Linux 4.5-rc1
[linux-drm-fsl-dcu.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151
152         return ret;
153 }
154
155 /*
156  * Reset a halted HC.
157  *
158  * This resets pipelines, timers, counters, state machines, etc.
159  * Transactions will be terminated immediately, and operational registers
160  * will be set to their defaults.
161  */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164         u32 command;
165         u32 state;
166         int ret, i;
167
168         state = readl(&xhci->op_regs->status);
169         if ((state & STS_HALT) == 0) {
170                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171                 return 0;
172         }
173
174         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175         command = readl(&xhci->op_regs->command);
176         command |= CMD_RESET;
177         writel(command, &xhci->op_regs->command);
178
179         /* Existing Intel xHCI controllers require a delay of 1 mS,
180          * after setting the CMD_RESET bit, and before accessing any
181          * HC registers. This allows the HC to complete the
182          * reset operation and be ready for HC register access.
183          * Without this delay, the subsequent HC register access,
184          * may result in a system hang very rarely.
185          */
186         if (xhci->quirks & XHCI_INTEL_HOST)
187                 udelay(1000);
188
189         ret = xhci_handshake(&xhci->op_regs->command,
190                         CMD_RESET, 0, 10 * 1000 * 1000);
191         if (ret)
192                 return ret;
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; ++i) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215         int i;
216
217         if (!xhci->msix_entries)
218                 return -EINVAL;
219
220         for (i = 0; i < xhci->msix_count; i++)
221                 if (xhci->msix_entries[i].vector)
222                         free_irq(xhci->msix_entries[i].vector,
223                                         xhci_to_hcd(xhci));
224         return 0;
225 }
226
227 /*
228  * Set up MSI
229  */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232         int ret;
233         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235         ret = pci_enable_msi(pdev);
236         if (ret) {
237                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238                                 "failed to allocate MSI entry");
239                 return ret;
240         }
241
242         ret = request_irq(pdev->irq, xhci_msi_irq,
243                                 0, "xhci_hcd", xhci_to_hcd(xhci));
244         if (ret) {
245                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246                                 "disable MSI interrupt");
247                 pci_disable_msi(pdev);
248         }
249
250         return ret;
251 }
252
253 /*
254  * Free IRQs
255  * free all IRQs request
256  */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260         int ret;
261
262         /* return if using legacy interrupt */
263         if (xhci_to_hcd(xhci)->irq > 0)
264                 return;
265
266         ret = xhci_free_msi(xhci);
267         if (!ret)
268                 return;
269         if (pdev->irq > 0)
270                 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272         return;
273 }
274
275 /*
276  * Set up MSI-X
277  */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280         int i, ret = 0;
281         struct usb_hcd *hcd = xhci_to_hcd(xhci);
282         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284         /*
285          * calculate number of msi-x vectors supported.
286          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287          *   with max number of interrupters based on the xhci HCSPARAMS1.
288          * - num_online_cpus: maximum msi-x vectors per CPUs core.
289          *   Add additional 1 vector to ensure always available interrupt.
290          */
291         xhci->msix_count = min(num_online_cpus() + 1,
292                                 HCS_MAX_INTRS(xhci->hcs_params1));
293
294         xhci->msix_entries =
295                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296                                 GFP_KERNEL);
297         if (!xhci->msix_entries) {
298                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299                 return -ENOMEM;
300         }
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         set_timer_slack(&xhci->comp_mode_recovery_timer,
493                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         /*
639          * the increment interval is 8 times as much as that defined
640          * in xHCI spec on MTK's controller
641          */
642         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643         writel(temp, &xhci->ir_set->irq_control);
644
645         /* Set the HCD state before we enable the irqs */
646         temp = readl(&xhci->op_regs->command);
647         temp |= (CMD_EIE);
648         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649                         "// Enable interrupts, cmd = 0x%x.", temp);
650         writel(temp, &xhci->op_regs->command);
651
652         temp = readl(&xhci->ir_set->irq_pending);
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657         xhci_print_ir_set(xhci, 0);
658
659         if (xhci->quirks & XHCI_NEC_HOST) {
660                 struct xhci_command *command;
661                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662                 if (!command)
663                         return -ENOMEM;
664                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665                                 TRB_TYPE(TRB_NEC_GET_FW));
666         }
667         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668                         "Finished xhci_run for USB2 roothub");
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684         u32 temp;
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         if (xhci->xhc_state & XHCI_STATE_HALTED)
688                 return;
689
690         mutex_lock(&xhci->mutex);
691         spin_lock_irq(&xhci->lock);
692         xhci->xhc_state |= XHCI_STATE_HALTED;
693         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694
695         /* Make sure the xHC is halted for a USB3 roothub
696          * (xhci_stop() could be called as part of failed init).
697          */
698         xhci_halt(xhci);
699         xhci_reset(xhci);
700         spin_unlock_irq(&xhci->lock);
701
702         xhci_cleanup_msix(xhci);
703
704         /* Deleting Compliance Mode Recovery Timer */
705         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706                         (!(xhci_all_ports_seen_u0(xhci)))) {
707                 del_timer_sync(&xhci->comp_mode_recovery_timer);
708                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709                                 "%s: compliance mode recovery timer deleted",
710                                 __func__);
711         }
712
713         if (xhci->quirks & XHCI_AMD_PLL_FIX)
714                 usb_amd_dev_put();
715
716         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717                         "// Disabling event ring interrupts");
718         temp = readl(&xhci->op_regs->status);
719         writel(temp & ~STS_EINT, &xhci->op_regs->status);
720         temp = readl(&xhci->ir_set->irq_pending);
721         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722         xhci_print_ir_set(xhci, 0);
723
724         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725         xhci_mem_cleanup(xhci);
726         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727                         "xhci_stop completed - status = %x",
728                         readl(&xhci->op_regs->status));
729         mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747
748         spin_lock_irq(&xhci->lock);
749         xhci_halt(xhci);
750         /* Workaround for spurious wakeups at shutdown with HSW */
751         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752                 xhci_reset(xhci);
753         spin_unlock_irq(&xhci->lock);
754
755         xhci_cleanup_msix(xhci);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758                         "xhci_shutdown completed - status = %x",
759                         readl(&xhci->op_regs->status));
760
761         /* Yet another workaround for spurious wakeups at shutdown with HSW */
762         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769         xhci->s3.command = readl(&xhci->op_regs->command);
770         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782         writel(xhci->s3.command, &xhci->op_regs->command);
783         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795         u64     val_64;
796
797         /* step 2: initialize command ring buffer */
798         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801                                       xhci->cmd_ring->dequeue) &
802                  (u64) ~CMD_RING_RSVD_BITS) |
803                 xhci->cmd_ring->cycle_state;
804         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805                         "// Setting command ring address to 0x%llx",
806                         (long unsigned long) val_64);
807         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809
810 /*
811  * The whole command ring must be cleared to zero when we suspend the host.
812  *
813  * The host doesn't save the command ring pointer in the suspend well, so we
814  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
815  * aligned, because of the reserved bits in the command ring dequeue pointer
816  * register.  Therefore, we can't just set the dequeue pointer back in the
817  * middle of the ring (TRBs are 16-byte aligned).
818  */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821         struct xhci_ring *ring;
822         struct xhci_segment *seg;
823
824         ring = xhci->cmd_ring;
825         seg = ring->deq_seg;
826         do {
827                 memset(seg->trbs, 0,
828                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830                         cpu_to_le32(~TRB_CYCLE);
831                 seg = seg->next;
832         } while (seg != ring->deq_seg);
833
834         /* Reset the software enqueue and dequeue pointers */
835         ring->deq_seg = ring->first_seg;
836         ring->dequeue = ring->first_seg->trbs;
837         ring->enq_seg = ring->deq_seg;
838         ring->enqueue = ring->dequeue;
839
840         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841         /*
842          * Ring is now zeroed, so the HW should look for change of ownership
843          * when the cycle bit is set to 1.
844          */
845         ring->cycle_state = 1;
846
847         /*
848          * Reset the hardware dequeue pointer.
849          * Yes, this will need to be re-written after resume, but we're paranoid
850          * and want to make sure the hardware doesn't access bogus memory
851          * because, say, the BIOS or an SMI started the host without changing
852          * the command ring pointers.
853          */
854         xhci_set_cmd_ring_deq(xhci);
855 }
856
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859         int port_index;
860         __le32 __iomem **port_array;
861         unsigned long flags;
862         u32 t1, t2;
863
864         spin_lock_irqsave(&xhci->lock, flags);
865
866         /* disble usb3 ports Wake bits*/
867         port_index = xhci->num_usb3_ports;
868         port_array = xhci->usb3_ports;
869         while (port_index--) {
870                 t1 = readl(port_array[port_index]);
871                 t1 = xhci_port_state_to_neutral(t1);
872                 t2 = t1 & ~PORT_WAKE_BITS;
873                 if (t1 != t2)
874                         writel(t2, port_array[port_index]);
875         }
876
877         /* disble usb2 ports Wake bits*/
878         port_index = xhci->num_usb2_ports;
879         port_array = xhci->usb2_ports;
880         while (port_index--) {
881                 t1 = readl(port_array[port_index]);
882                 t1 = xhci_port_state_to_neutral(t1);
883                 t2 = t1 & ~PORT_WAKE_BITS;
884                 if (t1 != t2)
885                         writel(t2, port_array[port_index]);
886         }
887
888         spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890
891 /*
892  * Stop HC (not bus-specific)
893  *
894  * This is called when the machine transition into S3/S4 mode.
895  *
896  */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899         int                     rc = 0;
900         unsigned int            delay = XHCI_MAX_HALT_USEC;
901         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
902         u32                     command;
903
904         if (!hcd->state)
905                 return 0;
906
907         if (hcd->state != HC_STATE_SUSPENDED ||
908                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909                 return -EINVAL;
910
911         /* Clear root port wake on bits if wakeup not allowed. */
912         if (!do_wakeup)
913                 xhci_disable_port_wake_on_bits(xhci);
914
915         /* Don't poll the roothubs on bus suspend. */
916         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918         del_timer_sync(&hcd->rh_timer);
919         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920         del_timer_sync(&xhci->shared_hcd->rh_timer);
921
922         spin_lock_irq(&xhci->lock);
923         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925         /* step 1: stop endpoint */
926         /* skipped assuming that port suspend has done */
927
928         /* step 2: clear Run/Stop bit */
929         command = readl(&xhci->op_regs->command);
930         command &= ~CMD_RUN;
931         writel(command, &xhci->op_regs->command);
932
933         /* Some chips from Fresco Logic need an extraordinary delay */
934         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935
936         if (xhci_handshake(&xhci->op_regs->status,
937                       STS_HALT, STS_HALT, delay)) {
938                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939                 spin_unlock_irq(&xhci->lock);
940                 return -ETIMEDOUT;
941         }
942         xhci_clear_command_ring(xhci);
943
944         /* step 3: save registers */
945         xhci_save_registers(xhci);
946
947         /* step 4: set CSS flag */
948         command = readl(&xhci->op_regs->command);
949         command |= CMD_CSS;
950         writel(command, &xhci->op_regs->command);
951         if (xhci_handshake(&xhci->op_regs->status,
952                                 STS_SAVE, 0, 10 * 1000)) {
953                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
954                 spin_unlock_irq(&xhci->lock);
955                 return -ETIMEDOUT;
956         }
957         spin_unlock_irq(&xhci->lock);
958
959         /*
960          * Deleting Compliance Mode Recovery Timer because the xHCI Host
961          * is about to be suspended.
962          */
963         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964                         (!(xhci_all_ports_seen_u0(xhci)))) {
965                 del_timer_sync(&xhci->comp_mode_recovery_timer);
966                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967                                 "%s: compliance mode recovery timer deleted",
968                                 __func__);
969         }
970
971         /* step 5: remove core well power */
972         /* synchronize irq when using MSI-X */
973         xhci_msix_sync_irqs(xhci);
974
975         return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978
979 /*
980  * start xHC (not bus-specific)
981  *
982  * This is called when the machine transition from S3/S4 mode.
983  *
984  */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987         u32                     command, temp = 0, status;
988         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
989         struct usb_hcd          *secondary_hcd;
990         int                     retval = 0;
991         bool                    comp_timer_running = false;
992
993         if (!hcd->state)
994                 return 0;
995
996         /* Wait a bit if either of the roothubs need to settle from the
997          * transition into bus suspend.
998          */
999         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000                         time_before(jiffies,
1001                                 xhci->bus_state[1].next_statechange))
1002                 msleep(100);
1003
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007         spin_lock_irq(&xhci->lock);
1008         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009                 hibernated = true;
1010
1011         if (!hibernated) {
1012                 /* step 1: restore register */
1013                 xhci_restore_registers(xhci);
1014                 /* step 2: initialize command ring buffer */
1015                 xhci_set_cmd_ring_deq(xhci);
1016                 /* step 3: restore state and start state*/
1017                 /* step 3: set CRS flag */
1018                 command = readl(&xhci->op_regs->command);
1019                 command |= CMD_CRS;
1020                 writel(command, &xhci->op_regs->command);
1021                 if (xhci_handshake(&xhci->op_regs->status,
1022                               STS_RESTORE, 0, 10 * 1000)) {
1023                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024                         spin_unlock_irq(&xhci->lock);
1025                         return -ETIMEDOUT;
1026                 }
1027                 temp = readl(&xhci->op_regs->status);
1028         }
1029
1030         /* If restore operation fails, re-initialize the HC during resume */
1031         if ((temp & STS_SRE) || hibernated) {
1032
1033                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034                                 !(xhci_all_ports_seen_u0(xhci))) {
1035                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1036                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037                                 "Compliance Mode Recovery Timer deleted!");
1038                 }
1039
1040                 /* Let the USB core know _both_ roothubs lost power. */
1041                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043
1044                 xhci_dbg(xhci, "Stop HCD\n");
1045                 xhci_halt(xhci);
1046                 xhci_reset(xhci);
1047                 spin_unlock_irq(&xhci->lock);
1048                 xhci_cleanup_msix(xhci);
1049
1050                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051                 temp = readl(&xhci->op_regs->status);
1052                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053                 temp = readl(&xhci->ir_set->irq_pending);
1054                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055                 xhci_print_ir_set(xhci, 0);
1056
1057                 xhci_dbg(xhci, "cleaning up memory\n");
1058                 xhci_mem_cleanup(xhci);
1059                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060                             readl(&xhci->op_regs->status));
1061
1062                 /* USB core calls the PCI reinit and start functions twice:
1063                  * first with the primary HCD, and then with the secondary HCD.
1064                  * If we don't do the same, the host will never be started.
1065                  */
1066                 if (!usb_hcd_is_primary_hcd(hcd))
1067                         secondary_hcd = hcd;
1068                 else
1069                         secondary_hcd = xhci->shared_hcd;
1070
1071                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072                 retval = xhci_init(hcd->primary_hcd);
1073                 if (retval)
1074                         return retval;
1075                 comp_timer_running = true;
1076
1077                 xhci_dbg(xhci, "Start the primary HCD\n");
1078                 retval = xhci_run(hcd->primary_hcd);
1079                 if (!retval) {
1080                         xhci_dbg(xhci, "Start the secondary HCD\n");
1081                         retval = xhci_run(secondary_hcd);
1082                 }
1083                 hcd->state = HC_STATE_SUSPENDED;
1084                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085                 goto done;
1086         }
1087
1088         /* step 4: set Run/Stop bit */
1089         command = readl(&xhci->op_regs->command);
1090         command |= CMD_RUN;
1091         writel(command, &xhci->op_regs->command);
1092         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093                   0, 250 * 1000);
1094
1095         /* step 5: walk topology and initialize portsc,
1096          * portpmsc and portli
1097          */
1098         /* this is done in bus_resume */
1099
1100         /* step 6: restart each of the previously
1101          * Running endpoints by ringing their doorbells
1102          */
1103
1104         spin_unlock_irq(&xhci->lock);
1105
1106  done:
1107         if (retval == 0) {
1108                 /* Resume root hubs only when have pending events. */
1109                 status = readl(&xhci->op_regs->status);
1110                 if (status & STS_EINT) {
1111                         usb_hcd_resume_root_hub(hcd);
1112                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1113                 }
1114         }
1115
1116         /*
1117          * If system is subject to the Quirk, Compliance Mode Timer needs to
1118          * be re-initialized Always after a system resume. Ports are subject
1119          * to suffer the Compliance Mode issue again. It doesn't matter if
1120          * ports have entered previously to U0 before system's suspension.
1121          */
1122         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123                 compliance_mode_recovery_timer_init(xhci);
1124
1125         /* Re-enable port polling. */
1126         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128         usb_hcd_poll_rh_status(hcd);
1129         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130         usb_hcd_poll_rh_status(xhci->shared_hcd);
1131
1132         return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif  /* CONFIG_PM */
1136
1137 /*-------------------------------------------------------------------------*/
1138
1139 /**
1140  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1142  * value to right shift 1 for the bitmask.
1143  *
1144  * Index  = (epnum * 2) + direction - 1,
1145  * where direction = 0 for OUT, 1 for IN.
1146  * For control endpoints, the IN index is used (OUT index is unused), so
1147  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148  */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151         unsigned int index;
1152         if (usb_endpoint_xfer_control(desc))
1153                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1154         else
1155                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157         return index;
1158 }
1159
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161  * address from the XHCI endpoint index.
1162  */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167         return direction | number;
1168 }
1169
1170 /* Find the flag for this endpoint (for use in the control context).  Use the
1171  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1172  * bit 1, etc.
1173  */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176         return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185         return 1 << (ep_index + 1);
1186 }
1187
1188 /* Compute the last valid endpoint context index.  Basically, this is the
1189  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1190  * we find the most significant bit set in the added contexts flags.
1191  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193  */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196         return fls(added_ctxs) - 1;
1197 }
1198
1199 /* Returns 1 if the arguments are OK;
1200  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201  */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204                 const char *func) {
1205         struct xhci_hcd *xhci;
1206         struct xhci_virt_device *virt_dev;
1207
1208         if (!hcd || (check_ep && !ep) || !udev) {
1209                 pr_debug("xHCI %s called with invalid args\n", func);
1210                 return -EINVAL;
1211         }
1212         if (!udev->parent) {
1213                 pr_debug("xHCI %s called for root hub\n", func);
1214                 return 0;
1215         }
1216
1217         xhci = hcd_to_xhci(hcd);
1218         if (check_virt_dev) {
1219                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221                                         func);
1222                         return -EINVAL;
1223                 }
1224
1225                 virt_dev = xhci->devs[udev->slot_id];
1226                 if (virt_dev->udev != udev) {
1227                         xhci_dbg(xhci, "xHCI %s called with udev and "
1228                                           "virt_dev does not match\n", func);
1229                         return -EINVAL;
1230                 }
1231         }
1232
1233         if (xhci->xhc_state & XHCI_STATE_HALTED)
1234                 return -ENODEV;
1235
1236         return 1;
1237 }
1238
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240                 struct usb_device *udev, struct xhci_command *command,
1241                 bool ctx_change, bool must_succeed);
1242
1243 /*
1244  * Full speed devices may have a max packet size greater than 8 bytes, but the
1245  * USB core doesn't know that until it reads the first 8 bytes of the
1246  * descriptor.  If the usb_device's max packet size changes after that point,
1247  * we need to issue an evaluate context command and wait on it.
1248  */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250                 unsigned int ep_index, struct urb *urb)
1251 {
1252         struct xhci_container_ctx *out_ctx;
1253         struct xhci_input_control_ctx *ctrl_ctx;
1254         struct xhci_ep_ctx *ep_ctx;
1255         struct xhci_command *command;
1256         int max_packet_size;
1257         int hw_max_packet_size;
1258         int ret = 0;
1259
1260         out_ctx = xhci->devs[slot_id]->out_ctx;
1261         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264         if (hw_max_packet_size != max_packet_size) {
1265                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266                                 "Max Packet Size for ep 0 changed.");
1267                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268                                 "Max packet size in usb_device = %d",
1269                                 max_packet_size);
1270                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271                                 "Max packet size in xHCI HW = %d",
1272                                 hw_max_packet_size);
1273                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274                                 "Issuing evaluate context command.");
1275
1276                 /* Set up the input context flags for the command */
1277                 /* FIXME: This won't work if a non-default control endpoint
1278                  * changes max packet sizes.
1279                  */
1280
1281                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282                 if (!command)
1283                         return -ENOMEM;
1284
1285                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287                 if (!ctrl_ctx) {
1288                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289                                         __func__);
1290                         ret = -ENOMEM;
1291                         goto command_cleanup;
1292                 }
1293                 /* Set up the modified control endpoint 0 */
1294                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295                                 xhci->devs[slot_id]->out_ctx, ep_index);
1296
1297                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300
1301                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302                 ctrl_ctx->drop_flags = 0;
1303
1304                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308
1309                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310                                 true, false);
1311
1312                 /* Clean up the input context for later use by bandwidth
1313                  * functions.
1314                  */
1315                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317                 kfree(command->completion);
1318                 kfree(command);
1319         }
1320         return ret;
1321 }
1322
1323 /*
1324  * non-error returns are a promise to giveback() the urb later
1325  * we drop ownership so next owner (or urb unlink) can get it
1326  */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330         struct xhci_td *buffer;
1331         unsigned long flags;
1332         int ret = 0;
1333         unsigned int slot_id, ep_index;
1334         struct urb_priv *urb_priv;
1335         int size, i;
1336
1337         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338                                         true, true, __func__) <= 0)
1339                 return -EINVAL;
1340
1341         slot_id = urb->dev->slot_id;
1342         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343
1344         if (!HCD_HW_ACCESSIBLE(hcd)) {
1345                 if (!in_interrupt())
1346                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347                 ret = -ESHUTDOWN;
1348                 goto exit;
1349         }
1350
1351         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352                 size = urb->number_of_packets;
1353         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354             urb->transfer_buffer_length > 0 &&
1355             urb->transfer_flags & URB_ZERO_PACKET &&
1356             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357                 size = 2;
1358         else
1359                 size = 1;
1360
1361         urb_priv = kzalloc(sizeof(struct urb_priv) +
1362                                   size * sizeof(struct xhci_td *), mem_flags);
1363         if (!urb_priv)
1364                 return -ENOMEM;
1365
1366         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367         if (!buffer) {
1368                 kfree(urb_priv);
1369                 return -ENOMEM;
1370         }
1371
1372         for (i = 0; i < size; i++) {
1373                 urb_priv->td[i] = buffer;
1374                 buffer++;
1375         }
1376
1377         urb_priv->length = size;
1378         urb_priv->td_cnt = 0;
1379         urb->hcpriv = urb_priv;
1380
1381         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382                 /* Check to see if the max packet size for the default control
1383                  * endpoint changed during FS device enumeration
1384                  */
1385                 if (urb->dev->speed == USB_SPEED_FULL) {
1386                         ret = xhci_check_maxpacket(xhci, slot_id,
1387                                         ep_index, urb);
1388                         if (ret < 0) {
1389                                 xhci_urb_free_priv(urb_priv);
1390                                 urb->hcpriv = NULL;
1391                                 return ret;
1392                         }
1393                 }
1394
1395                 /* We have a spinlock and interrupts disabled, so we must pass
1396                  * atomic context to this function, which may allocate memory.
1397                  */
1398                 spin_lock_irqsave(&xhci->lock, flags);
1399                 if (xhci->xhc_state & XHCI_STATE_DYING)
1400                         goto dying;
1401                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402                                 slot_id, ep_index);
1403                 if (ret)
1404                         goto free_priv;
1405                 spin_unlock_irqrestore(&xhci->lock, flags);
1406         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407                 spin_lock_irqsave(&xhci->lock, flags);
1408                 if (xhci->xhc_state & XHCI_STATE_DYING)
1409                         goto dying;
1410                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411                                 EP_GETTING_STREAMS) {
1412                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413                                         "is transitioning to using streams.\n");
1414                         ret = -EINVAL;
1415                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416                                 EP_GETTING_NO_STREAMS) {
1417                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418                                         "is transitioning to "
1419                                         "not having streams.\n");
1420                         ret = -EINVAL;
1421                 } else {
1422                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423                                         slot_id, ep_index);
1424                 }
1425                 if (ret)
1426                         goto free_priv;
1427                 spin_unlock_irqrestore(&xhci->lock, flags);
1428         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429                 spin_lock_irqsave(&xhci->lock, flags);
1430                 if (xhci->xhc_state & XHCI_STATE_DYING)
1431                         goto dying;
1432                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433                                 slot_id, ep_index);
1434                 if (ret)
1435                         goto free_priv;
1436                 spin_unlock_irqrestore(&xhci->lock, flags);
1437         } else {
1438                 spin_lock_irqsave(&xhci->lock, flags);
1439                 if (xhci->xhc_state & XHCI_STATE_DYING)
1440                         goto dying;
1441                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442                                 slot_id, ep_index);
1443                 if (ret)
1444                         goto free_priv;
1445                 spin_unlock_irqrestore(&xhci->lock, flags);
1446         }
1447 exit:
1448         return ret;
1449 dying:
1450         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451                         "non-responsive xHCI host.\n",
1452                         urb->ep->desc.bEndpointAddress, urb);
1453         ret = -ESHUTDOWN;
1454 free_priv:
1455         xhci_urb_free_priv(urb_priv);
1456         urb->hcpriv = NULL;
1457         spin_unlock_irqrestore(&xhci->lock, flags);
1458         return ret;
1459 }
1460
1461 /* Get the right ring for the given URB.
1462  * If the endpoint supports streams, boundary check the URB's stream ID.
1463  * If the endpoint doesn't support streams, return the singular endpoint ring.
1464  */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466                 struct urb *urb)
1467 {
1468         unsigned int slot_id;
1469         unsigned int ep_index;
1470         unsigned int stream_id;
1471         struct xhci_virt_ep *ep;
1472
1473         slot_id = urb->dev->slot_id;
1474         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475         stream_id = urb->stream_id;
1476         ep = &xhci->devs[slot_id]->eps[ep_index];
1477         /* Common case: no streams */
1478         if (!(ep->ep_state & EP_HAS_STREAMS))
1479                 return ep->ring;
1480
1481         if (stream_id == 0) {
1482                 xhci_warn(xhci,
1483                                 "WARN: Slot ID %u, ep index %u has streams, "
1484                                 "but URB has no stream ID.\n",
1485                                 slot_id, ep_index);
1486                 return NULL;
1487         }
1488
1489         if (stream_id < ep->stream_info->num_streams)
1490                 return ep->stream_info->stream_rings[stream_id];
1491
1492         xhci_warn(xhci,
1493                         "WARN: Slot ID %u, ep index %u has "
1494                         "stream IDs 1 to %u allocated, "
1495                         "but stream ID %u is requested.\n",
1496                         slot_id, ep_index,
1497                         ep->stream_info->num_streams - 1,
1498                         stream_id);
1499         return NULL;
1500 }
1501
1502 /*
1503  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1504  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1505  * should pick up where it left off in the TD, unless a Set Transfer Ring
1506  * Dequeue Pointer is issued.
1507  *
1508  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509  * the ring.  Since the ring is a contiguous structure, they can't be physically
1510  * removed.  Instead, there are two options:
1511  *
1512  *  1) If the HC is in the middle of processing the URB to be canceled, we
1513  *     simply move the ring's dequeue pointer past those TRBs using the Set
1514  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1515  *     when drivers timeout on the last submitted URB and attempt to cancel.
1516  *
1517  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1519  *     HC will need to invalidate the any TRBs it has cached after the stop
1520  *     endpoint command, as noted in the xHCI 0.95 errata.
1521  *
1522  *  3) The TD may have completed by the time the Stop Endpoint Command
1523  *     completes, so software needs to handle that case too.
1524  *
1525  * This function should protect against the TD enqueueing code ringing the
1526  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527  * It also needs to account for multiple cancellations on happening at the same
1528  * time for the same endpoint.
1529  *
1530  * Note that this function can be called in any context, or so says
1531  * usb_hcd_unlink_urb()
1532  */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535         unsigned long flags;
1536         int ret, i;
1537         u32 temp;
1538         struct xhci_hcd *xhci;
1539         struct urb_priv *urb_priv;
1540         struct xhci_td *td;
1541         unsigned int ep_index;
1542         struct xhci_ring *ep_ring;
1543         struct xhci_virt_ep *ep;
1544         struct xhci_command *command;
1545
1546         xhci = hcd_to_xhci(hcd);
1547         spin_lock_irqsave(&xhci->lock, flags);
1548         /* Make sure the URB hasn't completed or been unlinked already */
1549         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550         if (ret || !urb->hcpriv)
1551                 goto done;
1552         temp = readl(&xhci->op_regs->status);
1553         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555                                 "HW died, freeing TD.");
1556                 urb_priv = urb->hcpriv;
1557                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1558                         td = urb_priv->td[i];
1559                         if (!list_empty(&td->td_list))
1560                                 list_del_init(&td->td_list);
1561                         if (!list_empty(&td->cancelled_td_list))
1562                                 list_del_init(&td->cancelled_td_list);
1563                 }
1564
1565                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1566                 spin_unlock_irqrestore(&xhci->lock, flags);
1567                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1568                 xhci_urb_free_priv(urb_priv);
1569                 return ret;
1570         }
1571         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1572                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1573                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1574                                 "Ep 0x%x: URB %p to be canceled on "
1575                                 "non-responsive xHCI host.",
1576                                 urb->ep->desc.bEndpointAddress, urb);
1577                 /* Let the stop endpoint command watchdog timer (which set this
1578                  * state) finish cleaning up the endpoint TD lists.  We must
1579                  * have caught it in the middle of dropping a lock and giving
1580                  * back an URB.
1581                  */
1582                 goto done;
1583         }
1584
1585         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1586         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1587         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1588         if (!ep_ring) {
1589                 ret = -EINVAL;
1590                 goto done;
1591         }
1592
1593         urb_priv = urb->hcpriv;
1594         i = urb_priv->td_cnt;
1595         if (i < urb_priv->length)
1596                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1597                                 "Cancel URB %p, dev %s, ep 0x%x, "
1598                                 "starting at offset 0x%llx",
1599                                 urb, urb->dev->devpath,
1600                                 urb->ep->desc.bEndpointAddress,
1601                                 (unsigned long long) xhci_trb_virt_to_dma(
1602                                         urb_priv->td[i]->start_seg,
1603                                         urb_priv->td[i]->first_trb));
1604
1605         for (; i < urb_priv->length; i++) {
1606                 td = urb_priv->td[i];
1607                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1608         }
1609
1610         /* Queue a stop endpoint command, but only if this is
1611          * the first cancellation to be handled.
1612          */
1613         if (!(ep->ep_state & EP_HALT_PENDING)) {
1614                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1615                 if (!command) {
1616                         ret = -ENOMEM;
1617                         goto done;
1618                 }
1619                 ep->ep_state |= EP_HALT_PENDING;
1620                 ep->stop_cmds_pending++;
1621                 ep->stop_cmd_timer.expires = jiffies +
1622                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1623                 add_timer(&ep->stop_cmd_timer);
1624                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1625                                          ep_index, 0);
1626                 xhci_ring_cmd_db(xhci);
1627         }
1628 done:
1629         spin_unlock_irqrestore(&xhci->lock, flags);
1630         return ret;
1631 }
1632
1633 /* Drop an endpoint from a new bandwidth configuration for this device.
1634  * Only one call to this function is allowed per endpoint before
1635  * check_bandwidth() or reset_bandwidth() must be called.
1636  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1637  * add the endpoint to the schedule with possibly new parameters denoted by a
1638  * different endpoint descriptor in usb_host_endpoint.
1639  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1640  * not allowed.
1641  *
1642  * The USB core will not allow URBs to be queued to an endpoint that is being
1643  * disabled, so there's no need for mutual exclusion to protect
1644  * the xhci->devs[slot_id] structure.
1645  */
1646 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1647                 struct usb_host_endpoint *ep)
1648 {
1649         struct xhci_hcd *xhci;
1650         struct xhci_container_ctx *in_ctx, *out_ctx;
1651         struct xhci_input_control_ctx *ctrl_ctx;
1652         unsigned int ep_index;
1653         struct xhci_ep_ctx *ep_ctx;
1654         u32 drop_flag;
1655         u32 new_add_flags, new_drop_flags;
1656         int ret;
1657
1658         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1659         if (ret <= 0)
1660                 return ret;
1661         xhci = hcd_to_xhci(hcd);
1662         if (xhci->xhc_state & XHCI_STATE_DYING)
1663                 return -ENODEV;
1664
1665         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1666         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1667         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1668                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1669                                 __func__, drop_flag);
1670                 return 0;
1671         }
1672
1673         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1674         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1675         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1676         if (!ctrl_ctx) {
1677                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1678                                 __func__);
1679                 return 0;
1680         }
1681
1682         ep_index = xhci_get_endpoint_index(&ep->desc);
1683         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1684         /* If the HC already knows the endpoint is disabled,
1685          * or the HCD has noted it is disabled, ignore this request
1686          */
1687         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1688              cpu_to_le32(EP_STATE_DISABLED)) ||
1689             le32_to_cpu(ctrl_ctx->drop_flags) &
1690             xhci_get_endpoint_flag(&ep->desc)) {
1691                 /* Do not warn when called after a usb_device_reset */
1692                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1693                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1694                                   __func__, ep);
1695                 return 0;
1696         }
1697
1698         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1699         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1700
1701         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1702         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1703
1704         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1705
1706         if (xhci->quirks & XHCI_MTK_HOST)
1707                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1708
1709         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1710                         (unsigned int) ep->desc.bEndpointAddress,
1711                         udev->slot_id,
1712                         (unsigned int) new_drop_flags,
1713                         (unsigned int) new_add_flags);
1714         return 0;
1715 }
1716
1717 /* Add an endpoint to a new possible bandwidth configuration for this device.
1718  * Only one call to this function is allowed per endpoint before
1719  * check_bandwidth() or reset_bandwidth() must be called.
1720  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1721  * add the endpoint to the schedule with possibly new parameters denoted by a
1722  * different endpoint descriptor in usb_host_endpoint.
1723  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1724  * not allowed.
1725  *
1726  * The USB core will not allow URBs to be queued to an endpoint until the
1727  * configuration or alt setting is installed in the device, so there's no need
1728  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1729  */
1730 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1731                 struct usb_host_endpoint *ep)
1732 {
1733         struct xhci_hcd *xhci;
1734         struct xhci_container_ctx *in_ctx;
1735         unsigned int ep_index;
1736         struct xhci_input_control_ctx *ctrl_ctx;
1737         u32 added_ctxs;
1738         u32 new_add_flags, new_drop_flags;
1739         struct xhci_virt_device *virt_dev;
1740         int ret = 0;
1741
1742         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1743         if (ret <= 0) {
1744                 /* So we won't queue a reset ep command for a root hub */
1745                 ep->hcpriv = NULL;
1746                 return ret;
1747         }
1748         xhci = hcd_to_xhci(hcd);
1749         if (xhci->xhc_state & XHCI_STATE_DYING)
1750                 return -ENODEV;
1751
1752         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1753         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1754                 /* FIXME when we have to issue an evaluate endpoint command to
1755                  * deal with ep0 max packet size changing once we get the
1756                  * descriptors
1757                  */
1758                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1759                                 __func__, added_ctxs);
1760                 return 0;
1761         }
1762
1763         virt_dev = xhci->devs[udev->slot_id];
1764         in_ctx = virt_dev->in_ctx;
1765         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1766         if (!ctrl_ctx) {
1767                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1768                                 __func__);
1769                 return 0;
1770         }
1771
1772         ep_index = xhci_get_endpoint_index(&ep->desc);
1773         /* If this endpoint is already in use, and the upper layers are trying
1774          * to add it again without dropping it, reject the addition.
1775          */
1776         if (virt_dev->eps[ep_index].ring &&
1777                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1778                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1779                                 "without dropping it.\n",
1780                                 (unsigned int) ep->desc.bEndpointAddress);
1781                 return -EINVAL;
1782         }
1783
1784         /* If the HCD has already noted the endpoint is enabled,
1785          * ignore this request.
1786          */
1787         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1788                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1789                                 __func__, ep);
1790                 return 0;
1791         }
1792
1793         /*
1794          * Configuration and alternate setting changes must be done in
1795          * process context, not interrupt context (or so documenation
1796          * for usb_set_interface() and usb_set_configuration() claim).
1797          */
1798         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1799                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1800                                 __func__, ep->desc.bEndpointAddress);
1801                 return -ENOMEM;
1802         }
1803
1804         if (xhci->quirks & XHCI_MTK_HOST) {
1805                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1806                 if (ret < 0) {
1807                         xhci_free_or_cache_endpoint_ring(xhci,
1808                                 virt_dev, ep_index);
1809                         return ret;
1810                 }
1811         }
1812
1813         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1814         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1815
1816         /* If xhci_endpoint_disable() was called for this endpoint, but the
1817          * xHC hasn't been notified yet through the check_bandwidth() call,
1818          * this re-adds a new state for the endpoint from the new endpoint
1819          * descriptors.  We must drop and re-add this endpoint, so we leave the
1820          * drop flags alone.
1821          */
1822         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1823
1824         /* Store the usb_device pointer for later use */
1825         ep->hcpriv = udev;
1826
1827         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1828                         (unsigned int) ep->desc.bEndpointAddress,
1829                         udev->slot_id,
1830                         (unsigned int) new_drop_flags,
1831                         (unsigned int) new_add_flags);
1832         return 0;
1833 }
1834
1835 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1836 {
1837         struct xhci_input_control_ctx *ctrl_ctx;
1838         struct xhci_ep_ctx *ep_ctx;
1839         struct xhci_slot_ctx *slot_ctx;
1840         int i;
1841
1842         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1843         if (!ctrl_ctx) {
1844                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1845                                 __func__);
1846                 return;
1847         }
1848
1849         /* When a device's add flag and drop flag are zero, any subsequent
1850          * configure endpoint command will leave that endpoint's state
1851          * untouched.  Make sure we don't leave any old state in the input
1852          * endpoint contexts.
1853          */
1854         ctrl_ctx->drop_flags = 0;
1855         ctrl_ctx->add_flags = 0;
1856         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1857         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1858         /* Endpoint 0 is always valid */
1859         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1860         for (i = 1; i < 31; ++i) {
1861                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1862                 ep_ctx->ep_info = 0;
1863                 ep_ctx->ep_info2 = 0;
1864                 ep_ctx->deq = 0;
1865                 ep_ctx->tx_info = 0;
1866         }
1867 }
1868
1869 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1870                 struct usb_device *udev, u32 *cmd_status)
1871 {
1872         int ret;
1873
1874         switch (*cmd_status) {
1875         case COMP_CMD_ABORT:
1876         case COMP_CMD_STOP:
1877                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1878                 ret = -ETIME;
1879                 break;
1880         case COMP_ENOMEM:
1881                 dev_warn(&udev->dev,
1882                          "Not enough host controller resources for new device state.\n");
1883                 ret = -ENOMEM;
1884                 /* FIXME: can we allocate more resources for the HC? */
1885                 break;
1886         case COMP_BW_ERR:
1887         case COMP_2ND_BW_ERR:
1888                 dev_warn(&udev->dev,
1889                          "Not enough bandwidth for new device state.\n");
1890                 ret = -ENOSPC;
1891                 /* FIXME: can we go back to the old state? */
1892                 break;
1893         case COMP_TRB_ERR:
1894                 /* the HCD set up something wrong */
1895                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1896                                 "add flag = 1, "
1897                                 "and endpoint is not disabled.\n");
1898                 ret = -EINVAL;
1899                 break;
1900         case COMP_DEV_ERR:
1901                 dev_warn(&udev->dev,
1902                          "ERROR: Incompatible device for endpoint configure command.\n");
1903                 ret = -ENODEV;
1904                 break;
1905         case COMP_SUCCESS:
1906                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1907                                 "Successful Endpoint Configure command");
1908                 ret = 0;
1909                 break;
1910         default:
1911                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1912                                 *cmd_status);
1913                 ret = -EINVAL;
1914                 break;
1915         }
1916         return ret;
1917 }
1918
1919 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1920                 struct usb_device *udev, u32 *cmd_status)
1921 {
1922         int ret;
1923         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1924
1925         switch (*cmd_status) {
1926         case COMP_CMD_ABORT:
1927         case COMP_CMD_STOP:
1928                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1929                 ret = -ETIME;
1930                 break;
1931         case COMP_EINVAL:
1932                 dev_warn(&udev->dev,
1933                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1934                 ret = -EINVAL;
1935                 break;
1936         case COMP_EBADSLT:
1937                 dev_warn(&udev->dev,
1938                         "WARN: slot not enabled for evaluate context command.\n");
1939                 ret = -EINVAL;
1940                 break;
1941         case COMP_CTX_STATE:
1942                 dev_warn(&udev->dev,
1943                         "WARN: invalid context state for evaluate context command.\n");
1944                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1945                 ret = -EINVAL;
1946                 break;
1947         case COMP_DEV_ERR:
1948                 dev_warn(&udev->dev,
1949                         "ERROR: Incompatible device for evaluate context command.\n");
1950                 ret = -ENODEV;
1951                 break;
1952         case COMP_MEL_ERR:
1953                 /* Max Exit Latency too large error */
1954                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1955                 ret = -EINVAL;
1956                 break;
1957         case COMP_SUCCESS:
1958                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1959                                 "Successful evaluate context command");
1960                 ret = 0;
1961                 break;
1962         default:
1963                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1964                         *cmd_status);
1965                 ret = -EINVAL;
1966                 break;
1967         }
1968         return ret;
1969 }
1970
1971 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1972                 struct xhci_input_control_ctx *ctrl_ctx)
1973 {
1974         u32 valid_add_flags;
1975         u32 valid_drop_flags;
1976
1977         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1978          * (bit 1).  The default control endpoint is added during the Address
1979          * Device command and is never removed until the slot is disabled.
1980          */
1981         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1982         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1983
1984         /* Use hweight32 to count the number of ones in the add flags, or
1985          * number of endpoints added.  Don't count endpoints that are changed
1986          * (both added and dropped).
1987          */
1988         return hweight32(valid_add_flags) -
1989                 hweight32(valid_add_flags & valid_drop_flags);
1990 }
1991
1992 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1993                 struct xhci_input_control_ctx *ctrl_ctx)
1994 {
1995         u32 valid_add_flags;
1996         u32 valid_drop_flags;
1997
1998         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1999         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2000
2001         return hweight32(valid_drop_flags) -
2002                 hweight32(valid_add_flags & valid_drop_flags);
2003 }
2004
2005 /*
2006  * We need to reserve the new number of endpoints before the configure endpoint
2007  * command completes.  We can't subtract the dropped endpoints from the number
2008  * of active endpoints until the command completes because we can oversubscribe
2009  * the host in this case:
2010  *
2011  *  - the first configure endpoint command drops more endpoints than it adds
2012  *  - a second configure endpoint command that adds more endpoints is queued
2013  *  - the first configure endpoint command fails, so the config is unchanged
2014  *  - the second command may succeed, even though there isn't enough resources
2015  *
2016  * Must be called with xhci->lock held.
2017  */
2018 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2019                 struct xhci_input_control_ctx *ctrl_ctx)
2020 {
2021         u32 added_eps;
2022
2023         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2024         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2025                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2026                                 "Not enough ep ctxs: "
2027                                 "%u active, need to add %u, limit is %u.",
2028                                 xhci->num_active_eps, added_eps,
2029                                 xhci->limit_active_eps);
2030                 return -ENOMEM;
2031         }
2032         xhci->num_active_eps += added_eps;
2033         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2034                         "Adding %u ep ctxs, %u now active.", added_eps,
2035                         xhci->num_active_eps);
2036         return 0;
2037 }
2038
2039 /*
2040  * The configure endpoint was failed by the xHC for some other reason, so we
2041  * need to revert the resources that failed configuration would have used.
2042  *
2043  * Must be called with xhci->lock held.
2044  */
2045 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2046                 struct xhci_input_control_ctx *ctrl_ctx)
2047 {
2048         u32 num_failed_eps;
2049
2050         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2051         xhci->num_active_eps -= num_failed_eps;
2052         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2053                         "Removing %u failed ep ctxs, %u now active.",
2054                         num_failed_eps,
2055                         xhci->num_active_eps);
2056 }
2057
2058 /*
2059  * Now that the command has completed, clean up the active endpoint count by
2060  * subtracting out the endpoints that were dropped (but not changed).
2061  *
2062  * Must be called with xhci->lock held.
2063  */
2064 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2065                 struct xhci_input_control_ctx *ctrl_ctx)
2066 {
2067         u32 num_dropped_eps;
2068
2069         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2070         xhci->num_active_eps -= num_dropped_eps;
2071         if (num_dropped_eps)
2072                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2073                                 "Removing %u dropped ep ctxs, %u now active.",
2074                                 num_dropped_eps,
2075                                 xhci->num_active_eps);
2076 }
2077
2078 static unsigned int xhci_get_block_size(struct usb_device *udev)
2079 {
2080         switch (udev->speed) {
2081         case USB_SPEED_LOW:
2082         case USB_SPEED_FULL:
2083                 return FS_BLOCK;
2084         case USB_SPEED_HIGH:
2085                 return HS_BLOCK;
2086         case USB_SPEED_SUPER:
2087                 return SS_BLOCK;
2088         case USB_SPEED_UNKNOWN:
2089         case USB_SPEED_WIRELESS:
2090         default:
2091                 /* Should never happen */
2092                 return 1;
2093         }
2094 }
2095
2096 static unsigned int
2097 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2098 {
2099         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2100                 return LS_OVERHEAD;
2101         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2102                 return FS_OVERHEAD;
2103         return HS_OVERHEAD;
2104 }
2105
2106 /* If we are changing a LS/FS device under a HS hub,
2107  * make sure (if we are activating a new TT) that the HS bus has enough
2108  * bandwidth for this new TT.
2109  */
2110 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2111                 struct xhci_virt_device *virt_dev,
2112                 int old_active_eps)
2113 {
2114         struct xhci_interval_bw_table *bw_table;
2115         struct xhci_tt_bw_info *tt_info;
2116
2117         /* Find the bandwidth table for the root port this TT is attached to. */
2118         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2119         tt_info = virt_dev->tt_info;
2120         /* If this TT already had active endpoints, the bandwidth for this TT
2121          * has already been added.  Removing all periodic endpoints (and thus
2122          * making the TT enactive) will only decrease the bandwidth used.
2123          */
2124         if (old_active_eps)
2125                 return 0;
2126         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2127                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2128                         return -ENOMEM;
2129                 return 0;
2130         }
2131         /* Not sure why we would have no new active endpoints...
2132          *
2133          * Maybe because of an Evaluate Context change for a hub update or a
2134          * control endpoint 0 max packet size change?
2135          * FIXME: skip the bandwidth calculation in that case.
2136          */
2137         return 0;
2138 }
2139
2140 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2141                 struct xhci_virt_device *virt_dev)
2142 {
2143         unsigned int bw_reserved;
2144
2145         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2146         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2147                 return -ENOMEM;
2148
2149         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2150         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2151                 return -ENOMEM;
2152
2153         return 0;
2154 }
2155
2156 /*
2157  * This algorithm is a very conservative estimate of the worst-case scheduling
2158  * scenario for any one interval.  The hardware dynamically schedules the
2159  * packets, so we can't tell which microframe could be the limiting factor in
2160  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2161  *
2162  * Obviously, we can't solve an NP complete problem to find the minimum worst
2163  * case scenario.  Instead, we come up with an estimate that is no less than
2164  * the worst case bandwidth used for any one microframe, but may be an
2165  * over-estimate.
2166  *
2167  * We walk the requirements for each endpoint by interval, starting with the
2168  * smallest interval, and place packets in the schedule where there is only one
2169  * possible way to schedule packets for that interval.  In order to simplify
2170  * this algorithm, we record the largest max packet size for each interval, and
2171  * assume all packets will be that size.
2172  *
2173  * For interval 0, we obviously must schedule all packets for each interval.
2174  * The bandwidth for interval 0 is just the amount of data to be transmitted
2175  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2176  * the number of packets).
2177  *
2178  * For interval 1, we have two possible microframes to schedule those packets
2179  * in.  For this algorithm, if we can schedule the same number of packets for
2180  * each possible scheduling opportunity (each microframe), we will do so.  The
2181  * remaining number of packets will be saved to be transmitted in the gaps in
2182  * the next interval's scheduling sequence.
2183  *
2184  * As we move those remaining packets to be scheduled with interval 2 packets,
2185  * we have to double the number of remaining packets to transmit.  This is
2186  * because the intervals are actually powers of 2, and we would be transmitting
2187  * the previous interval's packets twice in this interval.  We also have to be
2188  * sure that when we look at the largest max packet size for this interval, we
2189  * also look at the largest max packet size for the remaining packets and take
2190  * the greater of the two.
2191  *
2192  * The algorithm continues to evenly distribute packets in each scheduling
2193  * opportunity, and push the remaining packets out, until we get to the last
2194  * interval.  Then those packets and their associated overhead are just added
2195  * to the bandwidth used.
2196  */
2197 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2198                 struct xhci_virt_device *virt_dev,
2199                 int old_active_eps)
2200 {
2201         unsigned int bw_reserved;
2202         unsigned int max_bandwidth;
2203         unsigned int bw_used;
2204         unsigned int block_size;
2205         struct xhci_interval_bw_table *bw_table;
2206         unsigned int packet_size = 0;
2207         unsigned int overhead = 0;
2208         unsigned int packets_transmitted = 0;
2209         unsigned int packets_remaining = 0;
2210         unsigned int i;
2211
2212         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2213                 return xhci_check_ss_bw(xhci, virt_dev);
2214
2215         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2216                 max_bandwidth = HS_BW_LIMIT;
2217                 /* Convert percent of bus BW reserved to blocks reserved */
2218                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2219         } else {
2220                 max_bandwidth = FS_BW_LIMIT;
2221                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2222         }
2223
2224         bw_table = virt_dev->bw_table;
2225         /* We need to translate the max packet size and max ESIT payloads into
2226          * the units the hardware uses.
2227          */
2228         block_size = xhci_get_block_size(virt_dev->udev);
2229
2230         /* If we are manipulating a LS/FS device under a HS hub, double check
2231          * that the HS bus has enough bandwidth if we are activing a new TT.
2232          */
2233         if (virt_dev->tt_info) {
2234                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2235                                 "Recalculating BW for rootport %u",
2236                                 virt_dev->real_port);
2237                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2238                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2239                                         "newly activated TT.\n");
2240                         return -ENOMEM;
2241                 }
2242                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2243                                 "Recalculating BW for TT slot %u port %u",
2244                                 virt_dev->tt_info->slot_id,
2245                                 virt_dev->tt_info->ttport);
2246         } else {
2247                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248                                 "Recalculating BW for rootport %u",
2249                                 virt_dev->real_port);
2250         }
2251
2252         /* Add in how much bandwidth will be used for interval zero, or the
2253          * rounded max ESIT payload + number of packets * largest overhead.
2254          */
2255         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2256                 bw_table->interval_bw[0].num_packets *
2257                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2258
2259         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2260                 unsigned int bw_added;
2261                 unsigned int largest_mps;
2262                 unsigned int interval_overhead;
2263
2264                 /*
2265                  * How many packets could we transmit in this interval?
2266                  * If packets didn't fit in the previous interval, we will need
2267                  * to transmit that many packets twice within this interval.
2268                  */
2269                 packets_remaining = 2 * packets_remaining +
2270                         bw_table->interval_bw[i].num_packets;
2271
2272                 /* Find the largest max packet size of this or the previous
2273                  * interval.
2274                  */
2275                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2276                         largest_mps = 0;
2277                 else {
2278                         struct xhci_virt_ep *virt_ep;
2279                         struct list_head *ep_entry;
2280
2281                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2282                         virt_ep = list_entry(ep_entry,
2283                                         struct xhci_virt_ep, bw_endpoint_list);
2284                         /* Convert to blocks, rounding up */
2285                         largest_mps = DIV_ROUND_UP(
2286                                         virt_ep->bw_info.max_packet_size,
2287                                         block_size);
2288                 }
2289                 if (largest_mps > packet_size)
2290                         packet_size = largest_mps;
2291
2292                 /* Use the larger overhead of this or the previous interval. */
2293                 interval_overhead = xhci_get_largest_overhead(
2294                                 &bw_table->interval_bw[i]);
2295                 if (interval_overhead > overhead)
2296                         overhead = interval_overhead;
2297
2298                 /* How many packets can we evenly distribute across
2299                  * (1 << (i + 1)) possible scheduling opportunities?
2300                  */
2301                 packets_transmitted = packets_remaining >> (i + 1);
2302
2303                 /* Add in the bandwidth used for those scheduled packets */
2304                 bw_added = packets_transmitted * (overhead + packet_size);
2305
2306                 /* How many packets do we have remaining to transmit? */
2307                 packets_remaining = packets_remaining % (1 << (i + 1));
2308
2309                 /* What largest max packet size should those packets have? */
2310                 /* If we've transmitted all packets, don't carry over the
2311                  * largest packet size.
2312                  */
2313                 if (packets_remaining == 0) {
2314                         packet_size = 0;
2315                         overhead = 0;
2316                 } else if (packets_transmitted > 0) {
2317                         /* Otherwise if we do have remaining packets, and we've
2318                          * scheduled some packets in this interval, take the
2319                          * largest max packet size from endpoints with this
2320                          * interval.
2321                          */
2322                         packet_size = largest_mps;
2323                         overhead = interval_overhead;
2324                 }
2325                 /* Otherwise carry over packet_size and overhead from the last
2326                  * time we had a remainder.
2327                  */
2328                 bw_used += bw_added;
2329                 if (bw_used > max_bandwidth) {
2330                         xhci_warn(xhci, "Not enough bandwidth. "
2331                                         "Proposed: %u, Max: %u\n",
2332                                 bw_used, max_bandwidth);
2333                         return -ENOMEM;
2334                 }
2335         }
2336         /*
2337          * Ok, we know we have some packets left over after even-handedly
2338          * scheduling interval 15.  We don't know which microframes they will
2339          * fit into, so we over-schedule and say they will be scheduled every
2340          * microframe.
2341          */
2342         if (packets_remaining > 0)
2343                 bw_used += overhead + packet_size;
2344
2345         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2346                 unsigned int port_index = virt_dev->real_port - 1;
2347
2348                 /* OK, we're manipulating a HS device attached to a
2349                  * root port bandwidth domain.  Include the number of active TTs
2350                  * in the bandwidth used.
2351                  */
2352                 bw_used += TT_HS_OVERHEAD *
2353                         xhci->rh_bw[port_index].num_active_tts;
2354         }
2355
2356         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2357                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2358                 "Available: %u " "percent",
2359                 bw_used, max_bandwidth, bw_reserved,
2360                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2361                 max_bandwidth);
2362
2363         bw_used += bw_reserved;
2364         if (bw_used > max_bandwidth) {
2365                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2366                                 bw_used, max_bandwidth);
2367                 return -ENOMEM;
2368         }
2369
2370         bw_table->bw_used = bw_used;
2371         return 0;
2372 }
2373
2374 static bool xhci_is_async_ep(unsigned int ep_type)
2375 {
2376         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2377                                         ep_type != ISOC_IN_EP &&
2378                                         ep_type != INT_IN_EP);
2379 }
2380
2381 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2382 {
2383         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2384 }
2385
2386 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2387 {
2388         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2389
2390         if (ep_bw->ep_interval == 0)
2391                 return SS_OVERHEAD_BURST +
2392                         (ep_bw->mult * ep_bw->num_packets *
2393                                         (SS_OVERHEAD + mps));
2394         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2395                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2396                                 1 << ep_bw->ep_interval);
2397
2398 }
2399
2400 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2401                 struct xhci_bw_info *ep_bw,
2402                 struct xhci_interval_bw_table *bw_table,
2403                 struct usb_device *udev,
2404                 struct xhci_virt_ep *virt_ep,
2405                 struct xhci_tt_bw_info *tt_info)
2406 {
2407         struct xhci_interval_bw *interval_bw;
2408         int normalized_interval;
2409
2410         if (xhci_is_async_ep(ep_bw->type))
2411                 return;
2412
2413         if (udev->speed == USB_SPEED_SUPER) {
2414                 if (xhci_is_sync_in_ep(ep_bw->type))
2415                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2416                                 xhci_get_ss_bw_consumed(ep_bw);
2417                 else
2418                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2419                                 xhci_get_ss_bw_consumed(ep_bw);
2420                 return;
2421         }
2422
2423         /* SuperSpeed endpoints never get added to intervals in the table, so
2424          * this check is only valid for HS/FS/LS devices.
2425          */
2426         if (list_empty(&virt_ep->bw_endpoint_list))
2427                 return;
2428         /* For LS/FS devices, we need to translate the interval expressed in
2429          * microframes to frames.
2430          */
2431         if (udev->speed == USB_SPEED_HIGH)
2432                 normalized_interval = ep_bw->ep_interval;
2433         else
2434                 normalized_interval = ep_bw->ep_interval - 3;
2435
2436         if (normalized_interval == 0)
2437                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2438         interval_bw = &bw_table->interval_bw[normalized_interval];
2439         interval_bw->num_packets -= ep_bw->num_packets;
2440         switch (udev->speed) {
2441         case USB_SPEED_LOW:
2442                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2443                 break;
2444         case USB_SPEED_FULL:
2445                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2446                 break;
2447         case USB_SPEED_HIGH:
2448                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2449                 break;
2450         case USB_SPEED_SUPER:
2451         case USB_SPEED_UNKNOWN:
2452         case USB_SPEED_WIRELESS:
2453                 /* Should never happen because only LS/FS/HS endpoints will get
2454                  * added to the endpoint list.
2455                  */
2456                 return;
2457         }
2458         if (tt_info)
2459                 tt_info->active_eps -= 1;
2460         list_del_init(&virt_ep->bw_endpoint_list);
2461 }
2462
2463 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2464                 struct xhci_bw_info *ep_bw,
2465                 struct xhci_interval_bw_table *bw_table,
2466                 struct usb_device *udev,
2467                 struct xhci_virt_ep *virt_ep,
2468                 struct xhci_tt_bw_info *tt_info)
2469 {
2470         struct xhci_interval_bw *interval_bw;
2471         struct xhci_virt_ep *smaller_ep;
2472         int normalized_interval;
2473
2474         if (xhci_is_async_ep(ep_bw->type))
2475                 return;
2476
2477         if (udev->speed == USB_SPEED_SUPER) {
2478                 if (xhci_is_sync_in_ep(ep_bw->type))
2479                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2480                                 xhci_get_ss_bw_consumed(ep_bw);
2481                 else
2482                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2483                                 xhci_get_ss_bw_consumed(ep_bw);
2484                 return;
2485         }
2486
2487         /* For LS/FS devices, we need to translate the interval expressed in
2488          * microframes to frames.
2489          */
2490         if (udev->speed == USB_SPEED_HIGH)
2491                 normalized_interval = ep_bw->ep_interval;
2492         else
2493                 normalized_interval = ep_bw->ep_interval - 3;
2494
2495         if (normalized_interval == 0)
2496                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2497         interval_bw = &bw_table->interval_bw[normalized_interval];
2498         interval_bw->num_packets += ep_bw->num_packets;
2499         switch (udev->speed) {
2500         case USB_SPEED_LOW:
2501                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2502                 break;
2503         case USB_SPEED_FULL:
2504                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2505                 break;
2506         case USB_SPEED_HIGH:
2507                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2508                 break;
2509         case USB_SPEED_SUPER:
2510         case USB_SPEED_UNKNOWN:
2511         case USB_SPEED_WIRELESS:
2512                 /* Should never happen because only LS/FS/HS endpoints will get
2513                  * added to the endpoint list.
2514                  */
2515                 return;
2516         }
2517
2518         if (tt_info)
2519                 tt_info->active_eps += 1;
2520         /* Insert the endpoint into the list, largest max packet size first. */
2521         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2522                         bw_endpoint_list) {
2523                 if (ep_bw->max_packet_size >=
2524                                 smaller_ep->bw_info.max_packet_size) {
2525                         /* Add the new ep before the smaller endpoint */
2526                         list_add_tail(&virt_ep->bw_endpoint_list,
2527                                         &smaller_ep->bw_endpoint_list);
2528                         return;
2529                 }
2530         }
2531         /* Add the new endpoint at the end of the list. */
2532         list_add_tail(&virt_ep->bw_endpoint_list,
2533                         &interval_bw->endpoints);
2534 }
2535
2536 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2537                 struct xhci_virt_device *virt_dev,
2538                 int old_active_eps)
2539 {
2540         struct xhci_root_port_bw_info *rh_bw_info;
2541         if (!virt_dev->tt_info)
2542                 return;
2543
2544         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2545         if (old_active_eps == 0 &&
2546                                 virt_dev->tt_info->active_eps != 0) {
2547                 rh_bw_info->num_active_tts += 1;
2548                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2549         } else if (old_active_eps != 0 &&
2550                                 virt_dev->tt_info->active_eps == 0) {
2551                 rh_bw_info->num_active_tts -= 1;
2552                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2553         }
2554 }
2555
2556 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2557                 struct xhci_virt_device *virt_dev,
2558                 struct xhci_container_ctx *in_ctx)
2559 {
2560         struct xhci_bw_info ep_bw_info[31];
2561         int i;
2562         struct xhci_input_control_ctx *ctrl_ctx;
2563         int old_active_eps = 0;
2564
2565         if (virt_dev->tt_info)
2566                 old_active_eps = virt_dev->tt_info->active_eps;
2567
2568         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2569         if (!ctrl_ctx) {
2570                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2571                                 __func__);
2572                 return -ENOMEM;
2573         }
2574
2575         for (i = 0; i < 31; i++) {
2576                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2577                         continue;
2578
2579                 /* Make a copy of the BW info in case we need to revert this */
2580                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2581                                 sizeof(ep_bw_info[i]));
2582                 /* Drop the endpoint from the interval table if the endpoint is
2583                  * being dropped or changed.
2584                  */
2585                 if (EP_IS_DROPPED(ctrl_ctx, i))
2586                         xhci_drop_ep_from_interval_table(xhci,
2587                                         &virt_dev->eps[i].bw_info,
2588                                         virt_dev->bw_table,
2589                                         virt_dev->udev,
2590                                         &virt_dev->eps[i],
2591                                         virt_dev->tt_info);
2592         }
2593         /* Overwrite the information stored in the endpoints' bw_info */
2594         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2595         for (i = 0; i < 31; i++) {
2596                 /* Add any changed or added endpoints to the interval table */
2597                 if (EP_IS_ADDED(ctrl_ctx, i))
2598                         xhci_add_ep_to_interval_table(xhci,
2599                                         &virt_dev->eps[i].bw_info,
2600                                         virt_dev->bw_table,
2601                                         virt_dev->udev,
2602                                         &virt_dev->eps[i],
2603                                         virt_dev->tt_info);
2604         }
2605
2606         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2607                 /* Ok, this fits in the bandwidth we have.
2608                  * Update the number of active TTs.
2609                  */
2610                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2611                 return 0;
2612         }
2613
2614         /* We don't have enough bandwidth for this, revert the stored info. */
2615         for (i = 0; i < 31; i++) {
2616                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2617                         continue;
2618
2619                 /* Drop the new copies of any added or changed endpoints from
2620                  * the interval table.
2621                  */
2622                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2623                         xhci_drop_ep_from_interval_table(xhci,
2624                                         &virt_dev->eps[i].bw_info,
2625                                         virt_dev->bw_table,
2626                                         virt_dev->udev,
2627                                         &virt_dev->eps[i],
2628                                         virt_dev->tt_info);
2629                 }
2630                 /* Revert the endpoint back to its old information */
2631                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2632                                 sizeof(ep_bw_info[i]));
2633                 /* Add any changed or dropped endpoints back into the table */
2634                 if (EP_IS_DROPPED(ctrl_ctx, i))
2635                         xhci_add_ep_to_interval_table(xhci,
2636                                         &virt_dev->eps[i].bw_info,
2637                                         virt_dev->bw_table,
2638                                         virt_dev->udev,
2639                                         &virt_dev->eps[i],
2640                                         virt_dev->tt_info);
2641         }
2642         return -ENOMEM;
2643 }
2644
2645
2646 /* Issue a configure endpoint command or evaluate context command
2647  * and wait for it to finish.
2648  */
2649 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2650                 struct usb_device *udev,
2651                 struct xhci_command *command,
2652                 bool ctx_change, bool must_succeed)
2653 {
2654         int ret;
2655         unsigned long flags;
2656         struct xhci_input_control_ctx *ctrl_ctx;
2657         struct xhci_virt_device *virt_dev;
2658
2659         if (!command)
2660                 return -EINVAL;
2661
2662         spin_lock_irqsave(&xhci->lock, flags);
2663         virt_dev = xhci->devs[udev->slot_id];
2664
2665         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2666         if (!ctrl_ctx) {
2667                 spin_unlock_irqrestore(&xhci->lock, flags);
2668                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2669                                 __func__);
2670                 return -ENOMEM;
2671         }
2672
2673         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2674                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2675                 spin_unlock_irqrestore(&xhci->lock, flags);
2676                 xhci_warn(xhci, "Not enough host resources, "
2677                                 "active endpoint contexts = %u\n",
2678                                 xhci->num_active_eps);
2679                 return -ENOMEM;
2680         }
2681         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2682             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2683                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2684                         xhci_free_host_resources(xhci, ctrl_ctx);
2685                 spin_unlock_irqrestore(&xhci->lock, flags);
2686                 xhci_warn(xhci, "Not enough bandwidth\n");
2687                 return -ENOMEM;
2688         }
2689
2690         if (!ctx_change)
2691                 ret = xhci_queue_configure_endpoint(xhci, command,
2692                                 command->in_ctx->dma,
2693                                 udev->slot_id, must_succeed);
2694         else
2695                 ret = xhci_queue_evaluate_context(xhci, command,
2696                                 command->in_ctx->dma,
2697                                 udev->slot_id, must_succeed);
2698         if (ret < 0) {
2699                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2700                         xhci_free_host_resources(xhci, ctrl_ctx);
2701                 spin_unlock_irqrestore(&xhci->lock, flags);
2702                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2703                                 "FIXME allocate a new ring segment");
2704                 return -ENOMEM;
2705         }
2706         xhci_ring_cmd_db(xhci);
2707         spin_unlock_irqrestore(&xhci->lock, flags);
2708
2709         /* Wait for the configure endpoint command to complete */
2710         wait_for_completion(command->completion);
2711
2712         if (!ctx_change)
2713                 ret = xhci_configure_endpoint_result(xhci, udev,
2714                                                      &command->status);
2715         else
2716                 ret = xhci_evaluate_context_result(xhci, udev,
2717                                                    &command->status);
2718
2719         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2720                 spin_lock_irqsave(&xhci->lock, flags);
2721                 /* If the command failed, remove the reserved resources.
2722                  * Otherwise, clean up the estimate to include dropped eps.
2723                  */
2724                 if (ret)
2725                         xhci_free_host_resources(xhci, ctrl_ctx);
2726                 else
2727                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2728                 spin_unlock_irqrestore(&xhci->lock, flags);
2729         }
2730         return ret;
2731 }
2732
2733 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2734         struct xhci_virt_device *vdev, int i)
2735 {
2736         struct xhci_virt_ep *ep = &vdev->eps[i];
2737
2738         if (ep->ep_state & EP_HAS_STREAMS) {
2739                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2740                                 xhci_get_endpoint_address(i));
2741                 xhci_free_stream_info(xhci, ep->stream_info);
2742                 ep->stream_info = NULL;
2743                 ep->ep_state &= ~EP_HAS_STREAMS;
2744         }
2745 }
2746
2747 /* Called after one or more calls to xhci_add_endpoint() or
2748  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2749  * to call xhci_reset_bandwidth().
2750  *
2751  * Since we are in the middle of changing either configuration or
2752  * installing a new alt setting, the USB core won't allow URBs to be
2753  * enqueued for any endpoint on the old config or interface.  Nothing
2754  * else should be touching the xhci->devs[slot_id] structure, so we
2755  * don't need to take the xhci->lock for manipulating that.
2756  */
2757 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2758 {
2759         int i;
2760         int ret = 0;
2761         struct xhci_hcd *xhci;
2762         struct xhci_virt_device *virt_dev;
2763         struct xhci_input_control_ctx *ctrl_ctx;
2764         struct xhci_slot_ctx *slot_ctx;
2765         struct xhci_command *command;
2766
2767         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2768         if (ret <= 0)
2769                 return ret;
2770         xhci = hcd_to_xhci(hcd);
2771         if (xhci->xhc_state & XHCI_STATE_DYING)
2772                 return -ENODEV;
2773
2774         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2775         virt_dev = xhci->devs[udev->slot_id];
2776
2777         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2778         if (!command)
2779                 return -ENOMEM;
2780
2781         command->in_ctx = virt_dev->in_ctx;
2782
2783         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2784         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2785         if (!ctrl_ctx) {
2786                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2787                                 __func__);
2788                 ret = -ENOMEM;
2789                 goto command_cleanup;
2790         }
2791         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2792         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2793         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2794
2795         /* Don't issue the command if there's no endpoints to update. */
2796         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2797             ctrl_ctx->drop_flags == 0) {
2798                 ret = 0;
2799                 goto command_cleanup;
2800         }
2801         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2802         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2803         for (i = 31; i >= 1; i--) {
2804                 __le32 le32 = cpu_to_le32(BIT(i));
2805
2806                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2807                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2808                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2809                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2810                         break;
2811                 }
2812         }
2813         xhci_dbg(xhci, "New Input Control Context:\n");
2814         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2815                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2816
2817         ret = xhci_configure_endpoint(xhci, udev, command,
2818                         false, false);
2819         if (ret)
2820                 /* Callee should call reset_bandwidth() */
2821                 goto command_cleanup;
2822
2823         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2824         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2825                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2826
2827         /* Free any rings that were dropped, but not changed. */
2828         for (i = 1; i < 31; ++i) {
2829                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2830                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2831                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2832                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2833                 }
2834         }
2835         xhci_zero_in_ctx(xhci, virt_dev);
2836         /*
2837          * Install any rings for completely new endpoints or changed endpoints,
2838          * and free or cache any old rings from changed endpoints.
2839          */
2840         for (i = 1; i < 31; ++i) {
2841                 if (!virt_dev->eps[i].new_ring)
2842                         continue;
2843                 /* Only cache or free the old ring if it exists.
2844                  * It may not if this is the first add of an endpoint.
2845                  */
2846                 if (virt_dev->eps[i].ring) {
2847                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2848                 }
2849                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2850                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2851                 virt_dev->eps[i].new_ring = NULL;
2852         }
2853 command_cleanup:
2854         kfree(command->completion);
2855         kfree(command);
2856
2857         return ret;
2858 }
2859
2860 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2861 {
2862         struct xhci_hcd *xhci;
2863         struct xhci_virt_device *virt_dev;
2864         int i, ret;
2865
2866         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2867         if (ret <= 0)
2868                 return;
2869         xhci = hcd_to_xhci(hcd);
2870
2871         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2872         virt_dev = xhci->devs[udev->slot_id];
2873         /* Free any rings allocated for added endpoints */
2874         for (i = 0; i < 31; ++i) {
2875                 if (virt_dev->eps[i].new_ring) {
2876                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2877                         virt_dev->eps[i].new_ring = NULL;
2878                 }
2879         }
2880         xhci_zero_in_ctx(xhci, virt_dev);
2881 }
2882
2883 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2884                 struct xhci_container_ctx *in_ctx,
2885                 struct xhci_container_ctx *out_ctx,
2886                 struct xhci_input_control_ctx *ctrl_ctx,
2887                 u32 add_flags, u32 drop_flags)
2888 {
2889         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2890         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2891         xhci_slot_copy(xhci, in_ctx, out_ctx);
2892         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2893
2894         xhci_dbg(xhci, "Input Context:\n");
2895         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2896 }
2897
2898 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2899                 unsigned int slot_id, unsigned int ep_index,
2900                 struct xhci_dequeue_state *deq_state)
2901 {
2902         struct xhci_input_control_ctx *ctrl_ctx;
2903         struct xhci_container_ctx *in_ctx;
2904         struct xhci_ep_ctx *ep_ctx;
2905         u32 added_ctxs;
2906         dma_addr_t addr;
2907
2908         in_ctx = xhci->devs[slot_id]->in_ctx;
2909         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2910         if (!ctrl_ctx) {
2911                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2912                                 __func__);
2913                 return;
2914         }
2915
2916         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2917                         xhci->devs[slot_id]->out_ctx, ep_index);
2918         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2919         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2920                         deq_state->new_deq_ptr);
2921         if (addr == 0) {
2922                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2923                                 "reset ep command\n");
2924                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2925                                 deq_state->new_deq_seg,
2926                                 deq_state->new_deq_ptr);
2927                 return;
2928         }
2929         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2930
2931         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2932         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2933                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2934                         added_ctxs, added_ctxs);
2935 }
2936
2937 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2938                         unsigned int ep_index, struct xhci_td *td)
2939 {
2940         struct xhci_dequeue_state deq_state;
2941         struct xhci_virt_ep *ep;
2942         struct usb_device *udev = td->urb->dev;
2943
2944         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2945                         "Cleaning up stalled endpoint ring");
2946         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2947         /* We need to move the HW's dequeue pointer past this TD,
2948          * or it will attempt to resend it on the next doorbell ring.
2949          */
2950         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2951                         ep_index, ep->stopped_stream, td, &deq_state);
2952
2953         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2954                 return;
2955
2956         /* HW with the reset endpoint quirk will use the saved dequeue state to
2957          * issue a configure endpoint command later.
2958          */
2959         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2960                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2961                                 "Queueing new dequeue state");
2962                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2963                                 ep_index, ep->stopped_stream, &deq_state);
2964         } else {
2965                 /* Better hope no one uses the input context between now and the
2966                  * reset endpoint completion!
2967                  * XXX: No idea how this hardware will react when stream rings
2968                  * are enabled.
2969                  */
2970                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2971                                 "Setting up input context for "
2972                                 "configure endpoint command");
2973                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2974                                 ep_index, &deq_state);
2975         }
2976 }
2977
2978 /* Called when clearing halted device. The core should have sent the control
2979  * message to clear the device halt condition. The host side of the halt should
2980  * already be cleared with a reset endpoint command issued when the STALL tx
2981  * event was received.
2982  *
2983  * Context: in_interrupt
2984  */
2985
2986 void xhci_endpoint_reset(struct usb_hcd *hcd,
2987                 struct usb_host_endpoint *ep)
2988 {
2989         struct xhci_hcd *xhci;
2990
2991         xhci = hcd_to_xhci(hcd);
2992
2993         /*
2994          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2995          * The Reset Endpoint Command may only be issued to endpoints in the
2996          * Halted state. If software wishes reset the Data Toggle or Sequence
2997          * Number of an endpoint that isn't in the Halted state, then software
2998          * may issue a Configure Endpoint Command with the Drop and Add bits set
2999          * for the target endpoint. that is in the Stopped state.
3000          */
3001
3002         /* For now just print debug to follow the situation */
3003         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3004                  ep->desc.bEndpointAddress);
3005 }
3006
3007 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3008                 struct usb_device *udev, struct usb_host_endpoint *ep,
3009                 unsigned int slot_id)
3010 {
3011         int ret;
3012         unsigned int ep_index;
3013         unsigned int ep_state;
3014
3015         if (!ep)
3016                 return -EINVAL;
3017         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3018         if (ret <= 0)
3019                 return -EINVAL;
3020         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3021                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3022                                 " descriptor for ep 0x%x does not support streams\n",
3023                                 ep->desc.bEndpointAddress);
3024                 return -EINVAL;
3025         }
3026
3027         ep_index = xhci_get_endpoint_index(&ep->desc);
3028         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3029         if (ep_state & EP_HAS_STREAMS ||
3030                         ep_state & EP_GETTING_STREAMS) {
3031                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3032                                 "already has streams set up.\n",
3033                                 ep->desc.bEndpointAddress);
3034                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3035                                 "dynamic stream context array reallocation.\n");
3036                 return -EINVAL;
3037         }
3038         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3039                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3040                                 "endpoint 0x%x; URBs are pending.\n",
3041                                 ep->desc.bEndpointAddress);
3042                 return -EINVAL;
3043         }
3044         return 0;
3045 }
3046
3047 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3048                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3049 {
3050         unsigned int max_streams;
3051
3052         /* The stream context array size must be a power of two */
3053         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3054         /*
3055          * Find out how many primary stream array entries the host controller
3056          * supports.  Later we may use secondary stream arrays (similar to 2nd
3057          * level page entries), but that's an optional feature for xHCI host
3058          * controllers. xHCs must support at least 4 stream IDs.
3059          */
3060         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3061         if (*num_stream_ctxs > max_streams) {
3062                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3063                                 max_streams);
3064                 *num_stream_ctxs = max_streams;
3065                 *num_streams = max_streams;
3066         }
3067 }
3068
3069 /* Returns an error code if one of the endpoint already has streams.
3070  * This does not change any data structures, it only checks and gathers
3071  * information.
3072  */
3073 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3074                 struct usb_device *udev,
3075                 struct usb_host_endpoint **eps, unsigned int num_eps,
3076                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3077 {
3078         unsigned int max_streams;
3079         unsigned int endpoint_flag;
3080         int i;
3081         int ret;
3082
3083         for (i = 0; i < num_eps; i++) {
3084                 ret = xhci_check_streams_endpoint(xhci, udev,
3085                                 eps[i], udev->slot_id);
3086                 if (ret < 0)
3087                         return ret;
3088
3089                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3090                 if (max_streams < (*num_streams - 1)) {
3091                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3092                                         eps[i]->desc.bEndpointAddress,
3093                                         max_streams);
3094                         *num_streams = max_streams+1;
3095                 }
3096
3097                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3098                 if (*changed_ep_bitmask & endpoint_flag)
3099                         return -EINVAL;
3100                 *changed_ep_bitmask |= endpoint_flag;
3101         }
3102         return 0;
3103 }
3104
3105 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3106                 struct usb_device *udev,
3107                 struct usb_host_endpoint **eps, unsigned int num_eps)
3108 {
3109         u32 changed_ep_bitmask = 0;
3110         unsigned int slot_id;
3111         unsigned int ep_index;
3112         unsigned int ep_state;
3113         int i;
3114
3115         slot_id = udev->slot_id;
3116         if (!xhci->devs[slot_id])
3117                 return 0;
3118
3119         for (i = 0; i < num_eps; i++) {
3120                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3122                 /* Are streams already being freed for the endpoint? */
3123                 if (ep_state & EP_GETTING_NO_STREAMS) {
3124                         xhci_warn(xhci, "WARN Can't disable streams for "
3125                                         "endpoint 0x%x, "
3126                                         "streams are being disabled already\n",
3127                                         eps[i]->desc.bEndpointAddress);
3128                         return 0;
3129                 }
3130                 /* Are there actually any streams to free? */
3131                 if (!(ep_state & EP_HAS_STREAMS) &&
3132                                 !(ep_state & EP_GETTING_STREAMS)) {
3133                         xhci_warn(xhci, "WARN Can't disable streams for "
3134                                         "endpoint 0x%x, "
3135                                         "streams are already disabled!\n",
3136                                         eps[i]->desc.bEndpointAddress);
3137                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3138                                         "with non-streams endpoint\n");
3139                         return 0;
3140                 }
3141                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3142         }
3143         return changed_ep_bitmask;
3144 }
3145
3146 /*
3147  * The USB device drivers use this function (through the HCD interface in USB
3148  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3149  * coordinate mass storage command queueing across multiple endpoints (basically
3150  * a stream ID == a task ID).
3151  *
3152  * Setting up streams involves allocating the same size stream context array
3153  * for each endpoint and issuing a configure endpoint command for all endpoints.
3154  *
3155  * Don't allow the call to succeed if one endpoint only supports one stream
3156  * (which means it doesn't support streams at all).
3157  *
3158  * Drivers may get less stream IDs than they asked for, if the host controller
3159  * hardware or endpoints claim they can't support the number of requested
3160  * stream IDs.
3161  */
3162 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3163                 struct usb_host_endpoint **eps, unsigned int num_eps,
3164                 unsigned int num_streams, gfp_t mem_flags)
3165 {
3166         int i, ret;
3167         struct xhci_hcd *xhci;
3168         struct xhci_virt_device *vdev;
3169         struct xhci_command *config_cmd;
3170         struct xhci_input_control_ctx *ctrl_ctx;
3171         unsigned int ep_index;
3172         unsigned int num_stream_ctxs;
3173         unsigned long flags;
3174         u32 changed_ep_bitmask = 0;
3175
3176         if (!eps)
3177                 return -EINVAL;
3178
3179         /* Add one to the number of streams requested to account for
3180          * stream 0 that is reserved for xHCI usage.
3181          */
3182         num_streams += 1;
3183         xhci = hcd_to_xhci(hcd);
3184         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3185                         num_streams);
3186
3187         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3188         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3189                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3190                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3191                 return -ENOSYS;
3192         }
3193
3194         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3195         if (!config_cmd) {
3196                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3197                 return -ENOMEM;
3198         }
3199         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3200         if (!ctrl_ctx) {
3201                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3202                                 __func__);
3203                 xhci_free_command(xhci, config_cmd);
3204                 return -ENOMEM;
3205         }
3206
3207         /* Check to make sure all endpoints are not already configured for
3208          * streams.  While we're at it, find the maximum number of streams that
3209          * all the endpoints will support and check for duplicate endpoints.
3210          */
3211         spin_lock_irqsave(&xhci->lock, flags);
3212         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3213                         num_eps, &num_streams, &changed_ep_bitmask);
3214         if (ret < 0) {
3215                 xhci_free_command(xhci, config_cmd);
3216                 spin_unlock_irqrestore(&xhci->lock, flags);
3217                 return ret;
3218         }
3219         if (num_streams <= 1) {
3220                 xhci_warn(xhci, "WARN: endpoints can't handle "
3221                                 "more than one stream.\n");
3222                 xhci_free_command(xhci, config_cmd);
3223                 spin_unlock_irqrestore(&xhci->lock, flags);
3224                 return -EINVAL;
3225         }
3226         vdev = xhci->devs[udev->slot_id];
3227         /* Mark each endpoint as being in transition, so
3228          * xhci_urb_enqueue() will reject all URBs.
3229          */
3230         for (i = 0; i < num_eps; i++) {
3231                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3232                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3233         }
3234         spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236         /* Setup internal data structures and allocate HW data structures for
3237          * streams (but don't install the HW structures in the input context
3238          * until we're sure all memory allocation succeeded).
3239          */
3240         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3241         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3242                         num_stream_ctxs, num_streams);
3243
3244         for (i = 0; i < num_eps; i++) {
3245                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3246                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3247                                 num_stream_ctxs,
3248                                 num_streams, mem_flags);
3249                 if (!vdev->eps[ep_index].stream_info)
3250                         goto cleanup;
3251                 /* Set maxPstreams in endpoint context and update deq ptr to
3252                  * point to stream context array. FIXME
3253                  */
3254         }
3255
3256         /* Set up the input context for a configure endpoint command. */
3257         for (i = 0; i < num_eps; i++) {
3258                 struct xhci_ep_ctx *ep_ctx;
3259
3260                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3262
3263                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3264                                 vdev->out_ctx, ep_index);
3265                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3266                                 vdev->eps[ep_index].stream_info);
3267         }
3268         /* Tell the HW to drop its old copy of the endpoint context info
3269          * and add the updated copy from the input context.
3270          */
3271         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3272                         vdev->out_ctx, ctrl_ctx,
3273                         changed_ep_bitmask, changed_ep_bitmask);
3274
3275         /* Issue and wait for the configure endpoint command */
3276         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3277                         false, false);
3278
3279         /* xHC rejected the configure endpoint command for some reason, so we
3280          * leave the old ring intact and free our internal streams data
3281          * structure.
3282          */
3283         if (ret < 0)
3284                 goto cleanup;
3285
3286         spin_lock_irqsave(&xhci->lock, flags);
3287         for (i = 0; i < num_eps; i++) {
3288                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3289                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3290                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3291                          udev->slot_id, ep_index);
3292                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3293         }
3294         xhci_free_command(xhci, config_cmd);
3295         spin_unlock_irqrestore(&xhci->lock, flags);
3296
3297         /* Subtract 1 for stream 0, which drivers can't use */
3298         return num_streams - 1;
3299
3300 cleanup:
3301         /* If it didn't work, free the streams! */
3302         for (i = 0; i < num_eps; i++) {
3303                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3304                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3305                 vdev->eps[ep_index].stream_info = NULL;
3306                 /* FIXME Unset maxPstreams in endpoint context and
3307                  * update deq ptr to point to normal string ring.
3308                  */
3309                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3310                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3311                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3312         }
3313         xhci_free_command(xhci, config_cmd);
3314         return -ENOMEM;
3315 }
3316
3317 /* Transition the endpoint from using streams to being a "normal" endpoint
3318  * without streams.
3319  *
3320  * Modify the endpoint context state, submit a configure endpoint command,
3321  * and free all endpoint rings for streams if that completes successfully.
3322  */
3323 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3324                 struct usb_host_endpoint **eps, unsigned int num_eps,
3325                 gfp_t mem_flags)
3326 {
3327         int i, ret;
3328         struct xhci_hcd *xhci;
3329         struct xhci_virt_device *vdev;
3330         struct xhci_command *command;
3331         struct xhci_input_control_ctx *ctrl_ctx;
3332         unsigned int ep_index;
3333         unsigned long flags;
3334         u32 changed_ep_bitmask;
3335
3336         xhci = hcd_to_xhci(hcd);
3337         vdev = xhci->devs[udev->slot_id];
3338
3339         /* Set up a configure endpoint command to remove the streams rings */
3340         spin_lock_irqsave(&xhci->lock, flags);
3341         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3342                         udev, eps, num_eps);
3343         if (changed_ep_bitmask == 0) {
3344                 spin_unlock_irqrestore(&xhci->lock, flags);
3345                 return -EINVAL;
3346         }
3347
3348         /* Use the xhci_command structure from the first endpoint.  We may have
3349          * allocated too many, but the driver may call xhci_free_streams() for
3350          * each endpoint it grouped into one call to xhci_alloc_streams().
3351          */
3352         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3353         command = vdev->eps[ep_index].stream_info->free_streams_command;
3354         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3355         if (!ctrl_ctx) {
3356                 spin_unlock_irqrestore(&xhci->lock, flags);
3357                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3358                                 __func__);
3359                 return -EINVAL;
3360         }
3361
3362         for (i = 0; i < num_eps; i++) {
3363                 struct xhci_ep_ctx *ep_ctx;
3364
3365                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3366                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3367                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3368                         EP_GETTING_NO_STREAMS;
3369
3370                 xhci_endpoint_copy(xhci, command->in_ctx,
3371                                 vdev->out_ctx, ep_index);
3372                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3373                                 &vdev->eps[ep_index]);
3374         }
3375         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3376                         vdev->out_ctx, ctrl_ctx,
3377                         changed_ep_bitmask, changed_ep_bitmask);
3378         spin_unlock_irqrestore(&xhci->lock, flags);
3379
3380         /* Issue and wait for the configure endpoint command,
3381          * which must succeed.
3382          */
3383         ret = xhci_configure_endpoint(xhci, udev, command,
3384                         false, true);
3385
3386         /* xHC rejected the configure endpoint command for some reason, so we
3387          * leave the streams rings intact.
3388          */
3389         if (ret < 0)
3390                 return ret;
3391
3392         spin_lock_irqsave(&xhci->lock, flags);
3393         for (i = 0; i < num_eps; i++) {
3394                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3395                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3396                 vdev->eps[ep_index].stream_info = NULL;
3397                 /* FIXME Unset maxPstreams in endpoint context and
3398                  * update deq ptr to point to normal string ring.
3399                  */
3400                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3401                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3402         }
3403         spin_unlock_irqrestore(&xhci->lock, flags);
3404
3405         return 0;
3406 }
3407
3408 /*
3409  * Deletes endpoint resources for endpoints that were active before a Reset
3410  * Device command, or a Disable Slot command.  The Reset Device command leaves
3411  * the control endpoint intact, whereas the Disable Slot command deletes it.
3412  *
3413  * Must be called with xhci->lock held.
3414  */
3415 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3416         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3417 {
3418         int i;
3419         unsigned int num_dropped_eps = 0;
3420         unsigned int drop_flags = 0;
3421
3422         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3423                 if (virt_dev->eps[i].ring) {
3424                         drop_flags |= 1 << i;
3425                         num_dropped_eps++;
3426                 }
3427         }
3428         xhci->num_active_eps -= num_dropped_eps;
3429         if (num_dropped_eps)
3430                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3431                                 "Dropped %u ep ctxs, flags = 0x%x, "
3432                                 "%u now active.",
3433                                 num_dropped_eps, drop_flags,
3434                                 xhci->num_active_eps);
3435 }
3436
3437 /*
3438  * This submits a Reset Device Command, which will set the device state to 0,
3439  * set the device address to 0, and disable all the endpoints except the default
3440  * control endpoint.  The USB core should come back and call
3441  * xhci_address_device(), and then re-set up the configuration.  If this is
3442  * called because of a usb_reset_and_verify_device(), then the old alternate
3443  * settings will be re-installed through the normal bandwidth allocation
3444  * functions.
3445  *
3446  * Wait for the Reset Device command to finish.  Remove all structures
3447  * associated with the endpoints that were disabled.  Clear the input device
3448  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3449  *
3450  * If the virt_dev to be reset does not exist or does not match the udev,
3451  * it means the device is lost, possibly due to the xHC restore error and
3452  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3453  * re-allocate the device.
3454  */
3455 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3456 {
3457         int ret, i;
3458         unsigned long flags;
3459         struct xhci_hcd *xhci;
3460         unsigned int slot_id;
3461         struct xhci_virt_device *virt_dev;
3462         struct xhci_command *reset_device_cmd;
3463         int last_freed_endpoint;
3464         struct xhci_slot_ctx *slot_ctx;
3465         int old_active_eps = 0;
3466
3467         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3468         if (ret <= 0)
3469                 return ret;
3470         xhci = hcd_to_xhci(hcd);
3471         slot_id = udev->slot_id;
3472         virt_dev = xhci->devs[slot_id];
3473         if (!virt_dev) {
3474                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3475                                 "not exist. Re-allocate the device\n", slot_id);
3476                 ret = xhci_alloc_dev(hcd, udev);
3477                 if (ret == 1)
3478                         return 0;
3479                 else
3480                         return -EINVAL;
3481         }
3482
3483         if (virt_dev->tt_info)
3484                 old_active_eps = virt_dev->tt_info->active_eps;
3485
3486         if (virt_dev->udev != udev) {
3487                 /* If the virt_dev and the udev does not match, this virt_dev
3488                  * may belong to another udev.
3489                  * Re-allocate the device.
3490                  */
3491                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3492                                 "not match the udev. Re-allocate the device\n",
3493                                 slot_id);
3494                 ret = xhci_alloc_dev(hcd, udev);
3495                 if (ret == 1)
3496                         return 0;
3497                 else
3498                         return -EINVAL;
3499         }
3500
3501         /* If device is not setup, there is no point in resetting it */
3502         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3503         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3504                                                 SLOT_STATE_DISABLED)
3505                 return 0;
3506
3507         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3508         /* Allocate the command structure that holds the struct completion.
3509          * Assume we're in process context, since the normal device reset
3510          * process has to wait for the device anyway.  Storage devices are
3511          * reset as part of error handling, so use GFP_NOIO instead of
3512          * GFP_KERNEL.
3513          */
3514         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3515         if (!reset_device_cmd) {
3516                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3517                 return -ENOMEM;
3518         }
3519
3520         /* Attempt to submit the Reset Device command to the command ring */
3521         spin_lock_irqsave(&xhci->lock, flags);
3522
3523         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3524         if (ret) {
3525                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3526                 spin_unlock_irqrestore(&xhci->lock, flags);
3527                 goto command_cleanup;
3528         }
3529         xhci_ring_cmd_db(xhci);
3530         spin_unlock_irqrestore(&xhci->lock, flags);
3531
3532         /* Wait for the Reset Device command to finish */
3533         wait_for_completion(reset_device_cmd->completion);
3534
3535         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3536          * unless we tried to reset a slot ID that wasn't enabled,
3537          * or the device wasn't in the addressed or configured state.
3538          */
3539         ret = reset_device_cmd->status;
3540         switch (ret) {
3541         case COMP_CMD_ABORT:
3542         case COMP_CMD_STOP:
3543                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3544                 ret = -ETIME;
3545                 goto command_cleanup;
3546         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3547         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3548                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3549                                 slot_id,
3550                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3551                 xhci_dbg(xhci, "Not freeing device rings.\n");
3552                 /* Don't treat this as an error.  May change my mind later. */
3553                 ret = 0;
3554                 goto command_cleanup;
3555         case COMP_SUCCESS:
3556                 xhci_dbg(xhci, "Successful reset device command.\n");
3557                 break;
3558         default:
3559                 if (xhci_is_vendor_info_code(xhci, ret))
3560                         break;
3561                 xhci_warn(xhci, "Unknown completion code %u for "
3562                                 "reset device command.\n", ret);
3563                 ret = -EINVAL;
3564                 goto command_cleanup;
3565         }
3566
3567         /* Free up host controller endpoint resources */
3568         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3569                 spin_lock_irqsave(&xhci->lock, flags);
3570                 /* Don't delete the default control endpoint resources */
3571                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3572                 spin_unlock_irqrestore(&xhci->lock, flags);
3573         }
3574
3575         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3576         last_freed_endpoint = 1;
3577         for (i = 1; i < 31; ++i) {
3578                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3579
3580                 if (ep->ep_state & EP_HAS_STREAMS) {
3581                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3582                                         xhci_get_endpoint_address(i));
3583                         xhci_free_stream_info(xhci, ep->stream_info);
3584                         ep->stream_info = NULL;
3585                         ep->ep_state &= ~EP_HAS_STREAMS;
3586                 }
3587
3588                 if (ep->ring) {
3589                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3590                         last_freed_endpoint = i;
3591                 }
3592                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3593                         xhci_drop_ep_from_interval_table(xhci,
3594                                         &virt_dev->eps[i].bw_info,
3595                                         virt_dev->bw_table,
3596                                         udev,
3597                                         &virt_dev->eps[i],
3598                                         virt_dev->tt_info);
3599                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3600         }
3601         /* If necessary, update the number of active TTs on this root port */
3602         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3603
3604         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3605         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3606         ret = 0;
3607
3608 command_cleanup:
3609         xhci_free_command(xhci, reset_device_cmd);
3610         return ret;
3611 }
3612
3613 /*
3614  * At this point, the struct usb_device is about to go away, the device has
3615  * disconnected, and all traffic has been stopped and the endpoints have been
3616  * disabled.  Free any HC data structures associated with that device.
3617  */
3618 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3619 {
3620         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3621         struct xhci_virt_device *virt_dev;
3622         unsigned long flags;
3623         u32 state;
3624         int i, ret;
3625         struct xhci_command *command;
3626
3627         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3628         if (!command)
3629                 return;
3630
3631 #ifndef CONFIG_USB_DEFAULT_PERSIST
3632         /*
3633          * We called pm_runtime_get_noresume when the device was attached.
3634          * Decrement the counter here to allow controller to runtime suspend
3635          * if no devices remain.
3636          */
3637         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3638                 pm_runtime_put_noidle(hcd->self.controller);
3639 #endif
3640
3641         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3642         /* If the host is halted due to driver unload, we still need to free the
3643          * device.
3644          */
3645         if (ret <= 0 && ret != -ENODEV) {
3646                 kfree(command);
3647                 return;
3648         }
3649
3650         virt_dev = xhci->devs[udev->slot_id];
3651
3652         /* Stop any wayward timer functions (which may grab the lock) */
3653         for (i = 0; i < 31; ++i) {
3654                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3655                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3656         }
3657
3658         spin_lock_irqsave(&xhci->lock, flags);
3659         /* Don't disable the slot if the host controller is dead. */
3660         state = readl(&xhci->op_regs->status);
3661         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3662                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3663                 xhci_free_virt_device(xhci, udev->slot_id);
3664                 spin_unlock_irqrestore(&xhci->lock, flags);
3665                 kfree(command);
3666                 return;
3667         }
3668
3669         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3670                                     udev->slot_id)) {
3671                 spin_unlock_irqrestore(&xhci->lock, flags);
3672                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3673                 return;
3674         }
3675         xhci_ring_cmd_db(xhci);
3676         spin_unlock_irqrestore(&xhci->lock, flags);
3677
3678         /*
3679          * Event command completion handler will free any data structures
3680          * associated with the slot.  XXX Can free sleep?
3681          */
3682 }
3683
3684 /*
3685  * Checks if we have enough host controller resources for the default control
3686  * endpoint.
3687  *
3688  * Must be called with xhci->lock held.
3689  */
3690 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3691 {
3692         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3693                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3694                                 "Not enough ep ctxs: "
3695                                 "%u active, need to add 1, limit is %u.",
3696                                 xhci->num_active_eps, xhci->limit_active_eps);
3697                 return -ENOMEM;
3698         }
3699         xhci->num_active_eps += 1;
3700         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701                         "Adding 1 ep ctx, %u now active.",
3702                         xhci->num_active_eps);
3703         return 0;
3704 }
3705
3706
3707 /*
3708  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3709  * timed out, or allocating memory failed.  Returns 1 on success.
3710  */
3711 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3712 {
3713         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3714         unsigned long flags;
3715         int ret, slot_id;
3716         struct xhci_command *command;
3717
3718         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3719         if (!command)
3720                 return 0;
3721
3722         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3723         mutex_lock(&xhci->mutex);
3724         spin_lock_irqsave(&xhci->lock, flags);
3725         command->completion = &xhci->addr_dev;
3726         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3727         if (ret) {
3728                 spin_unlock_irqrestore(&xhci->lock, flags);
3729                 mutex_unlock(&xhci->mutex);
3730                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3731                 kfree(command);
3732                 return 0;
3733         }
3734         xhci_ring_cmd_db(xhci);
3735         spin_unlock_irqrestore(&xhci->lock, flags);
3736
3737         wait_for_completion(command->completion);
3738         slot_id = xhci->slot_id;
3739         mutex_unlock(&xhci->mutex);
3740
3741         if (!slot_id || command->status != COMP_SUCCESS) {
3742                 xhci_err(xhci, "Error while assigning device slot ID\n");
3743                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3744                                 HCS_MAX_SLOTS(
3745                                         readl(&xhci->cap_regs->hcs_params1)));
3746                 kfree(command);
3747                 return 0;
3748         }
3749
3750         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3751                 spin_lock_irqsave(&xhci->lock, flags);
3752                 ret = xhci_reserve_host_control_ep_resources(xhci);
3753                 if (ret) {
3754                         spin_unlock_irqrestore(&xhci->lock, flags);
3755                         xhci_warn(xhci, "Not enough host resources, "
3756                                         "active endpoint contexts = %u\n",
3757                                         xhci->num_active_eps);
3758                         goto disable_slot;
3759                 }
3760                 spin_unlock_irqrestore(&xhci->lock, flags);
3761         }
3762         /* Use GFP_NOIO, since this function can be called from
3763          * xhci_discover_or_reset_device(), which may be called as part of
3764          * mass storage driver error handling.
3765          */
3766         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3767                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3768                 goto disable_slot;
3769         }
3770         udev->slot_id = slot_id;
3771
3772 #ifndef CONFIG_USB_DEFAULT_PERSIST
3773         /*
3774          * If resetting upon resume, we can't put the controller into runtime
3775          * suspend if there is a device attached.
3776          */
3777         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3778                 pm_runtime_get_noresume(hcd->self.controller);
3779 #endif
3780
3781
3782         kfree(command);
3783         /* Is this a LS or FS device under a HS hub? */
3784         /* Hub or peripherial? */
3785         return 1;
3786
3787 disable_slot:
3788         /* Disable slot, if we can do it without mem alloc */
3789         spin_lock_irqsave(&xhci->lock, flags);
3790         command->completion = NULL;
3791         command->status = 0;
3792         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3793                                      udev->slot_id))
3794                 xhci_ring_cmd_db(xhci);
3795         spin_unlock_irqrestore(&xhci->lock, flags);
3796         return 0;
3797 }
3798
3799 /*
3800  * Issue an Address Device command and optionally send a corresponding
3801  * SetAddress request to the device.
3802  */
3803 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3804                              enum xhci_setup_dev setup)
3805 {
3806         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3807         unsigned long flags;
3808         struct xhci_virt_device *virt_dev;
3809         int ret = 0;
3810         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3811         struct xhci_slot_ctx *slot_ctx;
3812         struct xhci_input_control_ctx *ctrl_ctx;
3813         u64 temp_64;
3814         struct xhci_command *command = NULL;
3815
3816         mutex_lock(&xhci->mutex);
3817
3818         if (xhci->xhc_state)    /* dying or halted */
3819                 goto out;
3820
3821         if (!udev->slot_id) {
3822                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3823                                 "Bad Slot ID %d", udev->slot_id);
3824                 ret = -EINVAL;
3825                 goto out;
3826         }
3827
3828         virt_dev = xhci->devs[udev->slot_id];
3829
3830         if (WARN_ON(!virt_dev)) {
3831                 /*
3832                  * In plug/unplug torture test with an NEC controller,
3833                  * a zero-dereference was observed once due to virt_dev = 0.
3834                  * Print useful debug rather than crash if it is observed again!
3835                  */
3836                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3837                         udev->slot_id);
3838                 ret = -EINVAL;
3839                 goto out;
3840         }
3841
3842         if (setup == SETUP_CONTEXT_ONLY) {
3843                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3844                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3845                     SLOT_STATE_DEFAULT) {
3846                         xhci_dbg(xhci, "Slot already in default state\n");
3847                         goto out;
3848                 }
3849         }
3850
3851         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3852         if (!command) {
3853                 ret = -ENOMEM;
3854                 goto out;
3855         }
3856
3857         command->in_ctx = virt_dev->in_ctx;
3858         command->completion = &xhci->addr_dev;
3859
3860         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3861         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3862         if (!ctrl_ctx) {
3863                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3864                                 __func__);
3865                 ret = -EINVAL;
3866                 goto out;
3867         }
3868         /*
3869          * If this is the first Set Address since device plug-in or
3870          * virt_device realloaction after a resume with an xHCI power loss,
3871          * then set up the slot context.
3872          */
3873         if (!slot_ctx->dev_info)
3874                 xhci_setup_addressable_virt_dev(xhci, udev);
3875         /* Otherwise, update the control endpoint ring enqueue pointer. */
3876         else
3877                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3878         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3879         ctrl_ctx->drop_flags = 0;
3880
3881         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3882         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3883         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3884                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3885
3886         spin_lock_irqsave(&xhci->lock, flags);
3887         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3888                                         udev->slot_id, setup);
3889         if (ret) {
3890                 spin_unlock_irqrestore(&xhci->lock, flags);
3891                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3892                                 "FIXME: allocate a command ring segment");
3893                 goto out;
3894         }
3895         xhci_ring_cmd_db(xhci);
3896         spin_unlock_irqrestore(&xhci->lock, flags);
3897
3898         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3899         wait_for_completion(command->completion);
3900
3901         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3902          * the SetAddress() "recovery interval" required by USB and aborting the
3903          * command on a timeout.
3904          */
3905         switch (command->status) {
3906         case COMP_CMD_ABORT:
3907         case COMP_CMD_STOP:
3908                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3909                 ret = -ETIME;
3910                 break;
3911         case COMP_CTX_STATE:
3912         case COMP_EBADSLT:
3913                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3914                          act, udev->slot_id);
3915                 ret = -EINVAL;
3916                 break;
3917         case COMP_TX_ERR:
3918                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3919                 ret = -EPROTO;
3920                 break;
3921         case COMP_DEV_ERR:
3922                 dev_warn(&udev->dev,
3923                          "ERROR: Incompatible device for setup %s command\n", act);
3924                 ret = -ENODEV;
3925                 break;
3926         case COMP_SUCCESS:
3927                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928                                "Successful setup %s command", act);
3929                 break;
3930         default:
3931                 xhci_err(xhci,
3932                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3933                          act, command->status);
3934                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3935                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3936                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3937                 ret = -EINVAL;
3938                 break;
3939         }
3940         if (ret)
3941                 goto out;
3942         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3943         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3944                         "Op regs DCBAA ptr = %#016llx", temp_64);
3945         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3946                 "Slot ID %d dcbaa entry @%p = %#016llx",
3947                 udev->slot_id,
3948                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3949                 (unsigned long long)
3950                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3951         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3952                         "Output Context DMA address = %#08llx",
3953                         (unsigned long long)virt_dev->out_ctx->dma);
3954         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3955         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3956         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3957                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3958         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3959         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3960         /*
3961          * USB core uses address 1 for the roothubs, so we add one to the
3962          * address given back to us by the HC.
3963          */
3964         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3965         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3966                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3967         /* Zero the input context control for later use */
3968         ctrl_ctx->add_flags = 0;
3969         ctrl_ctx->drop_flags = 0;
3970
3971         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3972                        "Internal device address = %d",
3973                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3974 out:
3975         mutex_unlock(&xhci->mutex);
3976         kfree(command);
3977         return ret;
3978 }
3979
3980 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3981 {
3982         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3983 }
3984
3985 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3988 }
3989
3990 /*
3991  * Transfer the port index into real index in the HW port status
3992  * registers. Caculate offset between the port's PORTSC register
3993  * and port status base. Divide the number of per port register
3994  * to get the real index. The raw port number bases 1.
3995  */
3996 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3997 {
3998         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3999         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4000         __le32 __iomem *addr;
4001         int raw_port;
4002
4003         if (hcd->speed < HCD_USB3)
4004                 addr = xhci->usb2_ports[port1 - 1];
4005         else
4006                 addr = xhci->usb3_ports[port1 - 1];
4007
4008         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4009         return raw_port;
4010 }
4011
4012 /*
4013  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4014  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4015  */
4016 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4017                         struct usb_device *udev, u16 max_exit_latency)
4018 {
4019         struct xhci_virt_device *virt_dev;
4020         struct xhci_command *command;
4021         struct xhci_input_control_ctx *ctrl_ctx;
4022         struct xhci_slot_ctx *slot_ctx;
4023         unsigned long flags;
4024         int ret;
4025
4026         spin_lock_irqsave(&xhci->lock, flags);
4027
4028         virt_dev = xhci->devs[udev->slot_id];
4029
4030         /*
4031          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4032          * xHC was re-initialized. Exit latency will be set later after
4033          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4034          */
4035
4036         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4037                 spin_unlock_irqrestore(&xhci->lock, flags);
4038                 return 0;
4039         }
4040
4041         /* Attempt to issue an Evaluate Context command to change the MEL. */
4042         command = xhci->lpm_command;
4043         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4044         if (!ctrl_ctx) {
4045                 spin_unlock_irqrestore(&xhci->lock, flags);
4046                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4047                                 __func__);
4048                 return -ENOMEM;
4049         }
4050
4051         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4052         spin_unlock_irqrestore(&xhci->lock, flags);
4053
4054         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4055         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4056         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4057         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4058         slot_ctx->dev_state = 0;
4059
4060         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4061                         "Set up evaluate context for LPM MEL change.");
4062         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4063         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4064
4065         /* Issue and wait for the evaluate context command. */
4066         ret = xhci_configure_endpoint(xhci, udev, command,
4067                         true, true);
4068         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4069         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4070
4071         if (!ret) {
4072                 spin_lock_irqsave(&xhci->lock, flags);
4073                 virt_dev->current_mel = max_exit_latency;
4074                 spin_unlock_irqrestore(&xhci->lock, flags);
4075         }
4076         return ret;
4077 }
4078
4079 #ifdef CONFIG_PM
4080
4081 /* BESL to HIRD Encoding array for USB2 LPM */
4082 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4083         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4084
4085 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4086 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4087                                         struct usb_device *udev)
4088 {
4089         int u2del, besl, besl_host;
4090         int besl_device = 0;
4091         u32 field;
4092
4093         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4094         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4095
4096         if (field & USB_BESL_SUPPORT) {
4097                 for (besl_host = 0; besl_host < 16; besl_host++) {
4098                         if (xhci_besl_encoding[besl_host] >= u2del)
4099                                 break;
4100                 }
4101                 /* Use baseline BESL value as default */
4102                 if (field & USB_BESL_BASELINE_VALID)
4103                         besl_device = USB_GET_BESL_BASELINE(field);
4104                 else if (field & USB_BESL_DEEP_VALID)
4105                         besl_device = USB_GET_BESL_DEEP(field);
4106         } else {
4107                 if (u2del <= 50)
4108                         besl_host = 0;
4109                 else
4110                         besl_host = (u2del - 51) / 75 + 1;
4111         }
4112
4113         besl = besl_host + besl_device;
4114         if (besl > 15)
4115                 besl = 15;
4116
4117         return besl;
4118 }
4119
4120 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4121 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4122 {
4123         u32 field;
4124         int l1;
4125         int besld = 0;
4126         int hirdm = 0;
4127
4128         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4129
4130         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4131         l1 = udev->l1_params.timeout / 256;
4132
4133         /* device has preferred BESLD */
4134         if (field & USB_BESL_DEEP_VALID) {
4135                 besld = USB_GET_BESL_DEEP(field);
4136                 hirdm = 1;
4137         }
4138
4139         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4140 }
4141
4142 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4143                         struct usb_device *udev, int enable)
4144 {
4145         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4146         __le32 __iomem  **port_array;
4147         __le32 __iomem  *pm_addr, *hlpm_addr;
4148         u32             pm_val, hlpm_val, field;
4149         unsigned int    port_num;
4150         unsigned long   flags;
4151         int             hird, exit_latency;
4152         int             ret;
4153
4154         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4155                         !udev->lpm_capable)
4156                 return -EPERM;
4157
4158         if (!udev->parent || udev->parent->parent ||
4159                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4160                 return -EPERM;
4161
4162         if (udev->usb2_hw_lpm_capable != 1)
4163                 return -EPERM;
4164
4165         spin_lock_irqsave(&xhci->lock, flags);
4166
4167         port_array = xhci->usb2_ports;
4168         port_num = udev->portnum - 1;
4169         pm_addr = port_array[port_num] + PORTPMSC;
4170         pm_val = readl(pm_addr);
4171         hlpm_addr = port_array[port_num] + PORTHLPMC;
4172         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4173
4174         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4175                         enable ? "enable" : "disable", port_num + 1);
4176
4177         if (enable) {
4178                 /* Host supports BESL timeout instead of HIRD */
4179                 if (udev->usb2_hw_lpm_besl_capable) {
4180                         /* if device doesn't have a preferred BESL value use a
4181                          * default one which works with mixed HIRD and BESL
4182                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4183                          */
4184                         if ((field & USB_BESL_SUPPORT) &&
4185                             (field & USB_BESL_BASELINE_VALID))
4186                                 hird = USB_GET_BESL_BASELINE(field);
4187                         else
4188                                 hird = udev->l1_params.besl;
4189
4190                         exit_latency = xhci_besl_encoding[hird];
4191                         spin_unlock_irqrestore(&xhci->lock, flags);
4192
4193                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4194                          * input context for link powermanagement evaluate
4195                          * context commands. It is protected by hcd->bandwidth
4196                          * mutex and is shared by all devices. We need to set
4197                          * the max ext latency in USB 2 BESL LPM as well, so
4198                          * use the same mutex and xhci_change_max_exit_latency()
4199                          */
4200                         mutex_lock(hcd->bandwidth_mutex);
4201                         ret = xhci_change_max_exit_latency(xhci, udev,
4202                                                            exit_latency);
4203                         mutex_unlock(hcd->bandwidth_mutex);
4204
4205                         if (ret < 0)
4206                                 return ret;
4207                         spin_lock_irqsave(&xhci->lock, flags);
4208
4209                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4210                         writel(hlpm_val, hlpm_addr);
4211                         /* flush write */
4212                         readl(hlpm_addr);
4213                 } else {
4214                         hird = xhci_calculate_hird_besl(xhci, udev);
4215                 }
4216
4217                 pm_val &= ~PORT_HIRD_MASK;
4218                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4219                 writel(pm_val, pm_addr);
4220                 pm_val = readl(pm_addr);
4221                 pm_val |= PORT_HLE;
4222                 writel(pm_val, pm_addr);
4223                 /* flush write */
4224                 readl(pm_addr);
4225         } else {
4226                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4227                 writel(pm_val, pm_addr);
4228                 /* flush write */
4229                 readl(pm_addr);
4230                 if (udev->usb2_hw_lpm_besl_capable) {
4231                         spin_unlock_irqrestore(&xhci->lock, flags);
4232                         mutex_lock(hcd->bandwidth_mutex);
4233                         xhci_change_max_exit_latency(xhci, udev, 0);
4234                         mutex_unlock(hcd->bandwidth_mutex);
4235                         return 0;
4236                 }
4237         }
4238
4239         spin_unlock_irqrestore(&xhci->lock, flags);
4240         return 0;
4241 }
4242
4243 /* check if a usb2 port supports a given extened capability protocol
4244  * only USB2 ports extended protocol capability values are cached.
4245  * Return 1 if capability is supported
4246  */
4247 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4248                                            unsigned capability)
4249 {
4250         u32 port_offset, port_count;
4251         int i;
4252
4253         for (i = 0; i < xhci->num_ext_caps; i++) {
4254                 if (xhci->ext_caps[i] & capability) {
4255                         /* port offsets starts at 1 */
4256                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4257                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4258                         if (port >= port_offset &&
4259                             port < port_offset + port_count)
4260                                 return 1;
4261                 }
4262         }
4263         return 0;
4264 }
4265
4266 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4267 {
4268         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4269         int             portnum = udev->portnum - 1;
4270
4271         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4272                         !udev->lpm_capable)
4273                 return 0;
4274
4275         /* we only support lpm for non-hub device connected to root hub yet */
4276         if (!udev->parent || udev->parent->parent ||
4277                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4278                 return 0;
4279
4280         if (xhci->hw_lpm_support == 1 &&
4281                         xhci_check_usb2_port_capability(
4282                                 xhci, portnum, XHCI_HLC)) {
4283                 udev->usb2_hw_lpm_capable = 1;
4284                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4285                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4286                 if (xhci_check_usb2_port_capability(xhci, portnum,
4287                                         XHCI_BLC))
4288                         udev->usb2_hw_lpm_besl_capable = 1;
4289         }
4290
4291         return 0;
4292 }
4293
4294 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4295
4296 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4297 static unsigned long long xhci_service_interval_to_ns(
4298                 struct usb_endpoint_descriptor *desc)
4299 {
4300         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4301 }
4302
4303 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4304                 enum usb3_link_state state)
4305 {
4306         unsigned long long sel;
4307         unsigned long long pel;
4308         unsigned int max_sel_pel;
4309         char *state_name;
4310
4311         switch (state) {
4312         case USB3_LPM_U1:
4313                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4314                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4315                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4316                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4317                 state_name = "U1";
4318                 break;
4319         case USB3_LPM_U2:
4320                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4321                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4322                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4323                 state_name = "U2";
4324                 break;
4325         default:
4326                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4327                                 __func__);
4328                 return USB3_LPM_DISABLED;
4329         }
4330
4331         if (sel <= max_sel_pel && pel <= max_sel_pel)
4332                 return USB3_LPM_DEVICE_INITIATED;
4333
4334         if (sel > max_sel_pel)
4335                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4336                                 "due to long SEL %llu ms\n",
4337                                 state_name, sel);
4338         else
4339                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4340                                 "due to long PEL %llu ms\n",
4341                                 state_name, pel);
4342         return USB3_LPM_DISABLED;
4343 }
4344
4345 /* The U1 timeout should be the maximum of the following values:
4346  *  - For control endpoints, U1 system exit latency (SEL) * 3
4347  *  - For bulk endpoints, U1 SEL * 5
4348  *  - For interrupt endpoints:
4349  *    - Notification EPs, U1 SEL * 3
4350  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4351  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4352  */
4353 static unsigned long long xhci_calculate_intel_u1_timeout(
4354                 struct usb_device *udev,
4355                 struct usb_endpoint_descriptor *desc)
4356 {
4357         unsigned long long timeout_ns;
4358         int ep_type;
4359         int intr_type;
4360
4361         ep_type = usb_endpoint_type(desc);
4362         switch (ep_type) {
4363         case USB_ENDPOINT_XFER_CONTROL:
4364                 timeout_ns = udev->u1_params.sel * 3;
4365                 break;
4366         case USB_ENDPOINT_XFER_BULK:
4367                 timeout_ns = udev->u1_params.sel * 5;
4368                 break;
4369         case USB_ENDPOINT_XFER_INT:
4370                 intr_type = usb_endpoint_interrupt_type(desc);
4371                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4372                         timeout_ns = udev->u1_params.sel * 3;
4373                         break;
4374                 }
4375                 /* Otherwise the calculation is the same as isoc eps */
4376         case USB_ENDPOINT_XFER_ISOC:
4377                 timeout_ns = xhci_service_interval_to_ns(desc);
4378                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4379                 if (timeout_ns < udev->u1_params.sel * 2)
4380                         timeout_ns = udev->u1_params.sel * 2;
4381                 break;
4382         default:
4383                 return 0;
4384         }
4385
4386         return timeout_ns;
4387 }
4388
4389 /* Returns the hub-encoded U1 timeout value. */
4390 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4391                 struct usb_device *udev,
4392                 struct usb_endpoint_descriptor *desc)
4393 {
4394         unsigned long long timeout_ns;
4395
4396         if (xhci->quirks & XHCI_INTEL_HOST)
4397                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4398         else
4399                 timeout_ns = udev->u1_params.sel;
4400
4401         /* The U1 timeout is encoded in 1us intervals.
4402          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4403          */
4404         if (timeout_ns == USB3_LPM_DISABLED)
4405                 timeout_ns = 1;
4406         else
4407                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4408
4409         /* If the necessary timeout value is bigger than what we can set in the
4410          * USB 3.0 hub, we have to disable hub-initiated U1.
4411          */
4412         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4413                 return timeout_ns;
4414         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4415                         "due to long timeout %llu ms\n", timeout_ns);
4416         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4417 }
4418
4419 /* The U2 timeout should be the maximum of:
4420  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4421  *  - largest bInterval of any active periodic endpoint (to avoid going
4422  *    into lower power link states between intervals).
4423  *  - the U2 Exit Latency of the device
4424  */
4425 static unsigned long long xhci_calculate_intel_u2_timeout(
4426                 struct usb_device *udev,
4427                 struct usb_endpoint_descriptor *desc)
4428 {
4429         unsigned long long timeout_ns;
4430         unsigned long long u2_del_ns;
4431
4432         timeout_ns = 10 * 1000 * 1000;
4433
4434         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4435                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4436                 timeout_ns = xhci_service_interval_to_ns(desc);
4437
4438         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4439         if (u2_del_ns > timeout_ns)
4440                 timeout_ns = u2_del_ns;
4441
4442         return timeout_ns;
4443 }
4444
4445 /* Returns the hub-encoded U2 timeout value. */
4446 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4447                 struct usb_device *udev,
4448                 struct usb_endpoint_descriptor *desc)
4449 {
4450         unsigned long long timeout_ns;
4451
4452         if (xhci->quirks & XHCI_INTEL_HOST)
4453                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4454         else
4455                 timeout_ns = udev->u2_params.sel;
4456
4457         /* The U2 timeout is encoded in 256us intervals */
4458         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4459         /* If the necessary timeout value is bigger than what we can set in the
4460          * USB 3.0 hub, we have to disable hub-initiated U2.
4461          */
4462         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4463                 return timeout_ns;
4464         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4465                         "due to long timeout %llu ms\n", timeout_ns);
4466         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4467 }
4468
4469 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4470                 struct usb_device *udev,
4471                 struct usb_endpoint_descriptor *desc,
4472                 enum usb3_link_state state,
4473                 u16 *timeout)
4474 {
4475         if (state == USB3_LPM_U1)
4476                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4477         else if (state == USB3_LPM_U2)
4478                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4479
4480         return USB3_LPM_DISABLED;
4481 }
4482
4483 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4484                 struct usb_device *udev,
4485                 struct usb_endpoint_descriptor *desc,
4486                 enum usb3_link_state state,
4487                 u16 *timeout)
4488 {
4489         u16 alt_timeout;
4490
4491         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4492                 desc, state, timeout);
4493
4494         /* If we found we can't enable hub-initiated LPM, or
4495          * the U1 or U2 exit latency was too high to allow
4496          * device-initiated LPM as well, just stop searching.
4497          */
4498         if (alt_timeout == USB3_LPM_DISABLED ||
4499                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4500                 *timeout = alt_timeout;
4501                 return -E2BIG;
4502         }
4503         if (alt_timeout > *timeout)
4504                 *timeout = alt_timeout;
4505         return 0;
4506 }
4507
4508 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4509                 struct usb_device *udev,
4510                 struct usb_host_interface *alt,
4511                 enum usb3_link_state state,
4512                 u16 *timeout)
4513 {
4514         int j;
4515
4516         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4517                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4518                                         &alt->endpoint[j].desc, state, timeout))
4519                         return -E2BIG;
4520                 continue;
4521         }
4522         return 0;
4523 }
4524
4525 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4526                 enum usb3_link_state state)
4527 {
4528         struct usb_device *parent;
4529         unsigned int num_hubs;
4530
4531         if (state == USB3_LPM_U2)
4532                 return 0;
4533
4534         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4535         for (parent = udev->parent, num_hubs = 0; parent->parent;
4536                         parent = parent->parent)
4537                 num_hubs++;
4538
4539         if (num_hubs < 2)
4540                 return 0;
4541
4542         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4543                         " below second-tier hub.\n");
4544         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4545                         "to decrease power consumption.\n");
4546         return -E2BIG;
4547 }
4548
4549 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4550                 struct usb_device *udev,
4551                 enum usb3_link_state state)
4552 {
4553         if (xhci->quirks & XHCI_INTEL_HOST)
4554                 return xhci_check_intel_tier_policy(udev, state);
4555         else
4556                 return 0;
4557 }
4558
4559 /* Returns the U1 or U2 timeout that should be enabled.
4560  * If the tier check or timeout setting functions return with a non-zero exit
4561  * code, that means the timeout value has been finalized and we shouldn't look
4562  * at any more endpoints.
4563  */
4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4565                         struct usb_device *udev, enum usb3_link_state state)
4566 {
4567         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4568         struct usb_host_config *config;
4569         char *state_name;
4570         int i;
4571         u16 timeout = USB3_LPM_DISABLED;
4572
4573         if (state == USB3_LPM_U1)
4574                 state_name = "U1";
4575         else if (state == USB3_LPM_U2)
4576                 state_name = "U2";
4577         else {
4578                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4579                                 state);
4580                 return timeout;
4581         }
4582
4583         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4584                 return timeout;
4585
4586         /* Gather some information about the currently installed configuration
4587          * and alternate interface settings.
4588          */
4589         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4590                         state, &timeout))
4591                 return timeout;
4592
4593         config = udev->actconfig;
4594         if (!config)
4595                 return timeout;
4596
4597         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4598                 struct usb_driver *driver;
4599                 struct usb_interface *intf = config->interface[i];
4600
4601                 if (!intf)
4602                         continue;
4603
4604                 /* Check if any currently bound drivers want hub-initiated LPM
4605                  * disabled.
4606                  */
4607                 if (intf->dev.driver) {
4608                         driver = to_usb_driver(intf->dev.driver);
4609                         if (driver && driver->disable_hub_initiated_lpm) {
4610                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4611                                                 "at request of driver %s\n",
4612                                                 state_name, driver->name);
4613                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4614                         }
4615                 }
4616
4617                 /* Not sure how this could happen... */
4618                 if (!intf->cur_altsetting)
4619                         continue;
4620
4621                 if (xhci_update_timeout_for_interface(xhci, udev,
4622                                         intf->cur_altsetting,
4623                                         state, &timeout))
4624                         return timeout;
4625         }
4626         return timeout;
4627 }
4628
4629 static int calculate_max_exit_latency(struct usb_device *udev,
4630                 enum usb3_link_state state_changed,
4631                 u16 hub_encoded_timeout)
4632 {
4633         unsigned long long u1_mel_us = 0;
4634         unsigned long long u2_mel_us = 0;
4635         unsigned long long mel_us = 0;
4636         bool disabling_u1;
4637         bool disabling_u2;
4638         bool enabling_u1;
4639         bool enabling_u2;
4640
4641         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4642                         hub_encoded_timeout == USB3_LPM_DISABLED);
4643         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4644                         hub_encoded_timeout == USB3_LPM_DISABLED);
4645
4646         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4647                         hub_encoded_timeout != USB3_LPM_DISABLED);
4648         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4649                         hub_encoded_timeout != USB3_LPM_DISABLED);
4650
4651         /* If U1 was already enabled and we're not disabling it,
4652          * or we're going to enable U1, account for the U1 max exit latency.
4653          */
4654         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4655                         enabling_u1)
4656                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4657         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4658                         enabling_u2)
4659                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4660
4661         if (u1_mel_us > u2_mel_us)
4662                 mel_us = u1_mel_us;
4663         else
4664                 mel_us = u2_mel_us;
4665         /* xHCI host controller max exit latency field is only 16 bits wide. */
4666         if (mel_us > MAX_EXIT) {
4667                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4668                                 "is too big.\n", mel_us);
4669                 return -E2BIG;
4670         }
4671         return mel_us;
4672 }
4673
4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676                         struct usb_device *udev, enum usb3_link_state state)
4677 {
4678         struct xhci_hcd *xhci;
4679         u16 hub_encoded_timeout;
4680         int mel;
4681         int ret;
4682
4683         xhci = hcd_to_xhci(hcd);
4684         /* The LPM timeout values are pretty host-controller specific, so don't
4685          * enable hub-initiated timeouts unless the vendor has provided
4686          * information about their timeout algorithm.
4687          */
4688         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689                         !xhci->devs[udev->slot_id])
4690                 return USB3_LPM_DISABLED;
4691
4692         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4693         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4694         if (mel < 0) {
4695                 /* Max Exit Latency is too big, disable LPM. */
4696                 hub_encoded_timeout = USB3_LPM_DISABLED;
4697                 mel = 0;
4698         }
4699
4700         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4701         if (ret)
4702                 return ret;
4703         return hub_encoded_timeout;
4704 }
4705
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707                         struct usb_device *udev, enum usb3_link_state state)
4708 {
4709         struct xhci_hcd *xhci;
4710         u16 mel;
4711
4712         xhci = hcd_to_xhci(hcd);
4713         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4714                         !xhci->devs[udev->slot_id])
4715                 return 0;
4716
4717         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4718         return xhci_change_max_exit_latency(xhci, udev, mel);
4719 }
4720 #else /* CONFIG_PM */
4721
4722 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4723                                 struct usb_device *udev, int enable)
4724 {
4725         return 0;
4726 }
4727
4728 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4729 {
4730         return 0;
4731 }
4732
4733 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4734                         struct usb_device *udev, enum usb3_link_state state)
4735 {
4736         return USB3_LPM_DISABLED;
4737 }
4738
4739 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4740                         struct usb_device *udev, enum usb3_link_state state)
4741 {
4742         return 0;
4743 }
4744 #endif  /* CONFIG_PM */
4745
4746 /*-------------------------------------------------------------------------*/
4747
4748 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4749  * internal data structures for the device.
4750  */
4751 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4752                         struct usb_tt *tt, gfp_t mem_flags)
4753 {
4754         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4755         struct xhci_virt_device *vdev;
4756         struct xhci_command *config_cmd;
4757         struct xhci_input_control_ctx *ctrl_ctx;
4758         struct xhci_slot_ctx *slot_ctx;
4759         unsigned long flags;
4760         unsigned think_time;
4761         int ret;
4762
4763         /* Ignore root hubs */
4764         if (!hdev->parent)
4765                 return 0;
4766
4767         vdev = xhci->devs[hdev->slot_id];
4768         if (!vdev) {
4769                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4770                 return -EINVAL;
4771         }
4772         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4773         if (!config_cmd) {
4774                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4775                 return -ENOMEM;
4776         }
4777         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4778         if (!ctrl_ctx) {
4779                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4780                                 __func__);
4781                 xhci_free_command(xhci, config_cmd);
4782                 return -ENOMEM;
4783         }
4784
4785         spin_lock_irqsave(&xhci->lock, flags);
4786         if (hdev->speed == USB_SPEED_HIGH &&
4787                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4788                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4789                 xhci_free_command(xhci, config_cmd);
4790                 spin_unlock_irqrestore(&xhci->lock, flags);
4791                 return -ENOMEM;
4792         }
4793
4794         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4795         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4796         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4797         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4798         /*
4799          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4800          * but it may be already set to 1 when setup an xHCI virtual
4801          * device, so clear it anyway.
4802          */
4803         if (tt->multi)
4804                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4805         else if (hdev->speed == USB_SPEED_FULL)
4806                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4807
4808         if (xhci->hci_version > 0x95) {
4809                 xhci_dbg(xhci, "xHCI version %x needs hub "
4810                                 "TT think time and number of ports\n",
4811                                 (unsigned int) xhci->hci_version);
4812                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4813                 /* Set TT think time - convert from ns to FS bit times.
4814                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4815                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4816                  *
4817                  * xHCI 1.0: this field shall be 0 if the device is not a
4818                  * High-spped hub.
4819                  */
4820                 think_time = tt->think_time;
4821                 if (think_time != 0)
4822                         think_time = (think_time / 666) - 1;
4823                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4824                         slot_ctx->tt_info |=
4825                                 cpu_to_le32(TT_THINK_TIME(think_time));
4826         } else {
4827                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4828                                 "TT think time or number of ports\n",
4829                                 (unsigned int) xhci->hci_version);
4830         }
4831         slot_ctx->dev_state = 0;
4832         spin_unlock_irqrestore(&xhci->lock, flags);
4833
4834         xhci_dbg(xhci, "Set up %s for hub device.\n",
4835                         (xhci->hci_version > 0x95) ?
4836                         "configure endpoint" : "evaluate context");
4837         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4838         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4839
4840         /* Issue and wait for the configure endpoint or
4841          * evaluate context command.
4842          */
4843         if (xhci->hci_version > 0x95)
4844                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4845                                 false, false);
4846         else
4847                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4848                                 true, false);
4849
4850         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4851         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4852
4853         xhci_free_command(xhci, config_cmd);
4854         return ret;
4855 }
4856
4857 int xhci_get_frame(struct usb_hcd *hcd)
4858 {
4859         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4860         /* EHCI mods by the periodic size.  Why? */
4861         return readl(&xhci->run_regs->microframe_index) >> 3;
4862 }
4863
4864 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4865 {
4866         struct xhci_hcd         *xhci;
4867         struct device           *dev = hcd->self.controller;
4868         int                     retval;
4869
4870         /* Accept arbitrarily long scatter-gather lists */
4871         hcd->self.sg_tablesize = ~0;
4872
4873         /* support to build packet from discontinuous buffers */
4874         hcd->self.no_sg_constraint = 1;
4875
4876         /* XHCI controllers don't stop the ep queue on short packets :| */
4877         hcd->self.no_stop_on_short = 1;
4878
4879         xhci = hcd_to_xhci(hcd);
4880
4881         if (usb_hcd_is_primary_hcd(hcd)) {
4882                 xhci->main_hcd = hcd;
4883                 /* Mark the first roothub as being USB 2.0.
4884                  * The xHCI driver will register the USB 3.0 roothub.
4885                  */
4886                 hcd->speed = HCD_USB2;
4887                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4888                 /*
4889                  * USB 2.0 roothub under xHCI has an integrated TT,
4890                  * (rate matching hub) as opposed to having an OHCI/UHCI
4891                  * companion controller.
4892                  */
4893                 hcd->has_tt = 1;
4894         } else {
4895                 if (xhci->sbrn == 0x31) {
4896                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4897                         hcd->speed = HCD_USB31;
4898                 }
4899                 /* xHCI private pointer was set in xhci_pci_probe for the second
4900                  * registered roothub.
4901                  */
4902                 return 0;
4903         }
4904
4905         mutex_init(&xhci->mutex);
4906         xhci->cap_regs = hcd->regs;
4907         xhci->op_regs = hcd->regs +
4908                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4909         xhci->run_regs = hcd->regs +
4910                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4911         /* Cache read-only capability registers */
4912         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4913         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4914         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4915         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4916         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4917         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4918         if (xhci->hci_version > 0x100)
4919                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4920         xhci_print_registers(xhci);
4921
4922         xhci->quirks = quirks;
4923
4924         get_quirks(dev, xhci);
4925
4926         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4927          * success event after a short transfer. This quirk will ignore such
4928          * spurious event.
4929          */
4930         if (xhci->hci_version > 0x96)
4931                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4932
4933         /* Make sure the HC is halted. */
4934         retval = xhci_halt(xhci);
4935         if (retval)
4936                 return retval;
4937
4938         xhci_dbg(xhci, "Resetting HCD\n");
4939         /* Reset the internal HC memory state and registers. */
4940         retval = xhci_reset(xhci);
4941         if (retval)
4942                 return retval;
4943         xhci_dbg(xhci, "Reset complete\n");
4944
4945         /* Set dma_mask and coherent_dma_mask to 64-bits,
4946          * if xHC supports 64-bit addressing */
4947         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4948                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4949                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4950                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4951         } else {
4952                 /*
4953                  * This is to avoid error in cases where a 32-bit USB
4954                  * controller is used on a 64-bit capable system.
4955                  */
4956                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4957                 if (retval)
4958                         return retval;
4959                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4960                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4961         }
4962
4963         xhci_dbg(xhci, "Calling HCD init\n");
4964         /* Initialize HCD and host controller data structures. */
4965         retval = xhci_init(hcd);
4966         if (retval)
4967                 return retval;
4968         xhci_dbg(xhci, "Called HCD init\n");
4969
4970         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4971                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4972
4973         return 0;
4974 }
4975 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4976
4977 static const struct hc_driver xhci_hc_driver = {
4978         .description =          "xhci-hcd",
4979         .product_desc =         "xHCI Host Controller",
4980         .hcd_priv_size =        sizeof(struct xhci_hcd),
4981
4982         /*
4983          * generic hardware linkage
4984          */
4985         .irq =                  xhci_irq,
4986         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4987
4988         /*
4989          * basic lifecycle operations
4990          */
4991         .reset =                NULL, /* set in xhci_init_driver() */
4992         .start =                xhci_run,
4993         .stop =                 xhci_stop,
4994         .shutdown =             xhci_shutdown,
4995
4996         /*
4997          * managing i/o requests and associated device resources
4998          */
4999         .urb_enqueue =          xhci_urb_enqueue,
5000         .urb_dequeue =          xhci_urb_dequeue,
5001         .alloc_dev =            xhci_alloc_dev,
5002         .free_dev =             xhci_free_dev,
5003         .alloc_streams =        xhci_alloc_streams,
5004         .free_streams =         xhci_free_streams,
5005         .add_endpoint =         xhci_add_endpoint,
5006         .drop_endpoint =        xhci_drop_endpoint,
5007         .endpoint_reset =       xhci_endpoint_reset,
5008         .check_bandwidth =      xhci_check_bandwidth,
5009         .reset_bandwidth =      xhci_reset_bandwidth,
5010         .address_device =       xhci_address_device,
5011         .enable_device =        xhci_enable_device,
5012         .update_hub_device =    xhci_update_hub_device,
5013         .reset_device =         xhci_discover_or_reset_device,
5014
5015         /*
5016          * scheduling support
5017          */
5018         .get_frame_number =     xhci_get_frame,
5019
5020         /*
5021          * root hub support
5022          */
5023         .hub_control =          xhci_hub_control,
5024         .hub_status_data =      xhci_hub_status_data,
5025         .bus_suspend =          xhci_bus_suspend,
5026         .bus_resume =           xhci_bus_resume,
5027
5028         /*
5029          * call back when device connected and addressed
5030          */
5031         .update_device =        xhci_update_device,
5032         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5033         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5034         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5035         .find_raw_port_number = xhci_find_raw_port_number,
5036 };
5037
5038 void xhci_init_driver(struct hc_driver *drv,
5039                       const struct xhci_driver_overrides *over)
5040 {
5041         BUG_ON(!over);
5042
5043         /* Copy the generic table to drv then apply the overrides */
5044         *drv = xhci_hc_driver;
5045
5046         if (over) {
5047                 drv->hcd_priv_size += over->extra_priv_size;
5048                 if (over->reset)
5049                         drv->reset = over->reset;
5050                 if (over->start)
5051                         drv->start = over->start;
5052         }
5053 }
5054 EXPORT_SYMBOL_GPL(xhci_init_driver);
5055
5056 MODULE_DESCRIPTION(DRIVER_DESC);
5057 MODULE_AUTHOR(DRIVER_AUTHOR);
5058 MODULE_LICENSE("GPL");
5059
5060 static int __init xhci_hcd_init(void)
5061 {
5062         /*
5063          * Check the compiler generated sizes of structures that must be laid
5064          * out in specific ways for hardware access.
5065          */
5066         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5067         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5068         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5069         /* xhci_device_control has eight fields, and also
5070          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5071          */
5072         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5073         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5074         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5075         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5076         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5077         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5078         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5079
5080         if (usb_disabled())
5081                 return -ENODEV;
5082
5083         return 0;
5084 }
5085
5086 /*
5087  * If an init function is provided, an exit function must also be provided
5088  * to allow module unload.
5089  */
5090 static void __exit xhci_hcd_fini(void) { }
5091
5092 module_init(xhci_hcd_init);
5093 module_exit(xhci_hcd_fini);