MIPS: Define ioremap_uc
[linux-drm-fsl-dcu.git] / drivers / vme / vme.c
1 /*
2  * VME Bridge Framework
3  *
4  * Author: Martyn Welch <martyn.welch@ge.com>
5  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6  *
7  * Based on work by Tom Armistead and Ajit Prem
8  * Copyright 2004 Motorola Inc.
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47         return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51  * Find the bridge that the resource is associated with.
52  */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55         /* Get list to search */
56         switch (resource->type) {
57         case VME_MASTER:
58                 return list_entry(resource->entry, struct vme_master_resource,
59                         list)->parent;
60                 break;
61         case VME_SLAVE:
62                 return list_entry(resource->entry, struct vme_slave_resource,
63                         list)->parent;
64                 break;
65         case VME_DMA:
66                 return list_entry(resource->entry, struct vme_dma_resource,
67                         list)->parent;
68                 break;
69         case VME_LM:
70                 return list_entry(resource->entry, struct vme_lm_resource,
71                         list)->parent;
72                 break;
73         default:
74                 printk(KERN_ERR "Unknown resource type\n");
75                 return NULL;
76                 break;
77         }
78 }
79
80 /*
81  * Allocate a contiguous block of memory for use by the driver. This is used to
82  * create the buffers for the slave windows.
83  */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85         dma_addr_t *dma)
86 {
87         struct vme_bridge *bridge;
88
89         if (resource == NULL) {
90                 printk(KERN_ERR "No resource\n");
91                 return NULL;
92         }
93
94         bridge = find_bridge(resource);
95         if (bridge == NULL) {
96                 printk(KERN_ERR "Can't find bridge\n");
97                 return NULL;
98         }
99
100         if (bridge->parent == NULL) {
101                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102                 return NULL;
103         }
104
105         if (bridge->alloc_consistent == NULL) {
106                 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107                        bridge->name);
108                 return NULL;
109         }
110
111         return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116  * Free previously allocated contiguous block of memory.
117  */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119         void *vaddr, dma_addr_t dma)
120 {
121         struct vme_bridge *bridge;
122
123         if (resource == NULL) {
124                 printk(KERN_ERR "No resource\n");
125                 return;
126         }
127
128         bridge = find_bridge(resource);
129         if (bridge == NULL) {
130                 printk(KERN_ERR "Can't find bridge\n");
131                 return;
132         }
133
134         if (bridge->parent == NULL) {
135                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136                 return;
137         }
138
139         if (bridge->free_consistent == NULL) {
140                 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141                        bridge->name);
142                 return;
143         }
144
145         bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151         int enabled, retval;
152         unsigned long long base, size;
153         dma_addr_t buf_base;
154         u32 aspace, cycle, dwidth;
155
156         switch (resource->type) {
157         case VME_MASTER:
158                 retval = vme_master_get(resource, &enabled, &base, &size,
159                         &aspace, &cycle, &dwidth);
160
161                 return size;
162                 break;
163         case VME_SLAVE:
164                 retval = vme_slave_get(resource, &enabled, &base, &size,
165                         &buf_base, &aspace, &cycle);
166
167                 return size;
168                 break;
169         case VME_DMA:
170                 return 0;
171                 break;
172         default:
173                 printk(KERN_ERR "Unknown resource type\n");
174                 return 0;
175                 break;
176         }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 int vme_check_window(u32 aspace, unsigned long long vme_base,
181                      unsigned long long size)
182 {
183         int retval = 0;
184
185         switch (aspace) {
186         case VME_A16:
187                 if (((vme_base + size) > VME_A16_MAX) ||
188                                 (vme_base > VME_A16_MAX))
189                         retval = -EFAULT;
190                 break;
191         case VME_A24:
192                 if (((vme_base + size) > VME_A24_MAX) ||
193                                 (vme_base > VME_A24_MAX))
194                         retval = -EFAULT;
195                 break;
196         case VME_A32:
197                 if (((vme_base + size) > VME_A32_MAX) ||
198                                 (vme_base > VME_A32_MAX))
199                         retval = -EFAULT;
200                 break;
201         case VME_A64:
202                 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
203                         retval = -EFAULT;
204                 break;
205         case VME_CRCSR:
206                 if (((vme_base + size) > VME_CRCSR_MAX) ||
207                                 (vme_base > VME_CRCSR_MAX))
208                         retval = -EFAULT;
209                 break;
210         case VME_USER1:
211         case VME_USER2:
212         case VME_USER3:
213         case VME_USER4:
214                 /* User Defined */
215                 break;
216         default:
217                 printk(KERN_ERR "Invalid address space\n");
218                 retval = -EINVAL;
219                 break;
220         }
221
222         return retval;
223 }
224 EXPORT_SYMBOL(vme_check_window);
225
226 /*
227  * Request a slave image with specific attributes, return some unique
228  * identifier.
229  */
230 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
231         u32 cycle)
232 {
233         struct vme_bridge *bridge;
234         struct list_head *slave_pos = NULL;
235         struct vme_slave_resource *allocated_image = NULL;
236         struct vme_slave_resource *slave_image = NULL;
237         struct vme_resource *resource = NULL;
238
239         bridge = vdev->bridge;
240         if (bridge == NULL) {
241                 printk(KERN_ERR "Can't find VME bus\n");
242                 goto err_bus;
243         }
244
245         /* Loop through slave resources */
246         list_for_each(slave_pos, &bridge->slave_resources) {
247                 slave_image = list_entry(slave_pos,
248                         struct vme_slave_resource, list);
249
250                 if (slave_image == NULL) {
251                         printk(KERN_ERR "Registered NULL Slave resource\n");
252                         continue;
253                 }
254
255                 /* Find an unlocked and compatible image */
256                 mutex_lock(&slave_image->mtx);
257                 if (((slave_image->address_attr & address) == address) &&
258                         ((slave_image->cycle_attr & cycle) == cycle) &&
259                         (slave_image->locked == 0)) {
260
261                         slave_image->locked = 1;
262                         mutex_unlock(&slave_image->mtx);
263                         allocated_image = slave_image;
264                         break;
265                 }
266                 mutex_unlock(&slave_image->mtx);
267         }
268
269         /* No free image */
270         if (allocated_image == NULL)
271                 goto err_image;
272
273         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
274         if (resource == NULL) {
275                 printk(KERN_WARNING "Unable to allocate resource structure\n");
276                 goto err_alloc;
277         }
278         resource->type = VME_SLAVE;
279         resource->entry = &allocated_image->list;
280
281         return resource;
282
283 err_alloc:
284         /* Unlock image */
285         mutex_lock(&slave_image->mtx);
286         slave_image->locked = 0;
287         mutex_unlock(&slave_image->mtx);
288 err_image:
289 err_bus:
290         return NULL;
291 }
292 EXPORT_SYMBOL(vme_slave_request);
293
294 int vme_slave_set(struct vme_resource *resource, int enabled,
295         unsigned long long vme_base, unsigned long long size,
296         dma_addr_t buf_base, u32 aspace, u32 cycle)
297 {
298         struct vme_bridge *bridge = find_bridge(resource);
299         struct vme_slave_resource *image;
300         int retval;
301
302         if (resource->type != VME_SLAVE) {
303                 printk(KERN_ERR "Not a slave resource\n");
304                 return -EINVAL;
305         }
306
307         image = list_entry(resource->entry, struct vme_slave_resource, list);
308
309         if (bridge->slave_set == NULL) {
310                 printk(KERN_ERR "Function not supported\n");
311                 return -ENOSYS;
312         }
313
314         if (!(((image->address_attr & aspace) == aspace) &&
315                 ((image->cycle_attr & cycle) == cycle))) {
316                 printk(KERN_ERR "Invalid attributes\n");
317                 return -EINVAL;
318         }
319
320         retval = vme_check_window(aspace, vme_base, size);
321         if (retval)
322                 return retval;
323
324         return bridge->slave_set(image, enabled, vme_base, size, buf_base,
325                 aspace, cycle);
326 }
327 EXPORT_SYMBOL(vme_slave_set);
328
329 int vme_slave_get(struct vme_resource *resource, int *enabled,
330         unsigned long long *vme_base, unsigned long long *size,
331         dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
332 {
333         struct vme_bridge *bridge = find_bridge(resource);
334         struct vme_slave_resource *image;
335
336         if (resource->type != VME_SLAVE) {
337                 printk(KERN_ERR "Not a slave resource\n");
338                 return -EINVAL;
339         }
340
341         image = list_entry(resource->entry, struct vme_slave_resource, list);
342
343         if (bridge->slave_get == NULL) {
344                 printk(KERN_ERR "vme_slave_get not supported\n");
345                 return -EINVAL;
346         }
347
348         return bridge->slave_get(image, enabled, vme_base, size, buf_base,
349                 aspace, cycle);
350 }
351 EXPORT_SYMBOL(vme_slave_get);
352
353 void vme_slave_free(struct vme_resource *resource)
354 {
355         struct vme_slave_resource *slave_image;
356
357         if (resource->type != VME_SLAVE) {
358                 printk(KERN_ERR "Not a slave resource\n");
359                 return;
360         }
361
362         slave_image = list_entry(resource->entry, struct vme_slave_resource,
363                 list);
364         if (slave_image == NULL) {
365                 printk(KERN_ERR "Can't find slave resource\n");
366                 return;
367         }
368
369         /* Unlock image */
370         mutex_lock(&slave_image->mtx);
371         if (slave_image->locked == 0)
372                 printk(KERN_ERR "Image is already free\n");
373
374         slave_image->locked = 0;
375         mutex_unlock(&slave_image->mtx);
376
377         /* Free up resource memory */
378         kfree(resource);
379 }
380 EXPORT_SYMBOL(vme_slave_free);
381
382 /*
383  * Request a master image with specific attributes, return some unique
384  * identifier.
385  */
386 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
387         u32 cycle, u32 dwidth)
388 {
389         struct vme_bridge *bridge;
390         struct list_head *master_pos = NULL;
391         struct vme_master_resource *allocated_image = NULL;
392         struct vme_master_resource *master_image = NULL;
393         struct vme_resource *resource = NULL;
394
395         bridge = vdev->bridge;
396         if (bridge == NULL) {
397                 printk(KERN_ERR "Can't find VME bus\n");
398                 goto err_bus;
399         }
400
401         /* Loop through master resources */
402         list_for_each(master_pos, &bridge->master_resources) {
403                 master_image = list_entry(master_pos,
404                         struct vme_master_resource, list);
405
406                 if (master_image == NULL) {
407                         printk(KERN_WARNING "Registered NULL master resource\n");
408                         continue;
409                 }
410
411                 /* Find an unlocked and compatible image */
412                 spin_lock(&master_image->lock);
413                 if (((master_image->address_attr & address) == address) &&
414                         ((master_image->cycle_attr & cycle) == cycle) &&
415                         ((master_image->width_attr & dwidth) == dwidth) &&
416                         (master_image->locked == 0)) {
417
418                         master_image->locked = 1;
419                         spin_unlock(&master_image->lock);
420                         allocated_image = master_image;
421                         break;
422                 }
423                 spin_unlock(&master_image->lock);
424         }
425
426         /* Check to see if we found a resource */
427         if (allocated_image == NULL) {
428                 printk(KERN_ERR "Can't find a suitable resource\n");
429                 goto err_image;
430         }
431
432         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
433         if (resource == NULL) {
434                 printk(KERN_ERR "Unable to allocate resource structure\n");
435                 goto err_alloc;
436         }
437         resource->type = VME_MASTER;
438         resource->entry = &allocated_image->list;
439
440         return resource;
441
442 err_alloc:
443         /* Unlock image */
444         spin_lock(&master_image->lock);
445         master_image->locked = 0;
446         spin_unlock(&master_image->lock);
447 err_image:
448 err_bus:
449         return NULL;
450 }
451 EXPORT_SYMBOL(vme_master_request);
452
453 int vme_master_set(struct vme_resource *resource, int enabled,
454         unsigned long long vme_base, unsigned long long size, u32 aspace,
455         u32 cycle, u32 dwidth)
456 {
457         struct vme_bridge *bridge = find_bridge(resource);
458         struct vme_master_resource *image;
459         int retval;
460
461         if (resource->type != VME_MASTER) {
462                 printk(KERN_ERR "Not a master resource\n");
463                 return -EINVAL;
464         }
465
466         image = list_entry(resource->entry, struct vme_master_resource, list);
467
468         if (bridge->master_set == NULL) {
469                 printk(KERN_WARNING "vme_master_set not supported\n");
470                 return -EINVAL;
471         }
472
473         if (!(((image->address_attr & aspace) == aspace) &&
474                 ((image->cycle_attr & cycle) == cycle) &&
475                 ((image->width_attr & dwidth) == dwidth))) {
476                 printk(KERN_WARNING "Invalid attributes\n");
477                 return -EINVAL;
478         }
479
480         retval = vme_check_window(aspace, vme_base, size);
481         if (retval)
482                 return retval;
483
484         return bridge->master_set(image, enabled, vme_base, size, aspace,
485                 cycle, dwidth);
486 }
487 EXPORT_SYMBOL(vme_master_set);
488
489 int vme_master_get(struct vme_resource *resource, int *enabled,
490         unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
491         u32 *cycle, u32 *dwidth)
492 {
493         struct vme_bridge *bridge = find_bridge(resource);
494         struct vme_master_resource *image;
495
496         if (resource->type != VME_MASTER) {
497                 printk(KERN_ERR "Not a master resource\n");
498                 return -EINVAL;
499         }
500
501         image = list_entry(resource->entry, struct vme_master_resource, list);
502
503         if (bridge->master_get == NULL) {
504                 printk(KERN_WARNING "%s not supported\n", __func__);
505                 return -EINVAL;
506         }
507
508         return bridge->master_get(image, enabled, vme_base, size, aspace,
509                 cycle, dwidth);
510 }
511 EXPORT_SYMBOL(vme_master_get);
512
513 /*
514  * Read data out of VME space into a buffer.
515  */
516 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
517         loff_t offset)
518 {
519         struct vme_bridge *bridge = find_bridge(resource);
520         struct vme_master_resource *image;
521         size_t length;
522
523         if (bridge->master_read == NULL) {
524                 printk(KERN_WARNING "Reading from resource not supported\n");
525                 return -EINVAL;
526         }
527
528         if (resource->type != VME_MASTER) {
529                 printk(KERN_ERR "Not a master resource\n");
530                 return -EINVAL;
531         }
532
533         image = list_entry(resource->entry, struct vme_master_resource, list);
534
535         length = vme_get_size(resource);
536
537         if (offset > length) {
538                 printk(KERN_WARNING "Invalid Offset\n");
539                 return -EFAULT;
540         }
541
542         if ((offset + count) > length)
543                 count = length - offset;
544
545         return bridge->master_read(image, buf, count, offset);
546
547 }
548 EXPORT_SYMBOL(vme_master_read);
549
550 /*
551  * Write data out to VME space from a buffer.
552  */
553 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
554         size_t count, loff_t offset)
555 {
556         struct vme_bridge *bridge = find_bridge(resource);
557         struct vme_master_resource *image;
558         size_t length;
559
560         if (bridge->master_write == NULL) {
561                 printk(KERN_WARNING "Writing to resource not supported\n");
562                 return -EINVAL;
563         }
564
565         if (resource->type != VME_MASTER) {
566                 printk(KERN_ERR "Not a master resource\n");
567                 return -EINVAL;
568         }
569
570         image = list_entry(resource->entry, struct vme_master_resource, list);
571
572         length = vme_get_size(resource);
573
574         if (offset > length) {
575                 printk(KERN_WARNING "Invalid Offset\n");
576                 return -EFAULT;
577         }
578
579         if ((offset + count) > length)
580                 count = length - offset;
581
582         return bridge->master_write(image, buf, count, offset);
583 }
584 EXPORT_SYMBOL(vme_master_write);
585
586 /*
587  * Perform RMW cycle to provided location.
588  */
589 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
590         unsigned int compare, unsigned int swap, loff_t offset)
591 {
592         struct vme_bridge *bridge = find_bridge(resource);
593         struct vme_master_resource *image;
594
595         if (bridge->master_rmw == NULL) {
596                 printk(KERN_WARNING "Writing to resource not supported\n");
597                 return -EINVAL;
598         }
599
600         if (resource->type != VME_MASTER) {
601                 printk(KERN_ERR "Not a master resource\n");
602                 return -EINVAL;
603         }
604
605         image = list_entry(resource->entry, struct vme_master_resource, list);
606
607         return bridge->master_rmw(image, mask, compare, swap, offset);
608 }
609 EXPORT_SYMBOL(vme_master_rmw);
610
611 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
612 {
613         struct vme_master_resource *image;
614         phys_addr_t phys_addr;
615         unsigned long vma_size;
616
617         if (resource->type != VME_MASTER) {
618                 pr_err("Not a master resource\n");
619                 return -EINVAL;
620         }
621
622         image = list_entry(resource->entry, struct vme_master_resource, list);
623         phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
624         vma_size = vma->vm_end - vma->vm_start;
625
626         if (phys_addr + vma_size > image->bus_resource.end + 1) {
627                 pr_err("Map size cannot exceed the window size\n");
628                 return -EFAULT;
629         }
630
631         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
632
633         return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
634 }
635 EXPORT_SYMBOL(vme_master_mmap);
636
637 void vme_master_free(struct vme_resource *resource)
638 {
639         struct vme_master_resource *master_image;
640
641         if (resource->type != VME_MASTER) {
642                 printk(KERN_ERR "Not a master resource\n");
643                 return;
644         }
645
646         master_image = list_entry(resource->entry, struct vme_master_resource,
647                 list);
648         if (master_image == NULL) {
649                 printk(KERN_ERR "Can't find master resource\n");
650                 return;
651         }
652
653         /* Unlock image */
654         spin_lock(&master_image->lock);
655         if (master_image->locked == 0)
656                 printk(KERN_ERR "Image is already free\n");
657
658         master_image->locked = 0;
659         spin_unlock(&master_image->lock);
660
661         /* Free up resource memory */
662         kfree(resource);
663 }
664 EXPORT_SYMBOL(vme_master_free);
665
666 /*
667  * Request a DMA controller with specific attributes, return some unique
668  * identifier.
669  */
670 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
671 {
672         struct vme_bridge *bridge;
673         struct list_head *dma_pos = NULL;
674         struct vme_dma_resource *allocated_ctrlr = NULL;
675         struct vme_dma_resource *dma_ctrlr = NULL;
676         struct vme_resource *resource = NULL;
677
678         /* XXX Not checking resource attributes */
679         printk(KERN_ERR "No VME resource Attribute tests done\n");
680
681         bridge = vdev->bridge;
682         if (bridge == NULL) {
683                 printk(KERN_ERR "Can't find VME bus\n");
684                 goto err_bus;
685         }
686
687         /* Loop through DMA resources */
688         list_for_each(dma_pos, &bridge->dma_resources) {
689                 dma_ctrlr = list_entry(dma_pos,
690                         struct vme_dma_resource, list);
691
692                 if (dma_ctrlr == NULL) {
693                         printk(KERN_ERR "Registered NULL DMA resource\n");
694                         continue;
695                 }
696
697                 /* Find an unlocked and compatible controller */
698                 mutex_lock(&dma_ctrlr->mtx);
699                 if (((dma_ctrlr->route_attr & route) == route) &&
700                         (dma_ctrlr->locked == 0)) {
701
702                         dma_ctrlr->locked = 1;
703                         mutex_unlock(&dma_ctrlr->mtx);
704                         allocated_ctrlr = dma_ctrlr;
705                         break;
706                 }
707                 mutex_unlock(&dma_ctrlr->mtx);
708         }
709
710         /* Check to see if we found a resource */
711         if (allocated_ctrlr == NULL)
712                 goto err_ctrlr;
713
714         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
715         if (resource == NULL) {
716                 printk(KERN_WARNING "Unable to allocate resource structure\n");
717                 goto err_alloc;
718         }
719         resource->type = VME_DMA;
720         resource->entry = &allocated_ctrlr->list;
721
722         return resource;
723
724 err_alloc:
725         /* Unlock image */
726         mutex_lock(&dma_ctrlr->mtx);
727         dma_ctrlr->locked = 0;
728         mutex_unlock(&dma_ctrlr->mtx);
729 err_ctrlr:
730 err_bus:
731         return NULL;
732 }
733 EXPORT_SYMBOL(vme_dma_request);
734
735 /*
736  * Start new list
737  */
738 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
739 {
740         struct vme_dma_resource *ctrlr;
741         struct vme_dma_list *dma_list;
742
743         if (resource->type != VME_DMA) {
744                 printk(KERN_ERR "Not a DMA resource\n");
745                 return NULL;
746         }
747
748         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
749
750         dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
751         if (dma_list == NULL) {
752                 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
753                 return NULL;
754         }
755         INIT_LIST_HEAD(&dma_list->entries);
756         dma_list->parent = ctrlr;
757         mutex_init(&dma_list->mtx);
758
759         return dma_list;
760 }
761 EXPORT_SYMBOL(vme_new_dma_list);
762
763 /*
764  * Create "Pattern" type attributes
765  */
766 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
767 {
768         struct vme_dma_attr *attributes;
769         struct vme_dma_pattern *pattern_attr;
770
771         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
772         if (attributes == NULL) {
773                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
774                 goto err_attr;
775         }
776
777         pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
778         if (pattern_attr == NULL) {
779                 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
780                 goto err_pat;
781         }
782
783         attributes->type = VME_DMA_PATTERN;
784         attributes->private = (void *)pattern_attr;
785
786         pattern_attr->pattern = pattern;
787         pattern_attr->type = type;
788
789         return attributes;
790
791 err_pat:
792         kfree(attributes);
793 err_attr:
794         return NULL;
795 }
796 EXPORT_SYMBOL(vme_dma_pattern_attribute);
797
798 /*
799  * Create "PCI" type attributes
800  */
801 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
802 {
803         struct vme_dma_attr *attributes;
804         struct vme_dma_pci *pci_attr;
805
806         /* XXX Run some sanity checks here */
807
808         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
809         if (attributes == NULL) {
810                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
811                 goto err_attr;
812         }
813
814         pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
815         if (pci_attr == NULL) {
816                 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
817                 goto err_pci;
818         }
819
820
821
822         attributes->type = VME_DMA_PCI;
823         attributes->private = (void *)pci_attr;
824
825         pci_attr->address = address;
826
827         return attributes;
828
829 err_pci:
830         kfree(attributes);
831 err_attr:
832         return NULL;
833 }
834 EXPORT_SYMBOL(vme_dma_pci_attribute);
835
836 /*
837  * Create "VME" type attributes
838  */
839 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
840         u32 aspace, u32 cycle, u32 dwidth)
841 {
842         struct vme_dma_attr *attributes;
843         struct vme_dma_vme *vme_attr;
844
845         attributes = kmalloc(
846                 sizeof(struct vme_dma_attr), GFP_KERNEL);
847         if (attributes == NULL) {
848                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
849                 goto err_attr;
850         }
851
852         vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
853         if (vme_attr == NULL) {
854                 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
855                 goto err_vme;
856         }
857
858         attributes->type = VME_DMA_VME;
859         attributes->private = (void *)vme_attr;
860
861         vme_attr->address = address;
862         vme_attr->aspace = aspace;
863         vme_attr->cycle = cycle;
864         vme_attr->dwidth = dwidth;
865
866         return attributes;
867
868 err_vme:
869         kfree(attributes);
870 err_attr:
871         return NULL;
872 }
873 EXPORT_SYMBOL(vme_dma_vme_attribute);
874
875 /*
876  * Free attribute
877  */
878 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
879 {
880         kfree(attributes->private);
881         kfree(attributes);
882 }
883 EXPORT_SYMBOL(vme_dma_free_attribute);
884
885 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
886         struct vme_dma_attr *dest, size_t count)
887 {
888         struct vme_bridge *bridge = list->parent->parent;
889         int retval;
890
891         if (bridge->dma_list_add == NULL) {
892                 printk(KERN_WARNING "Link List DMA generation not supported\n");
893                 return -EINVAL;
894         }
895
896         if (!mutex_trylock(&list->mtx)) {
897                 printk(KERN_ERR "Link List already submitted\n");
898                 return -EINVAL;
899         }
900
901         retval = bridge->dma_list_add(list, src, dest, count);
902
903         mutex_unlock(&list->mtx);
904
905         return retval;
906 }
907 EXPORT_SYMBOL(vme_dma_list_add);
908
909 int vme_dma_list_exec(struct vme_dma_list *list)
910 {
911         struct vme_bridge *bridge = list->parent->parent;
912         int retval;
913
914         if (bridge->dma_list_exec == NULL) {
915                 printk(KERN_ERR "Link List DMA execution not supported\n");
916                 return -EINVAL;
917         }
918
919         mutex_lock(&list->mtx);
920
921         retval = bridge->dma_list_exec(list);
922
923         mutex_unlock(&list->mtx);
924
925         return retval;
926 }
927 EXPORT_SYMBOL(vme_dma_list_exec);
928
929 int vme_dma_list_free(struct vme_dma_list *list)
930 {
931         struct vme_bridge *bridge = list->parent->parent;
932         int retval;
933
934         if (bridge->dma_list_empty == NULL) {
935                 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
936                 return -EINVAL;
937         }
938
939         if (!mutex_trylock(&list->mtx)) {
940                 printk(KERN_ERR "Link List in use\n");
941                 return -EINVAL;
942         }
943
944         /*
945          * Empty out all of the entries from the dma list. We need to go to the
946          * low level driver as dma entries are driver specific.
947          */
948         retval = bridge->dma_list_empty(list);
949         if (retval) {
950                 printk(KERN_ERR "Unable to empty link-list entries\n");
951                 mutex_unlock(&list->mtx);
952                 return retval;
953         }
954         mutex_unlock(&list->mtx);
955         kfree(list);
956
957         return retval;
958 }
959 EXPORT_SYMBOL(vme_dma_list_free);
960
961 int vme_dma_free(struct vme_resource *resource)
962 {
963         struct vme_dma_resource *ctrlr;
964
965         if (resource->type != VME_DMA) {
966                 printk(KERN_ERR "Not a DMA resource\n");
967                 return -EINVAL;
968         }
969
970         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
971
972         if (!mutex_trylock(&ctrlr->mtx)) {
973                 printk(KERN_ERR "Resource busy, can't free\n");
974                 return -EBUSY;
975         }
976
977         if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
978                 printk(KERN_WARNING "Resource still processing transfers\n");
979                 mutex_unlock(&ctrlr->mtx);
980                 return -EBUSY;
981         }
982
983         ctrlr->locked = 0;
984
985         mutex_unlock(&ctrlr->mtx);
986
987         kfree(resource);
988
989         return 0;
990 }
991 EXPORT_SYMBOL(vme_dma_free);
992
993 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
994 {
995         void (*call)(int, int, void *);
996         void *priv_data;
997
998         call = bridge->irq[level - 1].callback[statid].func;
999         priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1000
1001         if (call != NULL)
1002                 call(level, statid, priv_data);
1003         else
1004                 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
1005                        level, statid);
1006 }
1007 EXPORT_SYMBOL(vme_irq_handler);
1008
1009 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1010         void (*callback)(int, int, void *),
1011         void *priv_data)
1012 {
1013         struct vme_bridge *bridge;
1014
1015         bridge = vdev->bridge;
1016         if (bridge == NULL) {
1017                 printk(KERN_ERR "Can't find VME bus\n");
1018                 return -EINVAL;
1019         }
1020
1021         if ((level < 1) || (level > 7)) {
1022                 printk(KERN_ERR "Invalid interrupt level\n");
1023                 return -EINVAL;
1024         }
1025
1026         if (bridge->irq_set == NULL) {
1027                 printk(KERN_ERR "Configuring interrupts not supported\n");
1028                 return -EINVAL;
1029         }
1030
1031         mutex_lock(&bridge->irq_mtx);
1032
1033         if (bridge->irq[level - 1].callback[statid].func) {
1034                 mutex_unlock(&bridge->irq_mtx);
1035                 printk(KERN_WARNING "VME Interrupt already taken\n");
1036                 return -EBUSY;
1037         }
1038
1039         bridge->irq[level - 1].count++;
1040         bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1041         bridge->irq[level - 1].callback[statid].func = callback;
1042
1043         /* Enable IRQ level */
1044         bridge->irq_set(bridge, level, 1, 1);
1045
1046         mutex_unlock(&bridge->irq_mtx);
1047
1048         return 0;
1049 }
1050 EXPORT_SYMBOL(vme_irq_request);
1051
1052 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1053 {
1054         struct vme_bridge *bridge;
1055
1056         bridge = vdev->bridge;
1057         if (bridge == NULL) {
1058                 printk(KERN_ERR "Can't find VME bus\n");
1059                 return;
1060         }
1061
1062         if ((level < 1) || (level > 7)) {
1063                 printk(KERN_ERR "Invalid interrupt level\n");
1064                 return;
1065         }
1066
1067         if (bridge->irq_set == NULL) {
1068                 printk(KERN_ERR "Configuring interrupts not supported\n");
1069                 return;
1070         }
1071
1072         mutex_lock(&bridge->irq_mtx);
1073
1074         bridge->irq[level - 1].count--;
1075
1076         /* Disable IRQ level if no more interrupts attached at this level*/
1077         if (bridge->irq[level - 1].count == 0)
1078                 bridge->irq_set(bridge, level, 0, 1);
1079
1080         bridge->irq[level - 1].callback[statid].func = NULL;
1081         bridge->irq[level - 1].callback[statid].priv_data = NULL;
1082
1083         mutex_unlock(&bridge->irq_mtx);
1084 }
1085 EXPORT_SYMBOL(vme_irq_free);
1086
1087 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1088 {
1089         struct vme_bridge *bridge;
1090
1091         bridge = vdev->bridge;
1092         if (bridge == NULL) {
1093                 printk(KERN_ERR "Can't find VME bus\n");
1094                 return -EINVAL;
1095         }
1096
1097         if ((level < 1) || (level > 7)) {
1098                 printk(KERN_WARNING "Invalid interrupt level\n");
1099                 return -EINVAL;
1100         }
1101
1102         if (bridge->irq_generate == NULL) {
1103                 printk(KERN_WARNING "Interrupt generation not supported\n");
1104                 return -EINVAL;
1105         }
1106
1107         return bridge->irq_generate(bridge, level, statid);
1108 }
1109 EXPORT_SYMBOL(vme_irq_generate);
1110
1111 /*
1112  * Request the location monitor, return resource or NULL
1113  */
1114 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1115 {
1116         struct vme_bridge *bridge;
1117         struct list_head *lm_pos = NULL;
1118         struct vme_lm_resource *allocated_lm = NULL;
1119         struct vme_lm_resource *lm = NULL;
1120         struct vme_resource *resource = NULL;
1121
1122         bridge = vdev->bridge;
1123         if (bridge == NULL) {
1124                 printk(KERN_ERR "Can't find VME bus\n");
1125                 goto err_bus;
1126         }
1127
1128         /* Loop through DMA resources */
1129         list_for_each(lm_pos, &bridge->lm_resources) {
1130                 lm = list_entry(lm_pos,
1131                         struct vme_lm_resource, list);
1132
1133                 if (lm == NULL) {
1134                         printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1135                         continue;
1136                 }
1137
1138                 /* Find an unlocked controller */
1139                 mutex_lock(&lm->mtx);
1140                 if (lm->locked == 0) {
1141                         lm->locked = 1;
1142                         mutex_unlock(&lm->mtx);
1143                         allocated_lm = lm;
1144                         break;
1145                 }
1146                 mutex_unlock(&lm->mtx);
1147         }
1148
1149         /* Check to see if we found a resource */
1150         if (allocated_lm == NULL)
1151                 goto err_lm;
1152
1153         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1154         if (resource == NULL) {
1155                 printk(KERN_ERR "Unable to allocate resource structure\n");
1156                 goto err_alloc;
1157         }
1158         resource->type = VME_LM;
1159         resource->entry = &allocated_lm->list;
1160
1161         return resource;
1162
1163 err_alloc:
1164         /* Unlock image */
1165         mutex_lock(&lm->mtx);
1166         lm->locked = 0;
1167         mutex_unlock(&lm->mtx);
1168 err_lm:
1169 err_bus:
1170         return NULL;
1171 }
1172 EXPORT_SYMBOL(vme_lm_request);
1173
1174 int vme_lm_count(struct vme_resource *resource)
1175 {
1176         struct vme_lm_resource *lm;
1177
1178         if (resource->type != VME_LM) {
1179                 printk(KERN_ERR "Not a Location Monitor resource\n");
1180                 return -EINVAL;
1181         }
1182
1183         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1184
1185         return lm->monitors;
1186 }
1187 EXPORT_SYMBOL(vme_lm_count);
1188
1189 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1190         u32 aspace, u32 cycle)
1191 {
1192         struct vme_bridge *bridge = find_bridge(resource);
1193         struct vme_lm_resource *lm;
1194
1195         if (resource->type != VME_LM) {
1196                 printk(KERN_ERR "Not a Location Monitor resource\n");
1197                 return -EINVAL;
1198         }
1199
1200         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1201
1202         if (bridge->lm_set == NULL) {
1203                 printk(KERN_ERR "vme_lm_set not supported\n");
1204                 return -EINVAL;
1205         }
1206
1207         return bridge->lm_set(lm, lm_base, aspace, cycle);
1208 }
1209 EXPORT_SYMBOL(vme_lm_set);
1210
1211 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1212         u32 *aspace, u32 *cycle)
1213 {
1214         struct vme_bridge *bridge = find_bridge(resource);
1215         struct vme_lm_resource *lm;
1216
1217         if (resource->type != VME_LM) {
1218                 printk(KERN_ERR "Not a Location Monitor resource\n");
1219                 return -EINVAL;
1220         }
1221
1222         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1223
1224         if (bridge->lm_get == NULL) {
1225                 printk(KERN_ERR "vme_lm_get not supported\n");
1226                 return -EINVAL;
1227         }
1228
1229         return bridge->lm_get(lm, lm_base, aspace, cycle);
1230 }
1231 EXPORT_SYMBOL(vme_lm_get);
1232
1233 int vme_lm_attach(struct vme_resource *resource, int monitor,
1234         void (*callback)(int))
1235 {
1236         struct vme_bridge *bridge = find_bridge(resource);
1237         struct vme_lm_resource *lm;
1238
1239         if (resource->type != VME_LM) {
1240                 printk(KERN_ERR "Not a Location Monitor resource\n");
1241                 return -EINVAL;
1242         }
1243
1244         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1245
1246         if (bridge->lm_attach == NULL) {
1247                 printk(KERN_ERR "vme_lm_attach not supported\n");
1248                 return -EINVAL;
1249         }
1250
1251         return bridge->lm_attach(lm, monitor, callback);
1252 }
1253 EXPORT_SYMBOL(vme_lm_attach);
1254
1255 int vme_lm_detach(struct vme_resource *resource, int monitor)
1256 {
1257         struct vme_bridge *bridge = find_bridge(resource);
1258         struct vme_lm_resource *lm;
1259
1260         if (resource->type != VME_LM) {
1261                 printk(KERN_ERR "Not a Location Monitor resource\n");
1262                 return -EINVAL;
1263         }
1264
1265         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1266
1267         if (bridge->lm_detach == NULL) {
1268                 printk(KERN_ERR "vme_lm_detach not supported\n");
1269                 return -EINVAL;
1270         }
1271
1272         return bridge->lm_detach(lm, monitor);
1273 }
1274 EXPORT_SYMBOL(vme_lm_detach);
1275
1276 void vme_lm_free(struct vme_resource *resource)
1277 {
1278         struct vme_lm_resource *lm;
1279
1280         if (resource->type != VME_LM) {
1281                 printk(KERN_ERR "Not a Location Monitor resource\n");
1282                 return;
1283         }
1284
1285         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1286
1287         mutex_lock(&lm->mtx);
1288
1289         /* XXX
1290          * Check to see that there aren't any callbacks still attached, if
1291          * there are we should probably be detaching them!
1292          */
1293
1294         lm->locked = 0;
1295
1296         mutex_unlock(&lm->mtx);
1297
1298         kfree(resource);
1299 }
1300 EXPORT_SYMBOL(vme_lm_free);
1301
1302 int vme_slot_num(struct vme_dev *vdev)
1303 {
1304         struct vme_bridge *bridge;
1305
1306         bridge = vdev->bridge;
1307         if (bridge == NULL) {
1308                 printk(KERN_ERR "Can't find VME bus\n");
1309                 return -EINVAL;
1310         }
1311
1312         if (bridge->slot_get == NULL) {
1313                 printk(KERN_WARNING "vme_slot_num not supported\n");
1314                 return -EINVAL;
1315         }
1316
1317         return bridge->slot_get(bridge);
1318 }
1319 EXPORT_SYMBOL(vme_slot_num);
1320
1321 int vme_bus_num(struct vme_dev *vdev)
1322 {
1323         struct vme_bridge *bridge;
1324
1325         bridge = vdev->bridge;
1326         if (bridge == NULL) {
1327                 pr_err("Can't find VME bus\n");
1328                 return -EINVAL;
1329         }
1330
1331         return bridge->num;
1332 }
1333 EXPORT_SYMBOL(vme_bus_num);
1334
1335 /* - Bridge Registration --------------------------------------------------- */
1336
1337 static void vme_dev_release(struct device *dev)
1338 {
1339         kfree(dev_to_vme_dev(dev));
1340 }
1341
1342 int vme_register_bridge(struct vme_bridge *bridge)
1343 {
1344         int i;
1345         int ret = -1;
1346
1347         mutex_lock(&vme_buses_lock);
1348         for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1349                 if ((vme_bus_numbers & (1 << i)) == 0) {
1350                         vme_bus_numbers |= (1 << i);
1351                         bridge->num = i;
1352                         INIT_LIST_HEAD(&bridge->devices);
1353                         list_add_tail(&bridge->bus_list, &vme_bus_list);
1354                         ret = 0;
1355                         break;
1356                 }
1357         }
1358         mutex_unlock(&vme_buses_lock);
1359
1360         return ret;
1361 }
1362 EXPORT_SYMBOL(vme_register_bridge);
1363
1364 void vme_unregister_bridge(struct vme_bridge *bridge)
1365 {
1366         struct vme_dev *vdev;
1367         struct vme_dev *tmp;
1368
1369         mutex_lock(&vme_buses_lock);
1370         vme_bus_numbers &= ~(1 << bridge->num);
1371         list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1372                 list_del(&vdev->drv_list);
1373                 list_del(&vdev->bridge_list);
1374                 device_unregister(&vdev->dev);
1375         }
1376         list_del(&bridge->bus_list);
1377         mutex_unlock(&vme_buses_lock);
1378 }
1379 EXPORT_SYMBOL(vme_unregister_bridge);
1380
1381 /* - Driver Registration --------------------------------------------------- */
1382
1383 static int __vme_register_driver_bus(struct vme_driver *drv,
1384         struct vme_bridge *bridge, unsigned int ndevs)
1385 {
1386         int err;
1387         unsigned int i;
1388         struct vme_dev *vdev;
1389         struct vme_dev *tmp;
1390
1391         for (i = 0; i < ndevs; i++) {
1392                 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1393                 if (!vdev) {
1394                         err = -ENOMEM;
1395                         goto err_devalloc;
1396                 }
1397                 vdev->num = i;
1398                 vdev->bridge = bridge;
1399                 vdev->dev.platform_data = drv;
1400                 vdev->dev.release = vme_dev_release;
1401                 vdev->dev.parent = bridge->parent;
1402                 vdev->dev.bus = &vme_bus_type;
1403                 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1404                         vdev->num);
1405
1406                 err = device_register(&vdev->dev);
1407                 if (err)
1408                         goto err_reg;
1409
1410                 if (vdev->dev.platform_data) {
1411                         list_add_tail(&vdev->drv_list, &drv->devices);
1412                         list_add_tail(&vdev->bridge_list, &bridge->devices);
1413                 } else
1414                         device_unregister(&vdev->dev);
1415         }
1416         return 0;
1417
1418 err_reg:
1419         put_device(&vdev->dev);
1420         kfree(vdev);
1421 err_devalloc:
1422         list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1423                 list_del(&vdev->drv_list);
1424                 list_del(&vdev->bridge_list);
1425                 device_unregister(&vdev->dev);
1426         }
1427         return err;
1428 }
1429
1430 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1431 {
1432         struct vme_bridge *bridge;
1433         int err = 0;
1434
1435         mutex_lock(&vme_buses_lock);
1436         list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1437                 /*
1438                  * This cannot cause trouble as we already have vme_buses_lock
1439                  * and if the bridge is removed, it will have to go through
1440                  * vme_unregister_bridge() to do it (which calls remove() on
1441                  * the bridge which in turn tries to acquire vme_buses_lock and
1442                  * will have to wait).
1443                  */
1444                 err = __vme_register_driver_bus(drv, bridge, ndevs);
1445                 if (err)
1446                         break;
1447         }
1448         mutex_unlock(&vme_buses_lock);
1449         return err;
1450 }
1451
1452 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1453 {
1454         int err;
1455
1456         drv->driver.name = drv->name;
1457         drv->driver.bus = &vme_bus_type;
1458         INIT_LIST_HEAD(&drv->devices);
1459
1460         err = driver_register(&drv->driver);
1461         if (err)
1462                 return err;
1463
1464         err = __vme_register_driver(drv, ndevs);
1465         if (err)
1466                 driver_unregister(&drv->driver);
1467
1468         return err;
1469 }
1470 EXPORT_SYMBOL(vme_register_driver);
1471
1472 void vme_unregister_driver(struct vme_driver *drv)
1473 {
1474         struct vme_dev *dev, *dev_tmp;
1475
1476         mutex_lock(&vme_buses_lock);
1477         list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1478                 list_del(&dev->drv_list);
1479                 list_del(&dev->bridge_list);
1480                 device_unregister(&dev->dev);
1481         }
1482         mutex_unlock(&vme_buses_lock);
1483
1484         driver_unregister(&drv->driver);
1485 }
1486 EXPORT_SYMBOL(vme_unregister_driver);
1487
1488 /* - Bus Registration ------------------------------------------------------ */
1489
1490 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1491 {
1492         struct vme_driver *vme_drv;
1493
1494         vme_drv = container_of(drv, struct vme_driver, driver);
1495
1496         if (dev->platform_data == vme_drv) {
1497                 struct vme_dev *vdev = dev_to_vme_dev(dev);
1498
1499                 if (vme_drv->match && vme_drv->match(vdev))
1500                         return 1;
1501
1502                 dev->platform_data = NULL;
1503         }
1504         return 0;
1505 }
1506
1507 static int vme_bus_probe(struct device *dev)
1508 {
1509         int retval = -ENODEV;
1510         struct vme_driver *driver;
1511         struct vme_dev *vdev = dev_to_vme_dev(dev);
1512
1513         driver = dev->platform_data;
1514
1515         if (driver->probe != NULL)
1516                 retval = driver->probe(vdev);
1517
1518         return retval;
1519 }
1520
1521 static int vme_bus_remove(struct device *dev)
1522 {
1523         int retval = -ENODEV;
1524         struct vme_driver *driver;
1525         struct vme_dev *vdev = dev_to_vme_dev(dev);
1526
1527         driver = dev->platform_data;
1528
1529         if (driver->remove != NULL)
1530                 retval = driver->remove(vdev);
1531
1532         return retval;
1533 }
1534
1535 struct bus_type vme_bus_type = {
1536         .name = "vme",
1537         .match = vme_bus_match,
1538         .probe = vme_bus_probe,
1539         .remove = vme_bus_remove,
1540 };
1541 EXPORT_SYMBOL(vme_bus_type);
1542
1543 static int __init vme_init(void)
1544 {
1545         return bus_register(&vme_bus_type);
1546 }
1547
1548 static void __exit vme_exit(void)
1549 {
1550         bus_unregister(&vme_bus_type);
1551 }
1552
1553 subsys_initcall(vme_init);
1554 module_exit(vme_exit);