Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
58
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67         struct scrub_block      *sblock;
68         struct page             *page;
69         struct btrfs_device     *dev;
70         u64                     flags;  /* extent flags */
71         u64                     generation;
72         u64                     logical;
73         u64                     physical;
74         u64                     physical_for_dev_replace;
75         atomic_t                ref_count;
76         struct {
77                 unsigned int    mirror_num:8;
78                 unsigned int    have_csum:1;
79                 unsigned int    io_error:1;
80         };
81         u8                      csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85         int                     index;
86         struct scrub_ctx        *sctx;
87         struct btrfs_device     *dev;
88         struct bio              *bio;
89         int                     err;
90         u64                     logical;
91         u64                     physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97         int                     page_count;
98         int                     next_free;
99         struct btrfs_work       work;
100 };
101
102 struct scrub_block {
103         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104         int                     page_count;
105         atomic_t                outstanding_pages;
106         atomic_t                ref_count; /* free mem on transition to zero */
107         struct scrub_ctx        *sctx;
108         struct {
109                 unsigned int    header_error:1;
110                 unsigned int    checksum_error:1;
111                 unsigned int    no_io_error_seen:1;
112                 unsigned int    generation_error:1; /* also sets header_error */
113         };
114 };
115
116 struct scrub_wr_ctx {
117         struct scrub_bio *wr_curr_bio;
118         struct btrfs_device *tgtdev;
119         int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120         atomic_t flush_all_writes;
121         struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
126         struct btrfs_root       *dev_root;
127         int                     first_free;
128         int                     curr;
129         atomic_t                bios_in_flight;
130         atomic_t                workers_pending;
131         spinlock_t              list_lock;
132         wait_queue_head_t       list_wait;
133         u16                     csum_size;
134         struct list_head        csum_list;
135         atomic_t                cancel_req;
136         int                     readonly;
137         int                     pages_per_rd_bio;
138         u32                     sectorsize;
139         u32                     nodesize;
140         u32                     leafsize;
141
142         int                     is_dev_replace;
143         struct scrub_wr_ctx     wr_ctx;
144
145         /*
146          * statistics
147          */
148         struct btrfs_scrub_progress stat;
149         spinlock_t              stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153         struct scrub_ctx        *sctx;
154         struct btrfs_device     *dev;
155         u64                     logical;
156         struct btrfs_root       *root;
157         struct btrfs_work       work;
158         int                     mirror_num;
159 };
160
161 struct scrub_nocow_inode {
162         u64                     inum;
163         u64                     offset;
164         u64                     root;
165         struct list_head        list;
166 };
167
168 struct scrub_copy_nocow_ctx {
169         struct scrub_ctx        *sctx;
170         u64                     logical;
171         u64                     len;
172         int                     mirror_num;
173         u64                     physical_for_dev_replace;
174         struct list_head        inodes;
175         struct btrfs_work       work;
176 };
177
178 struct scrub_warning {
179         struct btrfs_path       *path;
180         u64                     extent_item_size;
181         char                    *scratch_buf;
182         char                    *msg_buf;
183         const char              *errstr;
184         sector_t                sector;
185         u64                     logical;
186         struct btrfs_device     *dev;
187         int                     msg_bufsize;
188         int                     scratch_bufsize;
189 };
190
191
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198                                      struct btrfs_fs_info *fs_info,
199                                      struct scrub_block *original_sblock,
200                                      u64 length, u64 logical,
201                                      struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203                                 struct scrub_block *sblock, int is_metadata,
204                                 int have_csum, u8 *csum, u64 generation,
205                                 u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207                                          struct scrub_block *sblock,
208                                          int is_metadata, int have_csum,
209                                          const u8 *csum, u64 generation,
210                                          u16 csum_size);
211 static void scrub_complete_bio_end_io(struct bio *bio, int err);
212 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
213                                              struct scrub_block *sblock_good,
214                                              int force_write);
215 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
216                                             struct scrub_block *sblock_good,
217                                             int page_num, int force_write);
218 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
220                                            int page_num);
221 static int scrub_checksum_data(struct scrub_block *sblock);
222 static int scrub_checksum_tree_block(struct scrub_block *sblock);
223 static int scrub_checksum_super(struct scrub_block *sblock);
224 static void scrub_block_get(struct scrub_block *sblock);
225 static void scrub_block_put(struct scrub_block *sblock);
226 static void scrub_page_get(struct scrub_page *spage);
227 static void scrub_page_put(struct scrub_page *spage);
228 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
229                                     struct scrub_page *spage);
230 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
231                        u64 physical, struct btrfs_device *dev, u64 flags,
232                        u64 gen, int mirror_num, u8 *csum, int force,
233                        u64 physical_for_dev_replace);
234 static void scrub_bio_end_io(struct bio *bio, int err);
235 static void scrub_bio_end_io_worker(struct btrfs_work *work);
236 static void scrub_block_complete(struct scrub_block *sblock);
237 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
238                                u64 extent_logical, u64 extent_len,
239                                u64 *extent_physical,
240                                struct btrfs_device **extent_dev,
241                                int *extent_mirror_num);
242 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
243                               struct scrub_wr_ctx *wr_ctx,
244                               struct btrfs_fs_info *fs_info,
245                               struct btrfs_device *dev,
246                               int is_dev_replace);
247 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
248 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
249                                     struct scrub_page *spage);
250 static void scrub_wr_submit(struct scrub_ctx *sctx);
251 static void scrub_wr_bio_end_io(struct bio *bio, int err);
252 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
253 static int write_page_nocow(struct scrub_ctx *sctx,
254                             u64 physical_for_dev_replace, struct page *page);
255 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
256                                       struct scrub_copy_nocow_ctx *ctx);
257 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
258                             int mirror_num, u64 physical_for_dev_replace);
259 static void copy_nocow_pages_worker(struct btrfs_work *work);
260
261
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264         atomic_inc(&sctx->bios_in_flight);
265 }
266
267 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
268 {
269         atomic_dec(&sctx->bios_in_flight);
270         wake_up(&sctx->list_wait);
271 }
272
273 /*
274  * used for workers that require transaction commits (i.e., for the
275  * NOCOW case)
276  */
277 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
278 {
279         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
280
281         /*
282          * increment scrubs_running to prevent cancel requests from
283          * completing as long as a worker is running. we must also
284          * increment scrubs_paused to prevent deadlocking on pause
285          * requests used for transactions commits (as the worker uses a
286          * transaction context). it is safe to regard the worker
287          * as paused for all matters practical. effectively, we only
288          * avoid cancellation requests from completing.
289          */
290         mutex_lock(&fs_info->scrub_lock);
291         atomic_inc(&fs_info->scrubs_running);
292         atomic_inc(&fs_info->scrubs_paused);
293         mutex_unlock(&fs_info->scrub_lock);
294         atomic_inc(&sctx->workers_pending);
295 }
296
297 /* used for workers that require transaction commits */
298 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
299 {
300         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
301
302         /*
303          * see scrub_pending_trans_workers_inc() why we're pretending
304          * to be paused in the scrub counters
305          */
306         mutex_lock(&fs_info->scrub_lock);
307         atomic_dec(&fs_info->scrubs_running);
308         atomic_dec(&fs_info->scrubs_paused);
309         mutex_unlock(&fs_info->scrub_lock);
310         atomic_dec(&sctx->workers_pending);
311         wake_up(&fs_info->scrub_pause_wait);
312         wake_up(&sctx->list_wait);
313 }
314
315 static void scrub_free_csums(struct scrub_ctx *sctx)
316 {
317         while (!list_empty(&sctx->csum_list)) {
318                 struct btrfs_ordered_sum *sum;
319                 sum = list_first_entry(&sctx->csum_list,
320                                        struct btrfs_ordered_sum, list);
321                 list_del(&sum->list);
322                 kfree(sum);
323         }
324 }
325
326 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
327 {
328         int i;
329
330         if (!sctx)
331                 return;
332
333         scrub_free_wr_ctx(&sctx->wr_ctx);
334
335         /* this can happen when scrub is cancelled */
336         if (sctx->curr != -1) {
337                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
338
339                 for (i = 0; i < sbio->page_count; i++) {
340                         WARN_ON(!sbio->pagev[i]->page);
341                         scrub_block_put(sbio->pagev[i]->sblock);
342                 }
343                 bio_put(sbio->bio);
344         }
345
346         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
347                 struct scrub_bio *sbio = sctx->bios[i];
348
349                 if (!sbio)
350                         break;
351                 kfree(sbio);
352         }
353
354         scrub_free_csums(sctx);
355         kfree(sctx);
356 }
357
358 static noinline_for_stack
359 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
360 {
361         struct scrub_ctx *sctx;
362         int             i;
363         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
364         int pages_per_rd_bio;
365         int ret;
366
367         /*
368          * the setting of pages_per_rd_bio is correct for scrub but might
369          * be wrong for the dev_replace code where we might read from
370          * different devices in the initial huge bios. However, that
371          * code is able to correctly handle the case when adding a page
372          * to a bio fails.
373          */
374         if (dev->bdev)
375                 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
376                                          bio_get_nr_vecs(dev->bdev));
377         else
378                 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
379         sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
380         if (!sctx)
381                 goto nomem;
382         sctx->is_dev_replace = is_dev_replace;
383         sctx->pages_per_rd_bio = pages_per_rd_bio;
384         sctx->curr = -1;
385         sctx->dev_root = dev->dev_root;
386         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
387                 struct scrub_bio *sbio;
388
389                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
390                 if (!sbio)
391                         goto nomem;
392                 sctx->bios[i] = sbio;
393
394                 sbio->index = i;
395                 sbio->sctx = sctx;
396                 sbio->page_count = 0;
397                 sbio->work.func = scrub_bio_end_io_worker;
398
399                 if (i != SCRUB_BIOS_PER_SCTX - 1)
400                         sctx->bios[i]->next_free = i + 1;
401                 else
402                         sctx->bios[i]->next_free = -1;
403         }
404         sctx->first_free = 0;
405         sctx->nodesize = dev->dev_root->nodesize;
406         sctx->leafsize = dev->dev_root->leafsize;
407         sctx->sectorsize = dev->dev_root->sectorsize;
408         atomic_set(&sctx->bios_in_flight, 0);
409         atomic_set(&sctx->workers_pending, 0);
410         atomic_set(&sctx->cancel_req, 0);
411         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
412         INIT_LIST_HEAD(&sctx->csum_list);
413
414         spin_lock_init(&sctx->list_lock);
415         spin_lock_init(&sctx->stat_lock);
416         init_waitqueue_head(&sctx->list_wait);
417
418         ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
419                                  fs_info->dev_replace.tgtdev, is_dev_replace);
420         if (ret) {
421                 scrub_free_ctx(sctx);
422                 return ERR_PTR(ret);
423         }
424         return sctx;
425
426 nomem:
427         scrub_free_ctx(sctx);
428         return ERR_PTR(-ENOMEM);
429 }
430
431 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
432                                      void *warn_ctx)
433 {
434         u64 isize;
435         u32 nlink;
436         int ret;
437         int i;
438         struct extent_buffer *eb;
439         struct btrfs_inode_item *inode_item;
440         struct scrub_warning *swarn = warn_ctx;
441         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
442         struct inode_fs_paths *ipath = NULL;
443         struct btrfs_root *local_root;
444         struct btrfs_key root_key;
445
446         root_key.objectid = root;
447         root_key.type = BTRFS_ROOT_ITEM_KEY;
448         root_key.offset = (u64)-1;
449         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
450         if (IS_ERR(local_root)) {
451                 ret = PTR_ERR(local_root);
452                 goto err;
453         }
454
455         ret = inode_item_info(inum, 0, local_root, swarn->path);
456         if (ret) {
457                 btrfs_release_path(swarn->path);
458                 goto err;
459         }
460
461         eb = swarn->path->nodes[0];
462         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
463                                         struct btrfs_inode_item);
464         isize = btrfs_inode_size(eb, inode_item);
465         nlink = btrfs_inode_nlink(eb, inode_item);
466         btrfs_release_path(swarn->path);
467
468         ipath = init_ipath(4096, local_root, swarn->path);
469         if (IS_ERR(ipath)) {
470                 ret = PTR_ERR(ipath);
471                 ipath = NULL;
472                 goto err;
473         }
474         ret = paths_from_inode(inum, ipath);
475
476         if (ret < 0)
477                 goto err;
478
479         /*
480          * we deliberately ignore the bit ipath might have been too small to
481          * hold all of the paths here
482          */
483         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
484                 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
485                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
486                         "length %llu, links %u (path: %s)\n", swarn->errstr,
487                         swarn->logical, rcu_str_deref(swarn->dev->name),
488                         (unsigned long long)swarn->sector, root, inum, offset,
489                         min(isize - offset, (u64)PAGE_SIZE), nlink,
490                         (char *)(unsigned long)ipath->fspath->val[i]);
491
492         free_ipath(ipath);
493         return 0;
494
495 err:
496         printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
497                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
498                 "resolving failed with ret=%d\n", swarn->errstr,
499                 swarn->logical, rcu_str_deref(swarn->dev->name),
500                 (unsigned long long)swarn->sector, root, inum, offset, ret);
501
502         free_ipath(ipath);
503         return 0;
504 }
505
506 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
507 {
508         struct btrfs_device *dev;
509         struct btrfs_fs_info *fs_info;
510         struct btrfs_path *path;
511         struct btrfs_key found_key;
512         struct extent_buffer *eb;
513         struct btrfs_extent_item *ei;
514         struct scrub_warning swarn;
515         unsigned long ptr = 0;
516         u64 extent_item_pos;
517         u64 flags = 0;
518         u64 ref_root;
519         u32 item_size;
520         u8 ref_level;
521         const int bufsize = 4096;
522         int ret;
523
524         WARN_ON(sblock->page_count < 1);
525         dev = sblock->pagev[0]->dev;
526         fs_info = sblock->sctx->dev_root->fs_info;
527
528         path = btrfs_alloc_path();
529
530         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
531         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
532         swarn.sector = (sblock->pagev[0]->physical) >> 9;
533         swarn.logical = sblock->pagev[0]->logical;
534         swarn.errstr = errstr;
535         swarn.dev = NULL;
536         swarn.msg_bufsize = bufsize;
537         swarn.scratch_bufsize = bufsize;
538
539         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
540                 goto out;
541
542         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
543                                   &flags);
544         if (ret < 0)
545                 goto out;
546
547         extent_item_pos = swarn.logical - found_key.objectid;
548         swarn.extent_item_size = found_key.offset;
549
550         eb = path->nodes[0];
551         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
552         item_size = btrfs_item_size_nr(eb, path->slots[0]);
553
554         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
555                 do {
556                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
557                                                         &ref_root, &ref_level);
558                         printk_in_rcu(KERN_WARNING
559                                 "btrfs: %s at logical %llu on dev %s, "
560                                 "sector %llu: metadata %s (level %d) in tree "
561                                 "%llu\n", errstr, swarn.logical,
562                                 rcu_str_deref(dev->name),
563                                 (unsigned long long)swarn.sector,
564                                 ref_level ? "node" : "leaf",
565                                 ret < 0 ? -1 : ref_level,
566                                 ret < 0 ? -1 : ref_root);
567                 } while (ret != 1);
568                 btrfs_release_path(path);
569         } else {
570                 btrfs_release_path(path);
571                 swarn.path = path;
572                 swarn.dev = dev;
573                 iterate_extent_inodes(fs_info, found_key.objectid,
574                                         extent_item_pos, 1,
575                                         scrub_print_warning_inode, &swarn);
576         }
577
578 out:
579         btrfs_free_path(path);
580         kfree(swarn.scratch_buf);
581         kfree(swarn.msg_buf);
582 }
583
584 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
585 {
586         struct page *page = NULL;
587         unsigned long index;
588         struct scrub_fixup_nodatasum *fixup = fixup_ctx;
589         int ret;
590         int corrected = 0;
591         struct btrfs_key key;
592         struct inode *inode = NULL;
593         struct btrfs_fs_info *fs_info;
594         u64 end = offset + PAGE_SIZE - 1;
595         struct btrfs_root *local_root;
596         int srcu_index;
597
598         key.objectid = root;
599         key.type = BTRFS_ROOT_ITEM_KEY;
600         key.offset = (u64)-1;
601
602         fs_info = fixup->root->fs_info;
603         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
604
605         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
606         if (IS_ERR(local_root)) {
607                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608                 return PTR_ERR(local_root);
609         }
610
611         key.type = BTRFS_INODE_ITEM_KEY;
612         key.objectid = inum;
613         key.offset = 0;
614         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
615         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
616         if (IS_ERR(inode))
617                 return PTR_ERR(inode);
618
619         index = offset >> PAGE_CACHE_SHIFT;
620
621         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
622         if (!page) {
623                 ret = -ENOMEM;
624                 goto out;
625         }
626
627         if (PageUptodate(page)) {
628                 if (PageDirty(page)) {
629                         /*
630                          * we need to write the data to the defect sector. the
631                          * data that was in that sector is not in memory,
632                          * because the page was modified. we must not write the
633                          * modified page to that sector.
634                          *
635                          * TODO: what could be done here: wait for the delalloc
636                          *       runner to write out that page (might involve
637                          *       COW) and see whether the sector is still
638                          *       referenced afterwards.
639                          *
640                          * For the meantime, we'll treat this error
641                          * incorrectable, although there is a chance that a
642                          * later scrub will find the bad sector again and that
643                          * there's no dirty page in memory, then.
644                          */
645                         ret = -EIO;
646                         goto out;
647                 }
648                 fs_info = BTRFS_I(inode)->root->fs_info;
649                 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
650                                         fixup->logical, page,
651                                         fixup->mirror_num);
652                 unlock_page(page);
653                 corrected = !ret;
654         } else {
655                 /*
656                  * we need to get good data first. the general readpage path
657                  * will call repair_io_failure for us, we just have to make
658                  * sure we read the bad mirror.
659                  */
660                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
661                                         EXTENT_DAMAGED, GFP_NOFS);
662                 if (ret) {
663                         /* set_extent_bits should give proper error */
664                         WARN_ON(ret > 0);
665                         if (ret > 0)
666                                 ret = -EFAULT;
667                         goto out;
668                 }
669
670                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
671                                                 btrfs_get_extent,
672                                                 fixup->mirror_num);
673                 wait_on_page_locked(page);
674
675                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
676                                                 end, EXTENT_DAMAGED, 0, NULL);
677                 if (!corrected)
678                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
679                                                 EXTENT_DAMAGED, GFP_NOFS);
680         }
681
682 out:
683         if (page)
684                 put_page(page);
685         if (inode)
686                 iput(inode);
687
688         if (ret < 0)
689                 return ret;
690
691         if (ret == 0 && corrected) {
692                 /*
693                  * we only need to call readpage for one of the inodes belonging
694                  * to this extent. so make iterate_extent_inodes stop
695                  */
696                 return 1;
697         }
698
699         return -EIO;
700 }
701
702 static void scrub_fixup_nodatasum(struct btrfs_work *work)
703 {
704         int ret;
705         struct scrub_fixup_nodatasum *fixup;
706         struct scrub_ctx *sctx;
707         struct btrfs_trans_handle *trans = NULL;
708         struct btrfs_fs_info *fs_info;
709         struct btrfs_path *path;
710         int uncorrectable = 0;
711
712         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
713         sctx = fixup->sctx;
714         fs_info = fixup->root->fs_info;
715
716         path = btrfs_alloc_path();
717         if (!path) {
718                 spin_lock(&sctx->stat_lock);
719                 ++sctx->stat.malloc_errors;
720                 spin_unlock(&sctx->stat_lock);
721                 uncorrectable = 1;
722                 goto out;
723         }
724
725         trans = btrfs_join_transaction(fixup->root);
726         if (IS_ERR(trans)) {
727                 uncorrectable = 1;
728                 goto out;
729         }
730
731         /*
732          * the idea is to trigger a regular read through the standard path. we
733          * read a page from the (failed) logical address by specifying the
734          * corresponding copynum of the failed sector. thus, that readpage is
735          * expected to fail.
736          * that is the point where on-the-fly error correction will kick in
737          * (once it's finished) and rewrite the failed sector if a good copy
738          * can be found.
739          */
740         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
741                                                 path, scrub_fixup_readpage,
742                                                 fixup);
743         if (ret < 0) {
744                 uncorrectable = 1;
745                 goto out;
746         }
747         WARN_ON(ret != 1);
748
749         spin_lock(&sctx->stat_lock);
750         ++sctx->stat.corrected_errors;
751         spin_unlock(&sctx->stat_lock);
752
753 out:
754         if (trans && !IS_ERR(trans))
755                 btrfs_end_transaction(trans, fixup->root);
756         if (uncorrectable) {
757                 spin_lock(&sctx->stat_lock);
758                 ++sctx->stat.uncorrectable_errors;
759                 spin_unlock(&sctx->stat_lock);
760                 btrfs_dev_replace_stats_inc(
761                         &sctx->dev_root->fs_info->dev_replace.
762                         num_uncorrectable_read_errors);
763                 printk_ratelimited_in_rcu(KERN_ERR
764                         "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
765                         fixup->logical, rcu_str_deref(fixup->dev->name));
766         }
767
768         btrfs_free_path(path);
769         kfree(fixup);
770
771         scrub_pending_trans_workers_dec(sctx);
772 }
773
774 /*
775  * scrub_handle_errored_block gets called when either verification of the
776  * pages failed or the bio failed to read, e.g. with EIO. In the latter
777  * case, this function handles all pages in the bio, even though only one
778  * may be bad.
779  * The goal of this function is to repair the errored block by using the
780  * contents of one of the mirrors.
781  */
782 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
783 {
784         struct scrub_ctx *sctx = sblock_to_check->sctx;
785         struct btrfs_device *dev;
786         struct btrfs_fs_info *fs_info;
787         u64 length;
788         u64 logical;
789         u64 generation;
790         unsigned int failed_mirror_index;
791         unsigned int is_metadata;
792         unsigned int have_csum;
793         u8 *csum;
794         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
795         struct scrub_block *sblock_bad;
796         int ret;
797         int mirror_index;
798         int page_num;
799         int success;
800         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
801                                       DEFAULT_RATELIMIT_BURST);
802
803         BUG_ON(sblock_to_check->page_count < 1);
804         fs_info = sctx->dev_root->fs_info;
805         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
806                 /*
807                  * if we find an error in a super block, we just report it.
808                  * They will get written with the next transaction commit
809                  * anyway
810                  */
811                 spin_lock(&sctx->stat_lock);
812                 ++sctx->stat.super_errors;
813                 spin_unlock(&sctx->stat_lock);
814                 return 0;
815         }
816         length = sblock_to_check->page_count * PAGE_SIZE;
817         logical = sblock_to_check->pagev[0]->logical;
818         generation = sblock_to_check->pagev[0]->generation;
819         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
820         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
821         is_metadata = !(sblock_to_check->pagev[0]->flags &
822                         BTRFS_EXTENT_FLAG_DATA);
823         have_csum = sblock_to_check->pagev[0]->have_csum;
824         csum = sblock_to_check->pagev[0]->csum;
825         dev = sblock_to_check->pagev[0]->dev;
826
827         if (sctx->is_dev_replace && !is_metadata && !have_csum) {
828                 sblocks_for_recheck = NULL;
829                 goto nodatasum_case;
830         }
831
832         /*
833          * read all mirrors one after the other. This includes to
834          * re-read the extent or metadata block that failed (that was
835          * the cause that this fixup code is called) another time,
836          * page by page this time in order to know which pages
837          * caused I/O errors and which ones are good (for all mirrors).
838          * It is the goal to handle the situation when more than one
839          * mirror contains I/O errors, but the errors do not
840          * overlap, i.e. the data can be repaired by selecting the
841          * pages from those mirrors without I/O error on the
842          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
843          * would be that mirror #1 has an I/O error on the first page,
844          * the second page is good, and mirror #2 has an I/O error on
845          * the second page, but the first page is good.
846          * Then the first page of the first mirror can be repaired by
847          * taking the first page of the second mirror, and the
848          * second page of the second mirror can be repaired by
849          * copying the contents of the 2nd page of the 1st mirror.
850          * One more note: if the pages of one mirror contain I/O
851          * errors, the checksum cannot be verified. In order to get
852          * the best data for repairing, the first attempt is to find
853          * a mirror without I/O errors and with a validated checksum.
854          * Only if this is not possible, the pages are picked from
855          * mirrors with I/O errors without considering the checksum.
856          * If the latter is the case, at the end, the checksum of the
857          * repaired area is verified in order to correctly maintain
858          * the statistics.
859          */
860
861         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
862                                      sizeof(*sblocks_for_recheck),
863                                      GFP_NOFS);
864         if (!sblocks_for_recheck) {
865                 spin_lock(&sctx->stat_lock);
866                 sctx->stat.malloc_errors++;
867                 sctx->stat.read_errors++;
868                 sctx->stat.uncorrectable_errors++;
869                 spin_unlock(&sctx->stat_lock);
870                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
871                 goto out;
872         }
873
874         /* setup the context, map the logical blocks and alloc the pages */
875         ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
876                                         logical, sblocks_for_recheck);
877         if (ret) {
878                 spin_lock(&sctx->stat_lock);
879                 sctx->stat.read_errors++;
880                 sctx->stat.uncorrectable_errors++;
881                 spin_unlock(&sctx->stat_lock);
882                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
883                 goto out;
884         }
885         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
886         sblock_bad = sblocks_for_recheck + failed_mirror_index;
887
888         /* build and submit the bios for the failed mirror, check checksums */
889         scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
890                             csum, generation, sctx->csum_size);
891
892         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
893             sblock_bad->no_io_error_seen) {
894                 /*
895                  * the error disappeared after reading page by page, or
896                  * the area was part of a huge bio and other parts of the
897                  * bio caused I/O errors, or the block layer merged several
898                  * read requests into one and the error is caused by a
899                  * different bio (usually one of the two latter cases is
900                  * the cause)
901                  */
902                 spin_lock(&sctx->stat_lock);
903                 sctx->stat.unverified_errors++;
904                 spin_unlock(&sctx->stat_lock);
905
906                 if (sctx->is_dev_replace)
907                         scrub_write_block_to_dev_replace(sblock_bad);
908                 goto out;
909         }
910
911         if (!sblock_bad->no_io_error_seen) {
912                 spin_lock(&sctx->stat_lock);
913                 sctx->stat.read_errors++;
914                 spin_unlock(&sctx->stat_lock);
915                 if (__ratelimit(&_rs))
916                         scrub_print_warning("i/o error", sblock_to_check);
917                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
918         } else if (sblock_bad->checksum_error) {
919                 spin_lock(&sctx->stat_lock);
920                 sctx->stat.csum_errors++;
921                 spin_unlock(&sctx->stat_lock);
922                 if (__ratelimit(&_rs))
923                         scrub_print_warning("checksum error", sblock_to_check);
924                 btrfs_dev_stat_inc_and_print(dev,
925                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
926         } else if (sblock_bad->header_error) {
927                 spin_lock(&sctx->stat_lock);
928                 sctx->stat.verify_errors++;
929                 spin_unlock(&sctx->stat_lock);
930                 if (__ratelimit(&_rs))
931                         scrub_print_warning("checksum/header error",
932                                             sblock_to_check);
933                 if (sblock_bad->generation_error)
934                         btrfs_dev_stat_inc_and_print(dev,
935                                 BTRFS_DEV_STAT_GENERATION_ERRS);
936                 else
937                         btrfs_dev_stat_inc_and_print(dev,
938                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
939         }
940
941         if (sctx->readonly) {
942                 ASSERT(!sctx->is_dev_replace);
943                 goto out;
944         }
945
946         if (!is_metadata && !have_csum) {
947                 struct scrub_fixup_nodatasum *fixup_nodatasum;
948
949 nodatasum_case:
950                 WARN_ON(sctx->is_dev_replace);
951
952                 /*
953                  * !is_metadata and !have_csum, this means that the data
954                  * might not be COW'ed, that it might be modified
955                  * concurrently. The general strategy to work on the
956                  * commit root does not help in the case when COW is not
957                  * used.
958                  */
959                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
960                 if (!fixup_nodatasum)
961                         goto did_not_correct_error;
962                 fixup_nodatasum->sctx = sctx;
963                 fixup_nodatasum->dev = dev;
964                 fixup_nodatasum->logical = logical;
965                 fixup_nodatasum->root = fs_info->extent_root;
966                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
967                 scrub_pending_trans_workers_inc(sctx);
968                 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
969                 btrfs_queue_worker(&fs_info->scrub_workers,
970                                    &fixup_nodatasum->work);
971                 goto out;
972         }
973
974         /*
975          * now build and submit the bios for the other mirrors, check
976          * checksums.
977          * First try to pick the mirror which is completely without I/O
978          * errors and also does not have a checksum error.
979          * If one is found, and if a checksum is present, the full block
980          * that is known to contain an error is rewritten. Afterwards
981          * the block is known to be corrected.
982          * If a mirror is found which is completely correct, and no
983          * checksum is present, only those pages are rewritten that had
984          * an I/O error in the block to be repaired, since it cannot be
985          * determined, which copy of the other pages is better (and it
986          * could happen otherwise that a correct page would be
987          * overwritten by a bad one).
988          */
989         for (mirror_index = 0;
990              mirror_index < BTRFS_MAX_MIRRORS &&
991              sblocks_for_recheck[mirror_index].page_count > 0;
992              mirror_index++) {
993                 struct scrub_block *sblock_other;
994
995                 if (mirror_index == failed_mirror_index)
996                         continue;
997                 sblock_other = sblocks_for_recheck + mirror_index;
998
999                 /* build and submit the bios, check checksums */
1000                 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1001                                     have_csum, csum, generation,
1002                                     sctx->csum_size);
1003
1004                 if (!sblock_other->header_error &&
1005                     !sblock_other->checksum_error &&
1006                     sblock_other->no_io_error_seen) {
1007                         if (sctx->is_dev_replace) {
1008                                 scrub_write_block_to_dev_replace(sblock_other);
1009                         } else {
1010                                 int force_write = is_metadata || have_csum;
1011
1012                                 ret = scrub_repair_block_from_good_copy(
1013                                                 sblock_bad, sblock_other,
1014                                                 force_write);
1015                         }
1016                         if (0 == ret)
1017                                 goto corrected_error;
1018                 }
1019         }
1020
1021         /*
1022          * for dev_replace, pick good pages and write to the target device.
1023          */
1024         if (sctx->is_dev_replace) {
1025                 success = 1;
1026                 for (page_num = 0; page_num < sblock_bad->page_count;
1027                      page_num++) {
1028                         int sub_success;
1029
1030                         sub_success = 0;
1031                         for (mirror_index = 0;
1032                              mirror_index < BTRFS_MAX_MIRRORS &&
1033                              sblocks_for_recheck[mirror_index].page_count > 0;
1034                              mirror_index++) {
1035                                 struct scrub_block *sblock_other =
1036                                         sblocks_for_recheck + mirror_index;
1037                                 struct scrub_page *page_other =
1038                                         sblock_other->pagev[page_num];
1039
1040                                 if (!page_other->io_error) {
1041                                         ret = scrub_write_page_to_dev_replace(
1042                                                         sblock_other, page_num);
1043                                         if (ret == 0) {
1044                                                 /* succeeded for this page */
1045                                                 sub_success = 1;
1046                                                 break;
1047                                         } else {
1048                                                 btrfs_dev_replace_stats_inc(
1049                                                         &sctx->dev_root->
1050                                                         fs_info->dev_replace.
1051                                                         num_write_errors);
1052                                         }
1053                                 }
1054                         }
1055
1056                         if (!sub_success) {
1057                                 /*
1058                                  * did not find a mirror to fetch the page
1059                                  * from. scrub_write_page_to_dev_replace()
1060                                  * handles this case (page->io_error), by
1061                                  * filling the block with zeros before
1062                                  * submitting the write request
1063                                  */
1064                                 success = 0;
1065                                 ret = scrub_write_page_to_dev_replace(
1066                                                 sblock_bad, page_num);
1067                                 if (ret)
1068                                         btrfs_dev_replace_stats_inc(
1069                                                 &sctx->dev_root->fs_info->
1070                                                 dev_replace.num_write_errors);
1071                         }
1072                 }
1073
1074                 goto out;
1075         }
1076
1077         /*
1078          * for regular scrub, repair those pages that are errored.
1079          * In case of I/O errors in the area that is supposed to be
1080          * repaired, continue by picking good copies of those pages.
1081          * Select the good pages from mirrors to rewrite bad pages from
1082          * the area to fix. Afterwards verify the checksum of the block
1083          * that is supposed to be repaired. This verification step is
1084          * only done for the purpose of statistic counting and for the
1085          * final scrub report, whether errors remain.
1086          * A perfect algorithm could make use of the checksum and try
1087          * all possible combinations of pages from the different mirrors
1088          * until the checksum verification succeeds. For example, when
1089          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1090          * of mirror #2 is readable but the final checksum test fails,
1091          * then the 2nd page of mirror #3 could be tried, whether now
1092          * the final checksum succeedes. But this would be a rare
1093          * exception and is therefore not implemented. At least it is
1094          * avoided that the good copy is overwritten.
1095          * A more useful improvement would be to pick the sectors
1096          * without I/O error based on sector sizes (512 bytes on legacy
1097          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1098          * mirror could be repaired by taking 512 byte of a different
1099          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1100          * area are unreadable.
1101          */
1102
1103         /* can only fix I/O errors from here on */
1104         if (sblock_bad->no_io_error_seen)
1105                 goto did_not_correct_error;
1106
1107         success = 1;
1108         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1109                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1110
1111                 if (!page_bad->io_error)
1112                         continue;
1113
1114                 for (mirror_index = 0;
1115                      mirror_index < BTRFS_MAX_MIRRORS &&
1116                      sblocks_for_recheck[mirror_index].page_count > 0;
1117                      mirror_index++) {
1118                         struct scrub_block *sblock_other = sblocks_for_recheck +
1119                                                            mirror_index;
1120                         struct scrub_page *page_other = sblock_other->pagev[
1121                                                         page_num];
1122
1123                         if (!page_other->io_error) {
1124                                 ret = scrub_repair_page_from_good_copy(
1125                                         sblock_bad, sblock_other, page_num, 0);
1126                                 if (0 == ret) {
1127                                         page_bad->io_error = 0;
1128                                         break; /* succeeded for this page */
1129                                 }
1130                         }
1131                 }
1132
1133                 if (page_bad->io_error) {
1134                         /* did not find a mirror to copy the page from */
1135                         success = 0;
1136                 }
1137         }
1138
1139         if (success) {
1140                 if (is_metadata || have_csum) {
1141                         /*
1142                          * need to verify the checksum now that all
1143                          * sectors on disk are repaired (the write
1144                          * request for data to be repaired is on its way).
1145                          * Just be lazy and use scrub_recheck_block()
1146                          * which re-reads the data before the checksum
1147                          * is verified, but most likely the data comes out
1148                          * of the page cache.
1149                          */
1150                         scrub_recheck_block(fs_info, sblock_bad,
1151                                             is_metadata, have_csum, csum,
1152                                             generation, sctx->csum_size);
1153                         if (!sblock_bad->header_error &&
1154                             !sblock_bad->checksum_error &&
1155                             sblock_bad->no_io_error_seen)
1156                                 goto corrected_error;
1157                         else
1158                                 goto did_not_correct_error;
1159                 } else {
1160 corrected_error:
1161                         spin_lock(&sctx->stat_lock);
1162                         sctx->stat.corrected_errors++;
1163                         spin_unlock(&sctx->stat_lock);
1164                         printk_ratelimited_in_rcu(KERN_ERR
1165                                 "btrfs: fixed up error at logical %llu on dev %s\n",
1166                                 logical, rcu_str_deref(dev->name));
1167                 }
1168         } else {
1169 did_not_correct_error:
1170                 spin_lock(&sctx->stat_lock);
1171                 sctx->stat.uncorrectable_errors++;
1172                 spin_unlock(&sctx->stat_lock);
1173                 printk_ratelimited_in_rcu(KERN_ERR
1174                         "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1175                         logical, rcu_str_deref(dev->name));
1176         }
1177
1178 out:
1179         if (sblocks_for_recheck) {
1180                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1181                      mirror_index++) {
1182                         struct scrub_block *sblock = sblocks_for_recheck +
1183                                                      mirror_index;
1184                         int page_index;
1185
1186                         for (page_index = 0; page_index < sblock->page_count;
1187                              page_index++) {
1188                                 sblock->pagev[page_index]->sblock = NULL;
1189                                 scrub_page_put(sblock->pagev[page_index]);
1190                         }
1191                 }
1192                 kfree(sblocks_for_recheck);
1193         }
1194
1195         return 0;
1196 }
1197
1198 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1199                                      struct btrfs_fs_info *fs_info,
1200                                      struct scrub_block *original_sblock,
1201                                      u64 length, u64 logical,
1202                                      struct scrub_block *sblocks_for_recheck)
1203 {
1204         int page_index;
1205         int mirror_index;
1206         int ret;
1207
1208         /*
1209          * note: the two members ref_count and outstanding_pages
1210          * are not used (and not set) in the blocks that are used for
1211          * the recheck procedure
1212          */
1213
1214         page_index = 0;
1215         while (length > 0) {
1216                 u64 sublen = min_t(u64, length, PAGE_SIZE);
1217                 u64 mapped_length = sublen;
1218                 struct btrfs_bio *bbio = NULL;
1219
1220                 /*
1221                  * with a length of PAGE_SIZE, each returned stripe
1222                  * represents one mirror
1223                  */
1224                 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1225                                       &mapped_length, &bbio, 0);
1226                 if (ret || !bbio || mapped_length < sublen) {
1227                         kfree(bbio);
1228                         return -EIO;
1229                 }
1230
1231                 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1232                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1233                      mirror_index++) {
1234                         struct scrub_block *sblock;
1235                         struct scrub_page *page;
1236
1237                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1238                                 continue;
1239
1240                         sblock = sblocks_for_recheck + mirror_index;
1241                         sblock->sctx = sctx;
1242                         page = kzalloc(sizeof(*page), GFP_NOFS);
1243                         if (!page) {
1244 leave_nomem:
1245                                 spin_lock(&sctx->stat_lock);
1246                                 sctx->stat.malloc_errors++;
1247                                 spin_unlock(&sctx->stat_lock);
1248                                 kfree(bbio);
1249                                 return -ENOMEM;
1250                         }
1251                         scrub_page_get(page);
1252                         sblock->pagev[page_index] = page;
1253                         page->logical = logical;
1254                         page->physical = bbio->stripes[mirror_index].physical;
1255                         BUG_ON(page_index >= original_sblock->page_count);
1256                         page->physical_for_dev_replace =
1257                                 original_sblock->pagev[page_index]->
1258                                 physical_for_dev_replace;
1259                         /* for missing devices, dev->bdev is NULL */
1260                         page->dev = bbio->stripes[mirror_index].dev;
1261                         page->mirror_num = mirror_index + 1;
1262                         sblock->page_count++;
1263                         page->page = alloc_page(GFP_NOFS);
1264                         if (!page->page)
1265                                 goto leave_nomem;
1266                 }
1267                 kfree(bbio);
1268                 length -= sublen;
1269                 logical += sublen;
1270                 page_index++;
1271         }
1272
1273         return 0;
1274 }
1275
1276 /*
1277  * this function will check the on disk data for checksum errors, header
1278  * errors and read I/O errors. If any I/O errors happen, the exact pages
1279  * which are errored are marked as being bad. The goal is to enable scrub
1280  * to take those pages that are not errored from all the mirrors so that
1281  * the pages that are errored in the just handled mirror can be repaired.
1282  */
1283 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1284                                 struct scrub_block *sblock, int is_metadata,
1285                                 int have_csum, u8 *csum, u64 generation,
1286                                 u16 csum_size)
1287 {
1288         int page_num;
1289
1290         sblock->no_io_error_seen = 1;
1291         sblock->header_error = 0;
1292         sblock->checksum_error = 0;
1293
1294         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1295                 struct bio *bio;
1296                 struct scrub_page *page = sblock->pagev[page_num];
1297                 DECLARE_COMPLETION_ONSTACK(complete);
1298
1299                 if (page->dev->bdev == NULL) {
1300                         page->io_error = 1;
1301                         sblock->no_io_error_seen = 0;
1302                         continue;
1303                 }
1304
1305                 WARN_ON(!page->page);
1306                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1307                 if (!bio) {
1308                         page->io_error = 1;
1309                         sblock->no_io_error_seen = 0;
1310                         continue;
1311                 }
1312                 bio->bi_bdev = page->dev->bdev;
1313                 bio->bi_sector = page->physical >> 9;
1314                 bio->bi_end_io = scrub_complete_bio_end_io;
1315                 bio->bi_private = &complete;
1316
1317                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1318                 btrfsic_submit_bio(READ, bio);
1319
1320                 /* this will also unplug the queue */
1321                 wait_for_completion(&complete);
1322
1323                 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1324                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1325                         sblock->no_io_error_seen = 0;
1326                 bio_put(bio);
1327         }
1328
1329         if (sblock->no_io_error_seen)
1330                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1331                                              have_csum, csum, generation,
1332                                              csum_size);
1333
1334         return;
1335 }
1336
1337 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1338                                          struct scrub_block *sblock,
1339                                          int is_metadata, int have_csum,
1340                                          const u8 *csum, u64 generation,
1341                                          u16 csum_size)
1342 {
1343         int page_num;
1344         u8 calculated_csum[BTRFS_CSUM_SIZE];
1345         u32 crc = ~(u32)0;
1346         void *mapped_buffer;
1347
1348         WARN_ON(!sblock->pagev[0]->page);
1349         if (is_metadata) {
1350                 struct btrfs_header *h;
1351
1352                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1353                 h = (struct btrfs_header *)mapped_buffer;
1354
1355                 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1356                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1357                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1358                            BTRFS_UUID_SIZE)) {
1359                         sblock->header_error = 1;
1360                 } else if (generation != btrfs_stack_header_generation(h)) {
1361                         sblock->header_error = 1;
1362                         sblock->generation_error = 1;
1363                 }
1364                 csum = h->csum;
1365         } else {
1366                 if (!have_csum)
1367                         return;
1368
1369                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1370         }
1371
1372         for (page_num = 0;;) {
1373                 if (page_num == 0 && is_metadata)
1374                         crc = btrfs_csum_data(
1375                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1376                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1377                 else
1378                         crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1379
1380                 kunmap_atomic(mapped_buffer);
1381                 page_num++;
1382                 if (page_num >= sblock->page_count)
1383                         break;
1384                 WARN_ON(!sblock->pagev[page_num]->page);
1385
1386                 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1387         }
1388
1389         btrfs_csum_final(crc, calculated_csum);
1390         if (memcmp(calculated_csum, csum, csum_size))
1391                 sblock->checksum_error = 1;
1392 }
1393
1394 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1395 {
1396         complete((struct completion *)bio->bi_private);
1397 }
1398
1399 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1400                                              struct scrub_block *sblock_good,
1401                                              int force_write)
1402 {
1403         int page_num;
1404         int ret = 0;
1405
1406         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1407                 int ret_sub;
1408
1409                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1410                                                            sblock_good,
1411                                                            page_num,
1412                                                            force_write);
1413                 if (ret_sub)
1414                         ret = ret_sub;
1415         }
1416
1417         return ret;
1418 }
1419
1420 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1421                                             struct scrub_block *sblock_good,
1422                                             int page_num, int force_write)
1423 {
1424         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1425         struct scrub_page *page_good = sblock_good->pagev[page_num];
1426
1427         BUG_ON(page_bad->page == NULL);
1428         BUG_ON(page_good->page == NULL);
1429         if (force_write || sblock_bad->header_error ||
1430             sblock_bad->checksum_error || page_bad->io_error) {
1431                 struct bio *bio;
1432                 int ret;
1433                 DECLARE_COMPLETION_ONSTACK(complete);
1434
1435                 if (!page_bad->dev->bdev) {
1436                         printk_ratelimited(KERN_WARNING
1437                                 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1438                         return -EIO;
1439                 }
1440
1441                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1442                 if (!bio)
1443                         return -EIO;
1444                 bio->bi_bdev = page_bad->dev->bdev;
1445                 bio->bi_sector = page_bad->physical >> 9;
1446                 bio->bi_end_io = scrub_complete_bio_end_io;
1447                 bio->bi_private = &complete;
1448
1449                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1450                 if (PAGE_SIZE != ret) {
1451                         bio_put(bio);
1452                         return -EIO;
1453                 }
1454                 btrfsic_submit_bio(WRITE, bio);
1455
1456                 /* this will also unplug the queue */
1457                 wait_for_completion(&complete);
1458                 if (!bio_flagged(bio, BIO_UPTODATE)) {
1459                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1460                                 BTRFS_DEV_STAT_WRITE_ERRS);
1461                         btrfs_dev_replace_stats_inc(
1462                                 &sblock_bad->sctx->dev_root->fs_info->
1463                                 dev_replace.num_write_errors);
1464                         bio_put(bio);
1465                         return -EIO;
1466                 }
1467                 bio_put(bio);
1468         }
1469
1470         return 0;
1471 }
1472
1473 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1474 {
1475         int page_num;
1476
1477         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478                 int ret;
1479
1480                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1481                 if (ret)
1482                         btrfs_dev_replace_stats_inc(
1483                                 &sblock->sctx->dev_root->fs_info->dev_replace.
1484                                 num_write_errors);
1485         }
1486 }
1487
1488 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1489                                            int page_num)
1490 {
1491         struct scrub_page *spage = sblock->pagev[page_num];
1492
1493         BUG_ON(spage->page == NULL);
1494         if (spage->io_error) {
1495                 void *mapped_buffer = kmap_atomic(spage->page);
1496
1497                 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1498                 flush_dcache_page(spage->page);
1499                 kunmap_atomic(mapped_buffer);
1500         }
1501         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1502 }
1503
1504 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1505                                     struct scrub_page *spage)
1506 {
1507         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1508         struct scrub_bio *sbio;
1509         int ret;
1510
1511         mutex_lock(&wr_ctx->wr_lock);
1512 again:
1513         if (!wr_ctx->wr_curr_bio) {
1514                 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1515                                               GFP_NOFS);
1516                 if (!wr_ctx->wr_curr_bio) {
1517                         mutex_unlock(&wr_ctx->wr_lock);
1518                         return -ENOMEM;
1519                 }
1520                 wr_ctx->wr_curr_bio->sctx = sctx;
1521                 wr_ctx->wr_curr_bio->page_count = 0;
1522         }
1523         sbio = wr_ctx->wr_curr_bio;
1524         if (sbio->page_count == 0) {
1525                 struct bio *bio;
1526
1527                 sbio->physical = spage->physical_for_dev_replace;
1528                 sbio->logical = spage->logical;
1529                 sbio->dev = wr_ctx->tgtdev;
1530                 bio = sbio->bio;
1531                 if (!bio) {
1532                         bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1533                         if (!bio) {
1534                                 mutex_unlock(&wr_ctx->wr_lock);
1535                                 return -ENOMEM;
1536                         }
1537                         sbio->bio = bio;
1538                 }
1539
1540                 bio->bi_private = sbio;
1541                 bio->bi_end_io = scrub_wr_bio_end_io;
1542                 bio->bi_bdev = sbio->dev->bdev;
1543                 bio->bi_sector = sbio->physical >> 9;
1544                 sbio->err = 0;
1545         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1546                    spage->physical_for_dev_replace ||
1547                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1548                    spage->logical) {
1549                 scrub_wr_submit(sctx);
1550                 goto again;
1551         }
1552
1553         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1554         if (ret != PAGE_SIZE) {
1555                 if (sbio->page_count < 1) {
1556                         bio_put(sbio->bio);
1557                         sbio->bio = NULL;
1558                         mutex_unlock(&wr_ctx->wr_lock);
1559                         return -EIO;
1560                 }
1561                 scrub_wr_submit(sctx);
1562                 goto again;
1563         }
1564
1565         sbio->pagev[sbio->page_count] = spage;
1566         scrub_page_get(spage);
1567         sbio->page_count++;
1568         if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1569                 scrub_wr_submit(sctx);
1570         mutex_unlock(&wr_ctx->wr_lock);
1571
1572         return 0;
1573 }
1574
1575 static void scrub_wr_submit(struct scrub_ctx *sctx)
1576 {
1577         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1578         struct scrub_bio *sbio;
1579
1580         if (!wr_ctx->wr_curr_bio)
1581                 return;
1582
1583         sbio = wr_ctx->wr_curr_bio;
1584         wr_ctx->wr_curr_bio = NULL;
1585         WARN_ON(!sbio->bio->bi_bdev);
1586         scrub_pending_bio_inc(sctx);
1587         /* process all writes in a single worker thread. Then the block layer
1588          * orders the requests before sending them to the driver which
1589          * doubled the write performance on spinning disks when measured
1590          * with Linux 3.5 */
1591         btrfsic_submit_bio(WRITE, sbio->bio);
1592 }
1593
1594 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1595 {
1596         struct scrub_bio *sbio = bio->bi_private;
1597         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1598
1599         sbio->err = err;
1600         sbio->bio = bio;
1601
1602         sbio->work.func = scrub_wr_bio_end_io_worker;
1603         btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1604 }
1605
1606 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1607 {
1608         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1609         struct scrub_ctx *sctx = sbio->sctx;
1610         int i;
1611
1612         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1613         if (sbio->err) {
1614                 struct btrfs_dev_replace *dev_replace =
1615                         &sbio->sctx->dev_root->fs_info->dev_replace;
1616
1617                 for (i = 0; i < sbio->page_count; i++) {
1618                         struct scrub_page *spage = sbio->pagev[i];
1619
1620                         spage->io_error = 1;
1621                         btrfs_dev_replace_stats_inc(&dev_replace->
1622                                                     num_write_errors);
1623                 }
1624         }
1625
1626         for (i = 0; i < sbio->page_count; i++)
1627                 scrub_page_put(sbio->pagev[i]);
1628
1629         bio_put(sbio->bio);
1630         kfree(sbio);
1631         scrub_pending_bio_dec(sctx);
1632 }
1633
1634 static int scrub_checksum(struct scrub_block *sblock)
1635 {
1636         u64 flags;
1637         int ret;
1638
1639         WARN_ON(sblock->page_count < 1);
1640         flags = sblock->pagev[0]->flags;
1641         ret = 0;
1642         if (flags & BTRFS_EXTENT_FLAG_DATA)
1643                 ret = scrub_checksum_data(sblock);
1644         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1645                 ret = scrub_checksum_tree_block(sblock);
1646         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1647                 (void)scrub_checksum_super(sblock);
1648         else
1649                 WARN_ON(1);
1650         if (ret)
1651                 scrub_handle_errored_block(sblock);
1652
1653         return ret;
1654 }
1655
1656 static int scrub_checksum_data(struct scrub_block *sblock)
1657 {
1658         struct scrub_ctx *sctx = sblock->sctx;
1659         u8 csum[BTRFS_CSUM_SIZE];
1660         u8 *on_disk_csum;
1661         struct page *page;
1662         void *buffer;
1663         u32 crc = ~(u32)0;
1664         int fail = 0;
1665         u64 len;
1666         int index;
1667
1668         BUG_ON(sblock->page_count < 1);
1669         if (!sblock->pagev[0]->have_csum)
1670                 return 0;
1671
1672         on_disk_csum = sblock->pagev[0]->csum;
1673         page = sblock->pagev[0]->page;
1674         buffer = kmap_atomic(page);
1675
1676         len = sctx->sectorsize;
1677         index = 0;
1678         for (;;) {
1679                 u64 l = min_t(u64, len, PAGE_SIZE);
1680
1681                 crc = btrfs_csum_data(buffer, crc, l);
1682                 kunmap_atomic(buffer);
1683                 len -= l;
1684                 if (len == 0)
1685                         break;
1686                 index++;
1687                 BUG_ON(index >= sblock->page_count);
1688                 BUG_ON(!sblock->pagev[index]->page);
1689                 page = sblock->pagev[index]->page;
1690                 buffer = kmap_atomic(page);
1691         }
1692
1693         btrfs_csum_final(crc, csum);
1694         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1695                 fail = 1;
1696
1697         return fail;
1698 }
1699
1700 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1701 {
1702         struct scrub_ctx *sctx = sblock->sctx;
1703         struct btrfs_header *h;
1704         struct btrfs_root *root = sctx->dev_root;
1705         struct btrfs_fs_info *fs_info = root->fs_info;
1706         u8 calculated_csum[BTRFS_CSUM_SIZE];
1707         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1708         struct page *page;
1709         void *mapped_buffer;
1710         u64 mapped_size;
1711         void *p;
1712         u32 crc = ~(u32)0;
1713         int fail = 0;
1714         int crc_fail = 0;
1715         u64 len;
1716         int index;
1717
1718         BUG_ON(sblock->page_count < 1);
1719         page = sblock->pagev[0]->page;
1720         mapped_buffer = kmap_atomic(page);
1721         h = (struct btrfs_header *)mapped_buffer;
1722         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1723
1724         /*
1725          * we don't use the getter functions here, as we
1726          * a) don't have an extent buffer and
1727          * b) the page is already kmapped
1728          */
1729
1730         if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1731                 ++fail;
1732
1733         if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1734                 ++fail;
1735
1736         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1737                 ++fail;
1738
1739         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1740                    BTRFS_UUID_SIZE))
1741                 ++fail;
1742
1743         WARN_ON(sctx->nodesize != sctx->leafsize);
1744         len = sctx->nodesize - BTRFS_CSUM_SIZE;
1745         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1746         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1747         index = 0;
1748         for (;;) {
1749                 u64 l = min_t(u64, len, mapped_size);
1750
1751                 crc = btrfs_csum_data(p, crc, l);
1752                 kunmap_atomic(mapped_buffer);
1753                 len -= l;
1754                 if (len == 0)
1755                         break;
1756                 index++;
1757                 BUG_ON(index >= sblock->page_count);
1758                 BUG_ON(!sblock->pagev[index]->page);
1759                 page = sblock->pagev[index]->page;
1760                 mapped_buffer = kmap_atomic(page);
1761                 mapped_size = PAGE_SIZE;
1762                 p = mapped_buffer;
1763         }
1764
1765         btrfs_csum_final(crc, calculated_csum);
1766         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1767                 ++crc_fail;
1768
1769         return fail || crc_fail;
1770 }
1771
1772 static int scrub_checksum_super(struct scrub_block *sblock)
1773 {
1774         struct btrfs_super_block *s;
1775         struct scrub_ctx *sctx = sblock->sctx;
1776         struct btrfs_root *root = sctx->dev_root;
1777         struct btrfs_fs_info *fs_info = root->fs_info;
1778         u8 calculated_csum[BTRFS_CSUM_SIZE];
1779         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1780         struct page *page;
1781         void *mapped_buffer;
1782         u64 mapped_size;
1783         void *p;
1784         u32 crc = ~(u32)0;
1785         int fail_gen = 0;
1786         int fail_cor = 0;
1787         u64 len;
1788         int index;
1789
1790         BUG_ON(sblock->page_count < 1);
1791         page = sblock->pagev[0]->page;
1792         mapped_buffer = kmap_atomic(page);
1793         s = (struct btrfs_super_block *)mapped_buffer;
1794         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1795
1796         if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1797                 ++fail_cor;
1798
1799         if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1800                 ++fail_gen;
1801
1802         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1803                 ++fail_cor;
1804
1805         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1806         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1807         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1808         index = 0;
1809         for (;;) {
1810                 u64 l = min_t(u64, len, mapped_size);
1811
1812                 crc = btrfs_csum_data(p, crc, l);
1813                 kunmap_atomic(mapped_buffer);
1814                 len -= l;
1815                 if (len == 0)
1816                         break;
1817                 index++;
1818                 BUG_ON(index >= sblock->page_count);
1819                 BUG_ON(!sblock->pagev[index]->page);
1820                 page = sblock->pagev[index]->page;
1821                 mapped_buffer = kmap_atomic(page);
1822                 mapped_size = PAGE_SIZE;
1823                 p = mapped_buffer;
1824         }
1825
1826         btrfs_csum_final(crc, calculated_csum);
1827         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1828                 ++fail_cor;
1829
1830         if (fail_cor + fail_gen) {
1831                 /*
1832                  * if we find an error in a super block, we just report it.
1833                  * They will get written with the next transaction commit
1834                  * anyway
1835                  */
1836                 spin_lock(&sctx->stat_lock);
1837                 ++sctx->stat.super_errors;
1838                 spin_unlock(&sctx->stat_lock);
1839                 if (fail_cor)
1840                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1841                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1842                 else
1843                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1844                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1845         }
1846
1847         return fail_cor + fail_gen;
1848 }
1849
1850 static void scrub_block_get(struct scrub_block *sblock)
1851 {
1852         atomic_inc(&sblock->ref_count);
1853 }
1854
1855 static void scrub_block_put(struct scrub_block *sblock)
1856 {
1857         if (atomic_dec_and_test(&sblock->ref_count)) {
1858                 int i;
1859
1860                 for (i = 0; i < sblock->page_count; i++)
1861                         scrub_page_put(sblock->pagev[i]);
1862                 kfree(sblock);
1863         }
1864 }
1865
1866 static void scrub_page_get(struct scrub_page *spage)
1867 {
1868         atomic_inc(&spage->ref_count);
1869 }
1870
1871 static void scrub_page_put(struct scrub_page *spage)
1872 {
1873         if (atomic_dec_and_test(&spage->ref_count)) {
1874                 if (spage->page)
1875                         __free_page(spage->page);
1876                 kfree(spage);
1877         }
1878 }
1879
1880 static void scrub_submit(struct scrub_ctx *sctx)
1881 {
1882         struct scrub_bio *sbio;
1883
1884         if (sctx->curr == -1)
1885                 return;
1886
1887         sbio = sctx->bios[sctx->curr];
1888         sctx->curr = -1;
1889         scrub_pending_bio_inc(sctx);
1890
1891         if (!sbio->bio->bi_bdev) {
1892                 /*
1893                  * this case should not happen. If btrfs_map_block() is
1894                  * wrong, it could happen for dev-replace operations on
1895                  * missing devices when no mirrors are available, but in
1896                  * this case it should already fail the mount.
1897                  * This case is handled correctly (but _very_ slowly).
1898                  */
1899                 printk_ratelimited(KERN_WARNING
1900                         "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1901                 bio_endio(sbio->bio, -EIO);
1902         } else {
1903                 btrfsic_submit_bio(READ, sbio->bio);
1904         }
1905 }
1906
1907 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1908                                     struct scrub_page *spage)
1909 {
1910         struct scrub_block *sblock = spage->sblock;
1911         struct scrub_bio *sbio;
1912         int ret;
1913
1914 again:
1915         /*
1916          * grab a fresh bio or wait for one to become available
1917          */
1918         while (sctx->curr == -1) {
1919                 spin_lock(&sctx->list_lock);
1920                 sctx->curr = sctx->first_free;
1921                 if (sctx->curr != -1) {
1922                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
1923                         sctx->bios[sctx->curr]->next_free = -1;
1924                         sctx->bios[sctx->curr]->page_count = 0;
1925                         spin_unlock(&sctx->list_lock);
1926                 } else {
1927                         spin_unlock(&sctx->list_lock);
1928                         wait_event(sctx->list_wait, sctx->first_free != -1);
1929                 }
1930         }
1931         sbio = sctx->bios[sctx->curr];
1932         if (sbio->page_count == 0) {
1933                 struct bio *bio;
1934
1935                 sbio->physical = spage->physical;
1936                 sbio->logical = spage->logical;
1937                 sbio->dev = spage->dev;
1938                 bio = sbio->bio;
1939                 if (!bio) {
1940                         bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1941                         if (!bio)
1942                                 return -ENOMEM;
1943                         sbio->bio = bio;
1944                 }
1945
1946                 bio->bi_private = sbio;
1947                 bio->bi_end_io = scrub_bio_end_io;
1948                 bio->bi_bdev = sbio->dev->bdev;
1949                 bio->bi_sector = sbio->physical >> 9;
1950                 sbio->err = 0;
1951         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1952                    spage->physical ||
1953                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1954                    spage->logical ||
1955                    sbio->dev != spage->dev) {
1956                 scrub_submit(sctx);
1957                 goto again;
1958         }
1959
1960         sbio->pagev[sbio->page_count] = spage;
1961         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1962         if (ret != PAGE_SIZE) {
1963                 if (sbio->page_count < 1) {
1964                         bio_put(sbio->bio);
1965                         sbio->bio = NULL;
1966                         return -EIO;
1967                 }
1968                 scrub_submit(sctx);
1969                 goto again;
1970         }
1971
1972         scrub_block_get(sblock); /* one for the page added to the bio */
1973         atomic_inc(&sblock->outstanding_pages);
1974         sbio->page_count++;
1975         if (sbio->page_count == sctx->pages_per_rd_bio)
1976                 scrub_submit(sctx);
1977
1978         return 0;
1979 }
1980
1981 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1982                        u64 physical, struct btrfs_device *dev, u64 flags,
1983                        u64 gen, int mirror_num, u8 *csum, int force,
1984                        u64 physical_for_dev_replace)
1985 {
1986         struct scrub_block *sblock;
1987         int index;
1988
1989         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1990         if (!sblock) {
1991                 spin_lock(&sctx->stat_lock);
1992                 sctx->stat.malloc_errors++;
1993                 spin_unlock(&sctx->stat_lock);
1994                 return -ENOMEM;
1995         }
1996
1997         /* one ref inside this function, plus one for each page added to
1998          * a bio later on */
1999         atomic_set(&sblock->ref_count, 1);
2000         sblock->sctx = sctx;
2001         sblock->no_io_error_seen = 1;
2002
2003         for (index = 0; len > 0; index++) {
2004                 struct scrub_page *spage;
2005                 u64 l = min_t(u64, len, PAGE_SIZE);
2006
2007                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2008                 if (!spage) {
2009 leave_nomem:
2010                         spin_lock(&sctx->stat_lock);
2011                         sctx->stat.malloc_errors++;
2012                         spin_unlock(&sctx->stat_lock);
2013                         scrub_block_put(sblock);
2014                         return -ENOMEM;
2015                 }
2016                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2017                 scrub_page_get(spage);
2018                 sblock->pagev[index] = spage;
2019                 spage->sblock = sblock;
2020                 spage->dev = dev;
2021                 spage->flags = flags;
2022                 spage->generation = gen;
2023                 spage->logical = logical;
2024                 spage->physical = physical;
2025                 spage->physical_for_dev_replace = physical_for_dev_replace;
2026                 spage->mirror_num = mirror_num;
2027                 if (csum) {
2028                         spage->have_csum = 1;
2029                         memcpy(spage->csum, csum, sctx->csum_size);
2030                 } else {
2031                         spage->have_csum = 0;
2032                 }
2033                 sblock->page_count++;
2034                 spage->page = alloc_page(GFP_NOFS);
2035                 if (!spage->page)
2036                         goto leave_nomem;
2037                 len -= l;
2038                 logical += l;
2039                 physical += l;
2040                 physical_for_dev_replace += l;
2041         }
2042
2043         WARN_ON(sblock->page_count == 0);
2044         for (index = 0; index < sblock->page_count; index++) {
2045                 struct scrub_page *spage = sblock->pagev[index];
2046                 int ret;
2047
2048                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2049                 if (ret) {
2050                         scrub_block_put(sblock);
2051                         return ret;
2052                 }
2053         }
2054
2055         if (force)
2056                 scrub_submit(sctx);
2057
2058         /* last one frees, either here or in bio completion for last page */
2059         scrub_block_put(sblock);
2060         return 0;
2061 }
2062
2063 static void scrub_bio_end_io(struct bio *bio, int err)
2064 {
2065         struct scrub_bio *sbio = bio->bi_private;
2066         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2067
2068         sbio->err = err;
2069         sbio->bio = bio;
2070
2071         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2072 }
2073
2074 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2075 {
2076         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2077         struct scrub_ctx *sctx = sbio->sctx;
2078         int i;
2079
2080         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2081         if (sbio->err) {
2082                 for (i = 0; i < sbio->page_count; i++) {
2083                         struct scrub_page *spage = sbio->pagev[i];
2084
2085                         spage->io_error = 1;
2086                         spage->sblock->no_io_error_seen = 0;
2087                 }
2088         }
2089
2090         /* now complete the scrub_block items that have all pages completed */
2091         for (i = 0; i < sbio->page_count; i++) {
2092                 struct scrub_page *spage = sbio->pagev[i];
2093                 struct scrub_block *sblock = spage->sblock;
2094
2095                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2096                         scrub_block_complete(sblock);
2097                 scrub_block_put(sblock);
2098         }
2099
2100         bio_put(sbio->bio);
2101         sbio->bio = NULL;
2102         spin_lock(&sctx->list_lock);
2103         sbio->next_free = sctx->first_free;
2104         sctx->first_free = sbio->index;
2105         spin_unlock(&sctx->list_lock);
2106
2107         if (sctx->is_dev_replace &&
2108             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2109                 mutex_lock(&sctx->wr_ctx.wr_lock);
2110                 scrub_wr_submit(sctx);
2111                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2112         }
2113
2114         scrub_pending_bio_dec(sctx);
2115 }
2116
2117 static void scrub_block_complete(struct scrub_block *sblock)
2118 {
2119         if (!sblock->no_io_error_seen) {
2120                 scrub_handle_errored_block(sblock);
2121         } else {
2122                 /*
2123                  * if has checksum error, write via repair mechanism in
2124                  * dev replace case, otherwise write here in dev replace
2125                  * case.
2126                  */
2127                 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2128                         scrub_write_block_to_dev_replace(sblock);
2129         }
2130 }
2131
2132 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2133                            u8 *csum)
2134 {
2135         struct btrfs_ordered_sum *sum = NULL;
2136         unsigned long index;
2137         unsigned long num_sectors;
2138
2139         while (!list_empty(&sctx->csum_list)) {
2140                 sum = list_first_entry(&sctx->csum_list,
2141                                        struct btrfs_ordered_sum, list);
2142                 if (sum->bytenr > logical)
2143                         return 0;
2144                 if (sum->bytenr + sum->len > logical)
2145                         break;
2146
2147                 ++sctx->stat.csum_discards;
2148                 list_del(&sum->list);
2149                 kfree(sum);
2150                 sum = NULL;
2151         }
2152         if (!sum)
2153                 return 0;
2154
2155         index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2156         num_sectors = sum->len / sctx->sectorsize;
2157         memcpy(csum, sum->sums + index, sctx->csum_size);
2158         if (index == num_sectors - 1) {
2159                 list_del(&sum->list);
2160                 kfree(sum);
2161         }
2162         return 1;
2163 }
2164
2165 /* scrub extent tries to collect up to 64 kB for each bio */
2166 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2167                         u64 physical, struct btrfs_device *dev, u64 flags,
2168                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2169 {
2170         int ret;
2171         u8 csum[BTRFS_CSUM_SIZE];
2172         u32 blocksize;
2173
2174         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2175                 blocksize = sctx->sectorsize;
2176                 spin_lock(&sctx->stat_lock);
2177                 sctx->stat.data_extents_scrubbed++;
2178                 sctx->stat.data_bytes_scrubbed += len;
2179                 spin_unlock(&sctx->stat_lock);
2180         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2181                 WARN_ON(sctx->nodesize != sctx->leafsize);
2182                 blocksize = sctx->nodesize;
2183                 spin_lock(&sctx->stat_lock);
2184                 sctx->stat.tree_extents_scrubbed++;
2185                 sctx->stat.tree_bytes_scrubbed += len;
2186                 spin_unlock(&sctx->stat_lock);
2187         } else {
2188                 blocksize = sctx->sectorsize;
2189                 WARN_ON(1);
2190         }
2191
2192         while (len) {
2193                 u64 l = min_t(u64, len, blocksize);
2194                 int have_csum = 0;
2195
2196                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2197                         /* push csums to sbio */
2198                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2199                         if (have_csum == 0)
2200                                 ++sctx->stat.no_csum;
2201                         if (sctx->is_dev_replace && !have_csum) {
2202                                 ret = copy_nocow_pages(sctx, logical, l,
2203                                                        mirror_num,
2204                                                       physical_for_dev_replace);
2205                                 goto behind_scrub_pages;
2206                         }
2207                 }
2208                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2209                                   mirror_num, have_csum ? csum : NULL, 0,
2210                                   physical_for_dev_replace);
2211 behind_scrub_pages:
2212                 if (ret)
2213                         return ret;
2214                 len -= l;
2215                 logical += l;
2216                 physical += l;
2217                 physical_for_dev_replace += l;
2218         }
2219         return 0;
2220 }
2221
2222 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2223                                            struct map_lookup *map,
2224                                            struct btrfs_device *scrub_dev,
2225                                            int num, u64 base, u64 length,
2226                                            int is_dev_replace)
2227 {
2228         struct btrfs_path *path;
2229         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2230         struct btrfs_root *root = fs_info->extent_root;
2231         struct btrfs_root *csum_root = fs_info->csum_root;
2232         struct btrfs_extent_item *extent;
2233         struct blk_plug plug;
2234         u64 flags;
2235         int ret;
2236         int slot;
2237         u64 nstripes;
2238         struct extent_buffer *l;
2239         struct btrfs_key key;
2240         u64 physical;
2241         u64 logical;
2242         u64 logic_end;
2243         u64 generation;
2244         int mirror_num;
2245         struct reada_control *reada1;
2246         struct reada_control *reada2;
2247         struct btrfs_key key_start;
2248         struct btrfs_key key_end;
2249         u64 increment = map->stripe_len;
2250         u64 offset;
2251         u64 extent_logical;
2252         u64 extent_physical;
2253         u64 extent_len;
2254         struct btrfs_device *extent_dev;
2255         int extent_mirror_num;
2256         int stop_loop;
2257
2258         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2259                          BTRFS_BLOCK_GROUP_RAID6)) {
2260                 if (num >= nr_data_stripes(map)) {
2261                         return 0;
2262                 }
2263         }
2264
2265         nstripes = length;
2266         offset = 0;
2267         do_div(nstripes, map->stripe_len);
2268         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2269                 offset = map->stripe_len * num;
2270                 increment = map->stripe_len * map->num_stripes;
2271                 mirror_num = 1;
2272         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2273                 int factor = map->num_stripes / map->sub_stripes;
2274                 offset = map->stripe_len * (num / map->sub_stripes);
2275                 increment = map->stripe_len * factor;
2276                 mirror_num = num % map->sub_stripes + 1;
2277         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2278                 increment = map->stripe_len;
2279                 mirror_num = num % map->num_stripes + 1;
2280         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2281                 increment = map->stripe_len;
2282                 mirror_num = num % map->num_stripes + 1;
2283         } else {
2284                 increment = map->stripe_len;
2285                 mirror_num = 1;
2286         }
2287
2288         path = btrfs_alloc_path();
2289         if (!path)
2290                 return -ENOMEM;
2291
2292         /*
2293          * work on commit root. The related disk blocks are static as
2294          * long as COW is applied. This means, it is save to rewrite
2295          * them to repair disk errors without any race conditions
2296          */
2297         path->search_commit_root = 1;
2298         path->skip_locking = 1;
2299
2300         /*
2301          * trigger the readahead for extent tree csum tree and wait for
2302          * completion. During readahead, the scrub is officially paused
2303          * to not hold off transaction commits
2304          */
2305         logical = base + offset;
2306
2307         wait_event(sctx->list_wait,
2308                    atomic_read(&sctx->bios_in_flight) == 0);
2309         atomic_inc(&fs_info->scrubs_paused);
2310         wake_up(&fs_info->scrub_pause_wait);
2311
2312         /* FIXME it might be better to start readahead at commit root */
2313         key_start.objectid = logical;
2314         key_start.type = BTRFS_EXTENT_ITEM_KEY;
2315         key_start.offset = (u64)0;
2316         key_end.objectid = base + offset + nstripes * increment;
2317         key_end.type = BTRFS_METADATA_ITEM_KEY;
2318         key_end.offset = (u64)-1;
2319         reada1 = btrfs_reada_add(root, &key_start, &key_end);
2320
2321         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2322         key_start.type = BTRFS_EXTENT_CSUM_KEY;
2323         key_start.offset = logical;
2324         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2325         key_end.type = BTRFS_EXTENT_CSUM_KEY;
2326         key_end.offset = base + offset + nstripes * increment;
2327         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2328
2329         if (!IS_ERR(reada1))
2330                 btrfs_reada_wait(reada1);
2331         if (!IS_ERR(reada2))
2332                 btrfs_reada_wait(reada2);
2333
2334         mutex_lock(&fs_info->scrub_lock);
2335         while (atomic_read(&fs_info->scrub_pause_req)) {
2336                 mutex_unlock(&fs_info->scrub_lock);
2337                 wait_event(fs_info->scrub_pause_wait,
2338                    atomic_read(&fs_info->scrub_pause_req) == 0);
2339                 mutex_lock(&fs_info->scrub_lock);
2340         }
2341         atomic_dec(&fs_info->scrubs_paused);
2342         mutex_unlock(&fs_info->scrub_lock);
2343         wake_up(&fs_info->scrub_pause_wait);
2344
2345         /*
2346          * collect all data csums for the stripe to avoid seeking during
2347          * the scrub. This might currently (crc32) end up to be about 1MB
2348          */
2349         blk_start_plug(&plug);
2350
2351         /*
2352          * now find all extents for each stripe and scrub them
2353          */
2354         logical = base + offset;
2355         physical = map->stripes[num].physical;
2356         logic_end = logical + increment * nstripes;
2357         ret = 0;
2358         while (logical < logic_end) {
2359                 /*
2360                  * canceled?
2361                  */
2362                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2363                     atomic_read(&sctx->cancel_req)) {
2364                         ret = -ECANCELED;
2365                         goto out;
2366                 }
2367                 /*
2368                  * check to see if we have to pause
2369                  */
2370                 if (atomic_read(&fs_info->scrub_pause_req)) {
2371                         /* push queued extents */
2372                         atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2373                         scrub_submit(sctx);
2374                         mutex_lock(&sctx->wr_ctx.wr_lock);
2375                         scrub_wr_submit(sctx);
2376                         mutex_unlock(&sctx->wr_ctx.wr_lock);
2377                         wait_event(sctx->list_wait,
2378                                    atomic_read(&sctx->bios_in_flight) == 0);
2379                         atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2380                         atomic_inc(&fs_info->scrubs_paused);
2381                         wake_up(&fs_info->scrub_pause_wait);
2382                         mutex_lock(&fs_info->scrub_lock);
2383                         while (atomic_read(&fs_info->scrub_pause_req)) {
2384                                 mutex_unlock(&fs_info->scrub_lock);
2385                                 wait_event(fs_info->scrub_pause_wait,
2386                                    atomic_read(&fs_info->scrub_pause_req) == 0);
2387                                 mutex_lock(&fs_info->scrub_lock);
2388                         }
2389                         atomic_dec(&fs_info->scrubs_paused);
2390                         mutex_unlock(&fs_info->scrub_lock);
2391                         wake_up(&fs_info->scrub_pause_wait);
2392                 }
2393
2394                 key.objectid = logical;
2395                 key.type = BTRFS_EXTENT_ITEM_KEY;
2396                 key.offset = (u64)-1;
2397
2398                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2399                 if (ret < 0)
2400                         goto out;
2401
2402                 if (ret > 0) {
2403                         ret = btrfs_previous_item(root, path, 0,
2404                                                   BTRFS_EXTENT_ITEM_KEY);
2405                         if (ret < 0)
2406                                 goto out;
2407                         if (ret > 0) {
2408                                 /* there's no smaller item, so stick with the
2409                                  * larger one */
2410                                 btrfs_release_path(path);
2411                                 ret = btrfs_search_slot(NULL, root, &key,
2412                                                         path, 0, 0);
2413                                 if (ret < 0)
2414                                         goto out;
2415                         }
2416                 }
2417
2418                 stop_loop = 0;
2419                 while (1) {
2420                         u64 bytes;
2421
2422                         l = path->nodes[0];
2423                         slot = path->slots[0];
2424                         if (slot >= btrfs_header_nritems(l)) {
2425                                 ret = btrfs_next_leaf(root, path);
2426                                 if (ret == 0)
2427                                         continue;
2428                                 if (ret < 0)
2429                                         goto out;
2430
2431                                 stop_loop = 1;
2432                                 break;
2433                         }
2434                         btrfs_item_key_to_cpu(l, &key, slot);
2435
2436                         if (key.type == BTRFS_METADATA_ITEM_KEY)
2437                                 bytes = root->leafsize;
2438                         else
2439                                 bytes = key.offset;
2440
2441                         if (key.objectid + bytes <= logical)
2442                                 goto next;
2443
2444                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2445                             key.type != BTRFS_METADATA_ITEM_KEY)
2446                                 goto next;
2447
2448                         if (key.objectid >= logical + map->stripe_len) {
2449                                 /* out of this device extent */
2450                                 if (key.objectid >= logic_end)
2451                                         stop_loop = 1;
2452                                 break;
2453                         }
2454
2455                         extent = btrfs_item_ptr(l, slot,
2456                                                 struct btrfs_extent_item);
2457                         flags = btrfs_extent_flags(l, extent);
2458                         generation = btrfs_extent_generation(l, extent);
2459
2460                         if (key.objectid < logical &&
2461                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2462                                 printk(KERN_ERR
2463                                        "btrfs scrub: tree block %llu spanning "
2464                                        "stripes, ignored. logical=%llu\n",
2465                                        key.objectid, logical);
2466                                 goto next;
2467                         }
2468
2469 again:
2470                         extent_logical = key.objectid;
2471                         extent_len = bytes;
2472
2473                         /*
2474                          * trim extent to this stripe
2475                          */
2476                         if (extent_logical < logical) {
2477                                 extent_len -= logical - extent_logical;
2478                                 extent_logical = logical;
2479                         }
2480                         if (extent_logical + extent_len >
2481                             logical + map->stripe_len) {
2482                                 extent_len = logical + map->stripe_len -
2483                                              extent_logical;
2484                         }
2485
2486                         extent_physical = extent_logical - logical + physical;
2487                         extent_dev = scrub_dev;
2488                         extent_mirror_num = mirror_num;
2489                         if (is_dev_replace)
2490                                 scrub_remap_extent(fs_info, extent_logical,
2491                                                    extent_len, &extent_physical,
2492                                                    &extent_dev,
2493                                                    &extent_mirror_num);
2494
2495                         ret = btrfs_lookup_csums_range(csum_root, logical,
2496                                                 logical + map->stripe_len - 1,
2497                                                 &sctx->csum_list, 1);
2498                         if (ret)
2499                                 goto out;
2500
2501                         ret = scrub_extent(sctx, extent_logical, extent_len,
2502                                            extent_physical, extent_dev, flags,
2503                                            generation, extent_mirror_num,
2504                                            extent_logical - logical + physical);
2505                         if (ret)
2506                                 goto out;
2507
2508                         scrub_free_csums(sctx);
2509                         if (extent_logical + extent_len <
2510                             key.objectid + bytes) {
2511                                 logical += increment;
2512                                 physical += map->stripe_len;
2513
2514                                 if (logical < key.objectid + bytes) {
2515                                         cond_resched();
2516                                         goto again;
2517                                 }
2518
2519                                 if (logical >= logic_end) {
2520                                         stop_loop = 1;
2521                                         break;
2522                                 }
2523                         }
2524 next:
2525                         path->slots[0]++;
2526                 }
2527                 btrfs_release_path(path);
2528                 logical += increment;
2529                 physical += map->stripe_len;
2530                 spin_lock(&sctx->stat_lock);
2531                 if (stop_loop)
2532                         sctx->stat.last_physical = map->stripes[num].physical +
2533                                                    length;
2534                 else
2535                         sctx->stat.last_physical = physical;
2536                 spin_unlock(&sctx->stat_lock);
2537                 if (stop_loop)
2538                         break;
2539         }
2540 out:
2541         /* push queued extents */
2542         scrub_submit(sctx);
2543         mutex_lock(&sctx->wr_ctx.wr_lock);
2544         scrub_wr_submit(sctx);
2545         mutex_unlock(&sctx->wr_ctx.wr_lock);
2546
2547         blk_finish_plug(&plug);
2548         btrfs_free_path(path);
2549         return ret < 0 ? ret : 0;
2550 }
2551
2552 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2553                                           struct btrfs_device *scrub_dev,
2554                                           u64 chunk_tree, u64 chunk_objectid,
2555                                           u64 chunk_offset, u64 length,
2556                                           u64 dev_offset, int is_dev_replace)
2557 {
2558         struct btrfs_mapping_tree *map_tree =
2559                 &sctx->dev_root->fs_info->mapping_tree;
2560         struct map_lookup *map;
2561         struct extent_map *em;
2562         int i;
2563         int ret = 0;
2564
2565         read_lock(&map_tree->map_tree.lock);
2566         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2567         read_unlock(&map_tree->map_tree.lock);
2568
2569         if (!em)
2570                 return -EINVAL;
2571
2572         map = (struct map_lookup *)em->bdev;
2573         if (em->start != chunk_offset)
2574                 goto out;
2575
2576         if (em->len < length)
2577                 goto out;
2578
2579         for (i = 0; i < map->num_stripes; ++i) {
2580                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2581                     map->stripes[i].physical == dev_offset) {
2582                         ret = scrub_stripe(sctx, map, scrub_dev, i,
2583                                            chunk_offset, length,
2584                                            is_dev_replace);
2585                         if (ret)
2586                                 goto out;
2587                 }
2588         }
2589 out:
2590         free_extent_map(em);
2591
2592         return ret;
2593 }
2594
2595 static noinline_for_stack
2596 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2597                            struct btrfs_device *scrub_dev, u64 start, u64 end,
2598                            int is_dev_replace)
2599 {
2600         struct btrfs_dev_extent *dev_extent = NULL;
2601         struct btrfs_path *path;
2602         struct btrfs_root *root = sctx->dev_root;
2603         struct btrfs_fs_info *fs_info = root->fs_info;
2604         u64 length;
2605         u64 chunk_tree;
2606         u64 chunk_objectid;
2607         u64 chunk_offset;
2608         int ret;
2609         int slot;
2610         struct extent_buffer *l;
2611         struct btrfs_key key;
2612         struct btrfs_key found_key;
2613         struct btrfs_block_group_cache *cache;
2614         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2615
2616         path = btrfs_alloc_path();
2617         if (!path)
2618                 return -ENOMEM;
2619
2620         path->reada = 2;
2621         path->search_commit_root = 1;
2622         path->skip_locking = 1;
2623
2624         key.objectid = scrub_dev->devid;
2625         key.offset = 0ull;
2626         key.type = BTRFS_DEV_EXTENT_KEY;
2627
2628         while (1) {
2629                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2630                 if (ret < 0)
2631                         break;
2632                 if (ret > 0) {
2633                         if (path->slots[0] >=
2634                             btrfs_header_nritems(path->nodes[0])) {
2635                                 ret = btrfs_next_leaf(root, path);
2636                                 if (ret)
2637                                         break;
2638                         }
2639                 }
2640
2641                 l = path->nodes[0];
2642                 slot = path->slots[0];
2643
2644                 btrfs_item_key_to_cpu(l, &found_key, slot);
2645
2646                 if (found_key.objectid != scrub_dev->devid)
2647                         break;
2648
2649                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2650                         break;
2651
2652                 if (found_key.offset >= end)
2653                         break;
2654
2655                 if (found_key.offset < key.offset)
2656                         break;
2657
2658                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2659                 length = btrfs_dev_extent_length(l, dev_extent);
2660
2661                 if (found_key.offset + length <= start) {
2662                         key.offset = found_key.offset + length;
2663                         btrfs_release_path(path);
2664                         continue;
2665                 }
2666
2667                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2668                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2669                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2670
2671                 /*
2672                  * get a reference on the corresponding block group to prevent
2673                  * the chunk from going away while we scrub it
2674                  */
2675                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2676                 if (!cache) {
2677                         ret = -ENOENT;
2678                         break;
2679                 }
2680                 dev_replace->cursor_right = found_key.offset + length;
2681                 dev_replace->cursor_left = found_key.offset;
2682                 dev_replace->item_needs_writeback = 1;
2683                 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2684                                   chunk_offset, length, found_key.offset,
2685                                   is_dev_replace);
2686
2687                 /*
2688                  * flush, submit all pending read and write bios, afterwards
2689                  * wait for them.
2690                  * Note that in the dev replace case, a read request causes
2691                  * write requests that are submitted in the read completion
2692                  * worker. Therefore in the current situation, it is required
2693                  * that all write requests are flushed, so that all read and
2694                  * write requests are really completed when bios_in_flight
2695                  * changes to 0.
2696                  */
2697                 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2698                 scrub_submit(sctx);
2699                 mutex_lock(&sctx->wr_ctx.wr_lock);
2700                 scrub_wr_submit(sctx);
2701                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2702
2703                 wait_event(sctx->list_wait,
2704                            atomic_read(&sctx->bios_in_flight) == 0);
2705                 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2706                 atomic_inc(&fs_info->scrubs_paused);
2707                 wake_up(&fs_info->scrub_pause_wait);
2708                 wait_event(sctx->list_wait,
2709                            atomic_read(&sctx->workers_pending) == 0);
2710
2711                 mutex_lock(&fs_info->scrub_lock);
2712                 while (atomic_read(&fs_info->scrub_pause_req)) {
2713                         mutex_unlock(&fs_info->scrub_lock);
2714                         wait_event(fs_info->scrub_pause_wait,
2715                            atomic_read(&fs_info->scrub_pause_req) == 0);
2716                         mutex_lock(&fs_info->scrub_lock);
2717                 }
2718                 atomic_dec(&fs_info->scrubs_paused);
2719                 mutex_unlock(&fs_info->scrub_lock);
2720                 wake_up(&fs_info->scrub_pause_wait);
2721
2722                 btrfs_put_block_group(cache);
2723                 if (ret)
2724                         break;
2725                 if (is_dev_replace &&
2726                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2727                         ret = -EIO;
2728                         break;
2729                 }
2730                 if (sctx->stat.malloc_errors > 0) {
2731                         ret = -ENOMEM;
2732                         break;
2733                 }
2734
2735                 dev_replace->cursor_left = dev_replace->cursor_right;
2736                 dev_replace->item_needs_writeback = 1;
2737
2738                 key.offset = found_key.offset + length;
2739                 btrfs_release_path(path);
2740         }
2741
2742         btrfs_free_path(path);
2743
2744         /*
2745          * ret can still be 1 from search_slot or next_leaf,
2746          * that's not an error
2747          */
2748         return ret < 0 ? ret : 0;
2749 }
2750
2751 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2752                                            struct btrfs_device *scrub_dev)
2753 {
2754         int     i;
2755         u64     bytenr;
2756         u64     gen;
2757         int     ret;
2758         struct btrfs_root *root = sctx->dev_root;
2759
2760         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2761                 return -EIO;
2762
2763         gen = root->fs_info->last_trans_committed;
2764
2765         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2766                 bytenr = btrfs_sb_offset(i);
2767                 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2768                         break;
2769
2770                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2771                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2772                                   NULL, 1, bytenr);
2773                 if (ret)
2774                         return ret;
2775         }
2776         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2777
2778         return 0;
2779 }
2780
2781 /*
2782  * get a reference count on fs_info->scrub_workers. start worker if necessary
2783  */
2784 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2785                                                 int is_dev_replace)
2786 {
2787         int ret = 0;
2788
2789         if (fs_info->scrub_workers_refcnt == 0) {
2790                 if (is_dev_replace)
2791                         btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2792                                         &fs_info->generic_worker);
2793                 else
2794                         btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2795                                         fs_info->thread_pool_size,
2796                                         &fs_info->generic_worker);
2797                 fs_info->scrub_workers.idle_thresh = 4;
2798                 ret = btrfs_start_workers(&fs_info->scrub_workers);
2799                 if (ret)
2800                         goto out;
2801                 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2802                                    "scrubwrc",
2803                                    fs_info->thread_pool_size,
2804                                    &fs_info->generic_worker);
2805                 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2806                 ret = btrfs_start_workers(
2807                                 &fs_info->scrub_wr_completion_workers);
2808                 if (ret)
2809                         goto out;
2810                 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2811                                    &fs_info->generic_worker);
2812                 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2813                 if (ret)
2814                         goto out;
2815         }
2816         ++fs_info->scrub_workers_refcnt;
2817 out:
2818         return ret;
2819 }
2820
2821 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2822 {
2823         if (--fs_info->scrub_workers_refcnt == 0) {
2824                 btrfs_stop_workers(&fs_info->scrub_workers);
2825                 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2826                 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2827         }
2828         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2829 }
2830
2831 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2832                     u64 end, struct btrfs_scrub_progress *progress,
2833                     int readonly, int is_dev_replace)
2834 {
2835         struct scrub_ctx *sctx;
2836         int ret;
2837         struct btrfs_device *dev;
2838
2839         if (btrfs_fs_closing(fs_info))
2840                 return -EINVAL;
2841
2842         /*
2843          * check some assumptions
2844          */
2845         if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2846                 printk(KERN_ERR
2847                        "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2848                        fs_info->chunk_root->nodesize,
2849                        fs_info->chunk_root->leafsize);
2850                 return -EINVAL;
2851         }
2852
2853         if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2854                 /*
2855                  * in this case scrub is unable to calculate the checksum
2856                  * the way scrub is implemented. Do not handle this
2857                  * situation at all because it won't ever happen.
2858                  */
2859                 printk(KERN_ERR
2860                        "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2861                        fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2862                 return -EINVAL;
2863         }
2864
2865         if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2866                 /* not supported for data w/o checksums */
2867                 printk(KERN_ERR
2868                        "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
2869                        fs_info->chunk_root->sectorsize, PAGE_SIZE);
2870                 return -EINVAL;
2871         }
2872
2873         if (fs_info->chunk_root->nodesize >
2874             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2875             fs_info->chunk_root->sectorsize >
2876             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2877                 /*
2878                  * would exhaust the array bounds of pagev member in
2879                  * struct scrub_block
2880                  */
2881                 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2882                        fs_info->chunk_root->nodesize,
2883                        SCRUB_MAX_PAGES_PER_BLOCK,
2884                        fs_info->chunk_root->sectorsize,
2885                        SCRUB_MAX_PAGES_PER_BLOCK);
2886                 return -EINVAL;
2887         }
2888
2889
2890         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2891         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2892         if (!dev || (dev->missing && !is_dev_replace)) {
2893                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2894                 return -ENODEV;
2895         }
2896
2897         mutex_lock(&fs_info->scrub_lock);
2898         if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2899                 mutex_unlock(&fs_info->scrub_lock);
2900                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2901                 return -EIO;
2902         }
2903
2904         btrfs_dev_replace_lock(&fs_info->dev_replace);
2905         if (dev->scrub_device ||
2906             (!is_dev_replace &&
2907              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2908                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2909                 mutex_unlock(&fs_info->scrub_lock);
2910                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2911                 return -EINPROGRESS;
2912         }
2913         btrfs_dev_replace_unlock(&fs_info->dev_replace);
2914
2915         ret = scrub_workers_get(fs_info, is_dev_replace);
2916         if (ret) {
2917                 mutex_unlock(&fs_info->scrub_lock);
2918                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2919                 return ret;
2920         }
2921
2922         sctx = scrub_setup_ctx(dev, is_dev_replace);
2923         if (IS_ERR(sctx)) {
2924                 mutex_unlock(&fs_info->scrub_lock);
2925                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2926                 scrub_workers_put(fs_info);
2927                 return PTR_ERR(sctx);
2928         }
2929         sctx->readonly = readonly;
2930         dev->scrub_device = sctx;
2931
2932         atomic_inc(&fs_info->scrubs_running);
2933         mutex_unlock(&fs_info->scrub_lock);
2934
2935         if (!is_dev_replace) {
2936                 /*
2937                  * by holding device list mutex, we can
2938                  * kick off writing super in log tree sync.
2939                  */
2940                 ret = scrub_supers(sctx, dev);
2941         }
2942         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2943
2944         if (!ret)
2945                 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2946                                              is_dev_replace);
2947
2948         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2949         atomic_dec(&fs_info->scrubs_running);
2950         wake_up(&fs_info->scrub_pause_wait);
2951
2952         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2953
2954         if (progress)
2955                 memcpy(progress, &sctx->stat, sizeof(*progress));
2956
2957         mutex_lock(&fs_info->scrub_lock);
2958         dev->scrub_device = NULL;
2959         scrub_workers_put(fs_info);
2960         mutex_unlock(&fs_info->scrub_lock);
2961
2962         scrub_free_ctx(sctx);
2963
2964         return ret;
2965 }
2966
2967 void btrfs_scrub_pause(struct btrfs_root *root)
2968 {
2969         struct btrfs_fs_info *fs_info = root->fs_info;
2970
2971         mutex_lock(&fs_info->scrub_lock);
2972         atomic_inc(&fs_info->scrub_pause_req);
2973         while (atomic_read(&fs_info->scrubs_paused) !=
2974                atomic_read(&fs_info->scrubs_running)) {
2975                 mutex_unlock(&fs_info->scrub_lock);
2976                 wait_event(fs_info->scrub_pause_wait,
2977                            atomic_read(&fs_info->scrubs_paused) ==
2978                            atomic_read(&fs_info->scrubs_running));
2979                 mutex_lock(&fs_info->scrub_lock);
2980         }
2981         mutex_unlock(&fs_info->scrub_lock);
2982 }
2983
2984 void btrfs_scrub_continue(struct btrfs_root *root)
2985 {
2986         struct btrfs_fs_info *fs_info = root->fs_info;
2987
2988         atomic_dec(&fs_info->scrub_pause_req);
2989         wake_up(&fs_info->scrub_pause_wait);
2990 }
2991
2992 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2993 {
2994         mutex_lock(&fs_info->scrub_lock);
2995         if (!atomic_read(&fs_info->scrubs_running)) {
2996                 mutex_unlock(&fs_info->scrub_lock);
2997                 return -ENOTCONN;
2998         }
2999
3000         atomic_inc(&fs_info->scrub_cancel_req);
3001         while (atomic_read(&fs_info->scrubs_running)) {
3002                 mutex_unlock(&fs_info->scrub_lock);
3003                 wait_event(fs_info->scrub_pause_wait,
3004                            atomic_read(&fs_info->scrubs_running) == 0);
3005                 mutex_lock(&fs_info->scrub_lock);
3006         }
3007         atomic_dec(&fs_info->scrub_cancel_req);
3008         mutex_unlock(&fs_info->scrub_lock);
3009
3010         return 0;
3011 }
3012
3013 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3014                            struct btrfs_device *dev)
3015 {
3016         struct scrub_ctx *sctx;
3017
3018         mutex_lock(&fs_info->scrub_lock);
3019         sctx = dev->scrub_device;
3020         if (!sctx) {
3021                 mutex_unlock(&fs_info->scrub_lock);
3022                 return -ENOTCONN;
3023         }
3024         atomic_inc(&sctx->cancel_req);
3025         while (dev->scrub_device) {
3026                 mutex_unlock(&fs_info->scrub_lock);
3027                 wait_event(fs_info->scrub_pause_wait,
3028                            dev->scrub_device == NULL);
3029                 mutex_lock(&fs_info->scrub_lock);
3030         }
3031         mutex_unlock(&fs_info->scrub_lock);
3032
3033         return 0;
3034 }
3035
3036 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3037                          struct btrfs_scrub_progress *progress)
3038 {
3039         struct btrfs_device *dev;
3040         struct scrub_ctx *sctx = NULL;
3041
3042         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3043         dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3044         if (dev)
3045                 sctx = dev->scrub_device;
3046         if (sctx)
3047                 memcpy(progress, &sctx->stat, sizeof(*progress));
3048         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3049
3050         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3051 }
3052
3053 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3054                                u64 extent_logical, u64 extent_len,
3055                                u64 *extent_physical,
3056                                struct btrfs_device **extent_dev,
3057                                int *extent_mirror_num)
3058 {
3059         u64 mapped_length;
3060         struct btrfs_bio *bbio = NULL;
3061         int ret;
3062
3063         mapped_length = extent_len;
3064         ret = btrfs_map_block(fs_info, READ, extent_logical,
3065                               &mapped_length, &bbio, 0);
3066         if (ret || !bbio || mapped_length < extent_len ||
3067             !bbio->stripes[0].dev->bdev) {
3068                 kfree(bbio);
3069                 return;
3070         }
3071
3072         *extent_physical = bbio->stripes[0].physical;
3073         *extent_mirror_num = bbio->mirror_num;
3074         *extent_dev = bbio->stripes[0].dev;
3075         kfree(bbio);
3076 }
3077
3078 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3079                               struct scrub_wr_ctx *wr_ctx,
3080                               struct btrfs_fs_info *fs_info,
3081                               struct btrfs_device *dev,
3082                               int is_dev_replace)
3083 {
3084         WARN_ON(wr_ctx->wr_curr_bio != NULL);
3085
3086         mutex_init(&wr_ctx->wr_lock);
3087         wr_ctx->wr_curr_bio = NULL;
3088         if (!is_dev_replace)
3089                 return 0;
3090
3091         WARN_ON(!dev->bdev);
3092         wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3093                                          bio_get_nr_vecs(dev->bdev));
3094         wr_ctx->tgtdev = dev;
3095         atomic_set(&wr_ctx->flush_all_writes, 0);
3096         return 0;
3097 }
3098
3099 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3100 {
3101         mutex_lock(&wr_ctx->wr_lock);
3102         kfree(wr_ctx->wr_curr_bio);
3103         wr_ctx->wr_curr_bio = NULL;
3104         mutex_unlock(&wr_ctx->wr_lock);
3105 }
3106
3107 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3108                             int mirror_num, u64 physical_for_dev_replace)
3109 {
3110         struct scrub_copy_nocow_ctx *nocow_ctx;
3111         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3112
3113         nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3114         if (!nocow_ctx) {
3115                 spin_lock(&sctx->stat_lock);
3116                 sctx->stat.malloc_errors++;
3117                 spin_unlock(&sctx->stat_lock);
3118                 return -ENOMEM;
3119         }
3120
3121         scrub_pending_trans_workers_inc(sctx);
3122
3123         nocow_ctx->sctx = sctx;
3124         nocow_ctx->logical = logical;
3125         nocow_ctx->len = len;
3126         nocow_ctx->mirror_num = mirror_num;
3127         nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3128         nocow_ctx->work.func = copy_nocow_pages_worker;
3129         INIT_LIST_HEAD(&nocow_ctx->inodes);
3130         btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3131                            &nocow_ctx->work);
3132
3133         return 0;
3134 }
3135
3136 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3137 {
3138         struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3139         struct scrub_nocow_inode *nocow_inode;
3140
3141         nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3142         if (!nocow_inode)
3143                 return -ENOMEM;
3144         nocow_inode->inum = inum;
3145         nocow_inode->offset = offset;
3146         nocow_inode->root = root;
3147         list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3148         return 0;
3149 }
3150
3151 #define COPY_COMPLETE 1
3152
3153 static void copy_nocow_pages_worker(struct btrfs_work *work)
3154 {
3155         struct scrub_copy_nocow_ctx *nocow_ctx =
3156                 container_of(work, struct scrub_copy_nocow_ctx, work);
3157         struct scrub_ctx *sctx = nocow_ctx->sctx;
3158         u64 logical = nocow_ctx->logical;
3159         u64 len = nocow_ctx->len;
3160         int mirror_num = nocow_ctx->mirror_num;
3161         u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3162         int ret;
3163         struct btrfs_trans_handle *trans = NULL;
3164         struct btrfs_fs_info *fs_info;
3165         struct btrfs_path *path;
3166         struct btrfs_root *root;
3167         int not_written = 0;
3168
3169         fs_info = sctx->dev_root->fs_info;
3170         root = fs_info->extent_root;
3171
3172         path = btrfs_alloc_path();
3173         if (!path) {
3174                 spin_lock(&sctx->stat_lock);
3175                 sctx->stat.malloc_errors++;
3176                 spin_unlock(&sctx->stat_lock);
3177                 not_written = 1;
3178                 goto out;
3179         }
3180
3181         trans = btrfs_join_transaction(root);
3182         if (IS_ERR(trans)) {
3183                 not_written = 1;
3184                 goto out;
3185         }
3186
3187         ret = iterate_inodes_from_logical(logical, fs_info, path,
3188                                           record_inode_for_nocow, nocow_ctx);
3189         if (ret != 0 && ret != -ENOENT) {
3190                 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
3191                         logical, physical_for_dev_replace, len, mirror_num,
3192                         ret);
3193                 not_written = 1;
3194                 goto out;
3195         }
3196
3197         btrfs_end_transaction(trans, root);
3198         trans = NULL;
3199         while (!list_empty(&nocow_ctx->inodes)) {
3200                 struct scrub_nocow_inode *entry;
3201                 entry = list_first_entry(&nocow_ctx->inodes,
3202                                          struct scrub_nocow_inode,
3203                                          list);
3204                 list_del_init(&entry->list);
3205                 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3206                                                  entry->root, nocow_ctx);
3207                 kfree(entry);
3208                 if (ret == COPY_COMPLETE) {
3209                         ret = 0;
3210                         break;
3211                 } else if (ret) {
3212                         break;
3213                 }
3214         }
3215 out:
3216         while (!list_empty(&nocow_ctx->inodes)) {
3217                 struct scrub_nocow_inode *entry;
3218                 entry = list_first_entry(&nocow_ctx->inodes,
3219                                          struct scrub_nocow_inode,
3220                                          list);
3221                 list_del_init(&entry->list);
3222                 kfree(entry);
3223         }
3224         if (trans && !IS_ERR(trans))
3225                 btrfs_end_transaction(trans, root);
3226         if (not_written)
3227                 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3228                                             num_uncorrectable_read_errors);
3229
3230         btrfs_free_path(path);
3231         kfree(nocow_ctx);
3232
3233         scrub_pending_trans_workers_dec(sctx);
3234 }
3235
3236 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3237                                       struct scrub_copy_nocow_ctx *nocow_ctx)
3238 {
3239         struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3240         struct btrfs_key key;
3241         struct inode *inode;
3242         struct page *page;
3243         struct btrfs_root *local_root;
3244         struct btrfs_ordered_extent *ordered;
3245         struct extent_map *em;
3246         struct extent_state *cached_state = NULL;
3247         struct extent_io_tree *io_tree;
3248         u64 physical_for_dev_replace;
3249         u64 len = nocow_ctx->len;
3250         u64 lockstart = offset, lockend = offset + len - 1;
3251         unsigned long index;
3252         int srcu_index;
3253         int ret = 0;
3254         int err = 0;
3255
3256         key.objectid = root;
3257         key.type = BTRFS_ROOT_ITEM_KEY;
3258         key.offset = (u64)-1;
3259
3260         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3261
3262         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3263         if (IS_ERR(local_root)) {
3264                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3265                 return PTR_ERR(local_root);
3266         }
3267
3268         key.type = BTRFS_INODE_ITEM_KEY;
3269         key.objectid = inum;
3270         key.offset = 0;
3271         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3272         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3273         if (IS_ERR(inode))
3274                 return PTR_ERR(inode);
3275
3276         /* Avoid truncate/dio/punch hole.. */
3277         mutex_lock(&inode->i_mutex);
3278         inode_dio_wait(inode);
3279
3280         physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3281         io_tree = &BTRFS_I(inode)->io_tree;
3282
3283         lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3284         ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3285         if (ordered) {
3286                 btrfs_put_ordered_extent(ordered);
3287                 goto out_unlock;
3288         }
3289
3290         em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3291         if (IS_ERR(em)) {
3292                 ret = PTR_ERR(em);
3293                 goto out_unlock;
3294         }
3295
3296         /*
3297          * This extent does not actually cover the logical extent anymore,
3298          * move on to the next inode.
3299          */
3300         if (em->block_start > nocow_ctx->logical ||
3301             em->block_start + em->block_len < nocow_ctx->logical + len) {
3302                 free_extent_map(em);
3303                 goto out_unlock;
3304         }
3305         free_extent_map(em);
3306
3307         while (len >= PAGE_CACHE_SIZE) {
3308                 index = offset >> PAGE_CACHE_SHIFT;
3309 again:
3310                 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3311                 if (!page) {
3312                         pr_err("find_or_create_page() failed\n");
3313                         ret = -ENOMEM;
3314                         goto out;
3315                 }
3316
3317                 if (PageUptodate(page)) {
3318                         if (PageDirty(page))
3319                                 goto next_page;
3320                 } else {
3321                         ClearPageError(page);
3322                         err = extent_read_full_page_nolock(io_tree, page,
3323                                                            btrfs_get_extent,
3324                                                            nocow_ctx->mirror_num);
3325                         if (err) {
3326                                 ret = err;
3327                                 goto next_page;
3328                         }
3329
3330                         lock_page(page);
3331                         /*
3332                          * If the page has been remove from the page cache,
3333                          * the data on it is meaningless, because it may be
3334                          * old one, the new data may be written into the new
3335                          * page in the page cache.
3336                          */
3337                         if (page->mapping != inode->i_mapping) {
3338                                 unlock_page(page);
3339                                 page_cache_release(page);
3340                                 goto again;
3341                         }
3342                         if (!PageUptodate(page)) {
3343                                 ret = -EIO;
3344                                 goto next_page;
3345                         }
3346                 }
3347                 err = write_page_nocow(nocow_ctx->sctx,
3348                                        physical_for_dev_replace, page);
3349                 if (err)
3350                         ret = err;
3351 next_page:
3352                 unlock_page(page);
3353                 page_cache_release(page);
3354
3355                 if (ret)
3356                         break;
3357
3358                 offset += PAGE_CACHE_SIZE;
3359                 physical_for_dev_replace += PAGE_CACHE_SIZE;
3360                 len -= PAGE_CACHE_SIZE;
3361         }
3362         ret = COPY_COMPLETE;
3363 out_unlock:
3364         unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3365                              GFP_NOFS);
3366 out:
3367         mutex_unlock(&inode->i_mutex);
3368         iput(inode);
3369         return ret;
3370 }
3371
3372 static int write_page_nocow(struct scrub_ctx *sctx,
3373                             u64 physical_for_dev_replace, struct page *page)
3374 {
3375         struct bio *bio;
3376         struct btrfs_device *dev;
3377         int ret;
3378         DECLARE_COMPLETION_ONSTACK(compl);
3379
3380         dev = sctx->wr_ctx.tgtdev;
3381         if (!dev)
3382                 return -EIO;
3383         if (!dev->bdev) {
3384                 printk_ratelimited(KERN_WARNING
3385                         "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3386                 return -EIO;
3387         }
3388         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3389         if (!bio) {
3390                 spin_lock(&sctx->stat_lock);
3391                 sctx->stat.malloc_errors++;
3392                 spin_unlock(&sctx->stat_lock);
3393                 return -ENOMEM;
3394         }
3395         bio->bi_private = &compl;
3396         bio->bi_end_io = scrub_complete_bio_end_io;
3397         bio->bi_size = 0;
3398         bio->bi_sector = physical_for_dev_replace >> 9;
3399         bio->bi_bdev = dev->bdev;
3400         ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3401         if (ret != PAGE_CACHE_SIZE) {
3402 leave_with_eio:
3403                 bio_put(bio);
3404                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3405                 return -EIO;
3406         }
3407         btrfsic_submit_bio(WRITE_SYNC, bio);
3408         wait_for_completion(&compl);
3409
3410         if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3411                 goto leave_with_eio;
3412
3413         bio_put(bio);
3414         return 0;
3415 }