Merge tag 'sound-fix-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-drm-fsl-dcu.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_TX_THOLD            2
54
55 #define PCH_MAX_BAUDRATE        5000000
56 #define PCH_MAX_FIFO_DEPTH      16
57
58 #define STATUS_RUNNING          1
59 #define STATUS_EXITING          2
60 #define PCH_SLEEP_TIME          10
61
62 #define SSN_LOW                 0x02U
63 #define SSN_HIGH                0x03U
64 #define SSN_NO_CONTROL          0x00U
65 #define PCH_MAX_CS              0xFF
66 #define PCI_DEVICE_ID_GE_SPI    0x8816
67
68 #define SPCR_SPE_BIT            (1 << 0)
69 #define SPCR_MSTR_BIT           (1 << 1)
70 #define SPCR_LSBF_BIT           (1 << 4)
71 #define SPCR_CPHA_BIT           (1 << 5)
72 #define SPCR_CPOL_BIT           (1 << 6)
73 #define SPCR_TFIE_BIT           (1 << 8)
74 #define SPCR_RFIE_BIT           (1 << 9)
75 #define SPCR_FIE_BIT            (1 << 10)
76 #define SPCR_ORIE_BIT           (1 << 11)
77 #define SPCR_MDFIE_BIT          (1 << 12)
78 #define SPCR_FICLR_BIT          (1 << 24)
79 #define SPSR_TFI_BIT            (1 << 0)
80 #define SPSR_RFI_BIT            (1 << 1)
81 #define SPSR_FI_BIT             (1 << 2)
82 #define SPSR_ORF_BIT            (1 << 3)
83 #define SPBRR_SIZE_BIT          (1 << 10)
84
85 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD         20
89 #define SPCR_TFIC_FIELD         16
90
91 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ            50000000
96 #define PCH_MAX_SPBR            1023
97
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM              0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
103
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :            1ch
107  * LAPIS Semiconductor ML7213 IOH :     2ch
108  * LAPIS Semiconductor ML7223 IOH :     1ch
109  * LAPIS Semiconductor ML7831 IOH :     1ch
110 */
111 #define PCH_SPI_MAX_DEV                 2
112
113 #define PCH_BUF_SIZE            4096
114 #define PCH_DMA_TRANS_SIZE      12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119         struct dma_async_tx_descriptor  *desc_tx;
120         struct dma_async_tx_descriptor  *desc_rx;
121         struct pch_dma_slave            param_tx;
122         struct pch_dma_slave            param_rx;
123         struct dma_chan         *chan_tx;
124         struct dma_chan         *chan_rx;
125         struct scatterlist              *sg_tx_p;
126         struct scatterlist              *sg_rx_p;
127         struct scatterlist              sg_tx;
128         struct scatterlist              sg_rx;
129         int                             nent;
130         void                            *tx_buf_virt;
131         void                            *rx_buf_virt;
132         dma_addr_t                      tx_buf_dma;
133         dma_addr_t                      rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:              The remapped PCI base address
138  * @master:                     Pointer to the SPI master structure
139  * @work:                       Reference to work queue handler
140  * @wk:                         Workqueue for carrying out execution of the
141  *                              requests
142  * @wait:                       Wait queue for waking up upon receiving an
143  *                              interrupt.
144  * @transfer_complete:          Status of SPI Transfer
145  * @bcurrent_msg_processing:    Status flag for message processing
146  * @lock:                       Lock for protecting this structure
147  * @queue:                      SPI Message queue
148  * @status:                     Status of the SPI driver
149  * @bpw_len:                    Length of data to be transferred in bits per
150  *                              word
151  * @transfer_active:            Flag showing active transfer
152  * @tx_index:                   Transmit data count; for bookkeeping during
153  *                              transfer
154  * @rx_index:                   Receive data count; for bookkeeping during
155  *                              transfer
156  * @tx_buff:                    Buffer for data to be transmitted
157  * @rx_index:                   Buffer for Received data
158  * @n_curnt_chip:               The chip number that this SPI driver currently
159  *                              operates on
160  * @current_chip:               Reference to the current chip that this SPI
161  *                              driver currently operates on
162  * @current_msg:                The current message that this SPI driver is
163  *                              handling
164  * @cur_trans:                  The current transfer that this SPI driver is
165  *                              handling
166  * @board_dat:                  Reference to the SPI device data structure
167  * @plat_dev:                   platform_device structure
168  * @ch:                         SPI channel number
169  * @irq_reg_sts:                Status of IRQ registration
170  */
171 struct pch_spi_data {
172         void __iomem *io_remap_addr;
173         unsigned long io_base_addr;
174         struct spi_master *master;
175         struct work_struct work;
176         struct workqueue_struct *wk;
177         wait_queue_head_t wait;
178         u8 transfer_complete;
179         u8 bcurrent_msg_processing;
180         spinlock_t lock;
181         struct list_head queue;
182         u8 status;
183         u32 bpw_len;
184         u8 transfer_active;
185         u32 tx_index;
186         u32 rx_index;
187         u16 *pkt_tx_buff;
188         u16 *pkt_rx_buff;
189         u8 n_curnt_chip;
190         struct spi_device *current_chip;
191         struct spi_message *current_msg;
192         struct spi_transfer *cur_trans;
193         struct pch_spi_board_data *board_dat;
194         struct platform_device  *plat_dev;
195         int ch;
196         struct pch_spi_dma_ctrl dma;
197         int use_dma;
198         u8 irq_reg_sts;
199         int save_total_len;
200 };
201
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:               Pointer to the PCI device
205  * @suspend_sts:        Status of suspend
206  * @num:                The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209         struct pci_dev *pdev;
210         u8 suspend_sts;
211         int num;
212 };
213
214 struct pch_pd_dev_save {
215         int num;
216         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217         struct pch_spi_board_data *board_dat;
218 };
219
220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
221         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225         { }
226 };
227
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:     Pointer to struct spi_master.
231  * @idx:        Register offset.
232  * @val:        Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236         struct pch_spi_data *data = spi_master_get_devdata(master);
237         iowrite32(val, (data->io_remap_addr + idx));
238 }
239
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:     Pointer to struct spi_master.
243  * @idx:        Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247         struct pch_spi_data *data = spi_master_get_devdata(master);
248         return ioread32(data->io_remap_addr + idx);
249 }
250
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252                                       u32 set, u32 clr)
253 {
254         u32 tmp = pch_spi_readreg(master, idx);
255         tmp = (tmp & ~clr) | set;
256         pch_spi_writereg(master, idx, tmp);
257 }
258
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:     Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275                                 void __iomem *io_remap_addr)
276 {
277         u32 n_read, tx_index, rx_index, bpw_len;
278         u16 *pkt_rx_buffer, *pkt_tx_buff;
279         int read_cnt;
280         u32 reg_spcr_val;
281         void __iomem *spsr;
282         void __iomem *spdrr;
283         void __iomem *spdwr;
284
285         spsr = io_remap_addr + PCH_SPSR;
286         iowrite32(reg_spsr_val, spsr);
287
288         if (data->transfer_active) {
289                 rx_index = data->rx_index;
290                 tx_index = data->tx_index;
291                 bpw_len = data->bpw_len;
292                 pkt_rx_buffer = data->pkt_rx_buff;
293                 pkt_tx_buff = data->pkt_tx_buff;
294
295                 spdrr = io_remap_addr + PCH_SPDRR;
296                 spdwr = io_remap_addr + PCH_SPDWR;
297
298                 n_read = PCH_READABLE(reg_spsr_val);
299
300                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302                         if (tx_index < bpw_len)
303                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
304                 }
305
306                 /* disable RFI if not needed */
307                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310
311                         /* reset rx threshold */
312                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314
315                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316                 }
317
318                 /* update counts */
319                 data->tx_index = tx_index;
320                 data->rx_index = rx_index;
321
322                 /* if transfer complete interrupt */
323                 if (reg_spsr_val & SPSR_FI_BIT) {
324                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325                                 /* disable interrupts */
326                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327                                                    PCH_ALL);
328
329                                 /* transfer is completed;
330                                    inform pch_spi_process_messages */
331                                 data->transfer_complete = true;
332                                 data->transfer_active = false;
333                                 wake_up(&data->wait);
334                         } else {
335                                 dev_err(&data->master->dev,
336                                         "%s : Transfer is not completed",
337                                         __func__);
338                         }
339                 }
340         }
341 }
342
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:        The interrupt number.
346  * @dev_id:     Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350         u32 reg_spsr_val;
351         void __iomem *spsr;
352         void __iomem *io_remap_addr;
353         irqreturn_t ret = IRQ_NONE;
354         struct pch_spi_data *data = dev_id;
355         struct pch_spi_board_data *board_dat = data->board_dat;
356
357         if (board_dat->suspend_sts) {
358                 dev_dbg(&board_dat->pdev->dev,
359                         "%s returning due to suspend\n", __func__);
360                 return IRQ_NONE;
361         }
362
363         io_remap_addr = data->io_remap_addr;
364         spsr = io_remap_addr + PCH_SPSR;
365
366         reg_spsr_val = ioread32(spsr);
367
368         if (reg_spsr_val & SPSR_ORF_BIT) {
369                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370                 if (data->current_msg->complete) {
371                         data->transfer_complete = true;
372                         data->current_msg->status = -EIO;
373                         data->current_msg->complete(data->current_msg->context);
374                         data->bcurrent_msg_processing = false;
375                         data->current_msg = NULL;
376                         data->cur_trans = NULL;
377                 }
378         }
379
380         if (data->use_dma)
381                 return IRQ_NONE;
382
383         /* Check if the interrupt is for SPI device */
384         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386                 ret = IRQ_HANDLED;
387         }
388
389         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390                 __func__, ret);
391
392         return ret;
393 }
394
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:     Pointer to struct spi_master.
398  * @speed_hz:   Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403
404         /* if baud rate is less than we can support limit it */
405         if (n_spbr > PCH_MAX_SPBR)
406                 n_spbr = PCH_MAX_SPBR;
407
408         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:             Pointer to struct spi_master.
414  * @bits_per_word:      Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417                                       u8 bits_per_word)
418 {
419         if (bits_per_word == 8)
420                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421         else
422                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:        Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431         u32 flags = 0;
432
433         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435                 spi->max_speed_hz);
436         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437
438         /* set bits per word */
439         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440
441         if (!(spi->mode & SPI_LSB_FIRST))
442                 flags |= SPCR_LSBF_BIT;
443         if (spi->mode & SPI_CPOL)
444                 flags |= SPCR_CPOL_BIT;
445         if (spi->mode & SPI_CPHA)
446                 flags |= SPCR_CPHA_BIT;
447         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449
450         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451         pch_spi_clear_fifo(spi->master);
452 }
453
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:     Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460         /* write 1 to reset SPI */
461         pch_spi_writereg(master, PCH_SRST, 0x1);
462
463         /* clear reset */
464         pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466
467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469         /* check bits per word */
470         if (pspi->bits_per_word == 0) {
471                 pspi->bits_per_word = 8;
472                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473         }
474
475         /* Check baud rate setting */
476         /* if baud rate of chip is greater than
477            max we can support,return error */
478         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
479                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
480
481         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
482                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
483
484         return 0;
485 }
486
487 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
488 {
489
490         struct spi_transfer *transfer;
491         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
492         int retval;
493         unsigned long flags;
494
495         /* validate spi message and baud rate */
496         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
497                 dev_err(&pspi->dev, "%s list empty\n", __func__);
498                 retval = -EINVAL;
499                 goto err_out;
500         }
501
502         if (unlikely(pspi->max_speed_hz == 0)) {
503                 dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
504                         __func__, pspi->max_speed_hz);
505                 retval = -EINVAL;
506                 goto err_out;
507         }
508
509         dev_dbg(&pspi->dev,
510                 "%s Transfer List not empty. Transfer Speed is set.\n", __func__);
511
512         spin_lock_irqsave(&data->lock, flags);
513         /* validate Tx/Rx buffers and Transfer length */
514         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
515                 if (!transfer->tx_buf && !transfer->rx_buf) {
516                         dev_err(&pspi->dev,
517                                 "%s Tx and Rx buffer NULL\n", __func__);
518                         retval = -EINVAL;
519                         goto err_return_spinlock;
520                 }
521
522                 if (!transfer->len) {
523                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
524                                 __func__);
525                         retval = -EINVAL;
526                         goto err_return_spinlock;
527                 }
528
529                 dev_dbg(&pspi->dev,
530                         "%s Tx/Rx buffer valid. Transfer length valid\n",
531                         __func__);
532
533                 /* if baud rate has been specified validate the same */
534                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
535                         transfer->speed_hz = PCH_MAX_BAUDRATE;
536         }
537         spin_unlock_irqrestore(&data->lock, flags);
538
539         /* We won't process any messages if we have been asked to terminate */
540         if (data->status == STATUS_EXITING) {
541                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
542                 retval = -ESHUTDOWN;
543                 goto err_out;
544         }
545
546         /* If suspended ,return -EINVAL */
547         if (data->board_dat->suspend_sts) {
548                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
549                 retval = -EINVAL;
550                 goto err_out;
551         }
552
553         /* set status of message */
554         pmsg->actual_length = 0;
555         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
556
557         pmsg->status = -EINPROGRESS;
558         spin_lock_irqsave(&data->lock, flags);
559         /* add message to queue */
560         list_add_tail(&pmsg->queue, &data->queue);
561         spin_unlock_irqrestore(&data->lock, flags);
562
563         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
564
565         /* schedule work queue to run */
566         queue_work(data->wk, &data->work);
567         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
568
569         retval = 0;
570
571 err_out:
572         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
573         return retval;
574 err_return_spinlock:
575         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
576         spin_unlock_irqrestore(&data->lock, flags);
577         return retval;
578 }
579
580 static inline void pch_spi_select_chip(struct pch_spi_data *data,
581                                        struct spi_device *pspi)
582 {
583         if (data->current_chip != NULL) {
584                 if (pspi->chip_select != data->n_curnt_chip) {
585                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
586                         data->current_chip = NULL;
587                 }
588         }
589
590         data->current_chip = pspi;
591
592         data->n_curnt_chip = data->current_chip->chip_select;
593
594         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
595         pch_spi_setup_transfer(pspi);
596 }
597
598 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
599 {
600         int size;
601         u32 n_writes;
602         int j;
603         struct spi_message *pmsg, *tmp;
604         const u8 *tx_buf;
605         const u16 *tx_sbuf;
606
607         /* set baud rate if needed */
608         if (data->cur_trans->speed_hz) {
609                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
610                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
611         }
612
613         /* set bits per word if needed */
614         if (data->cur_trans->bits_per_word &&
615             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
616                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
617                 pch_spi_set_bits_per_word(data->master,
618                                           data->cur_trans->bits_per_word);
619                 *bpw = data->cur_trans->bits_per_word;
620         } else {
621                 *bpw = data->current_msg->spi->bits_per_word;
622         }
623
624         /* reset Tx/Rx index */
625         data->tx_index = 0;
626         data->rx_index = 0;
627
628         data->bpw_len = data->cur_trans->len / (*bpw / 8);
629
630         /* find alloc size */
631         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
632
633         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
634         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
635         if (data->pkt_tx_buff != NULL) {
636                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
637                 if (!data->pkt_rx_buff)
638                         kfree(data->pkt_tx_buff);
639         }
640
641         if (!data->pkt_rx_buff) {
642                 /* flush queue and set status of all transfers to -ENOMEM */
643                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
644                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
645                         pmsg->status = -ENOMEM;
646
647                         if (pmsg->complete)
648                                 pmsg->complete(pmsg->context);
649
650                         /* delete from queue */
651                         list_del_init(&pmsg->queue);
652                 }
653                 return;
654         }
655
656         /* copy Tx Data */
657         if (data->cur_trans->tx_buf != NULL) {
658                 if (*bpw == 8) {
659                         tx_buf = data->cur_trans->tx_buf;
660                         for (j = 0; j < data->bpw_len; j++)
661                                 data->pkt_tx_buff[j] = *tx_buf++;
662                 } else {
663                         tx_sbuf = data->cur_trans->tx_buf;
664                         for (j = 0; j < data->bpw_len; j++)
665                                 data->pkt_tx_buff[j] = *tx_sbuf++;
666                 }
667         }
668
669         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
670         n_writes = data->bpw_len;
671         if (n_writes > PCH_MAX_FIFO_DEPTH)
672                 n_writes = PCH_MAX_FIFO_DEPTH;
673
674         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
675                 "0x2 to SSNXCR\n", __func__);
676         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
677
678         for (j = 0; j < n_writes; j++)
679                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
680
681         /* update tx_index */
682         data->tx_index = j;
683
684         /* reset transfer complete flag */
685         data->transfer_complete = false;
686         data->transfer_active = true;
687 }
688
689 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
690 {
691         struct spi_message *pmsg, *tmp;
692         dev_dbg(&data->master->dev, "%s called\n", __func__);
693         /* Invoke complete callback
694          * [To the spi core..indicating end of transfer] */
695         data->current_msg->status = 0;
696
697         if (data->current_msg->complete) {
698                 dev_dbg(&data->master->dev,
699                         "%s:Invoking callback of SPI core\n", __func__);
700                 data->current_msg->complete(data->current_msg->context);
701         }
702
703         /* update status in global variable */
704         data->bcurrent_msg_processing = false;
705
706         dev_dbg(&data->master->dev,
707                 "%s:data->bcurrent_msg_processing = false\n", __func__);
708
709         data->current_msg = NULL;
710         data->cur_trans = NULL;
711
712         /* check if we have items in list and not suspending
713          * return 1 if list empty */
714         if ((list_empty(&data->queue) == 0) &&
715             (!data->board_dat->suspend_sts) &&
716             (data->status != STATUS_EXITING)) {
717                 /* We have some more work to do (either there is more tranint
718                  * bpw;sfer requests in the current message or there are
719                  *more messages)
720                  */
721                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
722                 queue_work(data->wk, &data->work);
723         } else if (data->board_dat->suspend_sts ||
724                    data->status == STATUS_EXITING) {
725                 dev_dbg(&data->master->dev,
726                         "%s suspend/remove initiated, flushing queue\n",
727                         __func__);
728                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
729                         pmsg->status = -EIO;
730
731                         if (pmsg->complete)
732                                 pmsg->complete(pmsg->context);
733
734                         /* delete from queue */
735                         list_del_init(&pmsg->queue);
736                 }
737         }
738 }
739
740 static void pch_spi_set_ir(struct pch_spi_data *data)
741 {
742         /* enable interrupts, set threshold, enable SPI */
743         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
744                 /* set receive threshold to PCH_RX_THOLD */
745                 pch_spi_setclr_reg(data->master, PCH_SPCR,
746                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
747                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
748                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
749                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
750         else
751                 /* set receive threshold to maximum */
752                 pch_spi_setclr_reg(data->master, PCH_SPCR,
753                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
754                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
755                                    SPCR_SPE_BIT,
756                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
757
758         /* Wait until the transfer completes; go to sleep after
759                                  initiating the transfer. */
760         dev_dbg(&data->master->dev,
761                 "%s:waiting for transfer to get over\n", __func__);
762
763         wait_event_interruptible(data->wait, data->transfer_complete);
764
765         /* clear all interrupts */
766         pch_spi_writereg(data->master, PCH_SPSR,
767                          pch_spi_readreg(data->master, PCH_SPSR));
768         /* Disable interrupts and SPI transfer */
769         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
770         /* clear FIFO */
771         pch_spi_clear_fifo(data->master);
772 }
773
774 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
775 {
776         int j;
777         u8 *rx_buf;
778         u16 *rx_sbuf;
779
780         /* copy Rx Data */
781         if (!data->cur_trans->rx_buf)
782                 return;
783
784         if (bpw == 8) {
785                 rx_buf = data->cur_trans->rx_buf;
786                 for (j = 0; j < data->bpw_len; j++)
787                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
788         } else {
789                 rx_sbuf = data->cur_trans->rx_buf;
790                 for (j = 0; j < data->bpw_len; j++)
791                         *rx_sbuf++ = data->pkt_rx_buff[j];
792         }
793 }
794
795 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
796 {
797         int j;
798         u8 *rx_buf;
799         u16 *rx_sbuf;
800         const u8 *rx_dma_buf;
801         const u16 *rx_dma_sbuf;
802
803         /* copy Rx Data */
804         if (!data->cur_trans->rx_buf)
805                 return;
806
807         if (bpw == 8) {
808                 rx_buf = data->cur_trans->rx_buf;
809                 rx_dma_buf = data->dma.rx_buf_virt;
810                 for (j = 0; j < data->bpw_len; j++)
811                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
812                 data->cur_trans->rx_buf = rx_buf;
813         } else {
814                 rx_sbuf = data->cur_trans->rx_buf;
815                 rx_dma_sbuf = data->dma.rx_buf_virt;
816                 for (j = 0; j < data->bpw_len; j++)
817                         *rx_sbuf++ = *rx_dma_sbuf++;
818                 data->cur_trans->rx_buf = rx_sbuf;
819         }
820 }
821
822 static int pch_spi_start_transfer(struct pch_spi_data *data)
823 {
824         struct pch_spi_dma_ctrl *dma;
825         unsigned long flags;
826         int rtn;
827
828         dma = &data->dma;
829
830         spin_lock_irqsave(&data->lock, flags);
831
832         /* disable interrupts, SPI set enable */
833         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
834
835         spin_unlock_irqrestore(&data->lock, flags);
836
837         /* Wait until the transfer completes; go to sleep after
838                                  initiating the transfer. */
839         dev_dbg(&data->master->dev,
840                 "%s:waiting for transfer to get over\n", __func__);
841         rtn = wait_event_interruptible_timeout(data->wait,
842                                                data->transfer_complete,
843                                                msecs_to_jiffies(2 * HZ));
844         if (!rtn)
845                 dev_err(&data->master->dev,
846                         "%s wait-event timeout\n", __func__);
847
848         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
849                             DMA_FROM_DEVICE);
850
851         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
852                             DMA_FROM_DEVICE);
853         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
854
855         async_tx_ack(dma->desc_rx);
856         async_tx_ack(dma->desc_tx);
857         kfree(dma->sg_tx_p);
858         kfree(dma->sg_rx_p);
859
860         spin_lock_irqsave(&data->lock, flags);
861
862         /* clear fifo threshold, disable interrupts, disable SPI transfer */
863         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
864                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
865                            SPCR_SPE_BIT);
866         /* clear all interrupts */
867         pch_spi_writereg(data->master, PCH_SPSR,
868                          pch_spi_readreg(data->master, PCH_SPSR));
869         /* clear FIFO */
870         pch_spi_clear_fifo(data->master);
871
872         spin_unlock_irqrestore(&data->lock, flags);
873
874         return rtn;
875 }
876
877 static void pch_dma_rx_complete(void *arg)
878 {
879         struct pch_spi_data *data = arg;
880
881         /* transfer is completed;inform pch_spi_process_messages_dma */
882         data->transfer_complete = true;
883         wake_up_interruptible(&data->wait);
884 }
885
886 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
887 {
888         struct pch_dma_slave *param = slave;
889
890         if ((chan->chan_id == param->chan_id) &&
891             (param->dma_dev == chan->device->dev)) {
892                 chan->private = param;
893                 return true;
894         } else {
895                 return false;
896         }
897 }
898
899 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
900 {
901         dma_cap_mask_t mask;
902         struct dma_chan *chan;
903         struct pci_dev *dma_dev;
904         struct pch_dma_slave *param;
905         struct pch_spi_dma_ctrl *dma;
906         unsigned int width;
907
908         if (bpw == 8)
909                 width = PCH_DMA_WIDTH_1_BYTE;
910         else
911                 width = PCH_DMA_WIDTH_2_BYTES;
912
913         dma = &data->dma;
914         dma_cap_zero(mask);
915         dma_cap_set(DMA_SLAVE, mask);
916
917         /* Get DMA's dev information */
918         dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
919                                        PCI_DEVFN(12, 0));
920
921         /* Set Tx DMA */
922         param = &dma->param_tx;
923         param->dma_dev = &dma_dev->dev;
924         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
925         param->tx_reg = data->io_base_addr + PCH_SPDWR;
926         param->width = width;
927         chan = dma_request_channel(mask, pch_spi_filter, param);
928         if (!chan) {
929                 dev_err(&data->master->dev,
930                         "ERROR: dma_request_channel FAILS(Tx)\n");
931                 data->use_dma = 0;
932                 return;
933         }
934         dma->chan_tx = chan;
935
936         /* Set Rx DMA */
937         param = &dma->param_rx;
938         param->dma_dev = &dma_dev->dev;
939         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
940         param->rx_reg = data->io_base_addr + PCH_SPDRR;
941         param->width = width;
942         chan = dma_request_channel(mask, pch_spi_filter, param);
943         if (!chan) {
944                 dev_err(&data->master->dev,
945                         "ERROR: dma_request_channel FAILS(Rx)\n");
946                 dma_release_channel(dma->chan_tx);
947                 dma->chan_tx = NULL;
948                 data->use_dma = 0;
949                 return;
950         }
951         dma->chan_rx = chan;
952 }
953
954 static void pch_spi_release_dma(struct pch_spi_data *data)
955 {
956         struct pch_spi_dma_ctrl *dma;
957
958         dma = &data->dma;
959         if (dma->chan_tx) {
960                 dma_release_channel(dma->chan_tx);
961                 dma->chan_tx = NULL;
962         }
963         if (dma->chan_rx) {
964                 dma_release_channel(dma->chan_rx);
965                 dma->chan_rx = NULL;
966         }
967         return;
968 }
969
970 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
971 {
972         const u8 *tx_buf;
973         const u16 *tx_sbuf;
974         u8 *tx_dma_buf;
975         u16 *tx_dma_sbuf;
976         struct scatterlist *sg;
977         struct dma_async_tx_descriptor *desc_tx;
978         struct dma_async_tx_descriptor *desc_rx;
979         int num;
980         int i;
981         int size;
982         int rem;
983         int head;
984         unsigned long flags;
985         struct pch_spi_dma_ctrl *dma;
986
987         dma = &data->dma;
988
989         /* set baud rate if needed */
990         if (data->cur_trans->speed_hz) {
991                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
992                 spin_lock_irqsave(&data->lock, flags);
993                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
994                 spin_unlock_irqrestore(&data->lock, flags);
995         }
996
997         /* set bits per word if needed */
998         if (data->cur_trans->bits_per_word &&
999             (data->current_msg->spi->bits_per_word !=
1000              data->cur_trans->bits_per_word)) {
1001                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1002                 spin_lock_irqsave(&data->lock, flags);
1003                 pch_spi_set_bits_per_word(data->master,
1004                                           data->cur_trans->bits_per_word);
1005                 spin_unlock_irqrestore(&data->lock, flags);
1006                 *bpw = data->cur_trans->bits_per_word;
1007         } else {
1008                 *bpw = data->current_msg->spi->bits_per_word;
1009         }
1010         data->bpw_len = data->cur_trans->len / (*bpw / 8);
1011
1012         if (data->bpw_len > PCH_BUF_SIZE) {
1013                 data->bpw_len = PCH_BUF_SIZE;
1014                 data->cur_trans->len -= PCH_BUF_SIZE;
1015         }
1016
1017         /* copy Tx Data */
1018         if (data->cur_trans->tx_buf != NULL) {
1019                 if (*bpw == 8) {
1020                         tx_buf = data->cur_trans->tx_buf;
1021                         tx_dma_buf = dma->tx_buf_virt;
1022                         for (i = 0; i < data->bpw_len; i++)
1023                                 *tx_dma_buf++ = *tx_buf++;
1024                 } else {
1025                         tx_sbuf = data->cur_trans->tx_buf;
1026                         tx_dma_sbuf = dma->tx_buf_virt;
1027                         for (i = 0; i < data->bpw_len; i++)
1028                                 *tx_dma_sbuf++ = *tx_sbuf++;
1029                 }
1030         }
1031
1032         /* Calculate Rx parameter for DMA transmitting */
1033         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1034                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1035                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1036                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1037                 } else {
1038                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1039                         rem = PCH_DMA_TRANS_SIZE;
1040                 }
1041                 size = PCH_DMA_TRANS_SIZE;
1042         } else {
1043                 num = 1;
1044                 size = data->bpw_len;
1045                 rem = data->bpw_len;
1046         }
1047         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1048                 __func__, num, size, rem);
1049         spin_lock_irqsave(&data->lock, flags);
1050
1051         /* set receive fifo threshold and transmit fifo threshold */
1052         pch_spi_setclr_reg(data->master, PCH_SPCR,
1053                            ((size - 1) << SPCR_RFIC_FIELD) |
1054                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1055                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1056
1057         spin_unlock_irqrestore(&data->lock, flags);
1058
1059         /* RX */
1060         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1061         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1062         /* offset, length setting */
1063         sg = dma->sg_rx_p;
1064         for (i = 0; i < num; i++, sg++) {
1065                 if (i == (num - 2)) {
1066                         sg->offset = size * i;
1067                         sg->offset = sg->offset * (*bpw / 8);
1068                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1069                                     sg->offset);
1070                         sg_dma_len(sg) = rem;
1071                 } else if (i == (num - 1)) {
1072                         sg->offset = size * (i - 1) + rem;
1073                         sg->offset = sg->offset * (*bpw / 8);
1074                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1075                                     sg->offset);
1076                         sg_dma_len(sg) = size;
1077                 } else {
1078                         sg->offset = size * i;
1079                         sg->offset = sg->offset * (*bpw / 8);
1080                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1081                                     sg->offset);
1082                         sg_dma_len(sg) = size;
1083                 }
1084                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1085         }
1086         sg = dma->sg_rx_p;
1087         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1088                                         num, DMA_DEV_TO_MEM,
1089                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1090         if (!desc_rx) {
1091                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1092                         __func__);
1093                 return;
1094         }
1095         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1096         desc_rx->callback = pch_dma_rx_complete;
1097         desc_rx->callback_param = data;
1098         dma->nent = num;
1099         dma->desc_rx = desc_rx;
1100
1101         /* Calculate Tx parameter for DMA transmitting */
1102         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1103                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1104                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1105                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1106                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1107                 } else {
1108                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1109                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1110                               PCH_DMA_TRANS_SIZE - head;
1111                 }
1112                 size = PCH_DMA_TRANS_SIZE;
1113         } else {
1114                 num = 1;
1115                 size = data->bpw_len;
1116                 rem = data->bpw_len;
1117                 head = 0;
1118         }
1119
1120         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1121         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1122         /* offset, length setting */
1123         sg = dma->sg_tx_p;
1124         for (i = 0; i < num; i++, sg++) {
1125                 if (i == 0) {
1126                         sg->offset = 0;
1127                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1128                                     sg->offset);
1129                         sg_dma_len(sg) = size + head;
1130                 } else if (i == (num - 1)) {
1131                         sg->offset = head + size * i;
1132                         sg->offset = sg->offset * (*bpw / 8);
1133                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1134                                     sg->offset);
1135                         sg_dma_len(sg) = rem;
1136                 } else {
1137                         sg->offset = head + size * i;
1138                         sg->offset = sg->offset * (*bpw / 8);
1139                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1140                                     sg->offset);
1141                         sg_dma_len(sg) = size;
1142                 }
1143                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1144         }
1145         sg = dma->sg_tx_p;
1146         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1147                                         sg, num, DMA_MEM_TO_DEV,
1148                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1149         if (!desc_tx) {
1150                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1151                         __func__);
1152                 return;
1153         }
1154         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1155         desc_tx->callback = NULL;
1156         desc_tx->callback_param = data;
1157         dma->nent = num;
1158         dma->desc_tx = desc_tx;
1159
1160         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1161                 "0x2 to SSNXCR\n", __func__);
1162
1163         spin_lock_irqsave(&data->lock, flags);
1164         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1165         desc_rx->tx_submit(desc_rx);
1166         desc_tx->tx_submit(desc_tx);
1167         spin_unlock_irqrestore(&data->lock, flags);
1168
1169         /* reset transfer complete flag */
1170         data->transfer_complete = false;
1171 }
1172
1173 static void pch_spi_process_messages(struct work_struct *pwork)
1174 {
1175         struct spi_message *pmsg, *tmp;
1176         struct pch_spi_data *data;
1177         int bpw;
1178
1179         data = container_of(pwork, struct pch_spi_data, work);
1180         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1181
1182         spin_lock(&data->lock);
1183         /* check if suspend has been initiated;if yes flush queue */
1184         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1185                 dev_dbg(&data->master->dev,
1186                         "%s suspend/remove initiated, flushing queue\n", __func__);
1187                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1188                         pmsg->status = -EIO;
1189
1190                         if (pmsg->complete) {
1191                                 spin_unlock(&data->lock);
1192                                 pmsg->complete(pmsg->context);
1193                                 spin_lock(&data->lock);
1194                         }
1195
1196                         /* delete from queue */
1197                         list_del_init(&pmsg->queue);
1198                 }
1199
1200                 spin_unlock(&data->lock);
1201                 return;
1202         }
1203
1204         data->bcurrent_msg_processing = true;
1205         dev_dbg(&data->master->dev,
1206                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1207
1208         /* Get the message from the queue and delete it from there. */
1209         data->current_msg = list_entry(data->queue.next, struct spi_message,
1210                                         queue);
1211
1212         list_del_init(&data->current_msg->queue);
1213
1214         data->current_msg->status = 0;
1215
1216         pch_spi_select_chip(data, data->current_msg->spi);
1217
1218         spin_unlock(&data->lock);
1219
1220         if (data->use_dma)
1221                 pch_spi_request_dma(data,
1222                                     data->current_msg->spi->bits_per_word);
1223         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1224         do {
1225                 int cnt;
1226                 /* If we are already processing a message get the next
1227                 transfer structure from the message otherwise retrieve
1228                 the 1st transfer request from the message. */
1229                 spin_lock(&data->lock);
1230                 if (data->cur_trans == NULL) {
1231                         data->cur_trans =
1232                                 list_entry(data->current_msg->transfers.next,
1233                                            struct spi_transfer, transfer_list);
1234                         dev_dbg(&data->master->dev, "%s "
1235                                 ":Getting 1st transfer message\n", __func__);
1236                 } else {
1237                         data->cur_trans =
1238                                 list_entry(data->cur_trans->transfer_list.next,
1239                                            struct spi_transfer, transfer_list);
1240                         dev_dbg(&data->master->dev, "%s "
1241                                 ":Getting next transfer message\n", __func__);
1242                 }
1243                 spin_unlock(&data->lock);
1244
1245                 if (!data->cur_trans->len)
1246                         goto out;
1247                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1248                 data->save_total_len = data->cur_trans->len;
1249                 if (data->use_dma) {
1250                         int i;
1251                         char *save_rx_buf = data->cur_trans->rx_buf;
1252                         for (i = 0; i < cnt; i ++) {
1253                                 pch_spi_handle_dma(data, &bpw);
1254                                 if (!pch_spi_start_transfer(data)) {
1255                                         data->transfer_complete = true;
1256                                         data->current_msg->status = -EIO;
1257                                         data->current_msg->complete
1258                                                    (data->current_msg->context);
1259                                         data->bcurrent_msg_processing = false;
1260                                         data->current_msg = NULL;
1261                                         data->cur_trans = NULL;
1262                                         goto out;
1263                                 }
1264                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1265                         }
1266                         data->cur_trans->rx_buf = save_rx_buf;
1267                 } else {
1268                         pch_spi_set_tx(data, &bpw);
1269                         pch_spi_set_ir(data);
1270                         pch_spi_copy_rx_data(data, bpw);
1271                         kfree(data->pkt_rx_buff);
1272                         data->pkt_rx_buff = NULL;
1273                         kfree(data->pkt_tx_buff);
1274                         data->pkt_tx_buff = NULL;
1275                 }
1276                 /* increment message count */
1277                 data->cur_trans->len = data->save_total_len;
1278                 data->current_msg->actual_length += data->cur_trans->len;
1279
1280                 dev_dbg(&data->master->dev,
1281                         "%s:data->current_msg->actual_length=%d\n",
1282                         __func__, data->current_msg->actual_length);
1283
1284                 /* check for delay */
1285                 if (data->cur_trans->delay_usecs) {
1286                         dev_dbg(&data->master->dev, "%s:"
1287                                 "delay in usec=%d\n", __func__,
1288                                 data->cur_trans->delay_usecs);
1289                         udelay(data->cur_trans->delay_usecs);
1290                 }
1291
1292                 spin_lock(&data->lock);
1293
1294                 /* No more transfer in this message. */
1295                 if ((data->cur_trans->transfer_list.next) ==
1296                     &(data->current_msg->transfers)) {
1297                         pch_spi_nomore_transfer(data);
1298                 }
1299
1300                 spin_unlock(&data->lock);
1301
1302         } while (data->cur_trans != NULL);
1303
1304 out:
1305         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1306         if (data->use_dma)
1307                 pch_spi_release_dma(data);
1308 }
1309
1310 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1311                                    struct pch_spi_data *data)
1312 {
1313         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1314
1315         /* free workqueue */
1316         if (data->wk != NULL) {
1317                 destroy_workqueue(data->wk);
1318                 data->wk = NULL;
1319                 dev_dbg(&board_dat->pdev->dev,
1320                         "%s destroy_workqueue invoked successfully\n",
1321                         __func__);
1322         }
1323 }
1324
1325 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1326                                  struct pch_spi_data *data)
1327 {
1328         int retval = 0;
1329
1330         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1331
1332         /* create workqueue */
1333         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1334         if (!data->wk) {
1335                 dev_err(&board_dat->pdev->dev,
1336                         "%s create_singlet hread_workqueue failed\n", __func__);
1337                 retval = -EBUSY;
1338                 goto err_return;
1339         }
1340
1341         /* reset PCH SPI h/w */
1342         pch_spi_reset(data->master);
1343         dev_dbg(&board_dat->pdev->dev,
1344                 "%s pch_spi_reset invoked successfully\n", __func__);
1345
1346         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1347
1348 err_return:
1349         if (retval != 0) {
1350                 dev_err(&board_dat->pdev->dev,
1351                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1352                 pch_spi_free_resources(board_dat, data);
1353         }
1354
1355         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1356
1357         return retval;
1358 }
1359
1360 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1361                              struct pch_spi_data *data)
1362 {
1363         struct pch_spi_dma_ctrl *dma;
1364
1365         dma = &data->dma;
1366         if (dma->tx_buf_dma)
1367                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1368                                   dma->tx_buf_virt, dma->tx_buf_dma);
1369         if (dma->rx_buf_dma)
1370                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1371                                   dma->rx_buf_virt, dma->rx_buf_dma);
1372         return;
1373 }
1374
1375 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1376                               struct pch_spi_data *data)
1377 {
1378         struct pch_spi_dma_ctrl *dma;
1379
1380         dma = &data->dma;
1381         /* Get Consistent memory for Tx DMA */
1382         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1383                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1384         /* Get Consistent memory for Rx DMA */
1385         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1386                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1387 }
1388
1389 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1390 {
1391         int ret;
1392         struct spi_master *master;
1393         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1394         struct pch_spi_data *data;
1395
1396         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1397
1398         master = spi_alloc_master(&board_dat->pdev->dev,
1399                                   sizeof(struct pch_spi_data));
1400         if (!master) {
1401                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1402                         plat_dev->id);
1403                 return -ENOMEM;
1404         }
1405
1406         data = spi_master_get_devdata(master);
1407         data->master = master;
1408
1409         platform_set_drvdata(plat_dev, data);
1410
1411         /* baseaddress + address offset) */
1412         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1413                                          PCH_ADDRESS_SIZE * plat_dev->id;
1414         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1415         if (!data->io_remap_addr) {
1416                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1417                 ret = -ENOMEM;
1418                 goto err_pci_iomap;
1419         }
1420         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1421
1422         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1423                 plat_dev->id, data->io_remap_addr);
1424
1425         /* initialize members of SPI master */
1426         master->num_chipselect = PCH_MAX_CS;
1427         master->setup = pch_spi_setup;
1428         master->transfer = pch_spi_transfer;
1429         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1430         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1431
1432         data->board_dat = board_dat;
1433         data->plat_dev = plat_dev;
1434         data->n_curnt_chip = 255;
1435         data->status = STATUS_RUNNING;
1436         data->ch = plat_dev->id;
1437         data->use_dma = use_dma;
1438
1439         INIT_LIST_HEAD(&data->queue);
1440         spin_lock_init(&data->lock);
1441         INIT_WORK(&data->work, pch_spi_process_messages);
1442         init_waitqueue_head(&data->wait);
1443
1444         ret = pch_spi_get_resources(board_dat, data);
1445         if (ret) {
1446                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1447                 goto err_spi_get_resources;
1448         }
1449
1450         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1451                           IRQF_SHARED, KBUILD_MODNAME, data);
1452         if (ret) {
1453                 dev_err(&plat_dev->dev,
1454                         "%s request_irq failed\n", __func__);
1455                 goto err_request_irq;
1456         }
1457         data->irq_reg_sts = true;
1458
1459         pch_spi_set_master_mode(master);
1460
1461         ret = spi_register_master(master);
1462         if (ret != 0) {
1463                 dev_err(&plat_dev->dev,
1464                         "%s spi_register_master FAILED\n", __func__);
1465                 goto err_spi_register_master;
1466         }
1467
1468         if (use_dma) {
1469                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1470                 pch_alloc_dma_buf(board_dat, data);
1471         }
1472
1473         return 0;
1474
1475 err_spi_register_master:
1476         free_irq(board_dat->pdev->irq, data);
1477 err_request_irq:
1478         pch_spi_free_resources(board_dat, data);
1479 err_spi_get_resources:
1480         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1481 err_pci_iomap:
1482         spi_master_put(master);
1483
1484         return ret;
1485 }
1486
1487 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1488 {
1489         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1490         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1491         int count;
1492         unsigned long flags;
1493
1494         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1495                 __func__, plat_dev->id, board_dat->pdev->irq);
1496
1497         if (use_dma)
1498                 pch_free_dma_buf(board_dat, data);
1499
1500         /* check for any pending messages; no action is taken if the queue
1501          * is still full; but at least we tried.  Unload anyway */
1502         count = 500;
1503         spin_lock_irqsave(&data->lock, flags);
1504         data->status = STATUS_EXITING;
1505         while ((list_empty(&data->queue) == 0) && --count) {
1506                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1507                         __func__);
1508                 spin_unlock_irqrestore(&data->lock, flags);
1509                 msleep(PCH_SLEEP_TIME);
1510                 spin_lock_irqsave(&data->lock, flags);
1511         }
1512         spin_unlock_irqrestore(&data->lock, flags);
1513
1514         pch_spi_free_resources(board_dat, data);
1515         /* disable interrupts & free IRQ */
1516         if (data->irq_reg_sts) {
1517                 /* disable interrupts */
1518                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1519                 data->irq_reg_sts = false;
1520                 free_irq(board_dat->pdev->irq, data);
1521         }
1522
1523         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1524         spi_unregister_master(data->master);
1525
1526         return 0;
1527 }
1528 #ifdef CONFIG_PM
1529 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1530                               pm_message_t state)
1531 {
1532         u8 count;
1533         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1534         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1535
1536         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1537
1538         if (!board_dat) {
1539                 dev_err(&pd_dev->dev,
1540                         "%s pci_get_drvdata returned NULL\n", __func__);
1541                 return -EFAULT;
1542         }
1543
1544         /* check if the current message is processed:
1545            Only after thats done the transfer will be suspended */
1546         count = 255;
1547         while ((--count) > 0) {
1548                 if (!(data->bcurrent_msg_processing))
1549                         break;
1550                 msleep(PCH_SLEEP_TIME);
1551         }
1552
1553         /* Free IRQ */
1554         if (data->irq_reg_sts) {
1555                 /* disable all interrupts */
1556                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1557                 pch_spi_reset(data->master);
1558                 free_irq(board_dat->pdev->irq, data);
1559
1560                 data->irq_reg_sts = false;
1561                 dev_dbg(&pd_dev->dev,
1562                         "%s free_irq invoked successfully.\n", __func__);
1563         }
1564
1565         return 0;
1566 }
1567
1568 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1569 {
1570         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1571         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1572         int retval;
1573
1574         if (!board_dat) {
1575                 dev_err(&pd_dev->dev,
1576                         "%s pci_get_drvdata returned NULL\n", __func__);
1577                 return -EFAULT;
1578         }
1579
1580         if (!data->irq_reg_sts) {
1581                 /* register IRQ */
1582                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1583                                      IRQF_SHARED, KBUILD_MODNAME, data);
1584                 if (retval < 0) {
1585                         dev_err(&pd_dev->dev,
1586                                 "%s request_irq failed\n", __func__);
1587                         return retval;
1588                 }
1589
1590                 /* reset PCH SPI h/w */
1591                 pch_spi_reset(data->master);
1592                 pch_spi_set_master_mode(data->master);
1593                 data->irq_reg_sts = true;
1594         }
1595         return 0;
1596 }
1597 #else
1598 #define pch_spi_pd_suspend NULL
1599 #define pch_spi_pd_resume NULL
1600 #endif
1601
1602 static struct platform_driver pch_spi_pd_driver = {
1603         .driver = {
1604                 .name = "pch-spi",
1605                 .owner = THIS_MODULE,
1606         },
1607         .probe = pch_spi_pd_probe,
1608         .remove = pch_spi_pd_remove,
1609         .suspend = pch_spi_pd_suspend,
1610         .resume = pch_spi_pd_resume
1611 };
1612
1613 static int pch_spi_probe(struct pci_dev *pdev,
1614                                    const struct pci_device_id *id)
1615 {
1616         struct pch_spi_board_data *board_dat;
1617         struct platform_device *pd_dev = NULL;
1618         int retval;
1619         int i;
1620         struct pch_pd_dev_save *pd_dev_save;
1621
1622         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1623         if (!pd_dev_save) {
1624                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1625                 return -ENOMEM;
1626         }
1627
1628         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1629         if (!board_dat) {
1630                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1631                 retval = -ENOMEM;
1632                 goto err_no_mem;
1633         }
1634
1635         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1636         if (retval) {
1637                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1638                 goto pci_request_regions;
1639         }
1640
1641         board_dat->pdev = pdev;
1642         board_dat->num = id->driver_data;
1643         pd_dev_save->num = id->driver_data;
1644         pd_dev_save->board_dat = board_dat;
1645
1646         retval = pci_enable_device(pdev);
1647         if (retval) {
1648                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1649                 goto pci_enable_device;
1650         }
1651
1652         for (i = 0; i < board_dat->num; i++) {
1653                 pd_dev = platform_device_alloc("pch-spi", i);
1654                 if (!pd_dev) {
1655                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1656                         retval = -ENOMEM;
1657                         goto err_platform_device;
1658                 }
1659                 pd_dev_save->pd_save[i] = pd_dev;
1660                 pd_dev->dev.parent = &pdev->dev;
1661
1662                 retval = platform_device_add_data(pd_dev, board_dat,
1663                                                   sizeof(*board_dat));
1664                 if (retval) {
1665                         dev_err(&pdev->dev,
1666                                 "platform_device_add_data failed\n");
1667                         platform_device_put(pd_dev);
1668                         goto err_platform_device;
1669                 }
1670
1671                 retval = platform_device_add(pd_dev);
1672                 if (retval) {
1673                         dev_err(&pdev->dev, "platform_device_add failed\n");
1674                         platform_device_put(pd_dev);
1675                         goto err_platform_device;
1676                 }
1677         }
1678
1679         pci_set_drvdata(pdev, pd_dev_save);
1680
1681         return 0;
1682
1683 err_platform_device:
1684         pci_disable_device(pdev);
1685 pci_enable_device:
1686         pci_release_regions(pdev);
1687 pci_request_regions:
1688         kfree(board_dat);
1689 err_no_mem:
1690         kfree(pd_dev_save);
1691
1692         return retval;
1693 }
1694
1695 static void pch_spi_remove(struct pci_dev *pdev)
1696 {
1697         int i;
1698         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1699
1700         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1701
1702         for (i = 0; i < pd_dev_save->num; i++)
1703                 platform_device_unregister(pd_dev_save->pd_save[i]);
1704
1705         pci_disable_device(pdev);
1706         pci_release_regions(pdev);
1707         kfree(pd_dev_save->board_dat);
1708         kfree(pd_dev_save);
1709 }
1710
1711 #ifdef CONFIG_PM
1712 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1713 {
1714         int retval;
1715         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1716
1717         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1718
1719         pd_dev_save->board_dat->suspend_sts = true;
1720
1721         /* save config space */
1722         retval = pci_save_state(pdev);
1723         if (retval == 0) {
1724                 pci_enable_wake(pdev, PCI_D3hot, 0);
1725                 pci_disable_device(pdev);
1726                 pci_set_power_state(pdev, PCI_D3hot);
1727         } else {
1728                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1729         }
1730
1731         return retval;
1732 }
1733
1734 static int pch_spi_resume(struct pci_dev *pdev)
1735 {
1736         int retval;
1737         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1738         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1739
1740         pci_set_power_state(pdev, PCI_D0);
1741         pci_restore_state(pdev);
1742
1743         retval = pci_enable_device(pdev);
1744         if (retval < 0) {
1745                 dev_err(&pdev->dev,
1746                         "%s pci_enable_device failed\n", __func__);
1747         } else {
1748                 pci_enable_wake(pdev, PCI_D3hot, 0);
1749
1750                 /* set suspend status to false */
1751                 pd_dev_save->board_dat->suspend_sts = false;
1752         }
1753
1754         return retval;
1755 }
1756 #else
1757 #define pch_spi_suspend NULL
1758 #define pch_spi_resume NULL
1759
1760 #endif
1761
1762 static struct pci_driver pch_spi_pcidev_driver = {
1763         .name = "pch_spi",
1764         .id_table = pch_spi_pcidev_id,
1765         .probe = pch_spi_probe,
1766         .remove = pch_spi_remove,
1767         .suspend = pch_spi_suspend,
1768         .resume = pch_spi_resume,
1769 };
1770
1771 static int __init pch_spi_init(void)
1772 {
1773         int ret;
1774         ret = platform_driver_register(&pch_spi_pd_driver);
1775         if (ret)
1776                 return ret;
1777
1778         ret = pci_register_driver(&pch_spi_pcidev_driver);
1779         if (ret) {
1780                 platform_driver_unregister(&pch_spi_pd_driver);
1781                 return ret;
1782         }
1783
1784         return 0;
1785 }
1786 module_init(pch_spi_init);
1787
1788 static void __exit pch_spi_exit(void)
1789 {
1790         pci_unregister_driver(&pch_spi_pcidev_driver);
1791         platform_driver_unregister(&pch_spi_pd_driver);
1792 }
1793 module_exit(pch_spi_exit);
1794
1795 module_param(use_dma, int, 0644);
1796 MODULE_PARM_DESC(use_dma,
1797                  "to use DMA for data transfers pass 1 else 0; default 1");
1798
1799 MODULE_LICENSE("GPL");
1800 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1801 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1802