227                 len = size & ~PAGE_CACHE_MASK;
5228         else
5229                 len = PAGE_CACHE_SIZE;
5230         /*
5231          * Return if we have all the buffers mapped. This avoids the need to do
5232          * journal_start/journal_stop which can block and take a long time
5233          */
5234         if (page_has_buffers(page)) {
5235                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5236                                             0, len, NULL,
5237                                             ext4_bh_unmapped)) {
5238                         /* Wait so that we don't change page under IO */
5239                         wait_for_stable_page(page);
5240                         ret = VM_FAULT_LOCKED;
5241                         goto out;
5242                 }
5243         }
5244         unlock_page(page);
5245         /* OK, we need to fill the hole... */
5246         if (ext4_should_dioread_nolock(inode))
5247                 get_block = ext4_get_block_write;
5248         else
5249                 get_block = ext4_get_block;
5250 retry_alloc:
5251         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5252                                     ext4_writepage_trans_blocks(inode));
5253         if (IS_ERR(handle)) {
5254                 ret = VM_FAULT_SIGBUS;
5255                 goto out;
5256         }
5257         ret = __block_page_mkwrite(vma, vmf, get_block);
5258         if (!ret && ext4_should_journal_data(inode)) {
5259                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5260                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5261                         unlock_page(page);
5262                         ret = VM_FAULT_SIGBUS;
5263                         ext4_journal_stop(handle);
5264                         goto out;
5265                 }
5266                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5267         }
5268         ext4_journal_stop(handle);
5269         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5270                 goto retry_alloc;
5271 out_ret:
5272         ret = block_page_mkwrite_return(ret);
5273 out:
5274         sb_end_pagefault(inode->i_sb);
5275         return ret;
5276 }