Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[linux-drm-fsl-dcu.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 #ifdef CONFIG_BTRFS_DEBUG
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 static DEFINE_SPINLOCK(leak_lock);
32
33 static inline
34 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
35 {
36         unsigned long flags;
37
38         spin_lock_irqsave(&leak_lock, flags);
39         list_add(new, head);
40         spin_unlock_irqrestore(&leak_lock, flags);
41 }
42
43 static inline
44 void btrfs_leak_debug_del(struct list_head *entry)
45 {
46         unsigned long flags;
47
48         spin_lock_irqsave(&leak_lock, flags);
49         list_del(entry);
50         spin_unlock_irqrestore(&leak_lock, flags);
51 }
52
53 static inline
54 void btrfs_leak_debug_check(void)
55 {
56         struct extent_state *state;
57         struct extent_buffer *eb;
58
59         while (!list_empty(&states)) {
60                 state = list_entry(states.next, struct extent_state, leak_list);
61                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
62                        "state %lu in tree %p refs %d\n",
63                        (unsigned long long)state->start,
64                        (unsigned long long)state->end,
65                        state->state, state->tree, atomic_read(&state->refs));
66                 list_del(&state->leak_list);
67                 kmem_cache_free(extent_state_cache, state);
68         }
69
70         while (!list_empty(&buffers)) {
71                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73                        "refs %d\n", (unsigned long long)eb->start,
74                        eb->len, atomic_read(&eb->refs));
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78 }
79 #else
80 #define btrfs_leak_debug_add(new, head) do {} while (0)
81 #define btrfs_leak_debug_del(entry)     do {} while (0)
82 #define btrfs_leak_debug_check()        do {} while (0)
83 #endif
84
85 #define BUFFER_LRU_MAX 64
86
87 struct tree_entry {
88         u64 start;
89         u64 end;
90         struct rb_node rb_node;
91 };
92
93 struct extent_page_data {
94         struct bio *bio;
95         struct extent_io_tree *tree;
96         get_extent_t *get_extent;
97         unsigned long bio_flags;
98
99         /* tells writepage not to lock the state bits for this range
100          * it still does the unlocking
101          */
102         unsigned int extent_locked:1;
103
104         /* tells the submit_bio code to use a WRITE_SYNC */
105         unsigned int sync_io:1;
106 };
107
108 static noinline void flush_write_bio(void *data);
109 static inline struct btrfs_fs_info *
110 tree_fs_info(struct extent_io_tree *tree)
111 {
112         return btrfs_sb(tree->mapping->host->i_sb);
113 }
114
115 int __init extent_io_init(void)
116 {
117         extent_state_cache = kmem_cache_create("btrfs_extent_state",
118                         sizeof(struct extent_state), 0,
119                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
120         if (!extent_state_cache)
121                 return -ENOMEM;
122
123         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
124                         sizeof(struct extent_buffer), 0,
125                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
126         if (!extent_buffer_cache)
127                 goto free_state_cache;
128         return 0;
129
130 free_state_cache:
131         kmem_cache_destroy(extent_state_cache);
132         return -ENOMEM;
133 }
134
135 void extent_io_exit(void)
136 {
137         btrfs_leak_debug_check();
138
139         /*
140          * Make sure all delayed rcu free are flushed before we
141          * destroy caches.
142          */
143         rcu_barrier();
144         if (extent_state_cache)
145                 kmem_cache_destroy(extent_state_cache);
146         if (extent_buffer_cache)
147                 kmem_cache_destroy(extent_buffer_cache);
148 }
149
150 void extent_io_tree_init(struct extent_io_tree *tree,
151                          struct address_space *mapping)
152 {
153         tree->state = RB_ROOT;
154         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
155         tree->ops = NULL;
156         tree->dirty_bytes = 0;
157         spin_lock_init(&tree->lock);
158         spin_lock_init(&tree->buffer_lock);
159         tree->mapping = mapping;
160 }
161
162 static struct extent_state *alloc_extent_state(gfp_t mask)
163 {
164         struct extent_state *state;
165
166         state = kmem_cache_alloc(extent_state_cache, mask);
167         if (!state)
168                 return state;
169         state->state = 0;
170         state->private = 0;
171         state->tree = NULL;
172         btrfs_leak_debug_add(&state->leak_list, &states);
173         atomic_set(&state->refs, 1);
174         init_waitqueue_head(&state->wq);
175         trace_alloc_extent_state(state, mask, _RET_IP_);
176         return state;
177 }
178
179 void free_extent_state(struct extent_state *state)
180 {
181         if (!state)
182                 return;
183         if (atomic_dec_and_test(&state->refs)) {
184                 WARN_ON(state->tree);
185                 btrfs_leak_debug_del(&state->leak_list);
186                 trace_free_extent_state(state, _RET_IP_);
187                 kmem_cache_free(extent_state_cache, state);
188         }
189 }
190
191 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
192                                    struct rb_node *node)
193 {
194         struct rb_node **p = &root->rb_node;
195         struct rb_node *parent = NULL;
196         struct tree_entry *entry;
197
198         while (*p) {
199                 parent = *p;
200                 entry = rb_entry(parent, struct tree_entry, rb_node);
201
202                 if (offset < entry->start)
203                         p = &(*p)->rb_left;
204                 else if (offset > entry->end)
205                         p = &(*p)->rb_right;
206                 else
207                         return parent;
208         }
209
210         rb_link_node(node, parent, p);
211         rb_insert_color(node, root);
212         return NULL;
213 }
214
215 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
216                                      struct rb_node **prev_ret,
217                                      struct rb_node **next_ret)
218 {
219         struct rb_root *root = &tree->state;
220         struct rb_node *n = root->rb_node;
221         struct rb_node *prev = NULL;
222         struct rb_node *orig_prev = NULL;
223         struct tree_entry *entry;
224         struct tree_entry *prev_entry = NULL;
225
226         while (n) {
227                 entry = rb_entry(n, struct tree_entry, rb_node);
228                 prev = n;
229                 prev_entry = entry;
230
231                 if (offset < entry->start)
232                         n = n->rb_left;
233                 else if (offset > entry->end)
234                         n = n->rb_right;
235                 else
236                         return n;
237         }
238
239         if (prev_ret) {
240                 orig_prev = prev;
241                 while (prev && offset > prev_entry->end) {
242                         prev = rb_next(prev);
243                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
244                 }
245                 *prev_ret = prev;
246                 prev = orig_prev;
247         }
248
249         if (next_ret) {
250                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
251                 while (prev && offset < prev_entry->start) {
252                         prev = rb_prev(prev);
253                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
254                 }
255                 *next_ret = prev;
256         }
257         return NULL;
258 }
259
260 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
261                                           u64 offset)
262 {
263         struct rb_node *prev = NULL;
264         struct rb_node *ret;
265
266         ret = __etree_search(tree, offset, &prev, NULL);
267         if (!ret)
268                 return prev;
269         return ret;
270 }
271
272 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
273                      struct extent_state *other)
274 {
275         if (tree->ops && tree->ops->merge_extent_hook)
276                 tree->ops->merge_extent_hook(tree->mapping->host, new,
277                                              other);
278 }
279
280 /*
281  * utility function to look for merge candidates inside a given range.
282  * Any extents with matching state are merged together into a single
283  * extent in the tree.  Extents with EXTENT_IO in their state field
284  * are not merged because the end_io handlers need to be able to do
285  * operations on them without sleeping (or doing allocations/splits).
286  *
287  * This should be called with the tree lock held.
288  */
289 static void merge_state(struct extent_io_tree *tree,
290                         struct extent_state *state)
291 {
292         struct extent_state *other;
293         struct rb_node *other_node;
294
295         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
296                 return;
297
298         other_node = rb_prev(&state->rb_node);
299         if (other_node) {
300                 other = rb_entry(other_node, struct extent_state, rb_node);
301                 if (other->end == state->start - 1 &&
302                     other->state == state->state) {
303                         merge_cb(tree, state, other);
304                         state->start = other->start;
305                         other->tree = NULL;
306                         rb_erase(&other->rb_node, &tree->state);
307                         free_extent_state(other);
308                 }
309         }
310         other_node = rb_next(&state->rb_node);
311         if (other_node) {
312                 other = rb_entry(other_node, struct extent_state, rb_node);
313                 if (other->start == state->end + 1 &&
314                     other->state == state->state) {
315                         merge_cb(tree, state, other);
316                         state->end = other->end;
317                         other->tree = NULL;
318                         rb_erase(&other->rb_node, &tree->state);
319                         free_extent_state(other);
320                 }
321         }
322 }
323
324 static void set_state_cb(struct extent_io_tree *tree,
325                          struct extent_state *state, unsigned long *bits)
326 {
327         if (tree->ops && tree->ops->set_bit_hook)
328                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
329 }
330
331 static void clear_state_cb(struct extent_io_tree *tree,
332                            struct extent_state *state, unsigned long *bits)
333 {
334         if (tree->ops && tree->ops->clear_bit_hook)
335                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
336 }
337
338 static void set_state_bits(struct extent_io_tree *tree,
339                            struct extent_state *state, unsigned long *bits);
340
341 /*
342  * insert an extent_state struct into the tree.  'bits' are set on the
343  * struct before it is inserted.
344  *
345  * This may return -EEXIST if the extent is already there, in which case the
346  * state struct is freed.
347  *
348  * The tree lock is not taken internally.  This is a utility function and
349  * probably isn't what you want to call (see set/clear_extent_bit).
350  */
351 static int insert_state(struct extent_io_tree *tree,
352                         struct extent_state *state, u64 start, u64 end,
353                         unsigned long *bits)
354 {
355         struct rb_node *node;
356
357         if (end < start)
358                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
359                        (unsigned long long)end,
360                        (unsigned long long)start);
361         state->start = start;
362         state->end = end;
363
364         set_state_bits(tree, state, bits);
365
366         node = tree_insert(&tree->state, end, &state->rb_node);
367         if (node) {
368                 struct extent_state *found;
369                 found = rb_entry(node, struct extent_state, rb_node);
370                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
371                        "%llu %llu\n", (unsigned long long)found->start,
372                        (unsigned long long)found->end,
373                        (unsigned long long)start, (unsigned long long)end);
374                 return -EEXIST;
375         }
376         state->tree = tree;
377         merge_state(tree, state);
378         return 0;
379 }
380
381 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
382                      u64 split)
383 {
384         if (tree->ops && tree->ops->split_extent_hook)
385                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
386 }
387
388 /*
389  * split a given extent state struct in two, inserting the preallocated
390  * struct 'prealloc' as the newly created second half.  'split' indicates an
391  * offset inside 'orig' where it should be split.
392  *
393  * Before calling,
394  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
395  * are two extent state structs in the tree:
396  * prealloc: [orig->start, split - 1]
397  * orig: [ split, orig->end ]
398  *
399  * The tree locks are not taken by this function. They need to be held
400  * by the caller.
401  */
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403                        struct extent_state *prealloc, u64 split)
404 {
405         struct rb_node *node;
406
407         split_cb(tree, orig, split);
408
409         prealloc->start = orig->start;
410         prealloc->end = split - 1;
411         prealloc->state = orig->state;
412         orig->start = split;
413
414         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
415         if (node) {
416                 free_extent_state(prealloc);
417                 return -EEXIST;
418         }
419         prealloc->tree = tree;
420         return 0;
421 }
422
423 static struct extent_state *next_state(struct extent_state *state)
424 {
425         struct rb_node *next = rb_next(&state->rb_node);
426         if (next)
427                 return rb_entry(next, struct extent_state, rb_node);
428         else
429                 return NULL;
430 }
431
432 /*
433  * utility function to clear some bits in an extent state struct.
434  * it will optionally wake up any one waiting on this state (wake == 1).
435  *
436  * If no bits are set on the state struct after clearing things, the
437  * struct is freed and removed from the tree
438  */
439 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
440                                             struct extent_state *state,
441                                             unsigned long *bits, int wake)
442 {
443         struct extent_state *next;
444         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
445
446         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
447                 u64 range = state->end - state->start + 1;
448                 WARN_ON(range > tree->dirty_bytes);
449                 tree->dirty_bytes -= range;
450         }
451         clear_state_cb(tree, state, bits);
452         state->state &= ~bits_to_clear;
453         if (wake)
454                 wake_up(&state->wq);
455         if (state->state == 0) {
456                 next = next_state(state);
457                 if (state->tree) {
458                         rb_erase(&state->rb_node, &tree->state);
459                         state->tree = NULL;
460                         free_extent_state(state);
461                 } else {
462                         WARN_ON(1);
463                 }
464         } else {
465                 merge_state(tree, state);
466                 next = next_state(state);
467         }
468         return next;
469 }
470
471 static struct extent_state *
472 alloc_extent_state_atomic(struct extent_state *prealloc)
473 {
474         if (!prealloc)
475                 prealloc = alloc_extent_state(GFP_ATOMIC);
476
477         return prealloc;
478 }
479
480 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
481 {
482         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
483                     "Extent tree was modified by another "
484                     "thread while locked.");
485 }
486
487 /*
488  * clear some bits on a range in the tree.  This may require splitting
489  * or inserting elements in the tree, so the gfp mask is used to
490  * indicate which allocations or sleeping are allowed.
491  *
492  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
493  * the given range from the tree regardless of state (ie for truncate).
494  *
495  * the range [start, end] is inclusive.
496  *
497  * This takes the tree lock, and returns 0 on success and < 0 on error.
498  */
499 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
500                      unsigned long bits, int wake, int delete,
501                      struct extent_state **cached_state,
502                      gfp_t mask)
503 {
504         struct extent_state *state;
505         struct extent_state *cached;
506         struct extent_state *prealloc = NULL;
507         struct rb_node *node;
508         u64 last_end;
509         int err;
510         int clear = 0;
511
512         if (delete)
513                 bits |= ~EXTENT_CTLBITS;
514         bits |= EXTENT_FIRST_DELALLOC;
515
516         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
517                 clear = 1;
518 again:
519         if (!prealloc && (mask & __GFP_WAIT)) {
520                 prealloc = alloc_extent_state(mask);
521                 if (!prealloc)
522                         return -ENOMEM;
523         }
524
525         spin_lock(&tree->lock);
526         if (cached_state) {
527                 cached = *cached_state;
528
529                 if (clear) {
530                         *cached_state = NULL;
531                         cached_state = NULL;
532                 }
533
534                 if (cached && cached->tree && cached->start <= start &&
535                     cached->end > start) {
536                         if (clear)
537                                 atomic_dec(&cached->refs);
538                         state = cached;
539                         goto hit_next;
540                 }
541                 if (clear)
542                         free_extent_state(cached);
543         }
544         /*
545          * this search will find the extents that end after
546          * our range starts
547          */
548         node = tree_search(tree, start);
549         if (!node)
550                 goto out;
551         state = rb_entry(node, struct extent_state, rb_node);
552 hit_next:
553         if (state->start > end)
554                 goto out;
555         WARN_ON(state->end < start);
556         last_end = state->end;
557
558         /* the state doesn't have the wanted bits, go ahead */
559         if (!(state->state & bits)) {
560                 state = next_state(state);
561                 goto next;
562         }
563
564         /*
565          *     | ---- desired range ---- |
566          *  | state | or
567          *  | ------------- state -------------- |
568          *
569          * We need to split the extent we found, and may flip
570          * bits on second half.
571          *
572          * If the extent we found extends past our range, we
573          * just split and search again.  It'll get split again
574          * the next time though.
575          *
576          * If the extent we found is inside our range, we clear
577          * the desired bit on it.
578          */
579
580         if (state->start < start) {
581                 prealloc = alloc_extent_state_atomic(prealloc);
582                 BUG_ON(!prealloc);
583                 err = split_state(tree, state, prealloc, start);
584                 if (err)
585                         extent_io_tree_panic(tree, err);
586
587                 prealloc = NULL;
588                 if (err)
589                         goto out;
590                 if (state->end <= end) {
591                         state = clear_state_bit(tree, state, &bits, wake);
592                         goto next;
593                 }
594                 goto search_again;
595         }
596         /*
597          * | ---- desired range ---- |
598          *                        | state |
599          * We need to split the extent, and clear the bit
600          * on the first half
601          */
602         if (state->start <= end && state->end > end) {
603                 prealloc = alloc_extent_state_atomic(prealloc);
604                 BUG_ON(!prealloc);
605                 err = split_state(tree, state, prealloc, end + 1);
606                 if (err)
607                         extent_io_tree_panic(tree, err);
608
609                 if (wake)
610                         wake_up(&state->wq);
611
612                 clear_state_bit(tree, prealloc, &bits, wake);
613
614                 prealloc = NULL;
615                 goto out;
616         }
617
618         state = clear_state_bit(tree, state, &bits, wake);
619 next:
620         if (last_end == (u64)-1)
621                 goto out;
622         start = last_end + 1;
623         if (start <= end && state && !need_resched())
624                 goto hit_next;
625         goto search_again;
626
627 out:
628         spin_unlock(&tree->lock);
629         if (prealloc)
630                 free_extent_state(prealloc);
631
632         return 0;
633
634 search_again:
635         if (start > end)
636                 goto out;
637         spin_unlock(&tree->lock);
638         if (mask & __GFP_WAIT)
639                 cond_resched();
640         goto again;
641 }
642
643 static void wait_on_state(struct extent_io_tree *tree,
644                           struct extent_state *state)
645                 __releases(tree->lock)
646                 __acquires(tree->lock)
647 {
648         DEFINE_WAIT(wait);
649         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
650         spin_unlock(&tree->lock);
651         schedule();
652         spin_lock(&tree->lock);
653         finish_wait(&state->wq, &wait);
654 }
655
656 /*
657  * waits for one or more bits to clear on a range in the state tree.
658  * The range [start, end] is inclusive.
659  * The tree lock is taken by this function
660  */
661 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
662                             unsigned long bits)
663 {
664         struct extent_state *state;
665         struct rb_node *node;
666
667         spin_lock(&tree->lock);
668 again:
669         while (1) {
670                 /*
671                  * this search will find all the extents that end after
672                  * our range starts
673                  */
674                 node = tree_search(tree, start);
675                 if (!node)
676                         break;
677
678                 state = rb_entry(node, struct extent_state, rb_node);
679
680                 if (state->start > end)
681                         goto out;
682
683                 if (state->state & bits) {
684                         start = state->start;
685                         atomic_inc(&state->refs);
686                         wait_on_state(tree, state);
687                         free_extent_state(state);
688                         goto again;
689                 }
690                 start = state->end + 1;
691
692                 if (start > end)
693                         break;
694
695                 cond_resched_lock(&tree->lock);
696         }
697 out:
698         spin_unlock(&tree->lock);
699 }
700
701 static void set_state_bits(struct extent_io_tree *tree,
702                            struct extent_state *state,
703                            unsigned long *bits)
704 {
705         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
706
707         set_state_cb(tree, state, bits);
708         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
709                 u64 range = state->end - state->start + 1;
710                 tree->dirty_bytes += range;
711         }
712         state->state |= bits_to_set;
713 }
714
715 static void cache_state(struct extent_state *state,
716                         struct extent_state **cached_ptr)
717 {
718         if (cached_ptr && !(*cached_ptr)) {
719                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
720                         *cached_ptr = state;
721                         atomic_inc(&state->refs);
722                 }
723         }
724 }
725
726 static void uncache_state(struct extent_state **cached_ptr)
727 {
728         if (cached_ptr && (*cached_ptr)) {
729                 struct extent_state *state = *cached_ptr;
730                 *cached_ptr = NULL;
731                 free_extent_state(state);
732         }
733 }
734
735 /*
736  * set some bits on a range in the tree.  This may require allocations or
737  * sleeping, so the gfp mask is used to indicate what is allowed.
738  *
739  * If any of the exclusive bits are set, this will fail with -EEXIST if some
740  * part of the range already has the desired bits set.  The start of the
741  * existing range is returned in failed_start in this case.
742  *
743  * [start, end] is inclusive This takes the tree lock.
744  */
745
746 static int __must_check
747 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
748                  unsigned long bits, unsigned long exclusive_bits,
749                  u64 *failed_start, struct extent_state **cached_state,
750                  gfp_t mask)
751 {
752         struct extent_state *state;
753         struct extent_state *prealloc = NULL;
754         struct rb_node *node;
755         int err = 0;
756         u64 last_start;
757         u64 last_end;
758
759         bits |= EXTENT_FIRST_DELALLOC;
760 again:
761         if (!prealloc && (mask & __GFP_WAIT)) {
762                 prealloc = alloc_extent_state(mask);
763                 BUG_ON(!prealloc);
764         }
765
766         spin_lock(&tree->lock);
767         if (cached_state && *cached_state) {
768                 state = *cached_state;
769                 if (state->start <= start && state->end > start &&
770                     state->tree) {
771                         node = &state->rb_node;
772                         goto hit_next;
773                 }
774         }
775         /*
776          * this search will find all the extents that end after
777          * our range starts.
778          */
779         node = tree_search(tree, start);
780         if (!node) {
781                 prealloc = alloc_extent_state_atomic(prealloc);
782                 BUG_ON(!prealloc);
783                 err = insert_state(tree, prealloc, start, end, &bits);
784                 if (err)
785                         extent_io_tree_panic(tree, err);
786
787                 prealloc = NULL;
788                 goto out;
789         }
790         state = rb_entry(node, struct extent_state, rb_node);
791 hit_next:
792         last_start = state->start;
793         last_end = state->end;
794
795         /*
796          * | ---- desired range ---- |
797          * | state |
798          *
799          * Just lock what we found and keep going
800          */
801         if (state->start == start && state->end <= end) {
802                 if (state->state & exclusive_bits) {
803                         *failed_start = state->start;
804                         err = -EEXIST;
805                         goto out;
806                 }
807
808                 set_state_bits(tree, state, &bits);
809                 cache_state(state, cached_state);
810                 merge_state(tree, state);
811                 if (last_end == (u64)-1)
812                         goto out;
813                 start = last_end + 1;
814                 state = next_state(state);
815                 if (start < end && state && state->start == start &&
816                     !need_resched())
817                         goto hit_next;
818                 goto search_again;
819         }
820
821         /*
822          *     | ---- desired range ---- |
823          * | state |
824          *   or
825          * | ------------- state -------------- |
826          *
827          * We need to split the extent we found, and may flip bits on
828          * second half.
829          *
830          * If the extent we found extends past our
831          * range, we just split and search again.  It'll get split
832          * again the next time though.
833          *
834          * If the extent we found is inside our range, we set the
835          * desired bit on it.
836          */
837         if (state->start < start) {
838                 if (state->state & exclusive_bits) {
839                         *failed_start = start;
840                         err = -EEXIST;
841                         goto out;
842                 }
843
844                 prealloc = alloc_extent_state_atomic(prealloc);
845                 BUG_ON(!prealloc);
846                 err = split_state(tree, state, prealloc, start);
847                 if (err)
848                         extent_io_tree_panic(tree, err);
849
850                 prealloc = NULL;
851                 if (err)
852                         goto out;
853                 if (state->end <= end) {
854                         set_state_bits(tree, state, &bits);
855                         cache_state(state, cached_state);
856                         merge_state(tree, state);
857                         if (last_end == (u64)-1)
858                                 goto out;
859                         start = last_end + 1;
860                         state = next_state(state);
861                         if (start < end && state && state->start == start &&
862                             !need_resched())
863                                 goto hit_next;
864                 }
865                 goto search_again;
866         }
867         /*
868          * | ---- desired range ---- |
869          *     | state | or               | state |
870          *
871          * There's a hole, we need to insert something in it and
872          * ignore the extent we found.
873          */
874         if (state->start > start) {
875                 u64 this_end;
876                 if (end < last_start)
877                         this_end = end;
878                 else
879                         this_end = last_start - 1;
880
881                 prealloc = alloc_extent_state_atomic(prealloc);
882                 BUG_ON(!prealloc);
883
884                 /*
885                  * Avoid to free 'prealloc' if it can be merged with
886                  * the later extent.
887                  */
888                 err = insert_state(tree, prealloc, start, this_end,
889                                    &bits);
890                 if (err)
891                         extent_io_tree_panic(tree, err);
892
893                 cache_state(prealloc, cached_state);
894                 prealloc = NULL;
895                 start = this_end + 1;
896                 goto search_again;
897         }
898         /*
899          * | ---- desired range ---- |
900          *                        | state |
901          * We need to split the extent, and set the bit
902          * on the first half
903          */
904         if (state->start <= end && state->end > end) {
905                 if (state->state & exclusive_bits) {
906                         *failed_start = start;
907                         err = -EEXIST;
908                         goto out;
909                 }
910
911                 prealloc = alloc_extent_state_atomic(prealloc);
912                 BUG_ON(!prealloc);
913                 err = split_state(tree, state, prealloc, end + 1);
914                 if (err)
915                         extent_io_tree_panic(tree, err);
916
917                 set_state_bits(tree, prealloc, &bits);
918                 cache_state(prealloc, cached_state);
919                 merge_state(tree, prealloc);
920                 prealloc = NULL;
921                 goto out;
922         }
923
924         goto search_again;
925
926 out:
927         spin_unlock(&tree->lock);
928         if (prealloc)
929                 free_extent_state(prealloc);
930
931         return err;
932
933 search_again:
934         if (start > end)
935                 goto out;
936         spin_unlock(&tree->lock);
937         if (mask & __GFP_WAIT)
938                 cond_resched();
939         goto again;
940 }
941
942 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
943                    unsigned long bits, u64 * failed_start,
944                    struct extent_state **cached_state, gfp_t mask)
945 {
946         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
947                                 cached_state, mask);
948 }
949
950
951 /**
952  * convert_extent_bit - convert all bits in a given range from one bit to
953  *                      another
954  * @tree:       the io tree to search
955  * @start:      the start offset in bytes
956  * @end:        the end offset in bytes (inclusive)
957  * @bits:       the bits to set in this range
958  * @clear_bits: the bits to clear in this range
959  * @cached_state:       state that we're going to cache
960  * @mask:       the allocation mask
961  *
962  * This will go through and set bits for the given range.  If any states exist
963  * already in this range they are set with the given bit and cleared of the
964  * clear_bits.  This is only meant to be used by things that are mergeable, ie
965  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
966  * boundary bits like LOCK.
967  */
968 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
969                        unsigned long bits, unsigned long clear_bits,
970                        struct extent_state **cached_state, gfp_t mask)
971 {
972         struct extent_state *state;
973         struct extent_state *prealloc = NULL;
974         struct rb_node *node;
975         int err = 0;
976         u64 last_start;
977         u64 last_end;
978
979 again:
980         if (!prealloc && (mask & __GFP_WAIT)) {
981                 prealloc = alloc_extent_state(mask);
982                 if (!prealloc)
983                         return -ENOMEM;
984         }
985
986         spin_lock(&tree->lock);
987         if (cached_state && *cached_state) {
988                 state = *cached_state;
989                 if (state->start <= start && state->end > start &&
990                     state->tree) {
991                         node = &state->rb_node;
992                         goto hit_next;
993                 }
994         }
995
996         /*
997          * this search will find all the extents that end after
998          * our range starts.
999          */
1000         node = tree_search(tree, start);
1001         if (!node) {
1002                 prealloc = alloc_extent_state_atomic(prealloc);
1003                 if (!prealloc) {
1004                         err = -ENOMEM;
1005                         goto out;
1006                 }
1007                 err = insert_state(tree, prealloc, start, end, &bits);
1008                 prealloc = NULL;
1009                 if (err)
1010                         extent_io_tree_panic(tree, err);
1011                 goto out;
1012         }
1013         state = rb_entry(node, struct extent_state, rb_node);
1014 hit_next:
1015         last_start = state->start;
1016         last_end = state->end;
1017
1018         /*
1019          * | ---- desired range ---- |
1020          * | state |
1021          *
1022          * Just lock what we found and keep going
1023          */
1024         if (state->start == start && state->end <= end) {
1025                 set_state_bits(tree, state, &bits);
1026                 cache_state(state, cached_state);
1027                 state = clear_state_bit(tree, state, &clear_bits, 0);
1028                 if (last_end == (u64)-1)
1029                         goto out;
1030                 start = last_end + 1;
1031                 if (start < end && state && state->start == start &&
1032                     !need_resched())
1033                         goto hit_next;
1034                 goto search_again;
1035         }
1036
1037         /*
1038          *     | ---- desired range ---- |
1039          * | state |
1040          *   or
1041          * | ------------- state -------------- |
1042          *
1043          * We need to split the extent we found, and may flip bits on
1044          * second half.
1045          *
1046          * If the extent we found extends past our
1047          * range, we just split and search again.  It'll get split
1048          * again the next time though.
1049          *
1050          * If the extent we found is inside our range, we set the
1051          * desired bit on it.
1052          */
1053         if (state->start < start) {
1054                 prealloc = alloc_extent_state_atomic(prealloc);
1055                 if (!prealloc) {
1056                         err = -ENOMEM;
1057                         goto out;
1058                 }
1059                 err = split_state(tree, state, prealloc, start);
1060                 if (err)
1061                         extent_io_tree_panic(tree, err);
1062                 prealloc = NULL;
1063                 if (err)
1064                         goto out;
1065                 if (state->end <= end) {
1066                         set_state_bits(tree, state, &bits);
1067                         cache_state(state, cached_state);
1068                         state = clear_state_bit(tree, state, &clear_bits, 0);
1069                         if (last_end == (u64)-1)
1070                                 goto out;
1071                         start = last_end + 1;
1072                         if (start < end && state && state->start == start &&
1073                             !need_resched())
1074                                 goto hit_next;
1075                 }
1076                 goto search_again;
1077         }
1078         /*
1079          * | ---- desired range ---- |
1080          *     | state | or               | state |
1081          *
1082          * There's a hole, we need to insert something in it and
1083          * ignore the extent we found.
1084          */
1085         if (state->start > start) {
1086                 u64 this_end;
1087                 if (end < last_start)
1088                         this_end = end;
1089                 else
1090                         this_end = last_start - 1;
1091
1092                 prealloc = alloc_extent_state_atomic(prealloc);
1093                 if (!prealloc) {
1094                         err = -ENOMEM;
1095                         goto out;
1096                 }
1097
1098                 /*
1099                  * Avoid to free 'prealloc' if it can be merged with
1100                  * the later extent.
1101                  */
1102                 err = insert_state(tree, prealloc, start, this_end,
1103                                    &bits);
1104                 if (err)
1105                         extent_io_tree_panic(tree, err);
1106                 cache_state(prealloc, cached_state);
1107                 prealloc = NULL;
1108                 start = this_end + 1;
1109                 goto search_again;
1110         }
1111         /*
1112          * | ---- desired range ---- |
1113          *                        | state |
1114          * We need to split the extent, and set the bit
1115          * on the first half
1116          */
1117         if (state->start <= end && state->end > end) {
1118                 prealloc = alloc_extent_state_atomic(prealloc);
1119                 if (!prealloc) {
1120                         err = -ENOMEM;
1121                         goto out;
1122                 }
1123
1124                 err = split_state(tree, state, prealloc, end + 1);
1125                 if (err)
1126                         extent_io_tree_panic(tree, err);
1127
1128                 set_state_bits(tree, prealloc, &bits);
1129                 cache_state(prealloc, cached_state);
1130                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1131                 prealloc = NULL;
1132                 goto out;
1133         }
1134
1135         goto search_again;
1136
1137 out:
1138         spin_unlock(&tree->lock);
1139         if (prealloc)
1140                 free_extent_state(prealloc);
1141
1142         return err;
1143
1144 search_again:
1145         if (start > end)
1146                 goto out;
1147         spin_unlock(&tree->lock);
1148         if (mask & __GFP_WAIT)
1149                 cond_resched();
1150         goto again;
1151 }
1152
1153 /* wrappers around set/clear extent bit */
1154 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1155                      gfp_t mask)
1156 {
1157         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1158                               NULL, mask);
1159 }
1160
1161 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1162                     unsigned long bits, gfp_t mask)
1163 {
1164         return set_extent_bit(tree, start, end, bits, NULL,
1165                               NULL, mask);
1166 }
1167
1168 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1169                       unsigned long bits, gfp_t mask)
1170 {
1171         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1172 }
1173
1174 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1175                         struct extent_state **cached_state, gfp_t mask)
1176 {
1177         return set_extent_bit(tree, start, end,
1178                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1179                               NULL, cached_state, mask);
1180 }
1181
1182 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1183                       struct extent_state **cached_state, gfp_t mask)
1184 {
1185         return set_extent_bit(tree, start, end,
1186                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1187                               NULL, cached_state, mask);
1188 }
1189
1190 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1191                        gfp_t mask)
1192 {
1193         return clear_extent_bit(tree, start, end,
1194                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1195                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1196 }
1197
1198 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1199                      gfp_t mask)
1200 {
1201         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1202                               NULL, mask);
1203 }
1204
1205 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1206                         struct extent_state **cached_state, gfp_t mask)
1207 {
1208         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1209                               cached_state, mask);
1210 }
1211
1212 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1213                           struct extent_state **cached_state, gfp_t mask)
1214 {
1215         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1216                                 cached_state, mask);
1217 }
1218
1219 /*
1220  * either insert or lock state struct between start and end use mask to tell
1221  * us if waiting is desired.
1222  */
1223 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1224                      unsigned long bits, struct extent_state **cached_state)
1225 {
1226         int err;
1227         u64 failed_start;
1228         while (1) {
1229                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1230                                        EXTENT_LOCKED, &failed_start,
1231                                        cached_state, GFP_NOFS);
1232                 if (err == -EEXIST) {
1233                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1234                         start = failed_start;
1235                 } else
1236                         break;
1237                 WARN_ON(start > end);
1238         }
1239         return err;
1240 }
1241
1242 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1243 {
1244         return lock_extent_bits(tree, start, end, 0, NULL);
1245 }
1246
1247 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1248 {
1249         int err;
1250         u64 failed_start;
1251
1252         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1253                                &failed_start, NULL, GFP_NOFS);
1254         if (err == -EEXIST) {
1255                 if (failed_start > start)
1256                         clear_extent_bit(tree, start, failed_start - 1,
1257                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1258                 return 0;
1259         }
1260         return 1;
1261 }
1262
1263 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1264                          struct extent_state **cached, gfp_t mask)
1265 {
1266         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1267                                 mask);
1268 }
1269
1270 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1271 {
1272         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1273                                 GFP_NOFS);
1274 }
1275
1276 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1277 {
1278         unsigned long index = start >> PAGE_CACHE_SHIFT;
1279         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1280         struct page *page;
1281
1282         while (index <= end_index) {
1283                 page = find_get_page(inode->i_mapping, index);
1284                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1285                 clear_page_dirty_for_io(page);
1286                 page_cache_release(page);
1287                 index++;
1288         }
1289         return 0;
1290 }
1291
1292 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1293 {
1294         unsigned long index = start >> PAGE_CACHE_SHIFT;
1295         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1296         struct page *page;
1297
1298         while (index <= end_index) {
1299                 page = find_get_page(inode->i_mapping, index);
1300                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1301                 account_page_redirty(page);
1302                 __set_page_dirty_nobuffers(page);
1303                 page_cache_release(page);
1304                 index++;
1305         }
1306         return 0;
1307 }
1308
1309 /*
1310  * helper function to set both pages and extents in the tree writeback
1311  */
1312 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1313 {
1314         unsigned long index = start >> PAGE_CACHE_SHIFT;
1315         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1316         struct page *page;
1317
1318         while (index <= end_index) {
1319                 page = find_get_page(tree->mapping, index);
1320                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1321                 set_page_writeback(page);
1322                 page_cache_release(page);
1323                 index++;
1324         }
1325         return 0;
1326 }
1327
1328 /* find the first state struct with 'bits' set after 'start', and
1329  * return it.  tree->lock must be held.  NULL will returned if
1330  * nothing was found after 'start'
1331  */
1332 static struct extent_state *
1333 find_first_extent_bit_state(struct extent_io_tree *tree,
1334                             u64 start, unsigned long bits)
1335 {
1336         struct rb_node *node;
1337         struct extent_state *state;
1338
1339         /*
1340          * this search will find all the extents that end after
1341          * our range starts.
1342          */
1343         node = tree_search(tree, start);
1344         if (!node)
1345                 goto out;
1346
1347         while (1) {
1348                 state = rb_entry(node, struct extent_state, rb_node);
1349                 if (state->end >= start && (state->state & bits))
1350                         return state;
1351
1352                 node = rb_next(node);
1353                 if (!node)
1354                         break;
1355         }
1356 out:
1357         return NULL;
1358 }
1359
1360 /*
1361  * find the first offset in the io tree with 'bits' set. zero is
1362  * returned if we find something, and *start_ret and *end_ret are
1363  * set to reflect the state struct that was found.
1364  *
1365  * If nothing was found, 1 is returned. If found something, return 0.
1366  */
1367 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1368                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1369                           struct extent_state **cached_state)
1370 {
1371         struct extent_state *state;
1372         struct rb_node *n;
1373         int ret = 1;
1374
1375         spin_lock(&tree->lock);
1376         if (cached_state && *cached_state) {
1377                 state = *cached_state;
1378                 if (state->end == start - 1 && state->tree) {
1379                         n = rb_next(&state->rb_node);
1380                         while (n) {
1381                                 state = rb_entry(n, struct extent_state,
1382                                                  rb_node);
1383                                 if (state->state & bits)
1384                                         goto got_it;
1385                                 n = rb_next(n);
1386                         }
1387                         free_extent_state(*cached_state);
1388                         *cached_state = NULL;
1389                         goto out;
1390                 }
1391                 free_extent_state(*cached_state);
1392                 *cached_state = NULL;
1393         }
1394
1395         state = find_first_extent_bit_state(tree, start, bits);
1396 got_it:
1397         if (state) {
1398                 cache_state(state, cached_state);
1399                 *start_ret = state->start;
1400                 *end_ret = state->end;
1401                 ret = 0;
1402         }
1403 out:
1404         spin_unlock(&tree->lock);
1405         return ret;
1406 }
1407
1408 /*
1409  * find a contiguous range of bytes in the file marked as delalloc, not
1410  * more than 'max_bytes'.  start and end are used to return the range,
1411  *
1412  * 1 is returned if we find something, 0 if nothing was in the tree
1413  */
1414 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1415                                         u64 *start, u64 *end, u64 max_bytes,
1416                                         struct extent_state **cached_state)
1417 {
1418         struct rb_node *node;
1419         struct extent_state *state;
1420         u64 cur_start = *start;
1421         u64 found = 0;
1422         u64 total_bytes = 0;
1423
1424         spin_lock(&tree->lock);
1425
1426         /*
1427          * this search will find all the extents that end after
1428          * our range starts.
1429          */
1430         node = tree_search(tree, cur_start);
1431         if (!node) {
1432                 if (!found)
1433                         *end = (u64)-1;
1434                 goto out;
1435         }
1436
1437         while (1) {
1438                 state = rb_entry(node, struct extent_state, rb_node);
1439                 if (found && (state->start != cur_start ||
1440                               (state->state & EXTENT_BOUNDARY))) {
1441                         goto out;
1442                 }
1443                 if (!(state->state & EXTENT_DELALLOC)) {
1444                         if (!found)
1445                                 *end = state->end;
1446                         goto out;
1447                 }
1448                 if (!found) {
1449                         *start = state->start;
1450                         *cached_state = state;
1451                         atomic_inc(&state->refs);
1452                 }
1453                 found++;
1454                 *end = state->end;
1455                 cur_start = state->end + 1;
1456                 node = rb_next(node);
1457                 if (!node)
1458                         break;
1459                 total_bytes += state->end - state->start + 1;
1460                 if (total_bytes >= max_bytes)
1461                         break;
1462         }
1463 out:
1464         spin_unlock(&tree->lock);
1465         return found;
1466 }
1467
1468 static noinline void __unlock_for_delalloc(struct inode *inode,
1469                                            struct page *locked_page,
1470                                            u64 start, u64 end)
1471 {
1472         int ret;
1473         struct page *pages[16];
1474         unsigned long index = start >> PAGE_CACHE_SHIFT;
1475         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1476         unsigned long nr_pages = end_index - index + 1;
1477         int i;
1478
1479         if (index == locked_page->index && end_index == index)
1480                 return;
1481
1482         while (nr_pages > 0) {
1483                 ret = find_get_pages_contig(inode->i_mapping, index,
1484                                      min_t(unsigned long, nr_pages,
1485                                      ARRAY_SIZE(pages)), pages);
1486                 for (i = 0; i < ret; i++) {
1487                         if (pages[i] != locked_page)
1488                                 unlock_page(pages[i]);
1489                         page_cache_release(pages[i]);
1490                 }
1491                 nr_pages -= ret;
1492                 index += ret;
1493                 cond_resched();
1494         }
1495 }
1496
1497 static noinline int lock_delalloc_pages(struct inode *inode,
1498                                         struct page *locked_page,
1499                                         u64 delalloc_start,
1500                                         u64 delalloc_end)
1501 {
1502         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1503         unsigned long start_index = index;
1504         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1505         unsigned long pages_locked = 0;
1506         struct page *pages[16];
1507         unsigned long nrpages;
1508         int ret;
1509         int i;
1510
1511         /* the caller is responsible for locking the start index */
1512         if (index == locked_page->index && index == end_index)
1513                 return 0;
1514
1515         /* skip the page at the start index */
1516         nrpages = end_index - index + 1;
1517         while (nrpages > 0) {
1518                 ret = find_get_pages_contig(inode->i_mapping, index,
1519                                      min_t(unsigned long,
1520                                      nrpages, ARRAY_SIZE(pages)), pages);
1521                 if (ret == 0) {
1522                         ret = -EAGAIN;
1523                         goto done;
1524                 }
1525                 /* now we have an array of pages, lock them all */
1526                 for (i = 0; i < ret; i++) {
1527                         /*
1528                          * the caller is taking responsibility for
1529                          * locked_page
1530                          */
1531                         if (pages[i] != locked_page) {
1532                                 lock_page(pages[i]);
1533                                 if (!PageDirty(pages[i]) ||
1534                                     pages[i]->mapping != inode->i_mapping) {
1535                                         ret = -EAGAIN;
1536                                         unlock_page(pages[i]);
1537                                         page_cache_release(pages[i]);
1538                                         goto done;
1539                                 }
1540                         }
1541                         page_cache_release(pages[i]);
1542                         pages_locked++;
1543                 }
1544                 nrpages -= ret;
1545                 index += ret;
1546                 cond_resched();
1547         }
1548         ret = 0;
1549 done:
1550         if (ret && pages_locked) {
1551                 __unlock_for_delalloc(inode, locked_page,
1552                               delalloc_start,
1553                               ((u64)(start_index + pages_locked - 1)) <<
1554                               PAGE_CACHE_SHIFT);
1555         }
1556         return ret;
1557 }
1558
1559 /*
1560  * find a contiguous range of bytes in the file marked as delalloc, not
1561  * more than 'max_bytes'.  start and end are used to return the range,
1562  *
1563  * 1 is returned if we find something, 0 if nothing was in the tree
1564  */
1565 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1566                                              struct extent_io_tree *tree,
1567                                              struct page *locked_page,
1568                                              u64 *start, u64 *end,
1569                                              u64 max_bytes)
1570 {
1571         u64 delalloc_start;
1572         u64 delalloc_end;
1573         u64 found;
1574         struct extent_state *cached_state = NULL;
1575         int ret;
1576         int loops = 0;
1577
1578 again:
1579         /* step one, find a bunch of delalloc bytes starting at start */
1580         delalloc_start = *start;
1581         delalloc_end = 0;
1582         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1583                                     max_bytes, &cached_state);
1584         if (!found || delalloc_end <= *start) {
1585                 *start = delalloc_start;
1586                 *end = delalloc_end;
1587                 free_extent_state(cached_state);
1588                 return found;
1589         }
1590
1591         /*
1592          * start comes from the offset of locked_page.  We have to lock
1593          * pages in order, so we can't process delalloc bytes before
1594          * locked_page
1595          */
1596         if (delalloc_start < *start)
1597                 delalloc_start = *start;
1598
1599         /*
1600          * make sure to limit the number of pages we try to lock down
1601          * if we're looping.
1602          */
1603         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1604                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1605
1606         /* step two, lock all the pages after the page that has start */
1607         ret = lock_delalloc_pages(inode, locked_page,
1608                                   delalloc_start, delalloc_end);
1609         if (ret == -EAGAIN) {
1610                 /* some of the pages are gone, lets avoid looping by
1611                  * shortening the size of the delalloc range we're searching
1612                  */
1613                 free_extent_state(cached_state);
1614                 if (!loops) {
1615                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1616                         max_bytes = PAGE_CACHE_SIZE - offset;
1617                         loops = 1;
1618                         goto again;
1619                 } else {
1620                         found = 0;
1621                         goto out_failed;
1622                 }
1623         }
1624         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1625
1626         /* step three, lock the state bits for the whole range */
1627         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1628
1629         /* then test to make sure it is all still delalloc */
1630         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1631                              EXTENT_DELALLOC, 1, cached_state);
1632         if (!ret) {
1633                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1634                                      &cached_state, GFP_NOFS);
1635                 __unlock_for_delalloc(inode, locked_page,
1636                               delalloc_start, delalloc_end);
1637                 cond_resched();
1638                 goto again;
1639         }
1640         free_extent_state(cached_state);
1641         *start = delalloc_start;
1642         *end = delalloc_end;
1643 out_failed:
1644         return found;
1645 }
1646
1647 int extent_clear_unlock_delalloc(struct inode *inode,
1648                                 struct extent_io_tree *tree,
1649                                 u64 start, u64 end, struct page *locked_page,
1650                                 unsigned long op)
1651 {
1652         int ret;
1653         struct page *pages[16];
1654         unsigned long index = start >> PAGE_CACHE_SHIFT;
1655         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1656         unsigned long nr_pages = end_index - index + 1;
1657         int i;
1658         unsigned long clear_bits = 0;
1659
1660         if (op & EXTENT_CLEAR_UNLOCK)
1661                 clear_bits |= EXTENT_LOCKED;
1662         if (op & EXTENT_CLEAR_DIRTY)
1663                 clear_bits |= EXTENT_DIRTY;
1664
1665         if (op & EXTENT_CLEAR_DELALLOC)
1666                 clear_bits |= EXTENT_DELALLOC;
1667
1668         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1669         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1670                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1671                     EXTENT_SET_PRIVATE2)))
1672                 return 0;
1673
1674         while (nr_pages > 0) {
1675                 ret = find_get_pages_contig(inode->i_mapping, index,
1676                                      min_t(unsigned long,
1677                                      nr_pages, ARRAY_SIZE(pages)), pages);
1678                 for (i = 0; i < ret; i++) {
1679
1680                         if (op & EXTENT_SET_PRIVATE2)
1681                                 SetPagePrivate2(pages[i]);
1682
1683                         if (pages[i] == locked_page) {
1684                                 page_cache_release(pages[i]);
1685                                 continue;
1686                         }
1687                         if (op & EXTENT_CLEAR_DIRTY)
1688                                 clear_page_dirty_for_io(pages[i]);
1689                         if (op & EXTENT_SET_WRITEBACK)
1690                                 set_page_writeback(pages[i]);
1691                         if (op & EXTENT_END_WRITEBACK)
1692                                 end_page_writeback(pages[i]);
1693                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1694                                 unlock_page(pages[i]);
1695                         page_cache_release(pages[i]);
1696                 }
1697                 nr_pages -= ret;
1698                 index += ret;
1699                 cond_resched();
1700         }
1701         return 0;
1702 }
1703
1704 /*
1705  * count the number of bytes in the tree that have a given bit(s)
1706  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1707  * cached.  The total number found is returned.
1708  */
1709 u64 count_range_bits(struct extent_io_tree *tree,
1710                      u64 *start, u64 search_end, u64 max_bytes,
1711                      unsigned long bits, int contig)
1712 {
1713         struct rb_node *node;
1714         struct extent_state *state;
1715         u64 cur_start = *start;
1716         u64 total_bytes = 0;
1717         u64 last = 0;
1718         int found = 0;
1719
1720         if (search_end <= cur_start) {
1721                 WARN_ON(1);
1722                 return 0;
1723         }
1724
1725         spin_lock(&tree->lock);
1726         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1727                 total_bytes = tree->dirty_bytes;
1728                 goto out;
1729         }
1730         /*
1731          * this search will find all the extents that end after
1732          * our range starts.
1733          */
1734         node = tree_search(tree, cur_start);
1735         if (!node)
1736                 goto out;
1737
1738         while (1) {
1739                 state = rb_entry(node, struct extent_state, rb_node);
1740                 if (state->start > search_end)
1741                         break;
1742                 if (contig && found && state->start > last + 1)
1743                         break;
1744                 if (state->end >= cur_start && (state->state & bits) == bits) {
1745                         total_bytes += min(search_end, state->end) + 1 -
1746                                        max(cur_start, state->start);
1747                         if (total_bytes >= max_bytes)
1748                                 break;
1749                         if (!found) {
1750                                 *start = max(cur_start, state->start);
1751                                 found = 1;
1752                         }
1753                         last = state->end;
1754                 } else if (contig && found) {
1755                         break;
1756                 }
1757                 node = rb_next(node);
1758                 if (!node)
1759                         break;
1760         }
1761 out:
1762         spin_unlock(&tree->lock);
1763         return total_bytes;
1764 }
1765
1766 /*
1767  * set the private field for a given byte offset in the tree.  If there isn't
1768  * an extent_state there already, this does nothing.
1769  */
1770 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1771 {
1772         struct rb_node *node;
1773         struct extent_state *state;
1774         int ret = 0;
1775
1776         spin_lock(&tree->lock);
1777         /*
1778          * this search will find all the extents that end after
1779          * our range starts.
1780          */
1781         node = tree_search(tree, start);
1782         if (!node) {
1783                 ret = -ENOENT;
1784                 goto out;
1785         }
1786         state = rb_entry(node, struct extent_state, rb_node);
1787         if (state->start != start) {
1788                 ret = -ENOENT;
1789                 goto out;
1790         }
1791         state->private = private;
1792 out:
1793         spin_unlock(&tree->lock);
1794         return ret;
1795 }
1796
1797 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1798                             int count)
1799 {
1800         struct rb_node *node;
1801         struct extent_state *state;
1802
1803         spin_lock(&tree->lock);
1804         /*
1805          * this search will find all the extents that end after
1806          * our range starts.
1807          */
1808         node = tree_search(tree, start);
1809         BUG_ON(!node);
1810
1811         state = rb_entry(node, struct extent_state, rb_node);
1812         BUG_ON(state->start != start);
1813
1814         while (count) {
1815                 state->private = *csums++;
1816                 count--;
1817                 state = next_state(state);
1818         }
1819         spin_unlock(&tree->lock);
1820 }
1821
1822 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1823 {
1824         struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1825
1826         return page_offset(bvec->bv_page) + bvec->bv_offset;
1827 }
1828
1829 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1830                         u32 csums[], int count)
1831 {
1832         struct rb_node *node;
1833         struct extent_state *state = NULL;
1834         u64 start;
1835
1836         spin_lock(&tree->lock);
1837         do {
1838                 start = __btrfs_get_bio_offset(bio, bio_index);
1839                 if (state == NULL || state->start != start) {
1840                         node = tree_search(tree, start);
1841                         BUG_ON(!node);
1842
1843                         state = rb_entry(node, struct extent_state, rb_node);
1844                         BUG_ON(state->start != start);
1845                 }
1846                 state->private = *csums++;
1847                 count--;
1848                 bio_index++;
1849
1850                 state = next_state(state);
1851         } while (count);
1852         spin_unlock(&tree->lock);
1853 }
1854
1855 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1856 {
1857         struct rb_node *node;
1858         struct extent_state *state;
1859         int ret = 0;
1860
1861         spin_lock(&tree->lock);
1862         /*
1863          * this search will find all the extents that end after
1864          * our range starts.
1865          */
1866         node = tree_search(tree, start);
1867         if (!node) {
1868                 ret = -ENOENT;
1869                 goto out;
1870         }
1871         state = rb_entry(node, struct extent_state, rb_node);
1872         if (state->start != start) {
1873                 ret = -ENOENT;
1874                 goto out;
1875         }
1876         *private = state->private;
1877 out:
1878         spin_unlock(&tree->lock);
1879         return ret;
1880 }
1881
1882 /*
1883  * searches a range in the state tree for a given mask.
1884  * If 'filled' == 1, this returns 1 only if every extent in the tree
1885  * has the bits set.  Otherwise, 1 is returned if any bit in the
1886  * range is found set.
1887  */
1888 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1889                    unsigned long bits, int filled, struct extent_state *cached)
1890 {
1891         struct extent_state *state = NULL;
1892         struct rb_node *node;
1893         int bitset = 0;
1894
1895         spin_lock(&tree->lock);
1896         if (cached && cached->tree && cached->start <= start &&
1897             cached->end > start)
1898                 node = &cached->rb_node;
1899         else
1900                 node = tree_search(tree, start);
1901         while (node && start <= end) {
1902                 state = rb_entry(node, struct extent_state, rb_node);
1903
1904                 if (filled && state->start > start) {
1905                         bitset = 0;
1906                         break;
1907                 }
1908
1909                 if (state->start > end)
1910                         break;
1911
1912                 if (state->state & bits) {
1913                         bitset = 1;
1914                         if (!filled)
1915                                 break;
1916                 } else if (filled) {
1917                         bitset = 0;
1918                         break;
1919                 }
1920
1921                 if (state->end == (u64)-1)
1922                         break;
1923
1924                 start = state->end + 1;
1925                 if (start > end)
1926                         break;
1927                 node = rb_next(node);
1928                 if (!node) {
1929                         if (filled)
1930                                 bitset = 0;
1931                         break;
1932                 }
1933         }
1934         spin_unlock(&tree->lock);
1935         return bitset;
1936 }
1937
1938 /*
1939  * helper function to set a given page up to date if all the
1940  * extents in the tree for that page are up to date
1941  */
1942 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1943 {
1944         u64 start = page_offset(page);
1945         u64 end = start + PAGE_CACHE_SIZE - 1;
1946         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1947                 SetPageUptodate(page);
1948 }
1949
1950 /*
1951  * helper function to unlock a page if all the extents in the tree
1952  * for that page are unlocked
1953  */
1954 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1955 {
1956         u64 start = page_offset(page);
1957         u64 end = start + PAGE_CACHE_SIZE - 1;
1958         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1959                 unlock_page(page);
1960 }
1961
1962 /*
1963  * helper function to end page writeback if all the extents
1964  * in the tree for that page are done with writeback
1965  */
1966 static void check_page_writeback(struct extent_io_tree *tree,
1967                                  struct page *page)
1968 {
1969         end_page_writeback(page);
1970 }
1971
1972 /*
1973  * When IO fails, either with EIO or csum verification fails, we
1974  * try other mirrors that might have a good copy of the data.  This
1975  * io_failure_record is used to record state as we go through all the
1976  * mirrors.  If another mirror has good data, the page is set up to date
1977  * and things continue.  If a good mirror can't be found, the original
1978  * bio end_io callback is called to indicate things have failed.
1979  */
1980 struct io_failure_record {
1981         struct page *page;
1982         u64 start;
1983         u64 len;
1984         u64 logical;
1985         unsigned long bio_flags;
1986         int this_mirror;
1987         int failed_mirror;
1988         int in_validation;
1989 };
1990
1991 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1992                                 int did_repair)
1993 {
1994         int ret;
1995         int err = 0;
1996         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1997
1998         set_state_private(failure_tree, rec->start, 0);
1999         ret = clear_extent_bits(failure_tree, rec->start,
2000                                 rec->start + rec->len - 1,
2001                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2002         if (ret)
2003                 err = ret;
2004
2005         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2006                                 rec->start + rec->len - 1,
2007                                 EXTENT_DAMAGED, GFP_NOFS);
2008         if (ret && !err)
2009                 err = ret;
2010
2011         kfree(rec);
2012         return err;
2013 }
2014
2015 static void repair_io_failure_callback(struct bio *bio, int err)
2016 {
2017         complete(bio->bi_private);
2018 }
2019
2020 /*
2021  * this bypasses the standard btrfs submit functions deliberately, as
2022  * the standard behavior is to write all copies in a raid setup. here we only
2023  * want to write the one bad copy. so we do the mapping for ourselves and issue
2024  * submit_bio directly.
2025  * to avoid any synchronization issues, wait for the data after writing, which
2026  * actually prevents the read that triggered the error from finishing.
2027  * currently, there can be no more than two copies of every data bit. thus,
2028  * exactly one rewrite is required.
2029  */
2030 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2031                         u64 length, u64 logical, struct page *page,
2032                         int mirror_num)
2033 {
2034         struct bio *bio;
2035         struct btrfs_device *dev;
2036         DECLARE_COMPLETION_ONSTACK(compl);
2037         u64 map_length = 0;
2038         u64 sector;
2039         struct btrfs_bio *bbio = NULL;
2040         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2041         int ret;
2042
2043         BUG_ON(!mirror_num);
2044
2045         /* we can't repair anything in raid56 yet */
2046         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2047                 return 0;
2048
2049         bio = bio_alloc(GFP_NOFS, 1);
2050         if (!bio)
2051                 return -EIO;
2052         bio->bi_private = &compl;
2053         bio->bi_end_io = repair_io_failure_callback;
2054         bio->bi_size = 0;
2055         map_length = length;
2056
2057         ret = btrfs_map_block(fs_info, WRITE, logical,
2058                               &map_length, &bbio, mirror_num);
2059         if (ret) {
2060                 bio_put(bio);
2061                 return -EIO;
2062         }
2063         BUG_ON(mirror_num != bbio->mirror_num);
2064         sector = bbio->stripes[mirror_num-1].physical >> 9;
2065         bio->bi_sector = sector;
2066         dev = bbio->stripes[mirror_num-1].dev;
2067         kfree(bbio);
2068         if (!dev || !dev->bdev || !dev->writeable) {
2069                 bio_put(bio);
2070                 return -EIO;
2071         }
2072         bio->bi_bdev = dev->bdev;
2073         bio_add_page(bio, page, length, start - page_offset(page));
2074         btrfsic_submit_bio(WRITE_SYNC, bio);
2075         wait_for_completion(&compl);
2076
2077         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2078                 /* try to remap that extent elsewhere? */
2079                 bio_put(bio);
2080                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2081                 return -EIO;
2082         }
2083
2084         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2085                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2086                       start, rcu_str_deref(dev->name), sector);
2087
2088         bio_put(bio);
2089         return 0;
2090 }
2091
2092 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2093                          int mirror_num)
2094 {
2095         u64 start = eb->start;
2096         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2097         int ret = 0;
2098
2099         for (i = 0; i < num_pages; i++) {
2100                 struct page *p = extent_buffer_page(eb, i);
2101                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2102                                         start, p, mirror_num);
2103                 if (ret)
2104                         break;
2105                 start += PAGE_CACHE_SIZE;
2106         }
2107
2108         return ret;
2109 }
2110
2111 /*
2112  * each time an IO finishes, we do a fast check in the IO failure tree
2113  * to see if we need to process or clean up an io_failure_record
2114  */
2115 static int clean_io_failure(u64 start, struct page *page)
2116 {
2117         u64 private;
2118         u64 private_failure;
2119         struct io_failure_record *failrec;
2120         struct btrfs_fs_info *fs_info;
2121         struct extent_state *state;
2122         int num_copies;
2123         int did_repair = 0;
2124         int ret;
2125         struct inode *inode = page->mapping->host;
2126
2127         private = 0;
2128         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2129                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2130         if (!ret)
2131                 return 0;
2132
2133         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2134                                 &private_failure);
2135         if (ret)
2136                 return 0;
2137
2138         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2139         BUG_ON(!failrec->this_mirror);
2140
2141         if (failrec->in_validation) {
2142                 /* there was no real error, just free the record */
2143                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2144                          failrec->start);
2145                 did_repair = 1;
2146                 goto out;
2147         }
2148
2149         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2150         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2151                                             failrec->start,
2152                                             EXTENT_LOCKED);
2153         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2154
2155         if (state && state->start == failrec->start) {
2156                 fs_info = BTRFS_I(inode)->root->fs_info;
2157                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2158                                               failrec->len);
2159                 if (num_copies > 1)  {
2160                         ret = repair_io_failure(fs_info, start, failrec->len,
2161                                                 failrec->logical, page,
2162                                                 failrec->failed_mirror);
2163                         did_repair = !ret;
2164                 }
2165                 ret = 0;
2166         }
2167
2168 out:
2169         if (!ret)
2170                 ret = free_io_failure(inode, failrec, did_repair);
2171
2172         return ret;
2173 }
2174
2175 /*
2176  * this is a generic handler for readpage errors (default
2177  * readpage_io_failed_hook). if other copies exist, read those and write back
2178  * good data to the failed position. does not investigate in remapping the
2179  * failed extent elsewhere, hoping the device will be smart enough to do this as
2180  * needed
2181  */
2182
2183 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2184                                 u64 start, u64 end, int failed_mirror,
2185                                 struct extent_state *state)
2186 {
2187         struct io_failure_record *failrec = NULL;
2188         u64 private;
2189         struct extent_map *em;
2190         struct inode *inode = page->mapping->host;
2191         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2192         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2193         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2194         struct bio *bio;
2195         int num_copies;
2196         int ret;
2197         int read_mode;
2198         u64 logical;
2199
2200         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2201
2202         ret = get_state_private(failure_tree, start, &private);
2203         if (ret) {
2204                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2205                 if (!failrec)
2206                         return -ENOMEM;
2207                 failrec->start = start;
2208                 failrec->len = end - start + 1;
2209                 failrec->this_mirror = 0;
2210                 failrec->bio_flags = 0;
2211                 failrec->in_validation = 0;
2212
2213                 read_lock(&em_tree->lock);
2214                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2215                 if (!em) {
2216                         read_unlock(&em_tree->lock);
2217                         kfree(failrec);
2218                         return -EIO;
2219                 }
2220
2221                 if (em->start > start || em->start + em->len < start) {
2222                         free_extent_map(em);
2223                         em = NULL;
2224                 }
2225                 read_unlock(&em_tree->lock);
2226
2227                 if (!em) {
2228                         kfree(failrec);
2229                         return -EIO;
2230                 }
2231                 logical = start - em->start;
2232                 logical = em->block_start + logical;
2233                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2234                         logical = em->block_start;
2235                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2236                         extent_set_compress_type(&failrec->bio_flags,
2237                                                  em->compress_type);
2238                 }
2239                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2240                          "len=%llu\n", logical, start, failrec->len);
2241                 failrec->logical = logical;
2242                 free_extent_map(em);
2243
2244                 /* set the bits in the private failure tree */
2245                 ret = set_extent_bits(failure_tree, start, end,
2246                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2247                 if (ret >= 0)
2248                         ret = set_state_private(failure_tree, start,
2249                                                 (u64)(unsigned long)failrec);
2250                 /* set the bits in the inode's tree */
2251                 if (ret >= 0)
2252                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2253                                                 GFP_NOFS);
2254                 if (ret < 0) {
2255                         kfree(failrec);
2256                         return ret;
2257                 }
2258         } else {
2259                 failrec = (struct io_failure_record *)(unsigned long)private;
2260                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2261                          "start=%llu, len=%llu, validation=%d\n",
2262                          failrec->logical, failrec->start, failrec->len,
2263                          failrec->in_validation);
2264                 /*
2265                  * when data can be on disk more than twice, add to failrec here
2266                  * (e.g. with a list for failed_mirror) to make
2267                  * clean_io_failure() clean all those errors at once.
2268                  */
2269         }
2270         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2271                                       failrec->logical, failrec->len);
2272         if (num_copies == 1) {
2273                 /*
2274                  * we only have a single copy of the data, so don't bother with
2275                  * all the retry and error correction code that follows. no
2276                  * matter what the error is, it is very likely to persist.
2277                  */
2278                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2279                          "state=%p, num_copies=%d, next_mirror %d, "
2280                          "failed_mirror %d\n", state, num_copies,
2281                          failrec->this_mirror, failed_mirror);
2282                 free_io_failure(inode, failrec, 0);
2283                 return -EIO;
2284         }
2285
2286         if (!state) {
2287                 spin_lock(&tree->lock);
2288                 state = find_first_extent_bit_state(tree, failrec->start,
2289                                                     EXTENT_LOCKED);
2290                 if (state && state->start != failrec->start)
2291                         state = NULL;
2292                 spin_unlock(&tree->lock);
2293         }
2294
2295         /*
2296          * there are two premises:
2297          *      a) deliver good data to the caller
2298          *      b) correct the bad sectors on disk
2299          */
2300         if (failed_bio->bi_vcnt > 1) {
2301                 /*
2302                  * to fulfill b), we need to know the exact failing sectors, as
2303                  * we don't want to rewrite any more than the failed ones. thus,
2304                  * we need separate read requests for the failed bio
2305                  *
2306                  * if the following BUG_ON triggers, our validation request got
2307                  * merged. we need separate requests for our algorithm to work.
2308                  */
2309                 BUG_ON(failrec->in_validation);
2310                 failrec->in_validation = 1;
2311                 failrec->this_mirror = failed_mirror;
2312                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2313         } else {
2314                 /*
2315                  * we're ready to fulfill a) and b) alongside. get a good copy
2316                  * of the failed sector and if we succeed, we have setup
2317                  * everything for repair_io_failure to do the rest for us.
2318                  */
2319                 if (failrec->in_validation) {
2320                         BUG_ON(failrec->this_mirror != failed_mirror);
2321                         failrec->in_validation = 0;
2322                         failrec->this_mirror = 0;
2323                 }
2324                 failrec->failed_mirror = failed_mirror;
2325                 failrec->this_mirror++;
2326                 if (failrec->this_mirror == failed_mirror)
2327                         failrec->this_mirror++;
2328                 read_mode = READ_SYNC;
2329         }
2330
2331         if (!state || failrec->this_mirror > num_copies) {
2332                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2333                          "next_mirror %d, failed_mirror %d\n", state,
2334                          num_copies, failrec->this_mirror, failed_mirror);
2335                 free_io_failure(inode, failrec, 0);
2336                 return -EIO;
2337         }
2338
2339         bio = bio_alloc(GFP_NOFS, 1);
2340         if (!bio) {
2341                 free_io_failure(inode, failrec, 0);
2342                 return -EIO;
2343         }
2344         bio->bi_private = state;
2345         bio->bi_end_io = failed_bio->bi_end_io;
2346         bio->bi_sector = failrec->logical >> 9;
2347         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2348         bio->bi_size = 0;
2349
2350         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2351
2352         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2353                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2354                  failrec->this_mirror, num_copies, failrec->in_validation);
2355
2356         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2357                                          failrec->this_mirror,
2358                                          failrec->bio_flags, 0);
2359         return ret;
2360 }
2361
2362 /* lots and lots of room for performance fixes in the end_bio funcs */
2363
2364 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2365 {
2366         int uptodate = (err == 0);
2367         struct extent_io_tree *tree;
2368         int ret;
2369
2370         tree = &BTRFS_I(page->mapping->host)->io_tree;
2371
2372         if (tree->ops && tree->ops->writepage_end_io_hook) {
2373                 ret = tree->ops->writepage_end_io_hook(page, start,
2374                                                end, NULL, uptodate);
2375                 if (ret)
2376                         uptodate = 0;
2377         }
2378
2379         if (!uptodate) {
2380                 ClearPageUptodate(page);
2381                 SetPageError(page);
2382         }
2383         return 0;
2384 }
2385
2386 /*
2387  * after a writepage IO is done, we need to:
2388  * clear the uptodate bits on error
2389  * clear the writeback bits in the extent tree for this IO
2390  * end_page_writeback if the page has no more pending IO
2391  *
2392  * Scheduling is not allowed, so the extent state tree is expected
2393  * to have one and only one object corresponding to this IO.
2394  */
2395 static void end_bio_extent_writepage(struct bio *bio, int err)
2396 {
2397         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2398         struct extent_io_tree *tree;
2399         u64 start;
2400         u64 end;
2401         int whole_page;
2402
2403         do {
2404                 struct page *page = bvec->bv_page;
2405                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2406
2407                 start = page_offset(page) + bvec->bv_offset;
2408                 end = start + bvec->bv_len - 1;
2409
2410                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2411                         whole_page = 1;
2412                 else
2413                         whole_page = 0;
2414
2415                 if (--bvec >= bio->bi_io_vec)
2416                         prefetchw(&bvec->bv_page->flags);
2417
2418                 if (end_extent_writepage(page, err, start, end))
2419                         continue;
2420
2421                 if (whole_page)
2422                         end_page_writeback(page);
2423                 else
2424                         check_page_writeback(tree, page);
2425         } while (bvec >= bio->bi_io_vec);
2426
2427         bio_put(bio);
2428 }
2429
2430 /*
2431  * after a readpage IO is done, we need to:
2432  * clear the uptodate bits on error
2433  * set the uptodate bits if things worked
2434  * set the page up to date if all extents in the tree are uptodate
2435  * clear the lock bit in the extent tree
2436  * unlock the page if there are no other extents locked for it
2437  *
2438  * Scheduling is not allowed, so the extent state tree is expected
2439  * to have one and only one object corresponding to this IO.
2440  */
2441 static void end_bio_extent_readpage(struct bio *bio, int err)
2442 {
2443         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2444         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2445         struct bio_vec *bvec = bio->bi_io_vec;
2446         struct extent_io_tree *tree;
2447         u64 start;
2448         u64 end;
2449         int whole_page;
2450         int mirror;
2451         int ret;
2452
2453         if (err)
2454                 uptodate = 0;
2455
2456         do {
2457                 struct page *page = bvec->bv_page;
2458                 struct extent_state *cached = NULL;
2459                 struct extent_state *state;
2460
2461                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2462                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2463                          (long int)bio->bi_bdev);
2464                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2465
2466                 start = page_offset(page) + bvec->bv_offset;
2467                 end = start + bvec->bv_len - 1;
2468
2469                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2470                         whole_page = 1;
2471                 else
2472                         whole_page = 0;
2473
2474                 if (++bvec <= bvec_end)
2475                         prefetchw(&bvec->bv_page->flags);
2476
2477                 spin_lock(&tree->lock);
2478                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2479                 if (state && state->start == start) {
2480                         /*
2481                          * take a reference on the state, unlock will drop
2482                          * the ref
2483                          */
2484                         cache_state(state, &cached);
2485                 }
2486                 spin_unlock(&tree->lock);
2487
2488                 mirror = (int)(unsigned long)bio->bi_bdev;
2489                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2490                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2491                                                               state, mirror);
2492                         if (ret)
2493                                 uptodate = 0;
2494                         else
2495                                 clean_io_failure(start, page);
2496                 }
2497
2498                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2499                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2500                         if (!ret && !err &&
2501                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2502                                 uptodate = 1;
2503                 } else if (!uptodate) {
2504                         /*
2505                          * The generic bio_readpage_error handles errors the
2506                          * following way: If possible, new read requests are
2507                          * created and submitted and will end up in
2508                          * end_bio_extent_readpage as well (if we're lucky, not
2509                          * in the !uptodate case). In that case it returns 0 and
2510                          * we just go on with the next page in our bio. If it
2511                          * can't handle the error it will return -EIO and we
2512                          * remain responsible for that page.
2513                          */
2514                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2515                         if (ret == 0) {
2516                                 uptodate =
2517                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2518                                 if (err)
2519                                         uptodate = 0;
2520                                 uncache_state(&cached);
2521                                 continue;
2522                         }
2523                 }
2524
2525                 if (uptodate && tree->track_uptodate) {
2526                         set_extent_uptodate(tree, start, end, &cached,
2527                                             GFP_ATOMIC);
2528                 }
2529                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2530
2531                 if (whole_page) {
2532                         if (uptodate) {
2533                                 SetPageUptodate(page);
2534                         } else {
2535                                 ClearPageUptodate(page);
2536                                 SetPageError(page);
2537                         }
2538                         unlock_page(page);
2539                 } else {
2540                         if (uptodate) {
2541                                 check_page_uptodate(tree, page);
2542                         } else {
2543                                 ClearPageUptodate(page);
2544                                 SetPageError(page);
2545                         }
2546                         check_page_locked(tree, page);
2547                 }
2548         } while (bvec <= bvec_end);
2549
2550         bio_put(bio);
2551 }
2552
2553 struct bio *
2554 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2555                 gfp_t gfp_flags)
2556 {
2557         struct bio *bio;
2558
2559         bio = bio_alloc(gfp_flags, nr_vecs);
2560
2561         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2562                 while (!bio && (nr_vecs /= 2))
2563                         bio = bio_alloc(gfp_flags, nr_vecs);
2564         }
2565
2566         if (bio) {
2567                 bio->bi_size = 0;
2568                 bio->bi_bdev = bdev;
2569                 bio->bi_sector = first_sector;
2570         }
2571         return bio;
2572 }
2573
2574 static int __must_check submit_one_bio(int rw, struct bio *bio,
2575                                        int mirror_num, unsigned long bio_flags)
2576 {
2577         int ret = 0;
2578         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2579         struct page *page = bvec->bv_page;
2580         struct extent_io_tree *tree = bio->bi_private;
2581         u64 start;
2582
2583         start = page_offset(page) + bvec->bv_offset;
2584
2585         bio->bi_private = NULL;
2586
2587         bio_get(bio);
2588
2589         if (tree->ops && tree->ops->submit_bio_hook)
2590                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2591                                            mirror_num, bio_flags, start);
2592         else
2593                 btrfsic_submit_bio(rw, bio);
2594
2595         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2596                 ret = -EOPNOTSUPP;
2597         bio_put(bio);
2598         return ret;
2599 }
2600
2601 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2602                      unsigned long offset, size_t size, struct bio *bio,
2603                      unsigned long bio_flags)
2604 {
2605         int ret = 0;
2606         if (tree->ops && tree->ops->merge_bio_hook)
2607                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2608                                                 bio_flags);
2609         BUG_ON(ret < 0);
2610         return ret;
2611
2612 }
2613
2614 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2615                               struct page *page, sector_t sector,
2616                               size_t size, unsigned long offset,
2617                               struct block_device *bdev,
2618                               struct bio **bio_ret,
2619                               unsigned long max_pages,
2620                               bio_end_io_t end_io_func,
2621                               int mirror_num,
2622                               unsigned long prev_bio_flags,
2623                               unsigned long bio_flags)
2624 {
2625         int ret = 0;
2626         struct bio *bio;
2627         int nr;
2628         int contig = 0;
2629         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2630         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2631         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2632
2633         if (bio_ret && *bio_ret) {
2634                 bio = *bio_ret;
2635                 if (old_compressed)
2636                         contig = bio->bi_sector == sector;
2637                 else
2638                         contig = bio_end_sector(bio) == sector;
2639
2640                 if (prev_bio_flags != bio_flags || !contig ||
2641                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2642                     bio_add_page(bio, page, page_size, offset) < page_size) {
2643                         ret = submit_one_bio(rw, bio, mirror_num,
2644                                              prev_bio_flags);
2645                         if (ret < 0)
2646                                 return ret;
2647                         bio = NULL;
2648                 } else {
2649                         return 0;
2650                 }
2651         }
2652         if (this_compressed)
2653                 nr = BIO_MAX_PAGES;
2654         else
2655                 nr = bio_get_nr_vecs(bdev);
2656
2657         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2658         if (!bio)
2659                 return -ENOMEM;
2660
2661         bio_add_page(bio, page, page_size, offset);
2662         bio->bi_end_io = end_io_func;
2663         bio->bi_private = tree;
2664
2665         if (bio_ret)
2666                 *bio_ret = bio;
2667         else
2668                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2669
2670         return ret;
2671 }
2672
2673 static void attach_extent_buffer_page(struct extent_buffer *eb,
2674                                       struct page *page)
2675 {
2676         if (!PagePrivate(page)) {
2677                 SetPagePrivate(page);
2678                 page_cache_get(page);
2679                 set_page_private(page, (unsigned long)eb);
2680         } else {
2681                 WARN_ON(page->private != (unsigned long)eb);
2682         }
2683 }
2684
2685 void set_page_extent_mapped(struct page *page)
2686 {
2687         if (!PagePrivate(page)) {
2688                 SetPagePrivate(page);
2689                 page_cache_get(page);
2690                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2691         }
2692 }
2693
2694 /*
2695  * basic readpage implementation.  Locked extent state structs are inserted
2696  * into the tree that are removed when the IO is done (by the end_io
2697  * handlers)
2698  * XXX JDM: This needs looking at to ensure proper page locking
2699  */
2700 static int __extent_read_full_page(struct extent_io_tree *tree,
2701                                    struct page *page,
2702                                    get_extent_t *get_extent,
2703                                    struct bio **bio, int mirror_num,
2704                                    unsigned long *bio_flags, int rw)
2705 {
2706         struct inode *inode = page->mapping->host;
2707         u64 start = page_offset(page);
2708         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2709         u64 end;
2710         u64 cur = start;
2711         u64 extent_offset;
2712         u64 last_byte = i_size_read(inode);
2713         u64 block_start;
2714         u64 cur_end;
2715         sector_t sector;
2716         struct extent_map *em;
2717         struct block_device *bdev;
2718         struct btrfs_ordered_extent *ordered;
2719         int ret;
2720         int nr = 0;
2721         size_t pg_offset = 0;
2722         size_t iosize;
2723         size_t disk_io_size;
2724         size_t blocksize = inode->i_sb->s_blocksize;
2725         unsigned long this_bio_flag = 0;
2726
2727         set_page_extent_mapped(page);
2728
2729         if (!PageUptodate(page)) {
2730                 if (cleancache_get_page(page) == 0) {
2731                         BUG_ON(blocksize != PAGE_SIZE);
2732                         goto out;
2733                 }
2734         }
2735
2736         end = page_end;
2737         while (1) {
2738                 lock_extent(tree, start, end);
2739                 ordered = btrfs_lookup_ordered_extent(inode, start);
2740                 if (!ordered)
2741                         break;
2742                 unlock_extent(tree, start, end);
2743                 btrfs_start_ordered_extent(inode, ordered, 1);
2744                 btrfs_put_ordered_extent(ordered);
2745         }
2746
2747         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2748                 char *userpage;
2749                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2750
2751                 if (zero_offset) {
2752                         iosize = PAGE_CACHE_SIZE - zero_offset;
2753                         userpage = kmap_atomic(page);
2754                         memset(userpage + zero_offset, 0, iosize);
2755                         flush_dcache_page(page);
2756                         kunmap_atomic(userpage);
2757                 }
2758         }
2759         while (cur <= end) {
2760                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2761
2762                 if (cur >= last_byte) {
2763                         char *userpage;
2764                         struct extent_state *cached = NULL;
2765
2766                         iosize = PAGE_CACHE_SIZE - pg_offset;
2767                         userpage = kmap_atomic(page);
2768                         memset(userpage + pg_offset, 0, iosize);
2769                         flush_dcache_page(page);
2770                         kunmap_atomic(userpage);
2771                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2772                                             &cached, GFP_NOFS);
2773                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2774                                              &cached, GFP_NOFS);
2775                         break;
2776                 }
2777                 em = get_extent(inode, page, pg_offset, cur,
2778                                 end - cur + 1, 0);
2779                 if (IS_ERR_OR_NULL(em)) {
2780                         SetPageError(page);
2781                         unlock_extent(tree, cur, end);
2782                         break;
2783                 }
2784                 extent_offset = cur - em->start;
2785                 BUG_ON(extent_map_end(em) <= cur);
2786                 BUG_ON(end < cur);
2787
2788                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2789                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2790                         extent_set_compress_type(&this_bio_flag,
2791                                                  em->compress_type);
2792                 }
2793
2794                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2795                 cur_end = min(extent_map_end(em) - 1, end);
2796                 iosize = ALIGN(iosize, blocksize);
2797                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2798                         disk_io_size = em->block_len;
2799                         sector = em->block_start >> 9;
2800                 } else {
2801                         sector = (em->block_start + extent_offset) >> 9;
2802                         disk_io_size = iosize;
2803                 }
2804                 bdev = em->bdev;
2805                 block_start = em->block_start;
2806                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2807                         block_start = EXTENT_MAP_HOLE;
2808                 free_extent_map(em);
2809                 em = NULL;
2810
2811                 /* we've found a hole, just zero and go on */
2812                 if (block_start == EXTENT_MAP_HOLE) {
2813                         char *userpage;
2814                         struct extent_state *cached = NULL;
2815
2816                         userpage = kmap_atomic(page);
2817                         memset(userpage + pg_offset, 0, iosize);
2818                         flush_dcache_page(page);
2819                         kunmap_atomic(userpage);
2820
2821                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2822                                             &cached, GFP_NOFS);
2823                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2824                                              &cached, GFP_NOFS);
2825                         cur = cur + iosize;
2826                         pg_offset += iosize;
2827                         continue;
2828                 }
2829                 /* the get_extent function already copied into the page */
2830                 if (test_range_bit(tree, cur, cur_end,
2831                                    EXTENT_UPTODATE, 1, NULL)) {
2832                         check_page_uptodate(tree, page);
2833                         unlock_extent(tree, cur, cur + iosize - 1);
2834                         cur = cur + iosize;
2835                         pg_offset += iosize;
2836                         continue;
2837                 }
2838                 /* we have an inline extent but it didn't get marked up
2839                  * to date.  Error out
2840                  */
2841                 if (block_start == EXTENT_MAP_INLINE) {
2842                         SetPageError(page);
2843                         unlock_extent(tree, cur, cur + iosize - 1);
2844                         cur = cur + iosize;
2845                         pg_offset += iosize;
2846                         continue;
2847                 }
2848
2849                 pnr -= page->index;
2850                 ret = submit_extent_page(rw, tree, page,
2851                                          sector, disk_io_size, pg_offset,
2852                                          bdev, bio, pnr,
2853                                          end_bio_extent_readpage, mirror_num,
2854                                          *bio_flags,
2855                                          this_bio_flag);
2856                 if (!ret) {
2857                         nr++;
2858                         *bio_flags = this_bio_flag;
2859                 } else {
2860                         SetPageError(page);
2861                         unlock_extent(tree, cur, cur + iosize - 1);
2862                 }
2863                 cur = cur + iosize;
2864                 pg_offset += iosize;
2865         }
2866 out:
2867         if (!nr) {
2868                 if (!PageError(page))
2869                         SetPageUptodate(page);
2870                 unlock_page(page);
2871         }
2872         return 0;
2873 }
2874
2875 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2876                             get_extent_t *get_extent, int mirror_num)
2877 {
2878         struct bio *bio = NULL;
2879         unsigned long bio_flags = 0;
2880         int ret;
2881
2882         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2883                                       &bio_flags, READ);
2884         if (bio)
2885                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2886         return ret;
2887 }
2888
2889 static noinline void update_nr_written(struct page *page,
2890                                       struct writeback_control *wbc,
2891                                       unsigned long nr_written)
2892 {
2893         wbc->nr_to_write -= nr_written;
2894         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2895             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2896                 page->mapping->writeback_index = page->index + nr_written;
2897 }
2898
2899 /*
2900  * the writepage semantics are similar to regular writepage.  extent
2901  * records are inserted to lock ranges in the tree, and as dirty areas
2902  * are found, they are marked writeback.  Then the lock bits are removed
2903  * and the end_io handler clears the writeback ranges
2904  */
2905 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2906                               void *data)
2907 {
2908         struct inode *inode = page->mapping->host;
2909         struct extent_page_data *epd = data;
2910         struct extent_io_tree *tree = epd->tree;
2911         u64 start = page_offset(page);
2912         u64 delalloc_start;
2913         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2914         u64 end;
2915         u64 cur = start;
2916         u64 extent_offset;
2917         u64 last_byte = i_size_read(inode);
2918         u64 block_start;
2919         u64 iosize;
2920         sector_t sector;
2921         struct extent_state *cached_state = NULL;
2922         struct extent_map *em;
2923         struct block_device *bdev;
2924         int ret;
2925         int nr = 0;
2926         size_t pg_offset = 0;
2927         size_t blocksize;
2928         loff_t i_size = i_size_read(inode);
2929         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2930         u64 nr_delalloc;
2931         u64 delalloc_end;
2932         int page_started;
2933         int compressed;
2934         int write_flags;
2935         unsigned long nr_written = 0;
2936         bool fill_delalloc = true;
2937
2938         if (wbc->sync_mode == WB_SYNC_ALL)
2939                 write_flags = WRITE_SYNC;
2940         else
2941                 write_flags = WRITE;
2942
2943         trace___extent_writepage(page, inode, wbc);
2944
2945         WARN_ON(!PageLocked(page));
2946
2947         ClearPageError(page);
2948
2949         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2950         if (page->index > end_index ||
2951            (page->index == end_index && !pg_offset)) {
2952                 page->mapping->a_ops->invalidatepage(page, 0);
2953                 unlock_page(page);
2954                 return 0;
2955         }
2956
2957         if (page->index == end_index) {
2958                 char *userpage;
2959
2960                 userpage = kmap_atomic(page);
2961                 memset(userpage + pg_offset, 0,
2962                        PAGE_CACHE_SIZE - pg_offset);
2963                 kunmap_atomic(userpage);
2964                 flush_dcache_page(page);
2965         }
2966         pg_offset = 0;
2967
2968         set_page_extent_mapped(page);
2969
2970         if (!tree->ops || !tree->ops->fill_delalloc)
2971                 fill_delalloc = false;
2972
2973         delalloc_start = start;
2974         delalloc_end = 0;
2975         page_started = 0;
2976         if (!epd->extent_locked && fill_delalloc) {
2977                 u64 delalloc_to_write = 0;
2978                 /*
2979                  * make sure the wbc mapping index is at least updated
2980                  * to this page.
2981                  */
2982                 update_nr_written(page, wbc, 0);
2983
2984                 while (delalloc_end < page_end) {
2985                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2986                                                        page,
2987                                                        &delalloc_start,
2988                                                        &delalloc_end,
2989                                                        128 * 1024 * 1024);
2990                         if (nr_delalloc == 0) {
2991                                 delalloc_start = delalloc_end + 1;
2992                                 continue;
2993                         }
2994                         ret = tree->ops->fill_delalloc(inode, page,
2995                                                        delalloc_start,
2996                                                        delalloc_end,
2997                                                        &page_started,
2998                                                        &nr_written);
2999                         /* File system has been set read-only */
3000                         if (ret) {
3001                                 SetPageError(page);
3002                                 goto done;
3003                         }
3004                         /*
3005                          * delalloc_end is already one less than the total
3006                          * length, so we don't subtract one from
3007                          * PAGE_CACHE_SIZE
3008                          */
3009                         delalloc_to_write += (delalloc_end - delalloc_start +
3010                                               PAGE_CACHE_SIZE) >>
3011                                               PAGE_CACHE_SHIFT;
3012                         delalloc_start = delalloc_end + 1;
3013                 }
3014                 if (wbc->nr_to_write < delalloc_to_write) {
3015                         int thresh = 8192;
3016
3017                         if (delalloc_to_write < thresh * 2)
3018                                 thresh = delalloc_to_write;
3019                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3020                                                  thresh);
3021                 }
3022
3023                 /* did the fill delalloc function already unlock and start
3024                  * the IO?
3025                  */
3026                 if (page_started) {
3027                         ret = 0;
3028                         /*
3029                          * we've unlocked the page, so we can't update
3030                          * the mapping's writeback index, just update
3031                          * nr_to_write.
3032                          */
3033                         wbc->nr_to_write -= nr_written;
3034                         goto done_unlocked;
3035                 }
3036         }
3037         if (tree->ops && tree->ops->writepage_start_hook) {
3038                 ret = tree->ops->writepage_start_hook(page, start,
3039                                                       page_end);
3040                 if (ret) {
3041                         /* Fixup worker will requeue */
3042                         if (ret == -EBUSY)
3043                                 wbc->pages_skipped++;
3044                         else
3045                                 redirty_page_for_writepage(wbc, page);
3046                         update_nr_written(page, wbc, nr_written);
3047                         unlock_page(page);
3048                         ret = 0;
3049                         goto done_unlocked;
3050                 }
3051         }
3052
3053         /*
3054          * we don't want to touch the inode after unlocking the page,
3055          * so we update the mapping writeback index now
3056          */
3057         update_nr_written(page, wbc, nr_written + 1);
3058
3059         end = page_end;
3060         if (last_byte <= start) {
3061                 if (tree->ops && tree->ops->writepage_end_io_hook)
3062                         tree->ops->writepage_end_io_hook(page, start,
3063                                                          page_end, NULL, 1);
3064                 goto done;
3065         }
3066
3067         blocksize = inode->i_sb->s_blocksize;
3068
3069         while (cur <= end) {
3070                 if (cur >= last_byte) {
3071                         if (tree->ops && tree->ops->writepage_end_io_hook)
3072                                 tree->ops->writepage_end_io_hook(page, cur,
3073                                                          page_end, NULL, 1);
3074                         break;
3075                 }
3076                 em = epd->get_extent(inode, page, pg_offset, cur,
3077                                      end - cur + 1, 1);
3078                 if (IS_ERR_OR_NULL(em)) {
3079                         SetPageError(page);
3080                         break;
3081                 }
3082
3083                 extent_offset = cur - em->start;
3084                 BUG_ON(extent_map_end(em) <= cur);
3085                 BUG_ON(end < cur);
3086                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3087                 iosize = ALIGN(iosize, blocksize);
3088                 sector = (em->block_start + extent_offset) >> 9;
3089                 bdev = em->bdev;
3090                 block_start = em->block_start;
3091                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3092                 free_extent_map(em);
3093                 em = NULL;
3094
3095                 /*
3096                  * compressed and inline extents are written through other
3097                  * paths in the FS
3098                  */
3099                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3100                     block_start == EXTENT_MAP_INLINE) {
3101                         /*
3102                          * end_io notification does not happen here for
3103                          * compressed extents
3104                          */
3105                         if (!compressed && tree->ops &&
3106                             tree->ops->writepage_end_io_hook)
3107                                 tree->ops->writepage_end_io_hook(page, cur,
3108                                                          cur + iosize - 1,
3109                                                          NULL, 1);
3110                         else if (compressed) {
3111                                 /* we don't want to end_page_writeback on
3112                                  * a compressed extent.  this happens
3113                                  * elsewhere
3114                                  */
3115                                 nr++;
3116                         }
3117
3118                         cur += iosize;
3119                         pg_offset += iosize;
3120                         continue;
3121                 }
3122                 /* leave this out until we have a page_mkwrite call */
3123                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3124                                    EXTENT_DIRTY, 0, NULL)) {
3125                         cur = cur + iosize;
3126                         pg_offset += iosize;
3127                         continue;
3128                 }
3129
3130                 if (tree->ops && tree->ops->writepage_io_hook) {
3131                         ret = tree->ops->writepage_io_hook(page, cur,
3132                                                 cur + iosize - 1);
3133                 } else {
3134                         ret = 0;
3135                 }
3136                 if (ret) {
3137                         SetPageError(page);
3138                 } else {
3139                         unsigned long max_nr = end_index + 1;
3140
3141                         set_range_writeback(tree, cur, cur + iosize - 1);
3142                         if (!PageWriteback(page)) {
3143                                 printk(KERN_ERR "btrfs warning page %lu not "
3144                                        "writeback, cur %llu end %llu\n",
3145                                        page->index, (unsigned long long)cur,
3146                                        (unsigned long long)end);
3147                         }
3148
3149                         ret = submit_extent_page(write_flags, tree, page,
3150                                                  sector, iosize, pg_offset,
3151                                                  bdev, &epd->bio, max_nr,
3152                                                  end_bio_extent_writepage,
3153                                                  0, 0, 0);
3154                         if (ret)
3155                                 SetPageError(page);
3156                 }
3157                 cur = cur + iosize;
3158                 pg_offset += iosize;
3159                 nr++;
3160         }
3161 done:
3162         if (nr == 0) {
3163                 /* make sure the mapping tag for page dirty gets cleared */
3164                 set_page_writeback(page);
3165                 end_page_writeback(page);
3166         }
3167         unlock_page(page);
3168
3169 done_unlocked:
3170
3171         /* drop our reference on any cached states */
3172         free_extent_state(cached_state);
3173         return 0;
3174 }
3175
3176 static int eb_wait(void *word)
3177 {
3178         io_schedule();
3179         return 0;
3180 }
3181
3182 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3183 {
3184         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3185                     TASK_UNINTERRUPTIBLE);
3186 }
3187
3188 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3189                                      struct btrfs_fs_info *fs_info,
3190                                      struct extent_page_data *epd)
3191 {
3192         unsigned long i, num_pages;
3193         int flush = 0;
3194         int ret = 0;
3195
3196         if (!btrfs_try_tree_write_lock(eb)) {
3197                 flush = 1;
3198                 flush_write_bio(epd);
3199                 btrfs_tree_lock(eb);
3200         }
3201
3202         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3203                 btrfs_tree_unlock(eb);
3204                 if (!epd->sync_io)
3205                         return 0;
3206                 if (!flush) {
3207                         flush_write_bio(epd);
3208                         flush = 1;
3209                 }
3210                 while (1) {
3211                         wait_on_extent_buffer_writeback(eb);
3212                         btrfs_tree_lock(eb);
3213                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3214                                 break;
3215                         btrfs_tree_unlock(eb);
3216                 }
3217         }
3218
3219         /*
3220          * We need to do this to prevent races in people who check if the eb is
3221          * under IO since we can end up having no IO bits set for a short period
3222          * of time.
3223          */
3224         spin_lock(&eb->refs_lock);
3225         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3226                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3227                 spin_unlock(&eb->refs_lock);
3228                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3229                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3230                                      -eb->len,
3231                                      fs_info->dirty_metadata_batch);
3232                 ret = 1;
3233         } else {
3234                 spin_unlock(&eb->refs_lock);
3235         }
3236
3237         btrfs_tree_unlock(eb);
3238
3239         if (!ret)
3240                 return ret;
3241
3242         num_pages = num_extent_pages(eb->start, eb->len);
3243         for (i = 0; i < num_pages; i++) {
3244                 struct page *p = extent_buffer_page(eb, i);
3245
3246                 if (!trylock_page(p)) {
3247                         if (!flush) {
3248                                 flush_write_bio(epd);
3249                                 flush = 1;
3250                         }
3251                         lock_page(p);
3252                 }
3253         }
3254
3255         return ret;
3256 }
3257
3258 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3259 {
3260         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3261         smp_mb__after_clear_bit();
3262         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3263 }
3264
3265 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3266 {
3267         int uptodate = err == 0;
3268         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3269         struct extent_buffer *eb;
3270         int done;
3271
3272         do {
3273                 struct page *page = bvec->bv_page;
3274
3275                 bvec--;
3276                 eb = (struct extent_buffer *)page->private;
3277                 BUG_ON(!eb);
3278                 done = atomic_dec_and_test(&eb->io_pages);
3279
3280                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3281                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3282                         ClearPageUptodate(page);
3283                         SetPageError(page);
3284                 }
3285
3286                 end_page_writeback(page);
3287
3288                 if (!done)
3289                         continue;
3290
3291                 end_extent_buffer_writeback(eb);
3292         } while (bvec >= bio->bi_io_vec);
3293
3294         bio_put(bio);
3295
3296 }
3297
3298 static int write_one_eb(struct extent_buffer *eb,
3299                         struct btrfs_fs_info *fs_info,
3300                         struct writeback_control *wbc,
3301                         struct extent_page_data *epd)
3302 {
3303         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3304         u64 offset = eb->start;
3305         unsigned long i, num_pages;
3306         unsigned long bio_flags = 0;
3307         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3308         int ret = 0;
3309
3310         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3311         num_pages = num_extent_pages(eb->start, eb->len);
3312         atomic_set(&eb->io_pages, num_pages);
3313         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3314                 bio_flags = EXTENT_BIO_TREE_LOG;
3315
3316         for (i = 0; i < num_pages; i++) {
3317                 struct page *p = extent_buffer_page(eb, i);
3318
3319                 clear_page_dirty_for_io(p);
3320                 set_page_writeback(p);
3321                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3322                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3323                                          -1, end_bio_extent_buffer_writepage,
3324                                          0, epd->bio_flags, bio_flags);
3325                 epd->bio_flags = bio_flags;
3326                 if (ret) {
3327                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3328                         SetPageError(p);
3329                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3330                                 end_extent_buffer_writeback(eb);
3331                         ret = -EIO;
3332                         break;
3333                 }
3334                 offset += PAGE_CACHE_SIZE;
3335                 update_nr_written(p, wbc, 1);
3336                 unlock_page(p);
3337         }
3338
3339         if (unlikely(ret)) {
3340                 for (; i < num_pages; i++) {
3341                         struct page *p = extent_buffer_page(eb, i);
3342                         unlock_page(p);
3343                 }
3344         }
3345
3346         return ret;
3347 }
3348
3349 int btree_write_cache_pages(struct address_space *mapping,
3350                                    struct writeback_control *wbc)
3351 {
3352         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3353         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3354         struct extent_buffer *eb, *prev_eb = NULL;
3355         struct extent_page_data epd = {
3356                 .bio = NULL,
3357                 .tree = tree,
3358                 .extent_locked = 0,
3359                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3360                 .bio_flags = 0,
3361         };
3362         int ret = 0;
3363         int done = 0;
3364         int nr_to_write_done = 0;
3365         struct pagevec pvec;
3366         int nr_pages;
3367         pgoff_t index;
3368         pgoff_t end;            /* Inclusive */
3369         int scanned = 0;
3370         int tag;
3371
3372         pagevec_init(&pvec, 0);
3373         if (wbc->range_cyclic) {
3374                 index = mapping->writeback_index; /* Start from prev offset */
3375                 end = -1;
3376         } else {
3377                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3378                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3379                 scanned = 1;
3380         }
3381         if (wbc->sync_mode == WB_SYNC_ALL)
3382                 tag = PAGECACHE_TAG_TOWRITE;
3383         else
3384                 tag = PAGECACHE_TAG_DIRTY;
3385 retry:
3386         if (wbc->sync_mode == WB_SYNC_ALL)
3387                 tag_pages_for_writeback(mapping, index, end);
3388         while (!done && !nr_to_write_done && (index <= end) &&
3389                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3390                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3391                 unsigned i;
3392
3393                 scanned = 1;
3394                 for (i = 0; i < nr_pages; i++) {
3395                         struct page *page = pvec.pages[i];
3396
3397                         if (!PagePrivate(page))
3398                                 continue;
3399
3400                         if (!wbc->range_cyclic && page->index > end) {
3401                                 done = 1;
3402                                 break;
3403                         }
3404
3405                         spin_lock(&mapping->private_lock);
3406                         if (!PagePrivate(page)) {
3407                                 spin_unlock(&mapping->private_lock);
3408                                 continue;
3409                         }
3410
3411                         eb = (struct extent_buffer *)page->private;
3412
3413                         /*
3414                          * Shouldn't happen and normally this would be a BUG_ON
3415                          * but no sense in crashing the users box for something
3416                          * we can survive anyway.
3417                          */
3418                         if (!eb) {
3419                                 spin_unlock(&mapping->private_lock);
3420                                 WARN_ON(1);
3421                                 continue;
3422                         }
3423
3424                         if (eb == prev_eb) {
3425                                 spin_unlock(&mapping->private_lock);
3426                                 continue;
3427                         }
3428
3429                         ret = atomic_inc_not_zero(&eb->refs);
3430                         spin_unlock(&mapping->private_lock);
3431                         if (!ret)
3432                                 continue;
3433
3434                         prev_eb = eb;
3435                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3436                         if (!ret) {
3437                                 free_extent_buffer(eb);
3438                                 continue;
3439                         }
3440
3441                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3442                         if (ret) {
3443                                 done = 1;
3444                                 free_extent_buffer(eb);
3445                                 break;
3446                         }
3447                         free_extent_buffer(eb);
3448
3449                         /*
3450                          * the filesystem may choose to bump up nr_to_write.
3451                          * We have to make sure to honor the new nr_to_write
3452                          * at any time
3453                          */
3454                         nr_to_write_done = wbc->nr_to_write <= 0;
3455                 }
3456                 pagevec_release(&pvec);
3457                 cond_resched();
3458         }
3459         if (!scanned && !done) {
3460                 /*
3461                  * We hit the last page and there is more work to be done: wrap
3462                  * back to the start of the file
3463                  */
3464                 scanned = 1;
3465                 index = 0;
3466                 goto retry;
3467         }
3468         flush_write_bio(&epd);
3469         return ret;
3470 }
3471
3472 /**
3473  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3474  * @mapping: address space structure to write
3475  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3476  * @writepage: function called for each page
3477  * @data: data passed to writepage function
3478  *
3479  * If a page is already under I/O, write_cache_pages() skips it, even
3480  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3481  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3482  * and msync() need to guarantee that all the data which was dirty at the time
3483  * the call was made get new I/O started against them.  If wbc->sync_mode is
3484  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3485  * existing IO to complete.
3486  */
3487 static int extent_write_cache_pages(struct extent_io_tree *tree,
3488                              struct address_space *mapping,
3489                              struct writeback_control *wbc,
3490                              writepage_t writepage, void *data,
3491                              void (*flush_fn)(void *))
3492 {
3493         struct inode *inode = mapping->host;
3494         int ret = 0;
3495         int done = 0;
3496         int nr_to_write_done = 0;
3497         struct pagevec pvec;
3498         int nr_pages;
3499         pgoff_t index;
3500         pgoff_t end;            /* Inclusive */
3501         int scanned = 0;
3502         int tag;
3503
3504         /*
3505          * We have to hold onto the inode so that ordered extents can do their
3506          * work when the IO finishes.  The alternative to this is failing to add
3507          * an ordered extent if the igrab() fails there and that is a huge pain
3508          * to deal with, so instead just hold onto the inode throughout the
3509          * writepages operation.  If it fails here we are freeing up the inode
3510          * anyway and we'd rather not waste our time writing out stuff that is
3511          * going to be truncated anyway.
3512          */
3513         if (!igrab(inode))
3514                 return 0;
3515
3516         pagevec_init(&pvec, 0);
3517         if (wbc->range_cyclic) {
3518                 index = mapping->writeback_index; /* Start from prev offset */
3519                 end = -1;
3520         } else {
3521                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3522                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3523                 scanned = 1;
3524         }
3525         if (wbc->sync_mode == WB_SYNC_ALL)
3526                 tag = PAGECACHE_TAG_TOWRITE;
3527         else
3528                 tag = PAGECACHE_TAG_DIRTY;
3529 retry:
3530         if (wbc->sync_mode == WB_SYNC_ALL)
3531                 tag_pages_for_writeback(mapping, index, end);
3532         while (!done && !nr_to_write_done && (index <= end) &&
3533                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3534                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3535                 unsigned i;
3536
3537                 scanned = 1;
3538                 for (i = 0; i < nr_pages; i++) {
3539                         struct page *page = pvec.pages[i];
3540
3541                         /*
3542                          * At this point we hold neither mapping->tree_lock nor
3543                          * lock on the page itself: the page may be truncated or
3544                          * invalidated (changing page->mapping to NULL), or even
3545                          * swizzled back from swapper_space to tmpfs file
3546                          * mapping
3547                          */
3548                         if (!trylock_page(page)) {
3549                                 flush_fn(data);
3550                                 lock_page(page);
3551                         }
3552
3553                         if (unlikely(page->mapping != mapping)) {
3554                                 unlock_page(page);
3555                                 continue;
3556                         }
3557
3558                         if (!wbc->range_cyclic && page->index > end) {
3559                                 done = 1;
3560                                 unlock_page(page);
3561                                 continue;
3562                         }
3563
3564                         if (wbc->sync_mode != WB_SYNC_NONE) {
3565                                 if (PageWriteback(page))
3566                                         flush_fn(data);
3567                                 wait_on_page_writeback(page);
3568                         }
3569
3570                         if (PageWriteback(page) ||
3571                             !clear_page_dirty_for_io(page)) {
3572                                 unlock_page(page);
3573                                 continue;
3574                         }
3575
3576                         ret = (*writepage)(page, wbc, data);
3577
3578                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3579                                 unlock_page(page);
3580                                 ret = 0;
3581                         }
3582                         if (ret)
3583                                 done = 1;
3584
3585                         /*
3586                          * the filesystem may choose to bump up nr_to_write.
3587                          * We have to make sure to honor the new nr_to_write
3588                          * at any time
3589                          */
3590                         nr_to_write_done = wbc->nr_to_write <= 0;
3591                 }
3592                 pagevec_release(&pvec);
3593                 cond_resched();
3594         }
3595         if (!scanned && !done) {
3596                 /*
3597                  * We hit the last page and there is more work to be done: wrap
3598                  * back to the start of the file
3599                  */
3600                 scanned = 1;
3601                 index = 0;
3602                 goto retry;
3603         }
3604         btrfs_add_delayed_iput(inode);
3605         return ret;
3606 }
3607
3608 static void flush_epd_write_bio(struct extent_page_data *epd)
3609 {
3610         if (epd->bio) {
3611                 int rw = WRITE;
3612                 int ret;
3613
3614                 if (epd->sync_io)
3615                         rw = WRITE_SYNC;
3616
3617                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3618                 BUG_ON(ret < 0); /* -ENOMEM */
3619                 epd->bio = NULL;
3620         }
3621 }
3622
3623 static noinline void flush_write_bio(void *data)
3624 {
3625         struct extent_page_data *epd = data;
3626         flush_epd_write_bio(epd);
3627 }
3628
3629 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3630                           get_extent_t *get_extent,
3631                           struct writeback_control *wbc)
3632 {
3633         int ret;
3634         struct extent_page_data epd = {
3635                 .bio = NULL,
3636                 .tree = tree,
3637                 .get_extent = get_extent,
3638                 .extent_locked = 0,
3639                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3640                 .bio_flags = 0,
3641         };
3642
3643         ret = __extent_writepage(page, wbc, &epd);
3644
3645         flush_epd_write_bio(&epd);
3646         return ret;
3647 }
3648
3649 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3650                               u64 start, u64 end, get_extent_t *get_extent,
3651                               int mode)
3652 {
3653         int ret = 0;
3654         struct address_space *mapping = inode->i_mapping;
3655         struct page *page;
3656         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3657                 PAGE_CACHE_SHIFT;
3658
3659         struct extent_page_data epd = {
3660                 .bio = NULL,
3661                 .tree = tree,
3662                 .get_extent = get_extent,
3663                 .extent_locked = 1,
3664                 .sync_io = mode == WB_SYNC_ALL,
3665                 .bio_flags = 0,
3666         };
3667         struct writeback_control wbc_writepages = {
3668                 .sync_mode      = mode,
3669                 .nr_to_write    = nr_pages * 2,
3670                 .range_start    = start,
3671                 .range_end      = end + 1,
3672         };
3673
3674         while (start <= end) {
3675                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3676                 if (clear_page_dirty_for_io(page))
3677                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3678                 else {
3679                         if (tree->ops && tree->ops->writepage_end_io_hook)
3680                                 tree->ops->writepage_end_io_hook(page, start,
3681                                                  start + PAGE_CACHE_SIZE - 1,
3682                                                  NULL, 1);
3683                         unlock_page(page);
3684                 }
3685                 page_cache_release(page);
3686                 start += PAGE_CACHE_SIZE;
3687         }
3688
3689         flush_epd_write_bio(&epd);
3690         return ret;
3691 }
3692
3693 int extent_writepages(struct extent_io_tree *tree,
3694                       struct address_space *mapping,
3695                       get_extent_t *get_extent,
3696                       struct writeback_control *wbc)
3697 {
3698         int ret = 0;
3699         struct extent_page_data epd = {
3700                 .bio = NULL,
3701                 .tree = tree,
3702                 .get_extent = get_extent,
3703                 .extent_locked = 0,
3704                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3705                 .bio_flags = 0,
3706         };
3707
3708         ret = extent_write_cache_pages(tree, mapping, wbc,
3709                                        __extent_writepage, &epd,
3710                                        flush_write_bio);
3711         flush_epd_write_bio(&epd);
3712         return ret;
3713 }
3714
3715 int extent_readpages(struct extent_io_tree *tree,
3716                      struct address_space *mapping,
3717                      struct list_head *pages, unsigned nr_pages,
3718                      get_extent_t get_extent)
3719 {
3720         struct bio *bio = NULL;
3721         unsigned page_idx;
3722         unsigned long bio_flags = 0;
3723         struct page *pagepool[16];
3724         struct page *page;
3725         int i = 0;
3726         int nr = 0;
3727
3728         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3729                 page = list_entry(pages->prev, struct page, lru);
3730
3731                 prefetchw(&page->flags);
3732                 list_del(&page->lru);
3733                 if (add_to_page_cache_lru(page, mapping,
3734                                         page->index, GFP_NOFS)) {
3735                         page_cache_release(page);
3736                         continue;
3737                 }
3738
3739                 pagepool[nr++] = page;
3740                 if (nr < ARRAY_SIZE(pagepool))
3741                         continue;
3742                 for (i = 0; i < nr; i++) {
3743                         __extent_read_full_page(tree, pagepool[i], get_extent,
3744                                         &bio, 0, &bio_flags, READ);
3745                         page_cache_release(pagepool[i]);
3746                 }
3747                 nr = 0;
3748         }
3749         for (i = 0; i < nr; i++) {
3750                 __extent_read_full_page(tree, pagepool[i], get_extent,
3751                                         &bio, 0, &bio_flags, READ);
3752                 page_cache_release(pagepool[i]);
3753         }
3754
3755         BUG_ON(!list_empty(pages));
3756         if (bio)
3757                 return submit_one_bio(READ, bio, 0, bio_flags);
3758         return 0;
3759 }
3760
3761 /*
3762  * basic invalidatepage code, this waits on any locked or writeback
3763  * ranges corresponding to the page, and then deletes any extent state
3764  * records from the tree
3765  */
3766 int extent_invalidatepage(struct extent_io_tree *tree,
3767                           struct page *page, unsigned long offset)
3768 {
3769         struct extent_state *cached_state = NULL;
3770         u64 start = page_offset(page);
3771         u64 end = start + PAGE_CACHE_SIZE - 1;
3772         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3773
3774         start += ALIGN(offset, blocksize);
3775         if (start > end)
3776                 return 0;
3777
3778         lock_extent_bits(tree, start, end, 0, &cached_state);
3779         wait_on_page_writeback(page);
3780         clear_extent_bit(tree, start, end,
3781                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3782                          EXTENT_DO_ACCOUNTING,
3783                          1, 1, &cached_state, GFP_NOFS);
3784         return 0;
3785 }
3786
3787 /*
3788  * a helper for releasepage, this tests for areas of the page that
3789  * are locked or under IO and drops the related state bits if it is safe
3790  * to drop the page.
3791  */
3792 static int try_release_extent_state(struct extent_map_tree *map,
3793                                     struct extent_io_tree *tree,
3794                                     struct page *page, gfp_t mask)
3795 {
3796         u64 start = page_offset(page);
3797         u64 end = start + PAGE_CACHE_SIZE - 1;
3798         int ret = 1;
3799
3800         if (test_range_bit(tree, start, end,
3801                            EXTENT_IOBITS, 0, NULL))
3802                 ret = 0;
3803         else {
3804                 if ((mask & GFP_NOFS) == GFP_NOFS)
3805                         mask = GFP_NOFS;
3806                 /*
3807                  * at this point we can safely clear everything except the
3808                  * locked bit and the nodatasum bit
3809                  */
3810                 ret = clear_extent_bit(tree, start, end,
3811                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3812                                  0, 0, NULL, mask);
3813
3814                 /* if clear_extent_bit failed for enomem reasons,
3815                  * we can't allow the release to continue.
3816                  */
3817                 if (ret < 0)
3818                         ret = 0;
3819                 else
3820                         ret = 1;
3821         }
3822         return ret;
3823 }
3824
3825 /*
3826  * a helper for releasepage.  As long as there are no locked extents
3827  * in the range corresponding to the page, both state records and extent
3828  * map records are removed
3829  */
3830 int try_release_extent_mapping(struct extent_map_tree *map,
3831                                struct extent_io_tree *tree, struct page *page,
3832                                gfp_t mask)
3833 {
3834         struct extent_map *em;
3835         u64 start = page_offset(page);
3836         u64 end = start + PAGE_CACHE_SIZE - 1;
3837
3838         if ((mask & __GFP_WAIT) &&
3839             page->mapping->host->i_size > 16 * 1024 * 1024) {
3840                 u64 len;
3841                 while (start <= end) {
3842                         len = end - start + 1;
3843                         write_lock(&map->lock);
3844                         em = lookup_extent_mapping(map, start, len);
3845                         if (!em) {
3846                                 write_unlock(&map->lock);
3847                                 break;
3848                         }
3849                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3850                             em->start != start) {
3851                                 write_unlock(&map->lock);
3852                                 free_extent_map(em);
3853                                 break;
3854                         }
3855                         if (!test_range_bit(tree, em->start,
3856                                             extent_map_end(em) - 1,
3857                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3858                                             0, NULL)) {
3859                                 remove_extent_mapping(map, em);
3860                                 /* once for the rb tree */
3861                                 free_extent_map(em);
3862                         }
3863                         start = extent_map_end(em);
3864                         write_unlock(&map->lock);
3865
3866                         /* once for us */
3867                         free_extent_map(em);
3868                 }
3869         }
3870         return try_release_extent_state(map, tree, page, mask);
3871 }
3872
3873 /*
3874  * helper function for fiemap, which doesn't want to see any holes.
3875  * This maps until we find something past 'last'
3876  */
3877 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3878                                                 u64 offset,
3879                                                 u64 last,
3880                                                 get_extent_t *get_extent)
3881 {
3882         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3883         struct extent_map *em;
3884         u64 len;
3885
3886         if (offset >= last)
3887                 return NULL;
3888
3889         while(1) {
3890                 len = last - offset;
3891                 if (len == 0)
3892                         break;
3893                 len = ALIGN(len, sectorsize);
3894                 em = get_extent(inode, NULL, 0, offset, len, 0);
3895                 if (IS_ERR_OR_NULL(em))
3896                         return em;
3897
3898                 /* if this isn't a hole return it */
3899                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3900                     em->block_start != EXTENT_MAP_HOLE) {
3901                         return em;
3902                 }
3903
3904                 /* this is a hole, advance to the next extent */
3905                 offset = extent_map_end(em);
3906                 free_extent_map(em);
3907                 if (offset >= last)
3908                         break;
3909         }
3910         return NULL;
3911 }
3912
3913 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3914                 __u64 start, __u64 len, get_extent_t *get_extent)
3915 {
3916         int ret = 0;
3917         u64 off = start;
3918         u64 max = start + len;
3919         u32 flags = 0;
3920         u32 found_type;
3921         u64 last;
3922         u64 last_for_get_extent = 0;
3923         u64 disko = 0;
3924         u64 isize = i_size_read(inode);
3925         struct btrfs_key found_key;
3926         struct extent_map *em = NULL;
3927         struct extent_state *cached_state = NULL;
3928         struct btrfs_path *path;
3929         struct btrfs_file_extent_item *item;
3930         int end = 0;
3931         u64 em_start = 0;
3932         u64 em_len = 0;
3933         u64 em_end = 0;
3934         unsigned long emflags;
3935
3936         if (len == 0)
3937                 return -EINVAL;
3938
3939         path = btrfs_alloc_path();
3940         if (!path)
3941                 return -ENOMEM;
3942         path->leave_spinning = 1;
3943
3944         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3945         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3946
3947         /*
3948          * lookup the last file extent.  We're not using i_size here
3949          * because there might be preallocation past i_size
3950          */
3951         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3952                                        path, btrfs_ino(inode), -1, 0);
3953         if (ret < 0) {
3954                 btrfs_free_path(path);
3955                 return ret;
3956         }
3957         WARN_ON(!ret);
3958         path->slots[0]--;
3959         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3960                               struct btrfs_file_extent_item);
3961         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3962         found_type = btrfs_key_type(&found_key);
3963
3964         /* No extents, but there might be delalloc bits */
3965         if (found_key.objectid != btrfs_ino(inode) ||
3966             found_type != BTRFS_EXTENT_DATA_KEY) {
3967                 /* have to trust i_size as the end */
3968                 last = (u64)-1;
3969                 last_for_get_extent = isize;
3970         } else {
3971                 /*
3972                  * remember the start of the last extent.  There are a
3973                  * bunch of different factors that go into the length of the
3974                  * extent, so its much less complex to remember where it started
3975                  */
3976                 last = found_key.offset;
3977                 last_for_get_extent = last + 1;
3978         }
3979         btrfs_free_path(path);
3980
3981         /*
3982          * we might have some extents allocated but more delalloc past those
3983          * extents.  so, we trust isize unless the start of the last extent is
3984          * beyond isize
3985          */
3986         if (last < isize) {
3987                 last = (u64)-1;
3988                 last_for_get_extent = isize;
3989         }
3990
3991         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3992                          &cached_state);
3993
3994         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3995                                    get_extent);
3996         if (!em)
3997                 goto out;
3998         if (IS_ERR(em)) {
3999                 ret = PTR_ERR(em);
4000                 goto out;
4001         }
4002
4003         while (!end) {
4004                 u64 offset_in_extent;
4005
4006                 /* break if the extent we found is outside the range */
4007                 if (em->start >= max || extent_map_end(em) < off)
4008                         break;
4009
4010                 /*
4011                  * get_extent may return an extent that starts before our
4012                  * requested range.  We have to make sure the ranges
4013                  * we return to fiemap always move forward and don't
4014                  * overlap, so adjust the offsets here
4015                  */
4016                 em_start = max(em->start, off);
4017
4018                 /*
4019                  * record the offset from the start of the extent
4020                  * for adjusting the disk offset below
4021                  */
4022                 offset_in_extent = em_start - em->start;
4023                 em_end = extent_map_end(em);
4024                 em_len = em_end - em_start;
4025                 emflags = em->flags;
4026                 disko = 0;
4027                 flags = 0;
4028
4029                 /*
4030                  * bump off for our next call to get_extent
4031                  */
4032                 off = extent_map_end(em);
4033                 if (off >= max)
4034                         end = 1;
4035
4036                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4037                         end = 1;
4038                         flags |= FIEMAP_EXTENT_LAST;
4039                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4040                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4041                                   FIEMAP_EXTENT_NOT_ALIGNED);
4042                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4043                         flags |= (FIEMAP_EXTENT_DELALLOC |
4044                                   FIEMAP_EXTENT_UNKNOWN);
4045                 } else {
4046                         disko = em->block_start + offset_in_extent;
4047                 }
4048                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4049                         flags |= FIEMAP_EXTENT_ENCODED;
4050
4051                 free_extent_map(em);
4052                 em = NULL;
4053                 if ((em_start >= last) || em_len == (u64)-1 ||
4054                    (last == (u64)-1 && isize <= em_end)) {
4055                         flags |= FIEMAP_EXTENT_LAST;
4056                         end = 1;
4057                 }
4058
4059                 /* now scan forward to see if this is really the last extent. */
4060                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4061                                            get_extent);
4062                 if (IS_ERR(em)) {
4063                         ret = PTR_ERR(em);
4064                         goto out;
4065                 }
4066                 if (!em) {
4067                         flags |= FIEMAP_EXTENT_LAST;
4068                         end = 1;
4069                 }
4070                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4071                                               em_len, flags);
4072                 if (ret)
4073                         goto out_free;
4074         }
4075 out_free:
4076         free_extent_map(em);
4077 out:
4078         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
4079                              &cached_state, GFP_NOFS);
4080         return ret;
4081 }
4082
4083 static void __free_extent_buffer(struct extent_buffer *eb)
4084 {
4085         btrfs_leak_debug_del(&eb->leak_list);
4086         kmem_cache_free(extent_buffer_cache, eb);
4087 }
4088
4089 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4090                                                    u64 start,
4091                                                    unsigned long len,
4092                                                    gfp_t mask)
4093 {
4094         struct extent_buffer *eb = NULL;
4095
4096         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4097         if (eb == NULL)
4098                 return NULL;
4099         eb->start = start;
4100         eb->len = len;
4101         eb->tree = tree;
4102         eb->bflags = 0;
4103         rwlock_init(&eb->lock);
4104         atomic_set(&eb->write_locks, 0);
4105         atomic_set(&eb->read_locks, 0);
4106         atomic_set(&eb->blocking_readers, 0);
4107         atomic_set(&eb->blocking_writers, 0);
4108         atomic_set(&eb->spinning_readers, 0);
4109         atomic_set(&eb->spinning_writers, 0);
4110         eb->lock_nested = 0;
4111         init_waitqueue_head(&eb->write_lock_wq);
4112         init_waitqueue_head(&eb->read_lock_wq);
4113
4114         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4115
4116         spin_lock_init(&eb->refs_lock);
4117         atomic_set(&eb->refs, 1);
4118         atomic_set(&eb->io_pages, 0);
4119
4120         /*
4121          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4122          */
4123         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4124                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4125         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4126
4127         return eb;
4128 }
4129
4130 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4131 {
4132         unsigned long i;
4133         struct page *p;
4134         struct extent_buffer *new;
4135         unsigned long num_pages = num_extent_pages(src->start, src->len);
4136
4137         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4138         if (new == NULL)
4139                 return NULL;
4140
4141         for (i = 0; i < num_pages; i++) {
4142                 p = alloc_page(GFP_ATOMIC);
4143                 BUG_ON(!p);
4144                 attach_extent_buffer_page(new, p);
4145                 WARN_ON(PageDirty(p));
4146                 SetPageUptodate(p);
4147                 new->pages[i] = p;
4148         }
4149
4150         copy_extent_buffer(new, src, 0, 0, src->len);
4151         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4152         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4153
4154         return new;
4155 }
4156
4157 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4158 {
4159         struct extent_buffer *eb;
4160         unsigned long num_pages = num_extent_pages(0, len);
4161         unsigned long i;
4162
4163         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4164         if (!eb)
4165                 return NULL;
4166
4167         for (i = 0; i < num_pages; i++) {
4168                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4169                 if (!eb->pages[i])
4170                         goto err;
4171         }
4172         set_extent_buffer_uptodate(eb);
4173         btrfs_set_header_nritems(eb, 0);
4174         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4175
4176         return eb;
4177 err:
4178         for (; i > 0; i--)
4179                 __free_page(eb->pages[i - 1]);
4180         __free_extent_buffer(eb);
4181         return NULL;
4182 }
4183
4184 static int extent_buffer_under_io(struct extent_buffer *eb)
4185 {
4186         return (atomic_read(&eb->io_pages) ||
4187                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4188                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4189 }
4190
4191 /*
4192  * Helper for releasing extent buffer page.
4193  */
4194 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4195                                                 unsigned long start_idx)
4196 {
4197         unsigned long index;
4198         unsigned long num_pages;
4199         struct page *page;
4200         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4201
4202         BUG_ON(extent_buffer_under_io(eb));
4203
4204         num_pages = num_extent_pages(eb->start, eb->len);
4205         index = start_idx + num_pages;
4206         if (start_idx >= index)
4207                 return;
4208
4209         do {
4210                 index--;
4211                 page = extent_buffer_page(eb, index);
4212                 if (page && mapped) {
4213                         spin_lock(&page->mapping->private_lock);
4214                         /*
4215                          * We do this since we'll remove the pages after we've
4216                          * removed the eb from the radix tree, so we could race
4217                          * and have this page now attached to the new eb.  So
4218                          * only clear page_private if it's still connected to
4219                          * this eb.
4220                          */
4221                         if (PagePrivate(page) &&
4222                             page->private == (unsigned long)eb) {
4223                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4224                                 BUG_ON(PageDirty(page));
4225                                 BUG_ON(PageWriteback(page));
4226                                 /*
4227                                  * We need to make sure we haven't be attached
4228                                  * to a new eb.
4229                                  */
4230                                 ClearPagePrivate(page);
4231                                 set_page_private(page, 0);
4232                                 /* One for the page private */
4233                                 page_cache_release(page);
4234                         }
4235                         spin_unlock(&page->mapping->private_lock);
4236
4237                 }
4238                 if (page) {
4239                         /* One for when we alloced the page */
4240                         page_cache_release(page);
4241                 }
4242         } while (index != start_idx);
4243 }
4244
4245 /*
4246  * Helper for releasing the extent buffer.
4247  */
4248 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4249 {
4250         btrfs_release_extent_buffer_page(eb, 0);
4251         __free_extent_buffer(eb);
4252 }
4253
4254 static void check_buffer_tree_ref(struct extent_buffer *eb)
4255 {
4256         int refs;
4257         /* the ref bit is tricky.  We have to make sure it is set
4258          * if we have the buffer dirty.   Otherwise the
4259          * code to free a buffer can end up dropping a dirty
4260          * page
4261          *
4262          * Once the ref bit is set, it won't go away while the
4263          * buffer is dirty or in writeback, and it also won't
4264          * go away while we have the reference count on the
4265          * eb bumped.
4266          *
4267          * We can't just set the ref bit without bumping the
4268          * ref on the eb because free_extent_buffer might
4269          * see the ref bit and try to clear it.  If this happens
4270          * free_extent_buffer might end up dropping our original
4271          * ref by mistake and freeing the page before we are able
4272          * to add one more ref.
4273          *
4274          * So bump the ref count first, then set the bit.  If someone
4275          * beat us to it, drop the ref we added.
4276          */
4277         refs = atomic_read(&eb->refs);
4278         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4279                 return;
4280
4281         spin_lock(&eb->refs_lock);
4282         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4283                 atomic_inc(&eb->refs);
4284         spin_unlock(&eb->refs_lock);
4285 }
4286
4287 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4288 {
4289         unsigned long num_pages, i;
4290
4291         check_buffer_tree_ref(eb);
4292
4293         num_pages = num_extent_pages(eb->start, eb->len);
4294         for (i = 0; i < num_pages; i++) {
4295                 struct page *p = extent_buffer_page(eb, i);
4296                 mark_page_accessed(p);
4297         }
4298 }
4299
4300 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4301                                           u64 start, unsigned long len)
4302 {
4303         unsigned long num_pages = num_extent_pages(start, len);
4304         unsigned long i;
4305         unsigned long index = start >> PAGE_CACHE_SHIFT;
4306         struct extent_buffer *eb;
4307         struct extent_buffer *exists = NULL;
4308         struct page *p;
4309         struct address_space *mapping = tree->mapping;
4310         int uptodate = 1;
4311         int ret;
4312
4313         rcu_read_lock();
4314         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4315         if (eb && atomic_inc_not_zero(&eb->refs)) {
4316                 rcu_read_unlock();
4317                 mark_extent_buffer_accessed(eb);
4318                 return eb;
4319         }
4320         rcu_read_unlock();
4321
4322         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4323         if (!eb)
4324                 return NULL;
4325
4326         for (i = 0; i < num_pages; i++, index++) {
4327                 p = find_or_create_page(mapping, index, GFP_NOFS);
4328                 if (!p)
4329                         goto free_eb;
4330
4331                 spin_lock(&mapping->private_lock);
4332                 if (PagePrivate(p)) {
4333                         /*
4334                          * We could have already allocated an eb for this page
4335                          * and attached one so lets see if we can get a ref on
4336                          * the existing eb, and if we can we know it's good and
4337                          * we can just return that one, else we know we can just
4338                          * overwrite page->private.
4339                          */
4340                         exists = (struct extent_buffer *)p->private;
4341                         if (atomic_inc_not_zero(&exists->refs)) {
4342                                 spin_unlock(&mapping->private_lock);
4343                                 unlock_page(p);
4344                                 page_cache_release(p);
4345                                 mark_extent_buffer_accessed(exists);
4346                                 goto free_eb;
4347                         }
4348
4349                         /*
4350                          * Do this so attach doesn't complain and we need to
4351                          * drop the ref the old guy had.
4352                          */
4353                         ClearPagePrivate(p);
4354                         WARN_ON(PageDirty(p));
4355                         page_cache_release(p);
4356                 }
4357                 attach_extent_buffer_page(eb, p);
4358                 spin_unlock(&mapping->private_lock);
4359                 WARN_ON(PageDirty(p));
4360                 mark_page_accessed(p);
4361                 eb->pages[i] = p;
4362                 if (!PageUptodate(p))
4363                         uptodate = 0;
4364
4365                 /*
4366                  * see below about how we avoid a nasty race with release page
4367                  * and why we unlock later
4368                  */
4369         }
4370         if (uptodate)
4371                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4372 again:
4373         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4374         if (ret)
4375                 goto free_eb;
4376
4377         spin_lock(&tree->buffer_lock);
4378         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4379         if (ret == -EEXIST) {
4380                 exists = radix_tree_lookup(&tree->buffer,
4381                                                 start >> PAGE_CACHE_SHIFT);
4382                 if (!atomic_inc_not_zero(&exists->refs)) {
4383                         spin_unlock(&tree->buffer_lock);
4384                         radix_tree_preload_end();
4385                         exists = NULL;
4386                         goto again;
4387                 }
4388                 spin_unlock(&tree->buffer_lock);
4389                 radix_tree_preload_end();
4390                 mark_extent_buffer_accessed(exists);
4391                 goto free_eb;
4392         }
4393         /* add one reference for the tree */
4394         check_buffer_tree_ref(eb);
4395         spin_unlock(&tree->buffer_lock);
4396         radix_tree_preload_end();
4397
4398         /*
4399          * there is a race where release page may have
4400          * tried to find this extent buffer in the radix
4401          * but failed.  It will tell the VM it is safe to
4402          * reclaim the, and it will clear the page private bit.
4403          * We must make sure to set the page private bit properly
4404          * after the extent buffer is in the radix tree so
4405          * it doesn't get lost
4406          */
4407         SetPageChecked(eb->pages[0]);
4408         for (i = 1; i < num_pages; i++) {
4409                 p = extent_buffer_page(eb, i);
4410                 ClearPageChecked(p);
4411                 unlock_page(p);
4412         }
4413         unlock_page(eb->pages[0]);
4414         return eb;
4415
4416 free_eb:
4417         for (i = 0; i < num_pages; i++) {
4418                 if (eb->pages[i])
4419                         unlock_page(eb->pages[i]);
4420         }
4421
4422         WARN_ON(!atomic_dec_and_test(&eb->refs));
4423         btrfs_release_extent_buffer(eb);
4424         return exists;
4425 }
4426
4427 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4428                                          u64 start, unsigned long len)
4429 {
4430         struct extent_buffer *eb;
4431
4432         rcu_read_lock();
4433         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4434         if (eb && atomic_inc_not_zero(&eb->refs)) {
4435                 rcu_read_unlock();
4436                 mark_extent_buffer_accessed(eb);
4437                 return eb;
4438         }
4439         rcu_read_unlock();
4440
4441         return NULL;
4442 }
4443
4444 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4445 {
4446         struct extent_buffer *eb =
4447                         container_of(head, struct extent_buffer, rcu_head);
4448
4449         __free_extent_buffer(eb);
4450 }
4451
4452 /* Expects to have eb->eb_lock already held */
4453 static int release_extent_buffer(struct extent_buffer *eb)
4454 {
4455         WARN_ON(atomic_read(&eb->refs) == 0);
4456         if (atomic_dec_and_test(&eb->refs)) {
4457                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4458                         spin_unlock(&eb->refs_lock);
4459                 } else {
4460                         struct extent_io_tree *tree = eb->tree;
4461
4462                         spin_unlock(&eb->refs_lock);
4463
4464                         spin_lock(&tree->buffer_lock);
4465                         radix_tree_delete(&tree->buffer,
4466                                           eb->start >> PAGE_CACHE_SHIFT);
4467                         spin_unlock(&tree->buffer_lock);
4468                 }
4469
4470                 /* Should be safe to release our pages at this point */
4471                 btrfs_release_extent_buffer_page(eb, 0);
4472                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4473                 return 1;
4474         }
4475         spin_unlock(&eb->refs_lock);
4476
4477         return 0;
4478 }
4479
4480 void free_extent_buffer(struct extent_buffer *eb)
4481 {
4482         int refs;
4483         int old;
4484         if (!eb)
4485                 return;
4486
4487         while (1) {
4488                 refs = atomic_read(&eb->refs);
4489                 if (refs <= 3)
4490                         break;
4491                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4492                 if (old == refs)
4493                         return;
4494         }
4495
4496         spin_lock(&eb->refs_lock);
4497         if (atomic_read(&eb->refs) == 2 &&
4498             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4499                 atomic_dec(&eb->refs);
4500
4501         if (atomic_read(&eb->refs) == 2 &&
4502             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4503             !extent_buffer_under_io(eb) &&
4504             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4505                 atomic_dec(&eb->refs);
4506
4507         /*
4508          * I know this is terrible, but it's temporary until we stop tracking
4509          * the uptodate bits and such for the extent buffers.
4510          */
4511         release_extent_buffer(eb);
4512 }
4513
4514 void free_extent_buffer_stale(struct extent_buffer *eb)
4515 {
4516         if (!eb)
4517                 return;
4518
4519         spin_lock(&eb->refs_lock);
4520         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4521
4522         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4523             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4524                 atomic_dec(&eb->refs);
4525         release_extent_buffer(eb);
4526 }
4527
4528 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4529 {
4530         unsigned long i;
4531         unsigned long num_pages;
4532         struct page *page;
4533
4534         num_pages = num_extent_pages(eb->start, eb->len);
4535
4536         for (i = 0; i < num_pages; i++) {
4537                 page = extent_buffer_page(eb, i);
4538                 if (!PageDirty(page))
4539                         continue;
4540
4541                 lock_page(page);
4542                 WARN_ON(!PagePrivate(page));
4543
4544                 clear_page_dirty_for_io(page);
4545                 spin_lock_irq(&page->mapping->tree_lock);
4546                 if (!PageDirty(page)) {
4547                         radix_tree_tag_clear(&page->mapping->page_tree,
4548                                                 page_index(page),
4549                                                 PAGECACHE_TAG_DIRTY);
4550                 }
4551                 spin_unlock_irq(&page->mapping->tree_lock);
4552                 ClearPageError(page);
4553                 unlock_page(page);
4554         }
4555         WARN_ON(atomic_read(&eb->refs) == 0);
4556 }
4557
4558 int set_extent_buffer_dirty(struct extent_buffer *eb)
4559 {
4560         unsigned long i;
4561         unsigned long num_pages;
4562         int was_dirty = 0;
4563
4564         check_buffer_tree_ref(eb);
4565
4566         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4567
4568         num_pages = num_extent_pages(eb->start, eb->len);
4569         WARN_ON(atomic_read(&eb->refs) == 0);
4570         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4571
4572         for (i = 0; i < num_pages; i++)
4573                 set_page_dirty(extent_buffer_page(eb, i));
4574         return was_dirty;
4575 }
4576
4577 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4578 {
4579         unsigned long i;
4580         struct page *page;
4581         unsigned long num_pages;
4582
4583         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4584         num_pages = num_extent_pages(eb->start, eb->len);
4585         for (i = 0; i < num_pages; i++) {
4586                 page = extent_buffer_page(eb, i);
4587                 if (page)
4588                         ClearPageUptodate(page);
4589         }
4590         return 0;
4591 }
4592
4593 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4594 {
4595         unsigned long i;
4596         struct page *page;
4597         unsigned long num_pages;
4598
4599         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4600         num_pages = num_extent_pages(eb->start, eb->len);
4601         for (i = 0; i < num_pages; i++) {
4602                 page = extent_buffer_page(eb, i);
4603                 SetPageUptodate(page);
4604         }
4605         return 0;
4606 }
4607
4608 int extent_buffer_uptodate(struct extent_buffer *eb)
4609 {
4610         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4611 }
4612
4613 int read_extent_buffer_pages(struct extent_io_tree *tree,
4614                              struct extent_buffer *eb, u64 start, int wait,
4615                              get_extent_t *get_extent, int mirror_num)
4616 {
4617         unsigned long i;
4618         unsigned long start_i;
4619         struct page *page;
4620         int err;
4621         int ret = 0;
4622         int locked_pages = 0;
4623         int all_uptodate = 1;
4624         unsigned long num_pages;
4625         unsigned long num_reads = 0;
4626         struct bio *bio = NULL;
4627         unsigned long bio_flags = 0;
4628
4629         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4630                 return 0;
4631
4632         if (start) {
4633                 WARN_ON(start < eb->start);
4634                 start_i = (start >> PAGE_CACHE_SHIFT) -
4635                         (eb->start >> PAGE_CACHE_SHIFT);
4636         } else {
4637                 start_i = 0;
4638         }
4639
4640         num_pages = num_extent_pages(eb->start, eb->len);
4641         for (i = start_i; i < num_pages; i++) {
4642                 page = extent_buffer_page(eb, i);
4643                 if (wait == WAIT_NONE) {
4644                         if (!trylock_page(page))
4645                                 goto unlock_exit;
4646                 } else {
4647                         lock_page(page);
4648                 }
4649                 locked_pages++;
4650                 if (!PageUptodate(page)) {
4651                         num_reads++;
4652                         all_uptodate = 0;
4653                 }
4654         }
4655         if (all_uptodate) {
4656                 if (start_i == 0)
4657                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4658                 goto unlock_exit;
4659         }
4660
4661         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4662         eb->read_mirror = 0;
4663         atomic_set(&eb->io_pages, num_reads);
4664         for (i = start_i; i < num_pages; i++) {
4665                 page = extent_buffer_page(eb, i);
4666                 if (!PageUptodate(page)) {
4667                         ClearPageError(page);
4668                         err = __extent_read_full_page(tree, page,
4669                                                       get_extent, &bio,
4670                                                       mirror_num, &bio_flags,
4671                                                       READ | REQ_META);
4672                         if (err)
4673                                 ret = err;
4674                 } else {
4675                         unlock_page(page);
4676                 }
4677         }
4678
4679         if (bio) {
4680                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4681                                      bio_flags);
4682                 if (err)
4683                         return err;
4684         }
4685
4686         if (ret || wait != WAIT_COMPLETE)
4687                 return ret;
4688
4689         for (i = start_i; i < num_pages; i++) {
4690                 page = extent_buffer_page(eb, i);
4691                 wait_on_page_locked(page);
4692                 if (!PageUptodate(page))
4693                         ret = -EIO;
4694         }
4695
4696         return ret;
4697
4698 unlock_exit:
4699         i = start_i;
4700         while (locked_pages > 0) {
4701                 page = extent_buffer_page(eb, i);
4702                 i++;
4703                 unlock_page(page);
4704                 locked_pages--;
4705         }
4706         return ret;
4707 }
4708
4709 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4710                         unsigned long start,
4711                         unsigned long len)
4712 {
4713         size_t cur;
4714         size_t offset;
4715         struct page *page;
4716         char *kaddr;
4717         char *dst = (char *)dstv;
4718         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4719         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4720
4721         WARN_ON(start > eb->len);
4722         WARN_ON(start + len > eb->start + eb->len);
4723
4724         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4725
4726         while (len > 0) {
4727                 page = extent_buffer_page(eb, i);
4728
4729                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4730                 kaddr = page_address(page);
4731                 memcpy(dst, kaddr + offset, cur);
4732
4733                 dst += cur;
4734                 len -= cur;
4735                 offset = 0;
4736                 i++;
4737         }
4738 }
4739
4740 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4741                                unsigned long min_len, char **map,
4742                                unsigned long *map_start,
4743                                unsigned long *map_len)
4744 {
4745         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4746         char *kaddr;
4747         struct page *p;
4748         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4749         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4750         unsigned long end_i = (start_offset + start + min_len - 1) >>
4751                 PAGE_CACHE_SHIFT;
4752
4753         if (i != end_i)
4754                 return -EINVAL;
4755
4756         if (i == 0) {
4757                 offset = start_offset;
4758                 *map_start = 0;
4759         } else {
4760                 offset = 0;
4761                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4762         }
4763
4764         if (start + min_len > eb->len) {
4765                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4766                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4767                        eb->len, start, min_len);
4768                 return -EINVAL;
4769         }
4770
4771         p = extent_buffer_page(eb, i);
4772         kaddr = page_address(p);
4773         *map = kaddr + offset;
4774         *map_len = PAGE_CACHE_SIZE - offset;
4775         return 0;
4776 }
4777
4778 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4779                           unsigned long start,
4780                           unsigned long len)
4781 {
4782         size_t cur;
4783         size_t offset;
4784         struct page *page;
4785         char *kaddr;
4786         char *ptr = (char *)ptrv;
4787         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4788         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4789         int ret = 0;
4790
4791         WARN_ON(start > eb->len);
4792         WARN_ON(start + len > eb->start + eb->len);
4793
4794         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4795
4796         while (len > 0) {
4797                 page = extent_buffer_page(eb, i);
4798
4799                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4800
4801                 kaddr = page_address(page);
4802                 ret = memcmp(ptr, kaddr + offset, cur);
4803                 if (ret)
4804                         break;
4805
4806                 ptr += cur;
4807                 len -= cur;
4808                 offset = 0;
4809                 i++;
4810         }
4811         return ret;
4812 }
4813
4814 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4815                          unsigned long start, unsigned long len)
4816 {
4817         size_t cur;
4818         size_t offset;
4819         struct page *page;
4820         char *kaddr;
4821         char *src = (char *)srcv;
4822         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4823         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4824
4825         WARN_ON(start > eb->len);
4826         WARN_ON(start + len > eb->start + eb->len);
4827
4828         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4829
4830         while (len > 0) {
4831                 page = extent_buffer_page(eb, i);
4832                 WARN_ON(!PageUptodate(page));
4833
4834                 cur = min(len, PAGE_CACHE_SIZE - offset);
4835                 kaddr = page_address(page);
4836                 memcpy(kaddr + offset, src, cur);
4837
4838                 src += cur;
4839                 len -= cur;
4840                 offset = 0;
4841                 i++;
4842         }
4843 }
4844
4845 void memset_extent_buffer(struct extent_buffer *eb, char c,
4846                           unsigned long start, unsigned long len)
4847 {
4848         size_t cur;
4849         size_t offset;
4850         struct page *page;
4851         char *kaddr;
4852         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4853         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4854
4855         WARN_ON(start > eb->len);
4856         WARN_ON(start + len > eb->start + eb->len);
4857
4858         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4859
4860         while (len > 0) {
4861                 page = extent_buffer_page(eb, i);
4862                 WARN_ON(!PageUptodate(page));
4863
4864                 cur = min(len, PAGE_CACHE_SIZE - offset);
4865                 kaddr = page_address(page);
4866                 memset(kaddr + offset, c, cur);
4867
4868                 len -= cur;
4869                 offset = 0;
4870                 i++;
4871         }
4872 }
4873
4874 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4875                         unsigned long dst_offset, unsigned long src_offset,
4876                         unsigned long len)
4877 {
4878         u64 dst_len = dst->len;
4879         size_t cur;
4880         size_t offset;
4881         struct page *page;
4882         char *kaddr;
4883         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4884         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4885
4886         WARN_ON(src->len != dst_len);
4887
4888         offset = (start_offset + dst_offset) &
4889                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4890
4891         while (len > 0) {
4892                 page = extent_buffer_page(dst, i);
4893                 WARN_ON(!PageUptodate(page));
4894
4895                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4896
4897                 kaddr = page_address(page);
4898                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4899
4900                 src_offset += cur;
4901                 len -= cur;
4902                 offset = 0;
4903                 i++;
4904         }
4905 }
4906
4907 static void move_pages(struct page *dst_page, struct page *src_page,
4908                        unsigned long dst_off, unsigned long src_off,
4909                        unsigned long len)
4910 {
4911         char *dst_kaddr = page_address(dst_page);
4912         if (dst_page == src_page) {
4913                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4914         } else {
4915                 char *src_kaddr = page_address(src_page);
4916                 char *p = dst_kaddr + dst_off + len;
4917                 char *s = src_kaddr + src_off + len;
4918
4919                 while (len--)
4920                         *--p = *--s;
4921         }
4922 }
4923
4924 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4925 {
4926         unsigned long distance = (src > dst) ? src - dst : dst - src;
4927         return distance < len;
4928 }
4929
4930 static void copy_pages(struct page *dst_page, struct page *src_page,
4931                        unsigned long dst_off, unsigned long src_off,
4932                        unsigned long len)
4933 {
4934         char *dst_kaddr = page_address(dst_page);
4935         char *src_kaddr;
4936         int must_memmove = 0;
4937
4938         if (dst_page != src_page) {
4939                 src_kaddr = page_address(src_page);
4940         } else {
4941                 src_kaddr = dst_kaddr;
4942                 if (areas_overlap(src_off, dst_off, len))
4943                         must_memmove = 1;
4944         }
4945
4946         if (must_memmove)
4947                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4948         else
4949                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4950 }
4951
4952 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4953                            unsigned long src_offset, unsigned long len)
4954 {
4955         size_t cur;
4956         size_t dst_off_in_page;
4957         size_t src_off_in_page;
4958         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4959         unsigned long dst_i;
4960         unsigned long src_i;
4961
4962         if (src_offset + len > dst->len) {
4963                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4964                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4965                 BUG_ON(1);
4966         }
4967         if (dst_offset + len > dst->len) {
4968                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4969                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4970                 BUG_ON(1);
4971         }
4972
4973         while (len > 0) {
4974                 dst_off_in_page = (start_offset + dst_offset) &
4975                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4976                 src_off_in_page = (start_offset + src_offset) &
4977                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4978
4979                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4980                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4981
4982                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4983                                                src_off_in_page));
4984                 cur = min_t(unsigned long, cur,
4985                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4986
4987                 copy_pages(extent_buffer_page(dst, dst_i),
4988                            extent_buffer_page(dst, src_i),
4989                            dst_off_in_page, src_off_in_page, cur);
4990
4991                 src_offset += cur;
4992                 dst_offset += cur;
4993                 len -= cur;
4994         }
4995 }
4996
4997 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4998                            unsigned long src_offset, unsigned long len)
4999 {
5000         size_t cur;
5001         size_t dst_off_in_page;
5002         size_t src_off_in_page;
5003         unsigned long dst_end = dst_offset + len - 1;
5004         unsigned long src_end = src_offset + len - 1;
5005         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5006         unsigned long dst_i;
5007         unsigned long src_i;
5008
5009         if (src_offset + len > dst->len) {
5010                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5011                        "len %lu len %lu\n", src_offset, len, dst->len);
5012                 BUG_ON(1);
5013         }
5014         if (dst_offset + len > dst->len) {
5015                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5016                        "len %lu len %lu\n", dst_offset, len, dst->len);
5017                 BUG_ON(1);
5018         }
5019         if (dst_offset < src_offset) {
5020                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5021                 return;
5022         }
5023         while (len > 0) {
5024                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5025                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5026
5027                 dst_off_in_page = (start_offset + dst_end) &
5028                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5029                 src_off_in_page = (start_offset + src_end) &
5030                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5031
5032                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5033                 cur = min(cur, dst_off_in_page + 1);
5034                 move_pages(extent_buffer_page(dst, dst_i),
5035                            extent_buffer_page(dst, src_i),
5036                            dst_off_in_page - cur + 1,
5037                            src_off_in_page - cur + 1, cur);
5038
5039                 dst_end -= cur;
5040                 src_end -= cur;
5041                 len -= cur;
5042         }
5043 }
5044
5045 int try_release_extent_buffer(struct page *page)
5046 {
5047         struct extent_buffer *eb;
5048
5049         /*
5050          * We need to make sure noboody is attaching this page to an eb right
5051          * now.
5052          */
5053         spin_lock(&page->mapping->private_lock);
5054         if (!PagePrivate(page)) {
5055                 spin_unlock(&page->mapping->private_lock);
5056                 return 1;
5057         }
5058
5059         eb = (struct extent_buffer *)page->private;
5060         BUG_ON(!eb);
5061
5062         /*
5063          * This is a little awful but should be ok, we need to make sure that
5064          * the eb doesn't disappear out from under us while we're looking at
5065          * this page.
5066          */
5067         spin_lock(&eb->refs_lock);
5068         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5069                 spin_unlock(&eb->refs_lock);
5070                 spin_unlock(&page->mapping->private_lock);
5071                 return 0;
5072         }
5073         spin_unlock(&page->mapping->private_lock);
5074
5075         /*
5076          * If tree ref isn't set then we know the ref on this eb is a real ref,
5077          * so just return, this page will likely be freed soon anyway.
5078          */
5079         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5080                 spin_unlock(&eb->refs_lock);
5081                 return 0;
5082         }
5083
5084         return release_extent_buffer(eb);
5085 }