Merge remote-tracking branch 'regulator/topic/da9063' into regulator-next
[linux-drm-fsl-dcu.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldiscs_lock from called functions
607  *                termios_rwsem resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         if (test_bit(TTY_HUPPED, &tty->flags)) {
633                 tty_unlock(tty);
634                 return;
635         }
636
637         /* some functions below drop BTM, so we need this bit */
638         set_bit(TTY_HUPPING, &tty->flags);
639
640         /* inuse_filps is protected by the single tty lock,
641            this really needs to change if we want to flush the
642            workqueue with the lock held */
643         check_tty_count(tty, "tty_hangup");
644
645         spin_lock(&tty_files_lock);
646         /* This breaks for file handles being sent over AF_UNIX sockets ? */
647         list_for_each_entry(priv, &tty->tty_files, list) {
648                 filp = priv->file;
649                 if (filp->f_op->write == redirected_tty_write)
650                         cons_filp = filp;
651                 if (filp->f_op->write != tty_write)
652                         continue;
653                 closecount++;
654                 __tty_fasync(-1, filp, 0);      /* can't block */
655                 filp->f_op = &hung_up_tty_fops;
656         }
657         spin_unlock(&tty_files_lock);
658
659         refs = tty_signal_session_leader(tty, exit_session);
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * it drops BTM and thus races with reopen
666          * we protect the race by TTY_HUPPING
667          */
668         tty_ldisc_hangup(tty);
669
670         spin_lock_irq(&tty->ctrl_lock);
671         clear_bit(TTY_THROTTLED, &tty->flags);
672         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673         put_pid(tty->session);
674         put_pid(tty->pgrp);
675         tty->session = NULL;
676         tty->pgrp = NULL;
677         tty->ctrl_status = 0;
678         spin_unlock_irq(&tty->ctrl_lock);
679
680         /*
681          * If one of the devices matches a console pointer, we
682          * cannot just call hangup() because that will cause
683          * tty->count and state->count to go out of sync.
684          * So we just call close() the right number of times.
685          */
686         if (cons_filp) {
687                 if (tty->ops->close)
688                         for (n = 0; n < closecount; n++)
689                                 tty->ops->close(tty, cons_filp);
690         } else if (tty->ops->hangup)
691                 (tty->ops->hangup)(tty);
692         /*
693          * We don't want to have driver/ldisc interactions beyond
694          * the ones we did here. The driver layer expects no
695          * calls after ->hangup() from the ldisc side. However we
696          * can't yet guarantee all that.
697          */
698         set_bit(TTY_HUPPED, &tty->flags);
699         clear_bit(TTY_HUPPING, &tty->flags);
700
701         tty_unlock(tty);
702
703         if (f)
704                 fput(f);
705 }
706
707 static void do_tty_hangup(struct work_struct *work)
708 {
709         struct tty_struct *tty =
710                 container_of(work, struct tty_struct, hangup_work);
711
712         __tty_hangup(tty, 0);
713 }
714
715 /**
716  *      tty_hangup              -       trigger a hangup event
717  *      @tty: tty to hangup
718  *
719  *      A carrier loss (virtual or otherwise) has occurred on this like
720  *      schedule a hangup sequence to run after this event.
721  */
722
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726         char    buf[64];
727         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729         schedule_work(&tty->hangup_work);
730 }
731
732 EXPORT_SYMBOL(tty_hangup);
733
734 /**
735  *      tty_vhangup             -       process vhangup
736  *      @tty: tty to hangup
737  *
738  *      The user has asked via system call for the terminal to be hung up.
739  *      We do this synchronously so that when the syscall returns the process
740  *      is complete. That guarantee is necessary for security reasons.
741  */
742
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746         char    buf[64];
747
748         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750         __tty_hangup(tty, 0);
751 }
752
753 EXPORT_SYMBOL(tty_vhangup);
754
755
756 /**
757  *      tty_vhangup_self        -       process vhangup for own ctty
758  *
759  *      Perform a vhangup on the current controlling tty
760  */
761
762 void tty_vhangup_self(void)
763 {
764         struct tty_struct *tty;
765
766         tty = get_current_tty();
767         if (tty) {
768                 tty_vhangup(tty);
769                 tty_kref_put(tty);
770         }
771 }
772
773 /**
774  *      tty_vhangup_session             -       hangup session leader exit
775  *      @tty: tty to hangup
776  *
777  *      The session leader is exiting and hanging up its controlling terminal.
778  *      Every process in the foreground process group is signalled SIGHUP.
779  *
780  *      We do this synchronously so that when the syscall returns the process
781  *      is complete. That guarantee is necessary for security reasons.
782  */
783
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787         char    buf[64];
788
789         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791         __tty_hangup(tty, 1);
792 }
793
794 /**
795  *      tty_hung_up_p           -       was tty hung up
796  *      @filp: file pointer of tty
797  *
798  *      Return true if the tty has been subject to a vhangup or a carrier
799  *      loss
800  */
801
802 int tty_hung_up_p(struct file *filp)
803 {
804         return (filp->f_op == &hung_up_tty_fops);
805 }
806
807 EXPORT_SYMBOL(tty_hung_up_p);
808
809 static void session_clear_tty(struct pid *session)
810 {
811         struct task_struct *p;
812         do_each_pid_task(session, PIDTYPE_SID, p) {
813                 proc_clear_tty(p);
814         } while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816
817 /**
818  *      disassociate_ctty       -       disconnect controlling tty
819  *      @on_exit: true if exiting so need to "hang up" the session
820  *
821  *      This function is typically called only by the session leader, when
822  *      it wants to disassociate itself from its controlling tty.
823  *
824  *      It performs the following functions:
825  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  *      (2)  Clears the tty from being controlling the session
827  *      (3)  Clears the controlling tty for all processes in the
828  *              session group.
829  *
830  *      The argument on_exit is set to 1 if called when a process is
831  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *      Locking:
834  *              BTM is taken for hysterical raisins, and held when
835  *                called from no_tty().
836  *                tty_mutex is taken to protect tty
837  *                ->siglock is taken to protect ->signal/->sighand
838  *                tasklist_lock is taken to walk process list for sessions
839  *                  ->siglock is taken to protect ->signal/->sighand
840  */
841
842 void disassociate_ctty(int on_exit)
843 {
844         struct tty_struct *tty;
845
846         if (!current->signal->leader)
847                 return;
848
849         tty = get_current_tty();
850         if (tty) {
851                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852                         tty_vhangup_session(tty);
853                 } else {
854                         struct pid *tty_pgrp = tty_get_pgrp(tty);
855                         if (tty_pgrp) {
856                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857                                 if (!on_exit)
858                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859                                 put_pid(tty_pgrp);
860                         }
861                 }
862                 tty_kref_put(tty);
863
864         } else if (on_exit) {
865                 struct pid *old_pgrp;
866                 spin_lock_irq(&current->sighand->siglock);
867                 old_pgrp = current->signal->tty_old_pgrp;
868                 current->signal->tty_old_pgrp = NULL;
869                 spin_unlock_irq(&current->sighand->siglock);
870                 if (old_pgrp) {
871                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
872                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
873                         put_pid(old_pgrp);
874                 }
875                 return;
876         }
877
878         spin_lock_irq(&current->sighand->siglock);
879         put_pid(current->signal->tty_old_pgrp);
880         current->signal->tty_old_pgrp = NULL;
881         spin_unlock_irq(&current->sighand->siglock);
882
883         tty = get_current_tty();
884         if (tty) {
885                 unsigned long flags;
886                 spin_lock_irqsave(&tty->ctrl_lock, flags);
887                 put_pid(tty->session);
888                 put_pid(tty->pgrp);
889                 tty->session = NULL;
890                 tty->pgrp = NULL;
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 tty_kref_put(tty);
893         } else {
894 #ifdef TTY_DEBUG_HANGUP
895                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896                        " = NULL", tty);
897 #endif
898         }
899
900         /* Now clear signal->tty under the lock */
901         read_lock(&tasklist_lock);
902         session_clear_tty(task_session(current));
903         read_unlock(&tasklist_lock);
904 }
905
906 /**
907  *
908  *      no_tty  - Ensure the current process does not have a controlling tty
909  */
910 void no_tty(void)
911 {
912         /* FIXME: Review locking here. The tty_lock never covered any race
913            between a new association and proc_clear_tty but possible we need
914            to protect against this anyway */
915         struct task_struct *tsk = current;
916         disassociate_ctty(0);
917         proc_clear_tty(tsk);
918 }
919
920
921 /**
922  *      stop_tty        -       propagate flow control
923  *      @tty: tty to stop
924  *
925  *      Perform flow control to the driver. For PTY/TTY pairs we
926  *      must also propagate the TIOCKPKT status. May be called
927  *      on an already stopped device and will not re-call the driver
928  *      method.
929  *
930  *      This functionality is used by both the line disciplines for
931  *      halting incoming flow and by the driver. It may therefore be
932  *      called from any context, may be under the tty atomic_write_lock
933  *      but not always.
934  *
935  *      Locking:
936  *              Uses the tty control lock internally
937  */
938
939 void stop_tty(struct tty_struct *tty)
940 {
941         unsigned long flags;
942         spin_lock_irqsave(&tty->ctrl_lock, flags);
943         if (tty->stopped) {
944                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945                 return;
946         }
947         tty->stopped = 1;
948         if (tty->link && tty->link->packet) {
949                 tty->ctrl_status &= ~TIOCPKT_START;
950                 tty->ctrl_status |= TIOCPKT_STOP;
951                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
952         }
953         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954         if (tty->ops->stop)
955                 (tty->ops->stop)(tty);
956 }
957
958 EXPORT_SYMBOL(stop_tty);
959
960 /**
961  *      start_tty       -       propagate flow control
962  *      @tty: tty to start
963  *
964  *      Start a tty that has been stopped if at all possible. Perform
965  *      any necessary wakeups and propagate the TIOCPKT status. If this
966  *      is the tty was previous stopped and is being started then the
967  *      driver start method is invoked and the line discipline woken.
968  *
969  *      Locking:
970  *              ctrl_lock
971  */
972
973 void start_tty(struct tty_struct *tty)
974 {
975         unsigned long flags;
976         spin_lock_irqsave(&tty->ctrl_lock, flags);
977         if (!tty->stopped || tty->flow_stopped) {
978                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979                 return;
980         }
981         tty->stopped = 0;
982         if (tty->link && tty->link->packet) {
983                 tty->ctrl_status &= ~TIOCPKT_STOP;
984                 tty->ctrl_status |= TIOCPKT_START;
985                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
986         }
987         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988         if (tty->ops->start)
989                 (tty->ops->start)(tty);
990         /* If we have a running line discipline it may need kicking */
991         tty_wakeup(tty);
992 }
993
994 EXPORT_SYMBOL(start_tty);
995
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
998 {
999         unsigned long sec = get_seconds() & ~7;
1000         if ((long)(sec - time->tv_sec) > 0)
1001                 time->tv_sec = sec;
1002 }
1003
1004 /**
1005  *      tty_read        -       read method for tty device files
1006  *      @file: pointer to tty file
1007  *      @buf: user buffer
1008  *      @count: size of user buffer
1009  *      @ppos: unused
1010  *
1011  *      Perform the read system call function on this terminal device. Checks
1012  *      for hung up devices before calling the line discipline method.
1013  *
1014  *      Locking:
1015  *              Locks the line discipline internally while needed. Multiple
1016  *      read calls may be outstanding in parallel.
1017  */
1018
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020                         loff_t *ppos)
1021 {
1022         int i;
1023         struct inode *inode = file_inode(file);
1024         struct tty_struct *tty = file_tty(file);
1025         struct tty_ldisc *ld;
1026
1027         if (tty_paranoia_check(tty, inode, "tty_read"))
1028                 return -EIO;
1029         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030                 return -EIO;
1031
1032         /* We want to wait for the line discipline to sort out in this
1033            situation */
1034         ld = tty_ldisc_ref_wait(tty);
1035         if (ld->ops->read)
1036                 i = (ld->ops->read)(tty, file, buf, count);
1037         else
1038                 i = -EIO;
1039         tty_ldisc_deref(ld);
1040
1041         if (i > 0)
1042                 tty_update_time(&inode->i_atime);
1043
1044         return i;
1045 }
1046
1047 void tty_write_unlock(struct tty_struct *tty)
1048         __releases(&tty->atomic_write_lock)
1049 {
1050         mutex_unlock(&tty->atomic_write_lock);
1051         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052 }
1053
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055         __acquires(&tty->atomic_write_lock)
1056 {
1057         if (!mutex_trylock(&tty->atomic_write_lock)) {
1058                 if (ndelay)
1059                         return -EAGAIN;
1060                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061                         return -ERESTARTSYS;
1062         }
1063         return 0;
1064 }
1065
1066 /*
1067  * Split writes up in sane blocksizes to avoid
1068  * denial-of-service type attacks
1069  */
1070 static inline ssize_t do_tty_write(
1071         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072         struct tty_struct *tty,
1073         struct file *file,
1074         const char __user *buf,
1075         size_t count)
1076 {
1077         ssize_t ret, written = 0;
1078         unsigned int chunk;
1079
1080         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081         if (ret < 0)
1082                 return ret;
1083
1084         /*
1085          * We chunk up writes into a temporary buffer. This
1086          * simplifies low-level drivers immensely, since they
1087          * don't have locking issues and user mode accesses.
1088          *
1089          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090          * big chunk-size..
1091          *
1092          * The default chunk-size is 2kB, because the NTTY
1093          * layer has problems with bigger chunks. It will
1094          * claim to be able to handle more characters than
1095          * it actually does.
1096          *
1097          * FIXME: This can probably go away now except that 64K chunks
1098          * are too likely to fail unless switched to vmalloc...
1099          */
1100         chunk = 2048;
1101         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102                 chunk = 65536;
1103         if (count < chunk)
1104                 chunk = count;
1105
1106         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107         if (tty->write_cnt < chunk) {
1108                 unsigned char *buf_chunk;
1109
1110                 if (chunk < 1024)
1111                         chunk = 1024;
1112
1113                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114                 if (!buf_chunk) {
1115                         ret = -ENOMEM;
1116                         goto out;
1117                 }
1118                 kfree(tty->write_buf);
1119                 tty->write_cnt = chunk;
1120                 tty->write_buf = buf_chunk;
1121         }
1122
1123         /* Do the write .. */
1124         for (;;) {
1125                 size_t size = count;
1126                 if (size > chunk)
1127                         size = chunk;
1128                 ret = -EFAULT;
1129                 if (copy_from_user(tty->write_buf, buf, size))
1130                         break;
1131                 ret = write(tty, file, tty->write_buf, size);
1132                 if (ret <= 0)
1133                         break;
1134                 written += ret;
1135                 buf += ret;
1136                 count -= ret;
1137                 if (!count)
1138                         break;
1139                 ret = -ERESTARTSYS;
1140                 if (signal_pending(current))
1141                         break;
1142                 cond_resched();
1143         }
1144         if (written) {
1145                 tty_update_time(&file_inode(file)->i_mtime);
1146                 ret = written;
1147         }
1148 out:
1149         tty_write_unlock(tty);
1150         return ret;
1151 }
1152
1153 /**
1154  * tty_write_message - write a message to a certain tty, not just the console.
1155  * @tty: the destination tty_struct
1156  * @msg: the message to write
1157  *
1158  * This is used for messages that need to be redirected to a specific tty.
1159  * We don't put it into the syslog queue right now maybe in the future if
1160  * really needed.
1161  *
1162  * We must still hold the BTM and test the CLOSING flag for the moment.
1163  */
1164
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1166 {
1167         if (tty) {
1168                 mutex_lock(&tty->atomic_write_lock);
1169                 tty_lock(tty);
1170                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171                         tty_unlock(tty);
1172                         tty->ops->write(tty, msg, strlen(msg));
1173                 } else
1174                         tty_unlock(tty);
1175                 tty_write_unlock(tty);
1176         }
1177         return;
1178 }
1179
1180
1181 /**
1182  *      tty_write               -       write method for tty device file
1183  *      @file: tty file pointer
1184  *      @buf: user data to write
1185  *      @count: bytes to write
1186  *      @ppos: unused
1187  *
1188  *      Write data to a tty device via the line discipline.
1189  *
1190  *      Locking:
1191  *              Locks the line discipline as required
1192  *              Writes to the tty driver are serialized by the atomic_write_lock
1193  *      and are then processed in chunks to the device. The line discipline
1194  *      write method will not be invoked in parallel for each device.
1195  */
1196
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198                                                 size_t count, loff_t *ppos)
1199 {
1200         struct tty_struct *tty = file_tty(file);
1201         struct tty_ldisc *ld;
1202         ssize_t ret;
1203
1204         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205                 return -EIO;
1206         if (!tty || !tty->ops->write ||
1207                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1208                         return -EIO;
1209         /* Short term debug to catch buggy drivers */
1210         if (tty->ops->write_room == NULL)
1211                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212                         tty->driver->name);
1213         ld = tty_ldisc_ref_wait(tty);
1214         if (!ld->ops->write)
1215                 ret = -EIO;
1216         else
1217                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218         tty_ldisc_deref(ld);
1219         return ret;
1220 }
1221
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223                                                 size_t count, loff_t *ppos)
1224 {
1225         struct file *p = NULL;
1226
1227         spin_lock(&redirect_lock);
1228         if (redirect)
1229                 p = get_file(redirect);
1230         spin_unlock(&redirect_lock);
1231
1232         if (p) {
1233                 ssize_t res;
1234                 res = vfs_write(p, buf, count, &p->f_pos);
1235                 fput(p);
1236                 return res;
1237         }
1238         return tty_write(file, buf, count, ppos);
1239 }
1240
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243 /**
1244  *      pty_line_name   -       generate name for a pty
1245  *      @driver: the tty driver in use
1246  *      @index: the minor number
1247  *      @p: output buffer of at least 6 bytes
1248  *
1249  *      Generate a name from a driver reference and write it to the output
1250  *      buffer.
1251  *
1252  *      Locking: None
1253  */
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255 {
1256         int i = index + driver->name_base;
1257         /* ->name is initialized to "ttyp", but "tty" is expected */
1258         sprintf(p, "%s%c%x",
1259                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260                 ptychar[i >> 4 & 0xf], i & 0xf);
1261 }
1262
1263 /**
1264  *      tty_line_name   -       generate name for a tty
1265  *      @driver: the tty driver in use
1266  *      @index: the minor number
1267  *      @p: output buffer of at least 7 bytes
1268  *
1269  *      Generate a name from a driver reference and write it to the output
1270  *      buffer.
1271  *
1272  *      Locking: None
1273  */
1274 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1275 {
1276         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277                 strcpy(p, driver->name);
1278         else
1279                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1280 }
1281
1282 /**
1283  *      tty_driver_lookup_tty() - find an existing tty, if any
1284  *      @driver: the driver for the tty
1285  *      @idx:    the minor number
1286  *
1287  *      Return the tty, if found or ERR_PTR() otherwise.
1288  *
1289  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1290  *      be held until the 'fast-open' is also done. Will change once we
1291  *      have refcounting in the driver and per driver locking
1292  */
1293 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1294                 struct inode *inode, int idx)
1295 {
1296         if (driver->ops->lookup)
1297                 return driver->ops->lookup(driver, inode, idx);
1298
1299         return driver->ttys[idx];
1300 }
1301
1302 /**
1303  *      tty_init_termios        -  helper for termios setup
1304  *      @tty: the tty to set up
1305  *
1306  *      Initialise the termios structures for this tty. Thus runs under
1307  *      the tty_mutex currently so we can be relaxed about ordering.
1308  */
1309
1310 int tty_init_termios(struct tty_struct *tty)
1311 {
1312         struct ktermios *tp;
1313         int idx = tty->index;
1314
1315         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1316                 tty->termios = tty->driver->init_termios;
1317         else {
1318                 /* Check for lazy saved data */
1319                 tp = tty->driver->termios[idx];
1320                 if (tp != NULL)
1321                         tty->termios = *tp;
1322                 else
1323                         tty->termios = tty->driver->init_termios;
1324         }
1325         /* Compatibility until drivers always set this */
1326         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1327         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1328         return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(tty_init_termios);
1331
1332 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1333 {
1334         int ret = tty_init_termios(tty);
1335         if (ret)
1336                 return ret;
1337
1338         tty_driver_kref_get(driver);
1339         tty->count++;
1340         driver->ttys[tty->index] = tty;
1341         return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(tty_standard_install);
1344
1345 /**
1346  *      tty_driver_install_tty() - install a tty entry in the driver
1347  *      @driver: the driver for the tty
1348  *      @tty: the tty
1349  *
1350  *      Install a tty object into the driver tables. The tty->index field
1351  *      will be set by the time this is called. This method is responsible
1352  *      for ensuring any need additional structures are allocated and
1353  *      configured.
1354  *
1355  *      Locking: tty_mutex for now
1356  */
1357 static int tty_driver_install_tty(struct tty_driver *driver,
1358                                                 struct tty_struct *tty)
1359 {
1360         return driver->ops->install ? driver->ops->install(driver, tty) :
1361                 tty_standard_install(driver, tty);
1362 }
1363
1364 /**
1365  *      tty_driver_remove_tty() - remove a tty from the driver tables
1366  *      @driver: the driver for the tty
1367  *      @idx:    the minor number
1368  *
1369  *      Remvoe a tty object from the driver tables. The tty->index field
1370  *      will be set by the time this is called.
1371  *
1372  *      Locking: tty_mutex for now
1373  */
1374 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1375 {
1376         if (driver->ops->remove)
1377                 driver->ops->remove(driver, tty);
1378         else
1379                 driver->ttys[tty->index] = NULL;
1380 }
1381
1382 /*
1383  *      tty_reopen()    - fast re-open of an open tty
1384  *      @tty    - the tty to open
1385  *
1386  *      Return 0 on success, -errno on error.
1387  *
1388  *      Locking: tty_mutex must be held from the time the tty was found
1389  *               till this open completes.
1390  */
1391 static int tty_reopen(struct tty_struct *tty)
1392 {
1393         struct tty_driver *driver = tty->driver;
1394
1395         if (test_bit(TTY_CLOSING, &tty->flags) ||
1396                         test_bit(TTY_HUPPING, &tty->flags))
1397                 return -EIO;
1398
1399         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1400             driver->subtype == PTY_TYPE_MASTER) {
1401                 /*
1402                  * special case for PTY masters: only one open permitted,
1403                  * and the slave side open count is incremented as well.
1404                  */
1405                 if (tty->count)
1406                         return -EIO;
1407
1408                 tty->link->count++;
1409         }
1410         tty->count++;
1411
1412         WARN_ON(!tty->ldisc);
1413
1414         return 0;
1415 }
1416
1417 /**
1418  *      tty_init_dev            -       initialise a tty device
1419  *      @driver: tty driver we are opening a device on
1420  *      @idx: device index
1421  *      @ret_tty: returned tty structure
1422  *
1423  *      Prepare a tty device. This may not be a "new" clean device but
1424  *      could also be an active device. The pty drivers require special
1425  *      handling because of this.
1426  *
1427  *      Locking:
1428  *              The function is called under the tty_mutex, which
1429  *      protects us from the tty struct or driver itself going away.
1430  *
1431  *      On exit the tty device has the line discipline attached and
1432  *      a reference count of 1. If a pair was created for pty/tty use
1433  *      and the other was a pty master then it too has a reference count of 1.
1434  *
1435  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1436  * failed open.  The new code protects the open with a mutex, so it's
1437  * really quite straightforward.  The mutex locking can probably be
1438  * relaxed for the (most common) case of reopening a tty.
1439  */
1440
1441 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1442 {
1443         struct tty_struct *tty;
1444         int retval;
1445
1446         /*
1447          * First time open is complex, especially for PTY devices.
1448          * This code guarantees that either everything succeeds and the
1449          * TTY is ready for operation, or else the table slots are vacated
1450          * and the allocated memory released.  (Except that the termios
1451          * and locked termios may be retained.)
1452          */
1453
1454         if (!try_module_get(driver->owner))
1455                 return ERR_PTR(-ENODEV);
1456
1457         tty = alloc_tty_struct();
1458         if (!tty) {
1459                 retval = -ENOMEM;
1460                 goto err_module_put;
1461         }
1462         initialize_tty_struct(tty, driver, idx);
1463
1464         tty_lock(tty);
1465         retval = tty_driver_install_tty(driver, tty);
1466         if (retval < 0)
1467                 goto err_deinit_tty;
1468
1469         if (!tty->port)
1470                 tty->port = driver->ports[idx];
1471
1472         WARN_RATELIMIT(!tty->port,
1473                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1474                         __func__, tty->driver->name);
1475
1476         tty->port->itty = tty;
1477
1478         /*
1479          * Structures all installed ... call the ldisc open routines.
1480          * If we fail here just call release_tty to clean up.  No need
1481          * to decrement the use counts, as release_tty doesn't care.
1482          */
1483         retval = tty_ldisc_setup(tty, tty->link);
1484         if (retval)
1485                 goto err_release_tty;
1486         /* Return the tty locked so that it cannot vanish under the caller */
1487         return tty;
1488
1489 err_deinit_tty:
1490         tty_unlock(tty);
1491         deinitialize_tty_struct(tty);
1492         free_tty_struct(tty);
1493 err_module_put:
1494         module_put(driver->owner);
1495         return ERR_PTR(retval);
1496
1497         /* call the tty release_tty routine to clean out this slot */
1498 err_release_tty:
1499         tty_unlock(tty);
1500         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1501                                  "clearing slot %d\n", idx);
1502         release_tty(tty, idx);
1503         return ERR_PTR(retval);
1504 }
1505
1506 void tty_free_termios(struct tty_struct *tty)
1507 {
1508         struct ktermios *tp;
1509         int idx = tty->index;
1510
1511         /* If the port is going to reset then it has no termios to save */
1512         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1513                 return;
1514
1515         /* Stash the termios data */
1516         tp = tty->driver->termios[idx];
1517         if (tp == NULL) {
1518                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1519                 if (tp == NULL) {
1520                         pr_warn("tty: no memory to save termios state.\n");
1521                         return;
1522                 }
1523                 tty->driver->termios[idx] = tp;
1524         }
1525         *tp = tty->termios;
1526 }
1527 EXPORT_SYMBOL(tty_free_termios);
1528
1529 /**
1530  *      tty_flush_works         -       flush all works of a tty
1531  *      @tty: tty device to flush works for
1532  *
1533  *      Sync flush all works belonging to @tty.
1534  */
1535 static void tty_flush_works(struct tty_struct *tty)
1536 {
1537         flush_work(&tty->SAK_work);
1538         flush_work(&tty->hangup_work);
1539 }
1540
1541 /**
1542  *      release_one_tty         -       release tty structure memory
1543  *      @kref: kref of tty we are obliterating
1544  *
1545  *      Releases memory associated with a tty structure, and clears out the
1546  *      driver table slots. This function is called when a device is no longer
1547  *      in use. It also gets called when setup of a device fails.
1548  *
1549  *      Locking:
1550  *              takes the file list lock internally when working on the list
1551  *      of ttys that the driver keeps.
1552  *
1553  *      This method gets called from a work queue so that the driver private
1554  *      cleanup ops can sleep (needed for USB at least)
1555  */
1556 static void release_one_tty(struct work_struct *work)
1557 {
1558         struct tty_struct *tty =
1559                 container_of(work, struct tty_struct, hangup_work);
1560         struct tty_driver *driver = tty->driver;
1561
1562         if (tty->ops->cleanup)
1563                 tty->ops->cleanup(tty);
1564
1565         tty->magic = 0;
1566         tty_driver_kref_put(driver);
1567         module_put(driver->owner);
1568
1569         spin_lock(&tty_files_lock);
1570         list_del_init(&tty->tty_files);
1571         spin_unlock(&tty_files_lock);
1572
1573         put_pid(tty->pgrp);
1574         put_pid(tty->session);
1575         free_tty_struct(tty);
1576 }
1577
1578 static void queue_release_one_tty(struct kref *kref)
1579 {
1580         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1581
1582         /* The hangup queue is now free so we can reuse it rather than
1583            waste a chunk of memory for each port */
1584         INIT_WORK(&tty->hangup_work, release_one_tty);
1585         schedule_work(&tty->hangup_work);
1586 }
1587
1588 /**
1589  *      tty_kref_put            -       release a tty kref
1590  *      @tty: tty device
1591  *
1592  *      Release a reference to a tty device and if need be let the kref
1593  *      layer destruct the object for us
1594  */
1595
1596 void tty_kref_put(struct tty_struct *tty)
1597 {
1598         if (tty)
1599                 kref_put(&tty->kref, queue_release_one_tty);
1600 }
1601 EXPORT_SYMBOL(tty_kref_put);
1602
1603 /**
1604  *      release_tty             -       release tty structure memory
1605  *
1606  *      Release both @tty and a possible linked partner (think pty pair),
1607  *      and decrement the refcount of the backing module.
1608  *
1609  *      Locking:
1610  *              tty_mutex
1611  *              takes the file list lock internally when working on the list
1612  *      of ttys that the driver keeps.
1613  *
1614  */
1615 static void release_tty(struct tty_struct *tty, int idx)
1616 {
1617         /* This should always be true but check for the moment */
1618         WARN_ON(tty->index != idx);
1619         WARN_ON(!mutex_is_locked(&tty_mutex));
1620         if (tty->ops->shutdown)
1621                 tty->ops->shutdown(tty);
1622         tty_free_termios(tty);
1623         tty_driver_remove_tty(tty->driver, tty);
1624         tty->port->itty = NULL;
1625         if (tty->link)
1626                 tty->link->port->itty = NULL;
1627         cancel_work_sync(&tty->port->buf.work);
1628
1629         if (tty->link)
1630                 tty_kref_put(tty->link);
1631         tty_kref_put(tty);
1632 }
1633
1634 /**
1635  *      tty_release_checks - check a tty before real release
1636  *      @tty: tty to check
1637  *      @o_tty: link of @tty (if any)
1638  *      @idx: index of the tty
1639  *
1640  *      Performs some paranoid checking before true release of the @tty.
1641  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1642  */
1643 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1644                 int idx)
1645 {
1646 #ifdef TTY_PARANOIA_CHECK
1647         if (idx < 0 || idx >= tty->driver->num) {
1648                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1649                                 __func__, tty->name);
1650                 return -1;
1651         }
1652
1653         /* not much to check for devpts */
1654         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1655                 return 0;
1656
1657         if (tty != tty->driver->ttys[idx]) {
1658                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1659                                 __func__, idx, tty->name);
1660                 return -1;
1661         }
1662         if (tty->driver->other) {
1663                 if (o_tty != tty->driver->other->ttys[idx]) {
1664                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1665                                         __func__, idx, tty->name);
1666                         return -1;
1667                 }
1668                 if (o_tty->link != tty) {
1669                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1670                         return -1;
1671                 }
1672         }
1673 #endif
1674         return 0;
1675 }
1676
1677 /**
1678  *      tty_release             -       vfs callback for close
1679  *      @inode: inode of tty
1680  *      @filp: file pointer for handle to tty
1681  *
1682  *      Called the last time each file handle is closed that references
1683  *      this tty. There may however be several such references.
1684  *
1685  *      Locking:
1686  *              Takes bkl. See tty_release_dev
1687  *
1688  * Even releasing the tty structures is a tricky business.. We have
1689  * to be very careful that the structures are all released at the
1690  * same time, as interrupts might otherwise get the wrong pointers.
1691  *
1692  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1693  * lead to double frees or releasing memory still in use.
1694  */
1695
1696 int tty_release(struct inode *inode, struct file *filp)
1697 {
1698         struct tty_struct *tty = file_tty(filp);
1699         struct tty_struct *o_tty;
1700         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1701         int     idx;
1702         char    buf[64];
1703
1704         if (tty_paranoia_check(tty, inode, __func__))
1705                 return 0;
1706
1707         tty_lock(tty);
1708         check_tty_count(tty, __func__);
1709
1710         __tty_fasync(-1, filp, 0);
1711
1712         idx = tty->index;
1713         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1714                       tty->driver->subtype == PTY_TYPE_MASTER);
1715         /* Review: parallel close */
1716         o_tty = tty->link;
1717
1718         if (tty_release_checks(tty, o_tty, idx)) {
1719                 tty_unlock(tty);
1720                 return 0;
1721         }
1722
1723 #ifdef TTY_DEBUG_HANGUP
1724         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1725                         tty_name(tty, buf), tty->count);
1726 #endif
1727
1728         if (tty->ops->close)
1729                 tty->ops->close(tty, filp);
1730
1731         tty_unlock(tty);
1732         /*
1733          * Sanity check: if tty->count is going to zero, there shouldn't be
1734          * any waiters on tty->read_wait or tty->write_wait.  We test the
1735          * wait queues and kick everyone out _before_ actually starting to
1736          * close.  This ensures that we won't block while releasing the tty
1737          * structure.
1738          *
1739          * The test for the o_tty closing is necessary, since the master and
1740          * slave sides may close in any order.  If the slave side closes out
1741          * first, its count will be one, since the master side holds an open.
1742          * Thus this test wouldn't be triggered at the time the slave closes,
1743          * so we do it now.
1744          *
1745          * Note that it's possible for the tty to be opened again while we're
1746          * flushing out waiters.  By recalculating the closing flags before
1747          * each iteration we avoid any problems.
1748          */
1749         while (1) {
1750                 /* Guard against races with tty->count changes elsewhere and
1751                    opens on /dev/tty */
1752
1753                 mutex_lock(&tty_mutex);
1754                 tty_lock_pair(tty, o_tty);
1755                 tty_closing = tty->count <= 1;
1756                 o_tty_closing = o_tty &&
1757                         (o_tty->count <= (pty_master ? 1 : 0));
1758                 do_sleep = 0;
1759
1760                 if (tty_closing) {
1761                         if (waitqueue_active(&tty->read_wait)) {
1762                                 wake_up_poll(&tty->read_wait, POLLIN);
1763                                 do_sleep++;
1764                         }
1765                         if (waitqueue_active(&tty->write_wait)) {
1766                                 wake_up_poll(&tty->write_wait, POLLOUT);
1767                                 do_sleep++;
1768                         }
1769                 }
1770                 if (o_tty_closing) {
1771                         if (waitqueue_active(&o_tty->read_wait)) {
1772                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1773                                 do_sleep++;
1774                         }
1775                         if (waitqueue_active(&o_tty->write_wait)) {
1776                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1777                                 do_sleep++;
1778                         }
1779                 }
1780                 if (!do_sleep)
1781                         break;
1782
1783                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1784                                 __func__, tty_name(tty, buf));
1785                 tty_unlock_pair(tty, o_tty);
1786                 mutex_unlock(&tty_mutex);
1787                 schedule();
1788         }
1789
1790         /*
1791          * The closing flags are now consistent with the open counts on
1792          * both sides, and we've completed the last operation that could
1793          * block, so it's safe to proceed with closing.
1794          *
1795          * We must *not* drop the tty_mutex until we ensure that a further
1796          * entry into tty_open can not pick up this tty.
1797          */
1798         if (pty_master) {
1799                 if (--o_tty->count < 0) {
1800                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1801                                 __func__, o_tty->count, tty_name(o_tty, buf));
1802                         o_tty->count = 0;
1803                 }
1804         }
1805         if (--tty->count < 0) {
1806                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1807                                 __func__, tty->count, tty_name(tty, buf));
1808                 tty->count = 0;
1809         }
1810
1811         /*
1812          * We've decremented tty->count, so we need to remove this file
1813          * descriptor off the tty->tty_files list; this serves two
1814          * purposes:
1815          *  - check_tty_count sees the correct number of file descriptors
1816          *    associated with this tty.
1817          *  - do_tty_hangup no longer sees this file descriptor as
1818          *    something that needs to be handled for hangups.
1819          */
1820         tty_del_file(filp);
1821
1822         /*
1823          * Perform some housekeeping before deciding whether to return.
1824          *
1825          * Set the TTY_CLOSING flag if this was the last open.  In the
1826          * case of a pty we may have to wait around for the other side
1827          * to close, and TTY_CLOSING makes sure we can't be reopened.
1828          */
1829         if (tty_closing)
1830                 set_bit(TTY_CLOSING, &tty->flags);
1831         if (o_tty_closing)
1832                 set_bit(TTY_CLOSING, &o_tty->flags);
1833
1834         /*
1835          * If _either_ side is closing, make sure there aren't any
1836          * processes that still think tty or o_tty is their controlling
1837          * tty.
1838          */
1839         if (tty_closing || o_tty_closing) {
1840                 read_lock(&tasklist_lock);
1841                 session_clear_tty(tty->session);
1842                 if (o_tty)
1843                         session_clear_tty(o_tty->session);
1844                 read_unlock(&tasklist_lock);
1845         }
1846
1847         mutex_unlock(&tty_mutex);
1848         tty_unlock_pair(tty, o_tty);
1849         /* At this point the TTY_CLOSING flag should ensure a dead tty
1850            cannot be re-opened by a racing opener */
1851
1852         /* check whether both sides are closing ... */
1853         if (!tty_closing || (o_tty && !o_tty_closing))
1854                 return 0;
1855
1856 #ifdef TTY_DEBUG_HANGUP
1857         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1858 #endif
1859         /*
1860          * Ask the line discipline code to release its structures
1861          */
1862         tty_ldisc_release(tty, o_tty);
1863
1864         /* Wait for pending work before tty destruction commmences */
1865         tty_flush_works(tty);
1866         if (o_tty)
1867                 tty_flush_works(o_tty);
1868
1869 #ifdef TTY_DEBUG_HANGUP
1870         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1871 #endif
1872         /*
1873          * The release_tty function takes care of the details of clearing
1874          * the slots and preserving the termios structure. The tty_unlock_pair
1875          * should be safe as we keep a kref while the tty is locked (so the
1876          * unlock never unlocks a freed tty).
1877          */
1878         mutex_lock(&tty_mutex);
1879         release_tty(tty, idx);
1880         mutex_unlock(&tty_mutex);
1881
1882         return 0;
1883 }
1884
1885 /**
1886  *      tty_open_current_tty - get tty of current task for open
1887  *      @device: device number
1888  *      @filp: file pointer to tty
1889  *      @return: tty of the current task iff @device is /dev/tty
1890  *
1891  *      We cannot return driver and index like for the other nodes because
1892  *      devpts will not work then. It expects inodes to be from devpts FS.
1893  *
1894  *      We need to move to returning a refcounted object from all the lookup
1895  *      paths including this one.
1896  */
1897 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1898 {
1899         struct tty_struct *tty;
1900
1901         if (device != MKDEV(TTYAUX_MAJOR, 0))
1902                 return NULL;
1903
1904         tty = get_current_tty();
1905         if (!tty)
1906                 return ERR_PTR(-ENXIO);
1907
1908         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1909         /* noctty = 1; */
1910         tty_kref_put(tty);
1911         /* FIXME: we put a reference and return a TTY! */
1912         /* This is only safe because the caller holds tty_mutex */
1913         return tty;
1914 }
1915
1916 /**
1917  *      tty_lookup_driver - lookup a tty driver for a given device file
1918  *      @device: device number
1919  *      @filp: file pointer to tty
1920  *      @noctty: set if the device should not become a controlling tty
1921  *      @index: index for the device in the @return driver
1922  *      @return: driver for this inode (with increased refcount)
1923  *
1924  *      If @return is not erroneous, the caller is responsible to decrement the
1925  *      refcount by tty_driver_kref_put.
1926  *
1927  *      Locking: tty_mutex protects get_tty_driver
1928  */
1929 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1930                 int *noctty, int *index)
1931 {
1932         struct tty_driver *driver;
1933
1934         switch (device) {
1935 #ifdef CONFIG_VT
1936         case MKDEV(TTY_MAJOR, 0): {
1937                 extern struct tty_driver *console_driver;
1938                 driver = tty_driver_kref_get(console_driver);
1939                 *index = fg_console;
1940                 *noctty = 1;
1941                 break;
1942         }
1943 #endif
1944         case MKDEV(TTYAUX_MAJOR, 1): {
1945                 struct tty_driver *console_driver = console_device(index);
1946                 if (console_driver) {
1947                         driver = tty_driver_kref_get(console_driver);
1948                         if (driver) {
1949                                 /* Don't let /dev/console block */
1950                                 filp->f_flags |= O_NONBLOCK;
1951                                 *noctty = 1;
1952                                 break;
1953                         }
1954                 }
1955                 return ERR_PTR(-ENODEV);
1956         }
1957         default:
1958                 driver = get_tty_driver(device, index);
1959                 if (!driver)
1960                         return ERR_PTR(-ENODEV);
1961                 break;
1962         }
1963         return driver;
1964 }
1965
1966 /**
1967  *      tty_open                -       open a tty device
1968  *      @inode: inode of device file
1969  *      @filp: file pointer to tty
1970  *
1971  *      tty_open and tty_release keep up the tty count that contains the
1972  *      number of opens done on a tty. We cannot use the inode-count, as
1973  *      different inodes might point to the same tty.
1974  *
1975  *      Open-counting is needed for pty masters, as well as for keeping
1976  *      track of serial lines: DTR is dropped when the last close happens.
1977  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1978  *
1979  *      The termios state of a pty is reset on first open so that
1980  *      settings don't persist across reuse.
1981  *
1982  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1983  *               tty->count should protect the rest.
1984  *               ->siglock protects ->signal/->sighand
1985  *
1986  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1987  *      tty_mutex
1988  */
1989
1990 static int tty_open(struct inode *inode, struct file *filp)
1991 {
1992         struct tty_struct *tty;
1993         int noctty, retval;
1994         struct tty_driver *driver = NULL;
1995         int index;
1996         dev_t device = inode->i_rdev;
1997         unsigned saved_flags = filp->f_flags;
1998
1999         nonseekable_open(inode, filp);
2000
2001 retry_open:
2002         retval = tty_alloc_file(filp);
2003         if (retval)
2004                 return -ENOMEM;
2005
2006         noctty = filp->f_flags & O_NOCTTY;
2007         index  = -1;
2008         retval = 0;
2009
2010         mutex_lock(&tty_mutex);
2011         /* This is protected by the tty_mutex */
2012         tty = tty_open_current_tty(device, filp);
2013         if (IS_ERR(tty)) {
2014                 retval = PTR_ERR(tty);
2015                 goto err_unlock;
2016         } else if (!tty) {
2017                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2018                 if (IS_ERR(driver)) {
2019                         retval = PTR_ERR(driver);
2020                         goto err_unlock;
2021                 }
2022
2023                 /* check whether we're reopening an existing tty */
2024                 tty = tty_driver_lookup_tty(driver, inode, index);
2025                 if (IS_ERR(tty)) {
2026                         retval = PTR_ERR(tty);
2027                         goto err_unlock;
2028                 }
2029         }
2030
2031         if (tty) {
2032                 tty_lock(tty);
2033                 retval = tty_reopen(tty);
2034                 if (retval < 0) {
2035                         tty_unlock(tty);
2036                         tty = ERR_PTR(retval);
2037                 }
2038         } else  /* Returns with the tty_lock held for now */
2039                 tty = tty_init_dev(driver, index);
2040
2041         mutex_unlock(&tty_mutex);
2042         if (driver)
2043                 tty_driver_kref_put(driver);
2044         if (IS_ERR(tty)) {
2045                 retval = PTR_ERR(tty);
2046                 goto err_file;
2047         }
2048
2049         tty_add_file(tty, filp);
2050
2051         check_tty_count(tty, __func__);
2052         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2053             tty->driver->subtype == PTY_TYPE_MASTER)
2054                 noctty = 1;
2055 #ifdef TTY_DEBUG_HANGUP
2056         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2057 #endif
2058         if (tty->ops->open)
2059                 retval = tty->ops->open(tty, filp);
2060         else
2061                 retval = -ENODEV;
2062         filp->f_flags = saved_flags;
2063
2064         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2065                                                 !capable(CAP_SYS_ADMIN))
2066                 retval = -EBUSY;
2067
2068         if (retval) {
2069 #ifdef TTY_DEBUG_HANGUP
2070                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2071                                 retval, tty->name);
2072 #endif
2073                 tty_unlock(tty); /* need to call tty_release without BTM */
2074                 tty_release(inode, filp);
2075                 if (retval != -ERESTARTSYS)
2076                         return retval;
2077
2078                 if (signal_pending(current))
2079                         return retval;
2080
2081                 schedule();
2082                 /*
2083                  * Need to reset f_op in case a hangup happened.
2084                  */
2085                 if (filp->f_op == &hung_up_tty_fops)
2086                         filp->f_op = &tty_fops;
2087                 goto retry_open;
2088         }
2089         tty_unlock(tty);
2090
2091
2092         mutex_lock(&tty_mutex);
2093         tty_lock(tty);
2094         spin_lock_irq(&current->sighand->siglock);
2095         if (!noctty &&
2096             current->signal->leader &&
2097             !current->signal->tty &&
2098             tty->session == NULL)
2099                 __proc_set_tty(current, tty);
2100         spin_unlock_irq(&current->sighand->siglock);
2101         tty_unlock(tty);
2102         mutex_unlock(&tty_mutex);
2103         return 0;
2104 err_unlock:
2105         mutex_unlock(&tty_mutex);
2106         /* after locks to avoid deadlock */
2107         if (!IS_ERR_OR_NULL(driver))
2108                 tty_driver_kref_put(driver);
2109 err_file:
2110         tty_free_file(filp);
2111         return retval;
2112 }
2113
2114
2115
2116 /**
2117  *      tty_poll        -       check tty status
2118  *      @filp: file being polled
2119  *      @wait: poll wait structures to update
2120  *
2121  *      Call the line discipline polling method to obtain the poll
2122  *      status of the device.
2123  *
2124  *      Locking: locks called line discipline but ldisc poll method
2125  *      may be re-entered freely by other callers.
2126  */
2127
2128 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2129 {
2130         struct tty_struct *tty = file_tty(filp);
2131         struct tty_ldisc *ld;
2132         int ret = 0;
2133
2134         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2135                 return 0;
2136
2137         ld = tty_ldisc_ref_wait(tty);
2138         if (ld->ops->poll)
2139                 ret = (ld->ops->poll)(tty, filp, wait);
2140         tty_ldisc_deref(ld);
2141         return ret;
2142 }
2143
2144 static int __tty_fasync(int fd, struct file *filp, int on)
2145 {
2146         struct tty_struct *tty = file_tty(filp);
2147         struct tty_ldisc *ldisc;
2148         unsigned long flags;
2149         int retval = 0;
2150
2151         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2152                 goto out;
2153
2154         retval = fasync_helper(fd, filp, on, &tty->fasync);
2155         if (retval <= 0)
2156                 goto out;
2157
2158         ldisc = tty_ldisc_ref(tty);
2159         if (ldisc) {
2160                 if (ldisc->ops->fasync)
2161                         ldisc->ops->fasync(tty, on);
2162                 tty_ldisc_deref(ldisc);
2163         }
2164
2165         if (on) {
2166                 enum pid_type type;
2167                 struct pid *pid;
2168
2169                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2170                 if (tty->pgrp) {
2171                         pid = tty->pgrp;
2172                         type = PIDTYPE_PGID;
2173                 } else {
2174                         pid = task_pid(current);
2175                         type = PIDTYPE_PID;
2176                 }
2177                 get_pid(pid);
2178                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2179                 retval = __f_setown(filp, pid, type, 0);
2180                 put_pid(pid);
2181         }
2182 out:
2183         return retval;
2184 }
2185
2186 static int tty_fasync(int fd, struct file *filp, int on)
2187 {
2188         struct tty_struct *tty = file_tty(filp);
2189         int retval;
2190
2191         tty_lock(tty);
2192         retval = __tty_fasync(fd, filp, on);
2193         tty_unlock(tty);
2194
2195         return retval;
2196 }
2197
2198 /**
2199  *      tiocsti                 -       fake input character
2200  *      @tty: tty to fake input into
2201  *      @p: pointer to character
2202  *
2203  *      Fake input to a tty device. Does the necessary locking and
2204  *      input management.
2205  *
2206  *      FIXME: does not honour flow control ??
2207  *
2208  *      Locking:
2209  *              Called functions take tty_ldiscs_lock
2210  *              current->signal->tty check is safe without locks
2211  *
2212  *      FIXME: may race normal receive processing
2213  */
2214
2215 static int tiocsti(struct tty_struct *tty, char __user *p)
2216 {
2217         char ch, mbz = 0;
2218         struct tty_ldisc *ld;
2219
2220         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2221                 return -EPERM;
2222         if (get_user(ch, p))
2223                 return -EFAULT;
2224         tty_audit_tiocsti(tty, ch);
2225         ld = tty_ldisc_ref_wait(tty);
2226         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2227         tty_ldisc_deref(ld);
2228         return 0;
2229 }
2230
2231 /**
2232  *      tiocgwinsz              -       implement window query ioctl
2233  *      @tty; tty
2234  *      @arg: user buffer for result
2235  *
2236  *      Copies the kernel idea of the window size into the user buffer.
2237  *
2238  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2239  *              is consistent.
2240  */
2241
2242 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2243 {
2244         int err;
2245
2246         mutex_lock(&tty->winsize_mutex);
2247         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2248         mutex_unlock(&tty->winsize_mutex);
2249
2250         return err ? -EFAULT: 0;
2251 }
2252
2253 /**
2254  *      tty_do_resize           -       resize event
2255  *      @tty: tty being resized
2256  *      @rows: rows (character)
2257  *      @cols: cols (character)
2258  *
2259  *      Update the termios variables and send the necessary signals to
2260  *      peform a terminal resize correctly
2261  */
2262
2263 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2264 {
2265         struct pid *pgrp;
2266         unsigned long flags;
2267
2268         /* Lock the tty */
2269         mutex_lock(&tty->winsize_mutex);
2270         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2271                 goto done;
2272         /* Get the PID values and reference them so we can
2273            avoid holding the tty ctrl lock while sending signals */
2274         spin_lock_irqsave(&tty->ctrl_lock, flags);
2275         pgrp = get_pid(tty->pgrp);
2276         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2277
2278         if (pgrp)
2279                 kill_pgrp(pgrp, SIGWINCH, 1);
2280         put_pid(pgrp);
2281
2282         tty->winsize = *ws;
2283 done:
2284         mutex_unlock(&tty->winsize_mutex);
2285         return 0;
2286 }
2287 EXPORT_SYMBOL(tty_do_resize);
2288
2289 /**
2290  *      tiocswinsz              -       implement window size set ioctl
2291  *      @tty; tty side of tty
2292  *      @arg: user buffer for result
2293  *
2294  *      Copies the user idea of the window size to the kernel. Traditionally
2295  *      this is just advisory information but for the Linux console it
2296  *      actually has driver level meaning and triggers a VC resize.
2297  *
2298  *      Locking:
2299  *              Driver dependent. The default do_resize method takes the
2300  *      tty termios mutex and ctrl_lock. The console takes its own lock
2301  *      then calls into the default method.
2302  */
2303
2304 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2305 {
2306         struct winsize tmp_ws;
2307         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2308                 return -EFAULT;
2309
2310         if (tty->ops->resize)
2311                 return tty->ops->resize(tty, &tmp_ws);
2312         else
2313                 return tty_do_resize(tty, &tmp_ws);
2314 }
2315
2316 /**
2317  *      tioccons        -       allow admin to move logical console
2318  *      @file: the file to become console
2319  *
2320  *      Allow the administrator to move the redirected console device
2321  *
2322  *      Locking: uses redirect_lock to guard the redirect information
2323  */
2324
2325 static int tioccons(struct file *file)
2326 {
2327         if (!capable(CAP_SYS_ADMIN))
2328                 return -EPERM;
2329         if (file->f_op->write == redirected_tty_write) {
2330                 struct file *f;
2331                 spin_lock(&redirect_lock);
2332                 f = redirect;
2333                 redirect = NULL;
2334                 spin_unlock(&redirect_lock);
2335                 if (f)
2336                         fput(f);
2337                 return 0;
2338         }
2339         spin_lock(&redirect_lock);
2340         if (redirect) {
2341                 spin_unlock(&redirect_lock);
2342                 return -EBUSY;
2343         }
2344         redirect = get_file(file);
2345         spin_unlock(&redirect_lock);
2346         return 0;
2347 }
2348
2349 /**
2350  *      fionbio         -       non blocking ioctl
2351  *      @file: file to set blocking value
2352  *      @p: user parameter
2353  *
2354  *      Historical tty interfaces had a blocking control ioctl before
2355  *      the generic functionality existed. This piece of history is preserved
2356  *      in the expected tty API of posix OS's.
2357  *
2358  *      Locking: none, the open file handle ensures it won't go away.
2359  */
2360
2361 static int fionbio(struct file *file, int __user *p)
2362 {
2363         int nonblock;
2364
2365         if (get_user(nonblock, p))
2366                 return -EFAULT;
2367
2368         spin_lock(&file->f_lock);
2369         if (nonblock)
2370                 file->f_flags |= O_NONBLOCK;
2371         else
2372                 file->f_flags &= ~O_NONBLOCK;
2373         spin_unlock(&file->f_lock);
2374         return 0;
2375 }
2376
2377 /**
2378  *      tiocsctty       -       set controlling tty
2379  *      @tty: tty structure
2380  *      @arg: user argument
2381  *
2382  *      This ioctl is used to manage job control. It permits a session
2383  *      leader to set this tty as the controlling tty for the session.
2384  *
2385  *      Locking:
2386  *              Takes tty_mutex() to protect tty instance
2387  *              Takes tasklist_lock internally to walk sessions
2388  *              Takes ->siglock() when updating signal->tty
2389  */
2390
2391 static int tiocsctty(struct tty_struct *tty, int arg)
2392 {
2393         int ret = 0;
2394         if (current->signal->leader && (task_session(current) == tty->session))
2395                 return ret;
2396
2397         mutex_lock(&tty_mutex);
2398         /*
2399          * The process must be a session leader and
2400          * not have a controlling tty already.
2401          */
2402         if (!current->signal->leader || current->signal->tty) {
2403                 ret = -EPERM;
2404                 goto unlock;
2405         }
2406
2407         if (tty->session) {
2408                 /*
2409                  * This tty is already the controlling
2410                  * tty for another session group!
2411                  */
2412                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2413                         /*
2414                          * Steal it away
2415                          */
2416                         read_lock(&tasklist_lock);
2417                         session_clear_tty(tty->session);
2418                         read_unlock(&tasklist_lock);
2419                 } else {
2420                         ret = -EPERM;
2421                         goto unlock;
2422                 }
2423         }
2424         proc_set_tty(current, tty);
2425 unlock:
2426         mutex_unlock(&tty_mutex);
2427         return ret;
2428 }
2429
2430 /**
2431  *      tty_get_pgrp    -       return a ref counted pgrp pid
2432  *      @tty: tty to read
2433  *
2434  *      Returns a refcounted instance of the pid struct for the process
2435  *      group controlling the tty.
2436  */
2437
2438 struct pid *tty_get_pgrp(struct tty_struct *tty)
2439 {
2440         unsigned long flags;
2441         struct pid *pgrp;
2442
2443         spin_lock_irqsave(&tty->ctrl_lock, flags);
2444         pgrp = get_pid(tty->pgrp);
2445         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2446
2447         return pgrp;
2448 }
2449 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2450
2451 /**
2452  *      tiocgpgrp               -       get process group
2453  *      @tty: tty passed by user
2454  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2455  *      @p: returned pid
2456  *
2457  *      Obtain the process group of the tty. If there is no process group
2458  *      return an error.
2459  *
2460  *      Locking: none. Reference to current->signal->tty is safe.
2461  */
2462
2463 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2464 {
2465         struct pid *pid;
2466         int ret;
2467         /*
2468          * (tty == real_tty) is a cheap way of
2469          * testing if the tty is NOT a master pty.
2470          */
2471         if (tty == real_tty && current->signal->tty != real_tty)
2472                 return -ENOTTY;
2473         pid = tty_get_pgrp(real_tty);
2474         ret =  put_user(pid_vnr(pid), p);
2475         put_pid(pid);
2476         return ret;
2477 }
2478
2479 /**
2480  *      tiocspgrp               -       attempt to set process group
2481  *      @tty: tty passed by user
2482  *      @real_tty: tty side device matching tty passed by user
2483  *      @p: pid pointer
2484  *
2485  *      Set the process group of the tty to the session passed. Only
2486  *      permitted where the tty session is our session.
2487  *
2488  *      Locking: RCU, ctrl lock
2489  */
2490
2491 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2492 {
2493         struct pid *pgrp;
2494         pid_t pgrp_nr;
2495         int retval = tty_check_change(real_tty);
2496         unsigned long flags;
2497
2498         if (retval == -EIO)
2499                 return -ENOTTY;
2500         if (retval)
2501                 return retval;
2502         if (!current->signal->tty ||
2503             (current->signal->tty != real_tty) ||
2504             (real_tty->session != task_session(current)))
2505                 return -ENOTTY;
2506         if (get_user(pgrp_nr, p))
2507                 return -EFAULT;
2508         if (pgrp_nr < 0)
2509                 return -EINVAL;
2510         rcu_read_lock();
2511         pgrp = find_vpid(pgrp_nr);
2512         retval = -ESRCH;
2513         if (!pgrp)
2514                 goto out_unlock;
2515         retval = -EPERM;
2516         if (session_of_pgrp(pgrp) != task_session(current))
2517                 goto out_unlock;
2518         retval = 0;
2519         spin_lock_irqsave(&tty->ctrl_lock, flags);
2520         put_pid(real_tty->pgrp);
2521         real_tty->pgrp = get_pid(pgrp);
2522         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2523 out_unlock:
2524         rcu_read_unlock();
2525         return retval;
2526 }
2527
2528 /**
2529  *      tiocgsid                -       get session id
2530  *      @tty: tty passed by user
2531  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2532  *      @p: pointer to returned session id
2533  *
2534  *      Obtain the session id of the tty. If there is no session
2535  *      return an error.
2536  *
2537  *      Locking: none. Reference to current->signal->tty is safe.
2538  */
2539
2540 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2541 {
2542         /*
2543          * (tty == real_tty) is a cheap way of
2544          * testing if the tty is NOT a master pty.
2545         */
2546         if (tty == real_tty && current->signal->tty != real_tty)
2547                 return -ENOTTY;
2548         if (!real_tty->session)
2549                 return -ENOTTY;
2550         return put_user(pid_vnr(real_tty->session), p);
2551 }
2552
2553 /**
2554  *      tiocsetd        -       set line discipline
2555  *      @tty: tty device
2556  *      @p: pointer to user data
2557  *
2558  *      Set the line discipline according to user request.
2559  *
2560  *      Locking: see tty_set_ldisc, this function is just a helper
2561  */
2562
2563 static int tiocsetd(struct tty_struct *tty, int __user *p)
2564 {
2565         int ldisc;
2566         int ret;
2567
2568         if (get_user(ldisc, p))
2569                 return -EFAULT;
2570
2571         ret = tty_set_ldisc(tty, ldisc);
2572
2573         return ret;
2574 }
2575
2576 /**
2577  *      send_break      -       performed time break
2578  *      @tty: device to break on
2579  *      @duration: timeout in mS
2580  *
2581  *      Perform a timed break on hardware that lacks its own driver level
2582  *      timed break functionality.
2583  *
2584  *      Locking:
2585  *              atomic_write_lock serializes
2586  *
2587  */
2588
2589 static int send_break(struct tty_struct *tty, unsigned int duration)
2590 {
2591         int retval;
2592
2593         if (tty->ops->break_ctl == NULL)
2594                 return 0;
2595
2596         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2597                 retval = tty->ops->break_ctl(tty, duration);
2598         else {
2599                 /* Do the work ourselves */
2600                 if (tty_write_lock(tty, 0) < 0)
2601                         return -EINTR;
2602                 retval = tty->ops->break_ctl(tty, -1);
2603                 if (retval)
2604                         goto out;
2605                 if (!signal_pending(current))
2606                         msleep_interruptible(duration);
2607                 retval = tty->ops->break_ctl(tty, 0);
2608 out:
2609                 tty_write_unlock(tty);
2610                 if (signal_pending(current))
2611                         retval = -EINTR;
2612         }
2613         return retval;
2614 }
2615
2616 /**
2617  *      tty_tiocmget            -       get modem status
2618  *      @tty: tty device
2619  *      @file: user file pointer
2620  *      @p: pointer to result
2621  *
2622  *      Obtain the modem status bits from the tty driver if the feature
2623  *      is supported. Return -EINVAL if it is not available.
2624  *
2625  *      Locking: none (up to the driver)
2626  */
2627
2628 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2629 {
2630         int retval = -EINVAL;
2631
2632         if (tty->ops->tiocmget) {
2633                 retval = tty->ops->tiocmget(tty);
2634
2635                 if (retval >= 0)
2636                         retval = put_user(retval, p);
2637         }
2638         return retval;
2639 }
2640
2641 /**
2642  *      tty_tiocmset            -       set modem status
2643  *      @tty: tty device
2644  *      @cmd: command - clear bits, set bits or set all
2645  *      @p: pointer to desired bits
2646  *
2647  *      Set the modem status bits from the tty driver if the feature
2648  *      is supported. Return -EINVAL if it is not available.
2649  *
2650  *      Locking: none (up to the driver)
2651  */
2652
2653 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2654              unsigned __user *p)
2655 {
2656         int retval;
2657         unsigned int set, clear, val;
2658
2659         if (tty->ops->tiocmset == NULL)
2660                 return -EINVAL;
2661
2662         retval = get_user(val, p);
2663         if (retval)
2664                 return retval;
2665         set = clear = 0;
2666         switch (cmd) {
2667         case TIOCMBIS:
2668                 set = val;
2669                 break;
2670         case TIOCMBIC:
2671                 clear = val;
2672                 break;
2673         case TIOCMSET:
2674                 set = val;
2675                 clear = ~val;
2676                 break;
2677         }
2678         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2679         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2680         return tty->ops->tiocmset(tty, set, clear);
2681 }
2682
2683 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2684 {
2685         int retval = -EINVAL;
2686         struct serial_icounter_struct icount;
2687         memset(&icount, 0, sizeof(icount));
2688         if (tty->ops->get_icount)
2689                 retval = tty->ops->get_icount(tty, &icount);
2690         if (retval != 0)
2691                 return retval;
2692         if (copy_to_user(arg, &icount, sizeof(icount)))
2693                 return -EFAULT;
2694         return 0;
2695 }
2696
2697 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2698 {
2699         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2700             tty->driver->subtype == PTY_TYPE_MASTER)
2701                 tty = tty->link;
2702         return tty;
2703 }
2704 EXPORT_SYMBOL(tty_pair_get_tty);
2705
2706 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2707 {
2708         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2709             tty->driver->subtype == PTY_TYPE_MASTER)
2710             return tty;
2711         return tty->link;
2712 }
2713 EXPORT_SYMBOL(tty_pair_get_pty);
2714
2715 /*
2716  * Split this up, as gcc can choke on it otherwise..
2717  */
2718 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2719 {
2720         struct tty_struct *tty = file_tty(file);
2721         struct tty_struct *real_tty;
2722         void __user *p = (void __user *)arg;
2723         int retval;
2724         struct tty_ldisc *ld;
2725
2726         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2727                 return -EINVAL;
2728
2729         real_tty = tty_pair_get_tty(tty);
2730
2731         /*
2732          * Factor out some common prep work
2733          */
2734         switch (cmd) {
2735         case TIOCSETD:
2736         case TIOCSBRK:
2737         case TIOCCBRK:
2738         case TCSBRK:
2739         case TCSBRKP:
2740                 retval = tty_check_change(tty);
2741                 if (retval)
2742                         return retval;
2743                 if (cmd != TIOCCBRK) {
2744                         tty_wait_until_sent(tty, 0);
2745                         if (signal_pending(current))
2746                                 return -EINTR;
2747                 }
2748                 break;
2749         }
2750
2751         /*
2752          *      Now do the stuff.
2753          */
2754         switch (cmd) {
2755         case TIOCSTI:
2756                 return tiocsti(tty, p);
2757         case TIOCGWINSZ:
2758                 return tiocgwinsz(real_tty, p);
2759         case TIOCSWINSZ:
2760                 return tiocswinsz(real_tty, p);
2761         case TIOCCONS:
2762                 return real_tty != tty ? -EINVAL : tioccons(file);
2763         case FIONBIO:
2764                 return fionbio(file, p);
2765         case TIOCEXCL:
2766                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2767                 return 0;
2768         case TIOCNXCL:
2769                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2770                 return 0;
2771         case TIOCGEXCL:
2772         {
2773                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2774                 return put_user(excl, (int __user *)p);
2775         }
2776         case TIOCNOTTY:
2777                 if (current->signal->tty != tty)
2778                         return -ENOTTY;
2779                 no_tty();
2780                 return 0;
2781         case TIOCSCTTY:
2782                 return tiocsctty(tty, arg);
2783         case TIOCGPGRP:
2784                 return tiocgpgrp(tty, real_tty, p);
2785         case TIOCSPGRP:
2786                 return tiocspgrp(tty, real_tty, p);
2787         case TIOCGSID:
2788                 return tiocgsid(tty, real_tty, p);
2789         case TIOCGETD:
2790                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2791         case TIOCSETD:
2792                 return tiocsetd(tty, p);
2793         case TIOCVHANGUP:
2794                 if (!capable(CAP_SYS_ADMIN))
2795                         return -EPERM;
2796                 tty_vhangup(tty);
2797                 return 0;
2798         case TIOCGDEV:
2799         {
2800                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2801                 return put_user(ret, (unsigned int __user *)p);
2802         }
2803         /*
2804          * Break handling
2805          */
2806         case TIOCSBRK:  /* Turn break on, unconditionally */
2807                 if (tty->ops->break_ctl)
2808                         return tty->ops->break_ctl(tty, -1);
2809                 return 0;
2810         case TIOCCBRK:  /* Turn break off, unconditionally */
2811                 if (tty->ops->break_ctl)
2812                         return tty->ops->break_ctl(tty, 0);
2813                 return 0;
2814         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2815                 /* non-zero arg means wait for all output data
2816                  * to be sent (performed above) but don't send break.
2817                  * This is used by the tcdrain() termios function.
2818                  */
2819                 if (!arg)
2820                         return send_break(tty, 250);
2821                 return 0;
2822         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2823                 return send_break(tty, arg ? arg*100 : 250);
2824
2825         case TIOCMGET:
2826                 return tty_tiocmget(tty, p);
2827         case TIOCMSET:
2828         case TIOCMBIC:
2829         case TIOCMBIS:
2830                 return tty_tiocmset(tty, cmd, p);
2831         case TIOCGICOUNT:
2832                 retval = tty_tiocgicount(tty, p);
2833                 /* For the moment allow fall through to the old method */
2834                 if (retval != -EINVAL)
2835                         return retval;
2836                 break;
2837         case TCFLSH:
2838                 switch (arg) {
2839                 case TCIFLUSH:
2840                 case TCIOFLUSH:
2841                 /* flush tty buffer and allow ldisc to process ioctl */
2842                         tty_buffer_flush(tty);
2843                         break;
2844                 }
2845                 break;
2846         }
2847         if (tty->ops->ioctl) {
2848                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2849                 if (retval != -ENOIOCTLCMD)
2850                         return retval;
2851         }
2852         ld = tty_ldisc_ref_wait(tty);
2853         retval = -EINVAL;
2854         if (ld->ops->ioctl) {
2855                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2856                 if (retval == -ENOIOCTLCMD)
2857                         retval = -ENOTTY;
2858         }
2859         tty_ldisc_deref(ld);
2860         return retval;
2861 }
2862
2863 #ifdef CONFIG_COMPAT
2864 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2865                                 unsigned long arg)
2866 {
2867         struct tty_struct *tty = file_tty(file);
2868         struct tty_ldisc *ld;
2869         int retval = -ENOIOCTLCMD;
2870
2871         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2872                 return -EINVAL;
2873
2874         if (tty->ops->compat_ioctl) {
2875                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2876                 if (retval != -ENOIOCTLCMD)
2877                         return retval;
2878         }
2879
2880         ld = tty_ldisc_ref_wait(tty);
2881         if (ld->ops->compat_ioctl)
2882                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2883         else
2884                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2885         tty_ldisc_deref(ld);
2886
2887         return retval;
2888 }
2889 #endif
2890
2891 static int this_tty(const void *t, struct file *file, unsigned fd)
2892 {
2893         if (likely(file->f_op->read != tty_read))
2894                 return 0;
2895         return file_tty(file) != t ? 0 : fd + 1;
2896 }
2897         
2898 /*
2899  * This implements the "Secure Attention Key" ---  the idea is to
2900  * prevent trojan horses by killing all processes associated with this
2901  * tty when the user hits the "Secure Attention Key".  Required for
2902  * super-paranoid applications --- see the Orange Book for more details.
2903  *
2904  * This code could be nicer; ideally it should send a HUP, wait a few
2905  * seconds, then send a INT, and then a KILL signal.  But you then
2906  * have to coordinate with the init process, since all processes associated
2907  * with the current tty must be dead before the new getty is allowed
2908  * to spawn.
2909  *
2910  * Now, if it would be correct ;-/ The current code has a nasty hole -
2911  * it doesn't catch files in flight. We may send the descriptor to ourselves
2912  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2913  *
2914  * Nasty bug: do_SAK is being called in interrupt context.  This can
2915  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2916  */
2917 void __do_SAK(struct tty_struct *tty)
2918 {
2919 #ifdef TTY_SOFT_SAK
2920         tty_hangup(tty);
2921 #else
2922         struct task_struct *g, *p;
2923         struct pid *session;
2924         int             i;
2925
2926         if (!tty)
2927                 return;
2928         session = tty->session;
2929
2930         tty_ldisc_flush(tty);
2931
2932         tty_driver_flush_buffer(tty);
2933
2934         read_lock(&tasklist_lock);
2935         /* Kill the entire session */
2936         do_each_pid_task(session, PIDTYPE_SID, p) {
2937                 printk(KERN_NOTICE "SAK: killed process %d"
2938                         " (%s): task_session(p)==tty->session\n",
2939                         task_pid_nr(p), p->comm);
2940                 send_sig(SIGKILL, p, 1);
2941         } while_each_pid_task(session, PIDTYPE_SID, p);
2942         /* Now kill any processes that happen to have the
2943          * tty open.
2944          */
2945         do_each_thread(g, p) {
2946                 if (p->signal->tty == tty) {
2947                         printk(KERN_NOTICE "SAK: killed process %d"
2948                             " (%s): task_session(p)==tty->session\n",
2949                             task_pid_nr(p), p->comm);
2950                         send_sig(SIGKILL, p, 1);
2951                         continue;
2952                 }
2953                 task_lock(p);
2954                 i = iterate_fd(p->files, 0, this_tty, tty);
2955                 if (i != 0) {
2956                         printk(KERN_NOTICE "SAK: killed process %d"
2957                             " (%s): fd#%d opened to the tty\n",
2958                                     task_pid_nr(p), p->comm, i - 1);
2959                         force_sig(SIGKILL, p);
2960                 }
2961                 task_unlock(p);
2962         } while_each_thread(g, p);
2963         read_unlock(&tasklist_lock);
2964 #endif
2965 }
2966
2967 static void do_SAK_work(struct work_struct *work)
2968 {
2969         struct tty_struct *tty =
2970                 container_of(work, struct tty_struct, SAK_work);
2971         __do_SAK(tty);
2972 }
2973
2974 /*
2975  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2976  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2977  * the values which we write to it will be identical to the values which it
2978  * already has. --akpm
2979  */
2980 void do_SAK(struct tty_struct *tty)
2981 {
2982         if (!tty)
2983                 return;
2984         schedule_work(&tty->SAK_work);
2985 }
2986
2987 EXPORT_SYMBOL(do_SAK);
2988
2989 static int dev_match_devt(struct device *dev, const void *data)
2990 {
2991         const dev_t *devt = data;
2992         return dev->devt == *devt;
2993 }
2994
2995 /* Must put_device() after it's unused! */
2996 static struct device *tty_get_device(struct tty_struct *tty)
2997 {
2998         dev_t devt = tty_devnum(tty);
2999         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3000 }
3001
3002
3003 /**
3004  *      initialize_tty_struct
3005  *      @tty: tty to initialize
3006  *
3007  *      This subroutine initializes a tty structure that has been newly
3008  *      allocated.
3009  *
3010  *      Locking: none - tty in question must not be exposed at this point
3011  */
3012
3013 void initialize_tty_struct(struct tty_struct *tty,
3014                 struct tty_driver *driver, int idx)
3015 {
3016         memset(tty, 0, sizeof(struct tty_struct));
3017         kref_init(&tty->kref);
3018         tty->magic = TTY_MAGIC;
3019         tty_ldisc_init(tty);
3020         tty->session = NULL;
3021         tty->pgrp = NULL;
3022         mutex_init(&tty->legacy_mutex);
3023         mutex_init(&tty->throttle_mutex);
3024         init_rwsem(&tty->termios_rwsem);
3025         mutex_init(&tty->winsize_mutex);
3026         init_ldsem(&tty->ldisc_sem);
3027         init_waitqueue_head(&tty->write_wait);
3028         init_waitqueue_head(&tty->read_wait);
3029         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3030         mutex_init(&tty->atomic_write_lock);
3031         spin_lock_init(&tty->ctrl_lock);
3032         INIT_LIST_HEAD(&tty->tty_files);
3033         INIT_WORK(&tty->SAK_work, do_SAK_work);
3034
3035         tty->driver = driver;
3036         tty->ops = driver->ops;
3037         tty->index = idx;
3038         tty_line_name(driver, idx, tty->name);
3039         tty->dev = tty_get_device(tty);
3040 }
3041
3042 /**
3043  *      deinitialize_tty_struct
3044  *      @tty: tty to deinitialize
3045  *
3046  *      This subroutine deinitializes a tty structure that has been newly
3047  *      allocated but tty_release cannot be called on that yet.
3048  *
3049  *      Locking: none - tty in question must not be exposed at this point
3050  */
3051 void deinitialize_tty_struct(struct tty_struct *tty)
3052 {
3053         tty_ldisc_deinit(tty);
3054 }
3055
3056 /**
3057  *      tty_put_char    -       write one character to a tty
3058  *      @tty: tty
3059  *      @ch: character
3060  *
3061  *      Write one byte to the tty using the provided put_char method
3062  *      if present. Returns the number of characters successfully output.
3063  *
3064  *      Note: the specific put_char operation in the driver layer may go
3065  *      away soon. Don't call it directly, use this method
3066  */
3067
3068 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3069 {
3070         if (tty->ops->put_char)
3071                 return tty->ops->put_char(tty, ch);
3072         return tty->ops->write(tty, &ch, 1);
3073 }
3074 EXPORT_SYMBOL_GPL(tty_put_char);
3075
3076 struct class *tty_class;
3077
3078 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3079                 unsigned int index, unsigned int count)
3080 {
3081         /* init here, since reused cdevs cause crashes */
3082         cdev_init(&driver->cdevs[index], &tty_fops);
3083         driver->cdevs[index].owner = driver->owner;
3084         return cdev_add(&driver->cdevs[index], dev, count);
3085 }
3086
3087 /**
3088  *      tty_register_device - register a tty device
3089  *      @driver: the tty driver that describes the tty device
3090  *      @index: the index in the tty driver for this tty device
3091  *      @device: a struct device that is associated with this tty device.
3092  *              This field is optional, if there is no known struct device
3093  *              for this tty device it can be set to NULL safely.
3094  *
3095  *      Returns a pointer to the struct device for this tty device
3096  *      (or ERR_PTR(-EFOO) on error).
3097  *
3098  *      This call is required to be made to register an individual tty device
3099  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3100  *      that bit is not set, this function should not be called by a tty
3101  *      driver.
3102  *
3103  *      Locking: ??
3104  */
3105
3106 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3107                                    struct device *device)
3108 {
3109         return tty_register_device_attr(driver, index, device, NULL, NULL);
3110 }
3111 EXPORT_SYMBOL(tty_register_device);
3112
3113 static void tty_device_create_release(struct device *dev)
3114 {
3115         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3116         kfree(dev);
3117 }
3118
3119 /**
3120  *      tty_register_device_attr - register a tty device
3121  *      @driver: the tty driver that describes the tty device
3122  *      @index: the index in the tty driver for this tty device
3123  *      @device: a struct device that is associated with this tty device.
3124  *              This field is optional, if there is no known struct device
3125  *              for this tty device it can be set to NULL safely.
3126  *      @drvdata: Driver data to be set to device.
3127  *      @attr_grp: Attribute group to be set on device.
3128  *
3129  *      Returns a pointer to the struct device for this tty device
3130  *      (or ERR_PTR(-EFOO) on error).
3131  *
3132  *      This call is required to be made to register an individual tty device
3133  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3134  *      that bit is not set, this function should not be called by a tty
3135  *      driver.
3136  *
3137  *      Locking: ??
3138  */
3139 struct device *tty_register_device_attr(struct tty_driver *driver,
3140                                    unsigned index, struct device *device,
3141                                    void *drvdata,
3142                                    const struct attribute_group **attr_grp)
3143 {
3144         char name[64];
3145         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3146         struct device *dev = NULL;
3147         int retval = -ENODEV;
3148         bool cdev = false;
3149
3150         if (index >= driver->num) {
3151                 printk(KERN_ERR "Attempt to register invalid tty line number "
3152                        " (%d).\n", index);
3153                 return ERR_PTR(-EINVAL);
3154         }
3155
3156         if (driver->type == TTY_DRIVER_TYPE_PTY)
3157                 pty_line_name(driver, index, name);
3158         else
3159                 tty_line_name(driver, index, name);
3160
3161         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3162                 retval = tty_cdev_add(driver, devt, index, 1);
3163                 if (retval)
3164                         goto error;
3165                 cdev = true;
3166         }
3167
3168         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3169         if (!dev) {
3170                 retval = -ENOMEM;
3171                 goto error;
3172         }
3173
3174         dev->devt = devt;
3175         dev->class = tty_class;
3176         dev->parent = device;
3177         dev->release = tty_device_create_release;
3178         dev_set_name(dev, "%s", name);
3179         dev->groups = attr_grp;
3180         dev_set_drvdata(dev, drvdata);
3181
3182         retval = device_register(dev);
3183         if (retval)
3184                 goto error;
3185
3186         return dev;
3187
3188 error:
3189         put_device(dev);
3190         if (cdev)
3191                 cdev_del(&driver->cdevs[index]);
3192         return ERR_PTR(retval);
3193 }
3194 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3195
3196 /**
3197  *      tty_unregister_device - unregister a tty device
3198  *      @driver: the tty driver that describes the tty device
3199  *      @index: the index in the tty driver for this tty device
3200  *
3201  *      If a tty device is registered with a call to tty_register_device() then
3202  *      this function must be called when the tty device is gone.
3203  *
3204  *      Locking: ??
3205  */
3206
3207 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3208 {
3209         device_destroy(tty_class,
3210                 MKDEV(driver->major, driver->minor_start) + index);
3211         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3212                 cdev_del(&driver->cdevs[index]);
3213 }
3214 EXPORT_SYMBOL(tty_unregister_device);
3215
3216 /**
3217  * __tty_alloc_driver -- allocate tty driver
3218  * @lines: count of lines this driver can handle at most
3219  * @owner: module which is repsonsible for this driver
3220  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3221  *
3222  * This should not be called directly, some of the provided macros should be
3223  * used instead. Use IS_ERR and friends on @retval.
3224  */
3225 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3226                 unsigned long flags)
3227 {
3228         struct tty_driver *driver;
3229         unsigned int cdevs = 1;
3230         int err;
3231
3232         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3233                 return ERR_PTR(-EINVAL);
3234
3235         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3236         if (!driver)
3237                 return ERR_PTR(-ENOMEM);
3238
3239         kref_init(&driver->kref);
3240         driver->magic = TTY_DRIVER_MAGIC;
3241         driver->num = lines;
3242         driver->owner = owner;
3243         driver->flags = flags;
3244
3245         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3246                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3247                                 GFP_KERNEL);
3248                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3249                                 GFP_KERNEL);
3250                 if (!driver->ttys || !driver->termios) {
3251                         err = -ENOMEM;
3252                         goto err_free_all;
3253                 }
3254         }
3255
3256         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3257                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3258                                 GFP_KERNEL);
3259                 if (!driver->ports) {
3260                         err = -ENOMEM;
3261                         goto err_free_all;
3262                 }
3263                 cdevs = lines;
3264         }
3265
3266         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3267         if (!driver->cdevs) {
3268                 err = -ENOMEM;
3269                 goto err_free_all;
3270         }
3271
3272         return driver;
3273 err_free_all:
3274         kfree(driver->ports);
3275         kfree(driver->ttys);
3276         kfree(driver->termios);
3277         kfree(driver);
3278         return ERR_PTR(err);
3279 }
3280 EXPORT_SYMBOL(__tty_alloc_driver);
3281
3282 static void destruct_tty_driver(struct kref *kref)
3283 {
3284         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3285         int i;
3286         struct ktermios *tp;
3287
3288         if (driver->flags & TTY_DRIVER_INSTALLED) {
3289                 /*
3290                  * Free the termios and termios_locked structures because
3291                  * we don't want to get memory leaks when modular tty
3292                  * drivers are removed from the kernel.
3293                  */
3294                 for (i = 0; i < driver->num; i++) {
3295                         tp = driver->termios[i];
3296                         if (tp) {
3297                                 driver->termios[i] = NULL;
3298                                 kfree(tp);
3299                         }
3300                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3301                                 tty_unregister_device(driver, i);
3302                 }
3303                 proc_tty_unregister_driver(driver);
3304                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3305                         cdev_del(&driver->cdevs[0]);
3306         }
3307         kfree(driver->cdevs);
3308         kfree(driver->ports);
3309         kfree(driver->termios);
3310         kfree(driver->ttys);
3311         kfree(driver);
3312 }
3313
3314 void tty_driver_kref_put(struct tty_driver *driver)
3315 {
3316         kref_put(&driver->kref, destruct_tty_driver);
3317 }
3318 EXPORT_SYMBOL(tty_driver_kref_put);
3319
3320 void tty_set_operations(struct tty_driver *driver,
3321                         const struct tty_operations *op)
3322 {
3323         driver->ops = op;
3324 };
3325 EXPORT_SYMBOL(tty_set_operations);
3326
3327 void put_tty_driver(struct tty_driver *d)
3328 {
3329         tty_driver_kref_put(d);
3330 }
3331 EXPORT_SYMBOL(put_tty_driver);
3332
3333 /*
3334  * Called by a tty driver to register itself.
3335  */
3336 int tty_register_driver(struct tty_driver *driver)
3337 {
3338         int error;
3339         int i;
3340         dev_t dev;
3341         struct device *d;
3342
3343         if (!driver->major) {
3344                 error = alloc_chrdev_region(&dev, driver->minor_start,
3345                                                 driver->num, driver->name);
3346                 if (!error) {
3347                         driver->major = MAJOR(dev);
3348                         driver->minor_start = MINOR(dev);
3349                 }
3350         } else {
3351                 dev = MKDEV(driver->major, driver->minor_start);
3352                 error = register_chrdev_region(dev, driver->num, driver->name);
3353         }
3354         if (error < 0)
3355                 goto err;
3356
3357         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3358                 error = tty_cdev_add(driver, dev, 0, driver->num);
3359                 if (error)
3360                         goto err_unreg_char;
3361         }
3362
3363         mutex_lock(&tty_mutex);
3364         list_add(&driver->tty_drivers, &tty_drivers);
3365         mutex_unlock(&tty_mutex);
3366
3367         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3368                 for (i = 0; i < driver->num; i++) {
3369                         d = tty_register_device(driver, i, NULL);
3370                         if (IS_ERR(d)) {
3371                                 error = PTR_ERR(d);
3372                                 goto err_unreg_devs;
3373                         }
3374                 }
3375         }
3376         proc_tty_register_driver(driver);
3377         driver->flags |= TTY_DRIVER_INSTALLED;
3378         return 0;
3379
3380 err_unreg_devs:
3381         for (i--; i >= 0; i--)
3382                 tty_unregister_device(driver, i);
3383
3384         mutex_lock(&tty_mutex);
3385         list_del(&driver->tty_drivers);
3386         mutex_unlock(&tty_mutex);
3387
3388 err_unreg_char:
3389         unregister_chrdev_region(dev, driver->num);
3390 err:
3391         return error;
3392 }
3393 EXPORT_SYMBOL(tty_register_driver);
3394
3395 /*
3396  * Called by a tty driver to unregister itself.
3397  */
3398 int tty_unregister_driver(struct tty_driver *driver)
3399 {
3400 #if 0
3401         /* FIXME */
3402         if (driver->refcount)
3403                 return -EBUSY;
3404 #endif
3405         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3406                                 driver->num);
3407         mutex_lock(&tty_mutex);
3408         list_del(&driver->tty_drivers);
3409         mutex_unlock(&tty_mutex);
3410         return 0;
3411 }
3412
3413 EXPORT_SYMBOL(tty_unregister_driver);
3414
3415 dev_t tty_devnum(struct tty_struct *tty)
3416 {
3417         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3418 }
3419 EXPORT_SYMBOL(tty_devnum);
3420
3421 void proc_clear_tty(struct task_struct *p)
3422 {
3423         unsigned long flags;
3424         struct tty_struct *tty;
3425         spin_lock_irqsave(&p->sighand->siglock, flags);
3426         tty = p->signal->tty;
3427         p->signal->tty = NULL;
3428         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3429         tty_kref_put(tty);
3430 }
3431
3432 /* Called under the sighand lock */
3433
3434 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3435 {
3436         if (tty) {
3437                 unsigned long flags;
3438                 /* We should not have a session or pgrp to put here but.... */
3439                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3440                 put_pid(tty->session);
3441                 put_pid(tty->pgrp);
3442                 tty->pgrp = get_pid(task_pgrp(tsk));
3443                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3444                 tty->session = get_pid(task_session(tsk));
3445                 if (tsk->signal->tty) {
3446                         printk(KERN_DEBUG "tty not NULL!!\n");
3447                         tty_kref_put(tsk->signal->tty);
3448                 }
3449         }
3450         put_pid(tsk->signal->tty_old_pgrp);
3451         tsk->signal->tty = tty_kref_get(tty);
3452         tsk->signal->tty_old_pgrp = NULL;
3453 }
3454
3455 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3456 {
3457         spin_lock_irq(&tsk->sighand->siglock);
3458         __proc_set_tty(tsk, tty);
3459         spin_unlock_irq(&tsk->sighand->siglock);
3460 }
3461
3462 struct tty_struct *get_current_tty(void)
3463 {
3464         struct tty_struct *tty;
3465         unsigned long flags;
3466
3467         spin_lock_irqsave(&current->sighand->siglock, flags);
3468         tty = tty_kref_get(current->signal->tty);
3469         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3470         return tty;
3471 }
3472 EXPORT_SYMBOL_GPL(get_current_tty);
3473
3474 void tty_default_fops(struct file_operations *fops)
3475 {
3476         *fops = tty_fops;
3477 }
3478
3479 /*
3480  * Initialize the console device. This is called *early*, so
3481  * we can't necessarily depend on lots of kernel help here.
3482  * Just do some early initializations, and do the complex setup
3483  * later.
3484  */
3485 void __init console_init(void)
3486 {
3487         initcall_t *call;
3488
3489         /* Setup the default TTY line discipline. */
3490         tty_ldisc_begin();
3491
3492         /*
3493          * set up the console device so that later boot sequences can
3494          * inform about problems etc..
3495          */
3496         call = __con_initcall_start;
3497         while (call < __con_initcall_end) {
3498                 (*call)();
3499                 call++;
3500         }
3501 }
3502
3503 static char *tty_devnode(struct device *dev, umode_t *mode)
3504 {
3505         if (!mode)
3506                 return NULL;
3507         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3508             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3509                 *mode = 0666;
3510         return NULL;
3511 }
3512
3513 static int __init tty_class_init(void)
3514 {
3515         tty_class = class_create(THIS_MODULE, "tty");
3516         if (IS_ERR(tty_class))
3517                 return PTR_ERR(tty_class);
3518         tty_class->devnode = tty_devnode;
3519         return 0;
3520 }
3521
3522 postcore_initcall(tty_class_init);
3523
3524 /* 3/2004 jmc: why do these devices exist? */
3525 static struct cdev tty_cdev, console_cdev;
3526
3527 static ssize_t show_cons_active(struct device *dev,
3528                                 struct device_attribute *attr, char *buf)
3529 {
3530         struct console *cs[16];
3531         int i = 0;
3532         struct console *c;
3533         ssize_t count = 0;
3534
3535         console_lock();
3536         for_each_console(c) {
3537                 if (!c->device)
3538                         continue;
3539                 if (!c->write)
3540                         continue;
3541                 if ((c->flags & CON_ENABLED) == 0)
3542                         continue;
3543                 cs[i++] = c;
3544                 if (i >= ARRAY_SIZE(cs))
3545                         break;
3546         }
3547         while (i--)
3548                 count += sprintf(buf + count, "%s%d%c",
3549                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3550         console_unlock();
3551
3552         return count;
3553 }
3554 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3555
3556 static struct device *consdev;
3557
3558 void console_sysfs_notify(void)
3559 {
3560         if (consdev)
3561                 sysfs_notify(&consdev->kobj, NULL, "active");
3562 }
3563
3564 /*
3565  * Ok, now we can initialize the rest of the tty devices and can count
3566  * on memory allocations, interrupts etc..
3567  */
3568 int __init tty_init(void)
3569 {
3570         cdev_init(&tty_cdev, &tty_fops);
3571         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3572             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3573                 panic("Couldn't register /dev/tty driver\n");
3574         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3575
3576         cdev_init(&console_cdev, &console_fops);
3577         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3578             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3579                 panic("Couldn't register /dev/console driver\n");
3580         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3581                               "console");
3582         if (IS_ERR(consdev))
3583                 consdev = NULL;
3584         else
3585                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3586
3587 #ifdef CONFIG_VT
3588         vty_init(&console_fops);
3589 #endif
3590         return 0;
3591 }
3592